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1. Introduction

In 1966, T. Klotz and R. Ossermann showed the following:

Theorem ([KO]). A complete H -surface in R3 whose Gaussian curvature K does
not change sign is either a sphere, a minimal surface, or a right circular cylinder.

The above result was extended to S3 by D. Hoffman [H], and to H3 by R. Tribuzy
[T] with an extra hypothesis ifK is non-positive. The additional hypothesis says that,
when K � 0, one has H 2 �K � 1 > 0.

In recent years, the study ofH -surfaces in product spaces and, more generally, in
a homogeneous three-manifold with a 4-dimensional isometry group is quite active
(see [AR], [AR2], [CoR], [ER], [FM], [FM2], [DH] and references therein).

The aim of this paper is to extend the above theorem to homogeneous spaces with
a 4-dimensional isometry group. These homogeneous spaces are denoted by E.�; �/,
where � and � are constant and � � 4�2 ¤ 0. They can be classified as M2.�/ � R
if � D 0, with M2.�/ D S2.�/ if � > 0 (S2.�/ the sphere of curvature �), and
M2.�/ D H2.�/ if � < 0 (H2.�/ the hyperbolic plane of curvature �). If � is not
equal to zero, E.�; �/ is a Berger sphere if � > 0, a Heisenberg space if � D 0 (of

�The author is partially supported by Spanish MEC-FEDER Grant MTM2007-65249, and Regional J. An-
dalucia Grants P06-FQM-01642 and FQM325.



660 J. M. Espinar and H. Rosenberg CMH

bundle curvature � ), and the universal cover of PSL.2;R/ if � < 0. Henceforth we
will suppose � is plus or minus one or zero.

The paper is organized as follows. In Section 2, we establish the definitions and
necessary equations for anH -surface. We also state here two classification results for
H -surfaces. We prove them in Section 5 and Section 6 for the sake of completeness.

Section 3 is devoted to the classification ofH -surfaces with non-negative Gaussian
curvature,

Theorem 3.1. Let † � E.�; �/ be a complete H -surface with K � 0. Then, †
is either a rotational sphere (in particular, 4H 2 C � > 0), or a complete vertical
cylinder over a complete curve of geodesic curvature 2H on M2.�/.

In Section 4 we continue with the classification of H -surfaces with non-positive
Gaussian curvature.

Theorem 4.1. Let † � E.�; �/ be a complete H -surface with K � 0 and H 2 C
�2 � j� � 4�2j > 0. Then, † is a complete vertical cylinder over a complete curve
of geodesic curvature 2H on M2.�/.

The above theorem is not true without the inequality; for example, any complete
minimal surface in H2 � R that is not a vertical cylinder.

In the Appendix, we give a result, which we think is of independent interest,
concerning differential operators on a Riemannian surface † of the form � C g,
acting on C 2.†/-functions, where� is the Laplacian with respect to the Riemannian
metric on † and g 2 C 0.†/.

2. The geometry of surfaces in homogeneous spaces

Henceforth E.�; �/ denotes a complete simply connected homogeneous three-mani-
fold with 4-dimensional isometry group. Such a three-manifold can be classified
in terms of a pair of real numbers .�; �/ satisfying � � 4�2 ¤ 0. In fact, these
manifolds are Riemannian submersions over a complete simply-connected surface
M2.�/ of constant curvature �, � W E.�; �/ ! M2.�/, and translations along the
fibers are isometries, therefore they generate a Killing field � , called the vertical field.
Moreover, � is the real number such that xrX� D �X ^ � for all vector fieldsX on the
manifold. Here, xr is the Levi-Civita connection of the manifold and ^ is the cross
product.

Let † be a complete H -surface immersed in E.�; �/. By passing to a 2-sheeted
covering space of †, we can assume † is orientable. Let N be a unit normal to †.
In terms of a conformal parameter z of†, the first, h�; �i, and second, II , fundamental
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forms are given by

h�; �i D � jdzj2
II D p dz2 C �H jdzj2 C Np d Nz2;

(2.1)

where p dz2 D h�r@z
N; @zi dz2 is the Hopf differential of †.

Set � D hN; �i and T D � � �N , i.e., � is the normal component of the vertical
field �, called the angle function, and T is the tangent component of the vertical field.

