Comment. Math. Helv. 86 (2011), 659–674 DOI 10.4171/CMH/237

Commentarii Mathematici Helvetici © Swiss Mathematical Society

Complete constant mean curvature surfaces in homogeneous spaces

José M. Espinar* and Harold Rosenberg

Abstract. In this paper we classify complete surfaces of constant mean curvature whose Gaussian curvature does not change sign in a simply connected homogeneous manifold with a 4 dimensional isometry group.

Mathematic[s Sub](#page-15-0)ject Classification (2010). 53A10, 53C21.

Keywords. Constant mean curvature, homogeneous spaces.

[1.](#page-15-0) Introduction

In 1966, T. Klotz and R. Ossermann showed the following:

The[orem](#page-14-0) ([\[KO\]\)](#page-14-0). *[A](#page-14-0) [complete](#page-14-0)* H*[-sur](#page-14-0)f[ace](#page-14-0) [in](#page-14-0)* R[3](#page-14-0) *whose Gaussian curvature* K *does not change sign is either a sphere, a minimal surface, or a right circular cylinder.*

The above result was extended to \mathbb{S}^3 by D. Hoffman [H], and to \mathbb{H}^3 by R. Tribuzy [T] with an extra hypothesis if K is non-positive. The additional hypothesis says that, when $K \le 0$, one has $H^2 - K - 1 > 0$.
In recent years, the study of H surface

In recent years, the study of H -surfaces in product spaces and, more generally, in a homogeneous three-manifold with a 4-dimensional isometry group is quite active (see [AR], [AR2], [CoR], [ER], [FM], [FM2], [DH] and references therein).

The aim of this paper is to extend the above theorem to homogeneous spaces with a 4-dimensional isometry group. These homogeneous spaces are denoted by $\mathbb{E}(\kappa,\tau)$, where κ and τ are constant and $\kappa - 4\tau^2 \neq 0$. They can be classified as $\mathbb{M}^2(\kappa)$
if $\tau = 0$, with $\mathbb{M}^2(\kappa) = \mathbb{S}^2(\kappa)$ if $\kappa > 0$ ($\mathbb{S}^2(\kappa)$) the sphere of curvature κ $(x) \times \mathbb{R}$ if $\tau = 0$, with $\mathbb{M}^2(\kappa) = \mathbb{S}^2(\kappa)$ if $\kappa > 0$ ($\mathbb{S}^2(\kappa)$ the sphere of curvature κ), and $\mathbb{M}^2(\kappa) = \mathbb{H}^2(\kappa)$ if $\kappa > 0$ ($\mathbb{H}^2(\kappa)$ the hyperbolic plane of curvature κ). If τ is not $\mathbb{M}^2(\kappa) = \mathbb{H}^2(\kappa)$ if $\kappa < 0$ ($\mathbb{H}^2(\kappa)$ the hyperbolic plane of curvature κ). If τ is not equal to zero. $\mathbb{F}(\kappa, \tau)$ is a Berger sphere if $\kappa > 0$, a Heisenberg space if $\kappa = 0$ (of equal to zero, $\mathbb{E}(\kappa,\tau)$ is a Berger sphere if $\kappa > 0$, a Heisenberg space if $\kappa = 0$ (of

⁻The author is partially supported by Spanish MEC-FEDER Grant MTM2007-65249, and Regional J. Andalucia Grants P06-FQM-01642 and FQM325.

bundle curvature τ), and the universal cover of PSL $(2, \mathbb{R})$ if $\kappa < 0$. Henceforth we will suppose κ is plus or minus one or zero.

The paper is organized as follows. In Section 2, we establish the definitions and necessary equ[ati](#page-6-0)ons for an H -surface. We also state here two classification results for H-surfaces. We prove them in Section 5 and Section 6 for the sake of completeness.

Section 3 is devoted to the classification of H -surfaces with non-negative Gaussian curvature,

Theorem 3.1. Let $\Sigma \subset \mathbb{E}(\kappa, \tau)$ be a complete H-surface with $K \geq 0$. Then, Σ is either a rotational sphere (in particular $AH^2 + \kappa > 0$) or a complete vertical *is either a rotational sphere (in particular,* $4H^2 + \kappa > 0$), or a complete vertical cylinder over a complete curve of geodesic curvature $2H$ on $\mathbb{M}^2(\kappa)$ *cylinder over a complete curve of geodesic curvature* $2H$ *on* $\mathbb{M}^2(\kappa)$ *.*

In Section 4 we continue with the classification of H -surfaces with non-positive Gaussian curvature.

Theorem 4.1. Let $\Sigma \subset \mathbb{E}(\kappa, \tau)$ be a complete H-surface with $K \leq 0$ and $H^2 + \tau^2 - |\kappa - 4\tau^2| > 0$. Then Σ is a complete vertical cylinder over a complete curve $\tau^2 - |\kappa - 4\tau^2| > 0$. Then, Σ is a complete vertical cylinder over a complete curve
of geodesic curvature 2H on $\mathbb{M}^2(\kappa)$ *of geodesic curvature* $2H$ *on* $\mathbb{M}^2(\kappa)$ *.*

The above theorem is not true without the inequality; for example, any complete minimal surface in $\mathbb{H}^2 \times \mathbb{R}$ that is not a vertical cylinder.

In the Appendix, we give a result, which we think is of independent interest, concerning differential operators on a Riemannian surface Σ of the form $\Delta + g$, acting on $C^2(\Sigma)$ -functions, where Δ is the Laplacian with respect to the Riemannian metric on Σ and $g \in C^0(\Sigma)$.