First we state the following necessary equations on † which were obtained in
[FM].

Lemma 2.1. Given an immersed surface † � E.�; �/, the following equations are
satisfied:

K D Ke C �2 C .� � 4�2/ �2; (2.2)

p Nz D �

2
.Hz C .� � 4�2/ � A/; (2.3)

A Nz D �

2
.H C i�/ �; (2.4)

�z D �.H � i�/ A � 2

�
p NA; (2.5)

jAj2 D 1

4
� .1 � �2/; (2.6)

Az D �z

�
AC p �; (2.7)

where A D h�; @zi, Ke the extrinsic curvature and K the Gauss curvature of †.

For an immersed H -surface † � E.�; �/ there is a globally defined quadratic
differential, called the Abresch–Rosenberg differential, which in these coordinates is
given by (see [AR2]):

Qdz2 D .2.H C i�/ p � .� � 4�2/A2/ dz2;

following the notation above.
It is not hard to verify this quadratic differential is holomorphic on an H -surface

using (2.3) and (2.4),

Theorem 2.1 ([AR], [AR2]). Qdz2 is a holomorphic quadratic differential on any
H -surface in E.�; �/.

Associated to the Abresch–Rosenberg differential we define the smooth function
q W † ! Œ0;C1/ given by

q D 4jQj2
�2

:
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By means of Theorem 2.1, q either has isolated zeroes or vanishes identically. Note
that q does not depend on the conformal parameter z, hence q is globally defined
on †.

We continue this section establishing some formulae relating the angle function,
q and the Gaussian curvature.

Lemma 2.2. Let† be anH -surface immersed in E.�; �/. Then the following equa-
tions are satisfied:

kr�k2 D 4H 2 C � � .� � 4�2/�2

4.� � 4�2/
.4.H 2 �Ke/

C .� � 4�2/.1 � �2// � q

� � 4�2
;

(2.8)

�� D � �
4H 2 C 2�2 C .� � 4�2/.1 � �2/ � 2Ke

�
�: (2.9)

Moreover, away from the isolated zeroes of q, we have

� ln q D 4K: (2.10)

Proof. From (2.5)

j�zj2 D 4 jpj2 jAj2
�2

C .H 2 C �2/ jAj2 C 2 .H C i�/

�
p NA2 C 2 .H � i�/

�
NpA2;

and taking into account that

jQj2 D 4 .H 2 C �2/ jpj2 C .� � 4�2/2jAj4 � .� � 4�2/.2 .H C i�/p NA2

C 2 .H � i�/ NpA2/;

we obtain, using also (2.6), that

j�zj2 D .H 2 C �2/jAj2 C .H 2 �Ke/jAj2 C .� � 4�2/
jAj4
�

C 4

�
H 2 C �2

� � 4�2

� jpj2
�

� jQj2
.� � 4�2/�

where we have used that 4jpj2 D �2.H 2 �Ke/ and � � 4�2 ¤ 0. Thus

kr�k2 D 4

�
j�zj2 D .2H 2 �Ke C �2/.1 � �2/C � � 4�2

4
.1 � �2/2

C 4

�
H 2 C �2

� � 4�2

�
.H 2 �Ke/ � q

� � 4�2
;

and finally, re-ordering in terms of H 2 �Ke , we obtain the first expression.
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Next, by differentiating (2.5) with respect to Nz and using (2.7), (2.4) and (2.3),
one gets

�z Nz D �.� � 4�2/ � jAj2 � 2

�
jpj2 � � H 2 C �2

2
� �:

Then, from (2.6),

�z Nz D �� �
4

�
.� � 4�2/.1 � �2/C 8 jpj2

�2
C 2 .H 2 C �2/

�
;

thus

�� D 4

�
�z Nz D � �

.� � 4�2/.1 � �2/C 2.H 2 �Ke/C 2 .H 2 C �2/
�
�:

Finally,

� ln q D � ln
4jQj2
�2

D �2� ln � D 4K;

where we have used that Qdz2 is holomorphic and the expression of the Gaussian
curvature in terms of a conformal parameter. �

Remark 2.1. Note that (2.9) is nothing but the Jacobi equation for the Jacobi field �.

Next, we recall a definition in these homogeneous spaces.

Definition 2.1. We say that† � E.�; �/ is a vertical cylinder over ˛ if† D ��1.˛/,
where ˛ is a curve on M2.�/.

It is not hard to verify that if ˛ is a complete curve of geodesic curvature 2H on
M2.�/, then† D ��1.˛/ is complete and has constant mean curvatureH . Moreover,
these cylinders are characterized by � � 0.

We now state two results about the classification of H -surfaces. They will be
used in Sections 3 and 4, but we prove them in Section 5 and Section 6 for the sake of
clarity. The first one concerns H -surfaces for which the angle function is constant.
However, we need to introduce a family of surfaces that appear in the classification.

Definition 2.2. Denote by ��;� a family of complete H -surfaces in E.�; �/, � < 0,
satisfying for any † 2 ��;� :

� 4H 2 C � < 0.

� q vanishes identically on† 2 ��;� , i.e.,† is invariant by a one parameter family
of isometries.

� 0 < �2 < 1 is constant along †.

� Ke D ��2 and K D .� � 4�2/�2 < 0 are constants along †.
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An anonymous referee indicated to us the preprint “Hypersurfaces with a parallel
higher fundamental form” by S. Verpoort who observed that we mistakenly omitted
the surfaces ��;� in a first draft of this paper.

Theorem 2.2. Let † � E.�; �/ be a complete H -surface with constant angle func-
tion. Then † is either a vertical cylinder over a complete curve of curvature 2H on
M2.�/, a slice in H2 � R or S2 � R, or † 2 ��;� with � < 0.

Remark 2.2. Theorem 2.2 improves Lemma 2.3 in [ER] for surfaces in H2 � R.

Of special interest for us are thoseH -surfaces for which the Abresch–Rosenberg
differential is constant.

Theorem 2.3. Let † � E.�; �/ be a completeH -surface with q constant.

� If q = 0, then† is invariant by a one-parameter group of isometries of E.�; �/,
and ifH D 0 D � , then † is a slice in H2 � R or S2 � R.

Moreover, the Gauss curvature of these examples is as follows.

– If 4H 2 C � > 0, thenK D 0, and they are rotationally invariant spheres.

– If 4H 2 C � D 0 and � � 0, then K � 0 and † is either a vertical plane

in Nil3, or a vertical cylinder over a horocycle in H2 � R or DPSL.2;C/.

– There exists a point with negative Gauss curvature in the remaining cases.

� If q ¤ 0 on †, then † is a vertical cylinder over a complete curve of curvature
2H on M2.�/.

3. Complete H -surfaces † with K � 0

Here we prove

Theorem 3.1. Let † � E.�; �/ be a complete H -surface with K � 0. Then, †
is either a rotational sphere (in particular, 4H 2 C � > 0), or a complete vertical
cylinder over a complete curve of geodesic curvature 2H on M2.�/.

Proof. The proof goes as follows: First, we prove that † is a topological sphere
or a complete non-compact parabolic surface. We show that when the surface is a
topological sphere then it is a rotational sphere. If † is a complete non-compact
parabolic surface, we prove that it is a vertical cylinder by means of Theorem 2.3.

Since K � 0 and † is complete, Lemma 5 in [KO] implies that † is either a
sphere or non-compact and parabolic.
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If† is a sphere, then it is a rotational example (see [AR2] or [AR]). Thus, we can
assume that † is non-compact and parabolic.

We can assume that q does not vanish identically in †. If q does vanish, then †
is either a vertical cylinder over a straight line in Nil3 or a vertical cylinder over a

horocycle in H2 � R or DPLS.2;C/. Note that we have used here that K � 0 and
Theorem 2.3.

On the one hand, from the Gauss equation (2.2)

0 � K D Ke C �2 C .� � 4�2/�2 � Ke C �2 C j� � 4�2j;
hence

H 2 �Ke � H 2 C �2 C j� � 4�2j: (3.1)

On the other hand, using the very definition of Qdz2, (3.1) and the inequality
j�1 C �2j2 � 2.j�1j2 C j�j2/ for �1; �2 2 C, we obtain

q

2
D 2jQj2

�2
� 4.H 2 C �2/

4jpj2
�2

C .� � 4�2/2
4jAj4
�2

D 4.H 2 C �2/.H 2 �Ke/C .� � 4�2/2

4
.1 � �2/2

� 4.H 2 C �2/.H 2 �Ke/C .� � 4�2/2

4

� 4.H 2 C �2/.H 2 C �2 C j� � 4�2j/C .� � 4�2/2

4
:

So, from (2.10), � ln q D 4K � 0 and ln q is a bounded subharmonic function
on a non-compact parabolic surface† and since the value �1 is allowed at isolated
points (see [AS]), q is a positive constant (recall that we are assuming that q does not
vanish identically). Therefore, Theorem 2.3 gives the result. �

4. Complete H -surfaces † with K � 0

Theorem 4.1. Let † � E.�; �/ be a complete H -surface with K � 0 and H 2 C
�2 � j� � 4�2j > 0. Then, † is a complete vertical cylinder over a complete curve
of geodesic curvature 2H on M2.�/.

Proof. We divide the proof into two cases, � � 4�2 < 0 and � � 4�2 > 0.

Case � � 4�2 < 0: On the one hand, since K � 0, we have

H 2 �Ke � H 2 C �2 C .� � 4�2/�2 � H 2 C � � 3�2;
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from the Gauss equation (2.2). Therefore, from (2.8) and � � 4�2 < 0, we obtain:

q � 4.H 2 C �2/.H 2 �Ke/C .� � 4�2/.1 � �2/

�
�
H 2 C �2 CH 2 �Ke C � � 4�2

4
.1 � �2/

�

D .H 2 �Ke/
�
4H 2 C 4�2 C .� � 4�2/.1 � �2/

�

C .H 2 C �2/.� � 4�2/.1 � �2/C .� � 4�2/2

4
.1 � �2/2

� .H 2 C �2 C .� � 4�2/�2/
�
4H 2 C 4�2 C .� � 4�2/.1 � �2/

�

C .H 2 C �2/.� � 4�2/.1 � �2/C .� � 4�2/2

4
.1 � �2/2I

note that the last inequality holds since4H 2C4�2C.��4�2/.1��2/ � 4H 2C� > 0.
4H 2 C � > 0 follows from

0 < 4.H 2 C �2/ � j� � 4�2j D 4H 2 C �:

Seta WD H 2C�2 andb WD ��4�2. Define the real smooth functionf W Œ�1; 1	 !
R as

f .x/ D .aC bx2/.4aC b.1 � x2//C ab.1 � x2/C b2

4
.1 � x2/2: (4.1)

Note that q � f .�/ on†, f .�/ is just the last part in the above inequality involving
q. It is easy to verify that the only critical point of f in .�1; 1/ is x D 0. Moreover,

f .0/ D .4aC b/2=4 > 0 and f .˙1/ D 4a.aC b/ > 0:

Actually, f W R ! R has two others critical points, x D ˙
q

4aCb
3jbj , but here we

have used that
4aC b

3jbj > 1;

since 0 < 4.H 2 C � � 3�2/ D .4H 2 C �/ � 3j� � 4�2j D .4aC b/ � 3jbj.
So, set c D min ff .0/; f .˙1/g > 0, then

q � f .�/ � c > 0:

Now, from (2.10) and q � c > 0 on †, it follows that ds2 D p
qI is a complete

flat metric on † and

�ds2

ln q D 1p
q
� ln q D 4Kp

q
� 0:
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Since q is bounded below by a positive constant and .†; ds2/ is parabolic, then
ln q is constant which implies that q is a positive constant. Thus, the result follows
from Theorem 2.3. The case � � 4�2 < 0 is proved.

Case � � 4�2 > 0: Set w1 WD 2.H C i�/p
�

and w2 WD .� � 4�2/A2

�
, i.e., q D

4jw1 � w2j2. Then

jw1j2 D .H 2 C �2/.H 2 �Ke/ � .H 2 C �2/2;

jw2j2 D .� � 4�2/2

16
.1 � �2/2 �

�
� � 4�2

4

�2

;

where we have used that H 2 � Ke � H 2 C �2 C .� � 4�2/�2 � H 2 C �2, since
K � 0 and � � 4�2 > 0.

We recall a well-known inequality for complex numbers. Let �1; �2 2 C, then
j�1 C �2j2 � ˇ̌j�1j � j�2jˇ̌2

. Thus,

1

4
q � ˇ̌jw1j � jw2jˇ̌2 �

ˇ̌̌
ˇ.H 2 C �2/ � j� � 4�2j

4

ˇ̌̌
ˇ
2

D 1

16

ˇ̌
4.H 2 C �2/ � j� � 4�2jˇ̌2

> 0:

So, as q is bounded below by a positive constant, then, arguing as in the previous
case, q is a constant. Thus, the result follows from Theorem 2.3. The case ��4�2 > 0

is proved. �

Remark 4.1. Note that in the above theorem, in the case � � 4�2 > 0, we only need
to assume that 4.H 2 C �2/ � j� � 4�2j > 0.

5. Complete H -surfaces with constant angle function

We classify here the complete H -surfaces in E.�; �/ with constant angle function.
The purpose is to take advantage of this classification result in the next section.

Theorem 2.2. Let † � E.�; �/ be a complete H -surface with constant angle func-
tion. Then † is either a vertical cylinder over a complete curve of curvature 2H on
M2.�/, a slice in H2 � R or S2 � R, or † 2 ��;� with � < 0 (see Definition 2.2).

Proof. We can assume that � � 0. We will divide the proof into three cases:

� � D 0: In this case, † must be a vertical cylinder over a complete curve of
geodesic curvature 2H on M2.�/.
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� � D �1: From (2.4), � D 0 andH D 0, then† is a slice in H2 � R or S2 � R.

� �1 < � < 0: We prove here that † 2 ��;� with � < 0. From (2.5) we have

.H � i�/A D �2p
�

NA; (5.1)

then

H 2 C �2 D 4jpj2
�2

D H 2 �Ke

since jAj2 ¤ 0 from (2.6), so Ke D ��2 on †.

Thus, from (2.9), we have

4H 2 C 4�2 C .� � 4�2/.1 � �2/ D 0: (5.2)

Now, using the definition of q, (5.1), (5.2) and Ke D ��2, we have

q D 4jQj2
�2

D 4.H 2 C �2/
4jpj2
�2

C .� � 4�2/2
4jAj4
�2

� 4� � 4�2

�2

�
2 .H C i�/p NA2 C 2 .H � i�/ NpA2

�

D 4.H 2 C �2/.H 2 �Ke/C .� � 4�2/2
.1 � �2/2

4

C 2.� � 4�2/.1 � �2/.H 2 C �2/

D 1

4

�
4H 2 C .� � 4�2/.1 � �2/C 4�2

�2 D 0;

that is, q vanishes identically on †. Moreover, from (5.2), we can see that
4H 2 C � < 0, that is, � < 0. Therefore, † 2 ��;� , � < 0. �

6. Complete H -surfaces with q constant

Here, we prove the classification result for completeH -surfaces in E.�; �/ employed
in the proof of Theorem 3.1 and Theorem 4.1.

Theorem 2.3. Let † � E.�; �/ be a completeH -surface with q constant.

� If q D 0 on †, then † is either a slice in H2 � R or S2 � R if H D 0 D � , or
† is invariant by a one-parameter group of isometries of E.�; �/.

Moreover, the Gauss curvature of these examples is as follows.

– If 4H 2 C � > 0, then K > 0 they are the rotationally invariant spheres.
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– If 4H 2 C � D 0 and � � 0, then K � 0 and † is either a vertical plane

in Nil3, or a vertical cylinder over a horocycle in H2 � R or DPSL.2;C/.

– There exists a point with negative Gauss curvature in the remaining cases.

� If q ¤ 0 on †, then † is a vertical cylinder over a complete curve of curvature
2H on M2.�/.

The case q D 0 has been treated extensively when the target manifold is a product
space, but is has not been established explicitly when � ¤ 0. So, we assemble the
results in [AR], [AR2] for the reader’s convenience.

Lemma 6.1. Let † � E.�; �/ be a complete H -surface whose Abresch–Rosenberg
differential vanishes. Then † is either a slice in H2 � R or S2 � R if H D 0 D � ,
or † is invariant by a one-parameter group of isometries of E.�; �/.

Moreover, the Gauss curvature of these examples is as follows.
� If 4H 2 C � > 0, then K > 0 they are the rotationally invariant spheres.
� If 4H 2 C � D 0 and � � 0, then K � 0 and † is either a vertical plane in

Nil3, or a vertical cylinder over a horocycle in H2 � R or DPSL.2;C/.
� There exists a point with negative Gauss curvature in the remaining cases.

Proof. The idea of the proof for product spaces that we use below can be found in
[dCF] and [FM].

If H D 0 D � , from the definition of the Abresch–Rosenberg differential, we
have

0 D �.� � 4�/A2;

that is, �2 D ˙1 using (2.6). Thus, † is a slice in H2 � R or S2 � R.
If H ¤ 0 or � ¤ 0, we have

2.H C i�/p D .� � 4�2/A2; (6.1)

from where we obtain, taking modulus,

H 2 �Ke D .� � 4�2/2.1 � �2/2

16.H 2 C �2/
: (6.2)

Inserting (6.1) in (2.5),

.H C i�/�z D �1
4
.4H 2 C � � .� � 4�2/�2/A;

and taking modulus,

j�zj2 D g.�/2jAj2; g.�/ D 4H 2 C � � .� � 4�2/�2

4
p
H 2 C �2

: (6.3)
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Assume that � is not constant. Let p 2 † be a point where �z.p/ ¤ 0 and let U

be a neighborhood of that point p where �z ¤ 0 (we can assume �2 ¤ 1 at p). In
particular, g.�/ ¤ 0 in U from (6.3). Now, inserting (6.3) in (2.6), we obtain

� D 4j�zj2
.1 � �2/g.�/2

: (6.4)

Thus, putting (6.2) and (6.4) in the Jacobi equation (2.9)

�z Nz D �2 �j�zj2
1 � �2

: (6.5)

So, define the real function s WD arctgh.�/ on U. Such a function is harmonic
by means of (6.5), thus we can consider a new conformal parameter w for the first
fundamental form so that s D Re.w/, w D s C i t .

Since � D tgh.s/ by the definition of s, we have that � � �.s/, i.e., it only
depends on one parameter. Thus, we have � � �.s/ and T � T .s/ from (6.4)
and (6.3) respectively, and p � p.s/ by the definition of the Abresch–Rosenberg
differential. That is, all the fundamental data of † depend only on s.

Now, let U be a simply connected domain on† and V � R2 a simply connected
domain of a surface S so that  0 W V ! U � E.�; �/. We parametrize V by the
parameters .s; t/obtained above. Then, the fundamental data (see [FM], Theorem 2.3)
f�0; p0; T0; �0g of  0 are given by8̂ˆ̂<

ˆ̂̂:

�0.s; t/ D �.s/;

p0.s; t/ D p.s/;

T0.s; t/ D a.s/@s;

�0.s; t/ D �.s/;

where a.s/ is a smooth function.
Let Nt 2 R and let i Nt W R2 ! R2 be the diffeomorphism given by

i Nt .s; t/ WD .s; t C Nt /;
and define  Nt WD  0 B i Nt . Then, the fundamental data f�Nt ; pNt ; TNt ; �Ntg of  Nt are given
by 8̂ˆ̂<

ˆ̂̂:

�Nt .s; t/ D �.s/;

pNt .s; t/ D p.s/;

TNt .s; t/ D a.s/@s;

�Nt .s; t/ D �.s/;

that is, both fundamental data match at any point .s; t/ 2 V . Therefore, using [D],
Theorem 4.3, there exists an ambient isometry �Nt W E.�; �/ ! E.�; �/ so that

�Nt B  0 D  0 B i Nt for all Nt 2 R;
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thus the surface is invariant by a one parameter group of isometries.
Let us prove the claim about the Gauss curvature. Using the Gauss equation (2.2)

in (6.2), one gets

H 2 C �2 C .� � 4�2/�2 �K D .� � 4�2/2.1 � �2/2

16.H 2 C �2/
:

Set a WD 4.H 2 C �2/ and b WD � � 4�2, then one can check easily that the above
equality can be expressed as

4aK D a2 � b2 C .2aC b/2 � .2aC b.1 � �2//2: (6.6)

So, if 4H 2 C � > 0 then a > jbj and K > 0, that is, † is a topological sphere
since it is complete. If 4H 2 C � D 0, a D �b and the equation reads as

4aK D a2.1 � .1C �2/2/;

that is, † has a point with negative Gauss curvature unless � � 0.
If 4H 2 C� < 0, one can check that a2 �b2 D .a�b/.aCb/ < 0 since aCb > 0

and a � b < 0. So, if inf†f�2g D 0 then, from (6.6), † has a point with negative
curvature. Therefore, to finish this lemma, we shall prove the following

Claim. There are no complete constant mean curvature surfaces in E.�; �/ with
4H 2 C � < 0, q � 0, K � 0, and inff�2g D c > 0.

Proof of the Claim. Assume such a surface † exists. Since we are assuming that
K � 0 and † is complete, then † is parabolic and noncompact. If † were compact
we would have a contradiction with the fact that inf†f�2g D c > 0 and 4H 2 C� < 0.

Since q vanishes identically on†, arctanh.�/ is a bounded harmonic function on
† and so � is constant. So, the projection� W † ! M2.�/ is a global diffeomorphism
and a quasi-isometry. This is impossible since † is parabolic and M2.�/, � < 0, is
hyperbolic. Therefore, the Claim is proved and so the lemma is proved. �

Proof of Theorem 2.3. We focus on the case q ¤ 0 because Lemma 6.1 gives the
classification when q D 0.

Suppose � is not constant in †. Since q D c2 > 0, we can consider a conformal
parameter z so that h�; �i D jdzj2 and Qdz2 D c dz2 on †. Thus,

Q D c D 2.H C i�/p � .� � 4�2/A2:

First, note that we can assume that H ¤ 0 or � ¤ 0, otherwise � would be
constant. So, from (2.5), we have

.H C i�/�z D �
�
H 2 C �2 C � � 4�2

4
.1 � �2/

�
A � c NA;
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where we have used 2.H C i�/p D c C .� � 4�2/A2. That is,

16.H 2 C �2/ kr�k2 D .g.�/C 4c/2 .1 � �2/; (6.7)

where
g.�/ WD 4H 2 C � � .� � 4�2/�2: (6.8)

From (2.10), † is flat andH 2 �Ke D H 2 C �2 C .� � 4�2/�2 by (2.2), joining
this last equation to (2.8) we obtain using the definition of g.�/ given in (6.8)

kr�k2 D g.�/2

4.� � 4�2/
C �2g.�/ � c2

� � 4�2
: (6.9)

Putting together (6.7) and (6.9) we obtain a polynomial expression in �2 with
coefficients depending on a WD 4.H 2 C �2/, b WD � � 4�2 and c:

P.�2/ WD C.a; b; c/�6 C lower terms D 0;

but one can easily check that the coefficient of �6 is C.a; b; c/ D �a�1b2 ¤ 0, a
contradiction. Thus � is constant, and so, by means of Theorem 2.2, † is a vertical
cylinder over a complete curve of curvature 2H . �

7. Appendix

Let † be a connected Riemannian surface. We establish in this Appendix a result
which we think is of independent interest, concerning differential operators of the
form � C g, acting on C 2.†/-functions, where � is the Laplacian with respect to
the Riemannian metric on † and g 2 C 0.†/.

Lemma 7.1. Let g 2 C 0.†/, v 2 C 2.†/ such that krvk2 � h v2 on †, h is a
non-negative continuous function on†, and�vCgv D 0 in†. Then either v never
vanishes or v vanishes identically on †.

Proof. Set 
 D fp 2 † W v.p/ D 0g. We will show that either 
 D ; or 
 D †.
So, let us assume that 
 ¤ ;. If we prove that 
 is an open set then, since 
 is

closed and † is connected, 
 D †. Let p 2 
 and B.R/ � † be the geodesic ball
centered at p of radius R. Such a geodesic ball is relatively compact in †.

Set � D v2=2 � 0. Then

�� D v�v C krvk2 D �gv2 C krvk2 � �2.g � h/�;
that is,

��� � 2.g � h/� � 0: (7.1)
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Define ˇ WD min finf� f2.g � h/g ; 0g � 0. Then,  D �� satisfies

� C ˇ D ��� � ˇ� � ��� � 2.g � h/� � 0;

where we have used (7.1).
Since we are assuming that v has a zero at an interior point of B.R/, ˇ � 0 and

 has a non-negative maximum at p, the Maximum Principle [GT], Theorem 3.5,
implies that  is constant and so v is constant as well, i.e, v � 0 in B.R/. Then
B.R/ � 
, and 
 is an open set. Thus 
 D †. �
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