2. The geometry of surfaces in homogeneous spaces

Henceforth $\mathbb{E}(\kappa,\tau)$ denotes a complete simply connected homogeneous three-manifold with 4-dimensional isometry group. Such a three-manifold can be classified in terms of a pair of real numbers (κ, τ) satisfying $\kappa - 4\tau^2 \neq 0$. In fact, these
manifolds are Riemannian submersions over a complete simply-connected surface manifolds are Riemannian submersions over a complete simply-connected surface $\mathbb{M}^2(\kappa)$ of constant curvature κ , $\pi : \mathbb{E}(\kappa, \tau) \to \mathbb{M}^2(\kappa)$, and translations along the
fibers are isometries, therefore they generate a Killing field ξ , called the vertical field fibers are isometries, therefore they generate a Killing field ξ , called the *vertical field*. Moreover, τ is the real number such that $\overline{\nabla}_X \xi = \tau X \wedge \xi$ for all vector fields X on the manifold. Here, $\overline{\nabla}$ is the Levi-Civita connection of the manifold and \wedge is the cross product.

Let Σ be a complete H-surface immersed in $\mathbb{E}(\kappa,\tau)$. By passing to a 2-sheeted covering space of Σ , we can assume Σ is orientable. Let N be a unit normal to Σ . In terms of a conformal parameter z of Σ , the first, $\langle \cdot, \cdot \rangle$, and second, *II*, fundamental

[form](#page-14-0)s are given by

$$
\langle \cdot, \cdot \rangle = \lambda |dz|^2
$$

\n
$$
II = p dz^2 + \lambda H |dz|^2 + \bar{p} d\bar{z}^2,
$$
\n(2.1)

where $p dz^2 = \langle -\nabla_{\partial_z} N, \partial_z \rangle dz^2$ is the Hopf differential of Σ .
Set $y = \langle N \rangle$ is and $T = \xi = yN$ i.e., y is the normal comparation

Set $\nu = \langle N, \xi \rangle$ and $T = \xi - \nu N$, i.e., ν is the normal component of the vertical field ξ , called the *angle function*, and T is the tangent component of the vertical field.

First we state the following necessary equations on Σ which were obtained in [FM].

Lemma 2.1. *Given an immersed surface* $\Sigma \subset \mathbb{E}(\kappa, \tau)$ *, the following equations are satisfied*: *satisfied:*

$$
K = K_e + \tau^2 + (\kappa - 4\tau^2) \nu^2,
$$
 (2.2)

$$
p_{\bar{z}} = \frac{\lambda}{2} \left(H_z + (\kappa - 4\tau^2) v A \right),
$$
 (2.3)

$$
A_{\bar{z}} = \frac{\lambda}{2} \left(H + i\tau \right) \nu, \tag{2.4}
$$

$$
\nu_z = -(H - i\,\tau) \, A - \frac{2}{\lambda} \, p \, \bar{A},\tag{2.5}
$$

$$
|A|^2 = \frac{1}{4}\lambda (1 - \nu^2),\tag{2.6}
$$

$$
A_z = \frac{\lambda_z}{\lambda} A + p v,\tag{2.7}
$$

where $A = \langle \xi, \partial_z \rangle$, K_e *the extrinsic curvature and* K *the Gauss curvature of* Σ *.*

For an imm[erse](#page-14-0)d H[-su](#page-14-0)rface $\Sigma \subset \mathbb{E}(\kappa, \tau)$ there is a globally defined quadratic
exercise condinates is differential, called the *Abresch–Rosenberg differential*, which in these coordinates is given by (see [AR2]):

$$
Q dz2 = (2(H + i\tau) p - (\kappa - 4\tau2)A2) dz2,
$$

following the notation above.

It is not hard to verify this quadratic differential is holomorphic on an H -surface using (2.3) and (2.4) ,

Theorem 2.1 ([AR], [AR2]). $Q dz^2$ *is a holomorphic quadratic differential on any H*-surface in $\mathbb{E}(\kappa, \tau)$.

Associated to the Abresch–Rosenberg differential we define the smooth function $q: \Sigma \to [0, +\infty)$ given by

$$
q = \frac{4|Q|^2}{\lambda^2}.
$$

By means of Theorem 2.1, q either has isolated zeroes or vanishes identically. Note that q does not depend on the conformal parameter z , hence q is globally defined on Σ .

We continue this section establishing some formulae relating the angle function, q and the Gaussian curvature.

Lemma 2.2. Let Σ be an H-surface immersed in $\mathbb{E}(\kappa, \tau)$. Then the following equa*tions are satisfied:*

$$
\|\nabla v\|^2 = \frac{4H^2 + \kappa - (\kappa - 4\tau^2)v^2}{4(\kappa - 4\tau^2)}(4(H^2 - K_e) + (\kappa - 4\tau^2)(1 - v^2)) - \frac{q}{\kappa - 4\tau^2},
$$
\n(2.8)

$$
\Delta v = -\left(4H^2 + 2\tau^2 + (\kappa - 4\tau^2)(1 - v^2) - 2K_e\right)v.
$$
 (2.9)

Moreover, away from the isolated zeroes of q*, we have*

$$
\Delta \ln q = 4K. \tag{2.10}
$$

Proof. From (2.5)

$$
|v_z|^2 = \frac{4|p|^2|A|^2}{\lambda^2} + (H^2 + \tau^2)|A|^2 + \frac{2(H + i\tau)}{\lambda}p\overline{A}^2 + \frac{2(H - i\tau)}{\lambda}\overline{p}A^2,
$$

and taking into account that

$$
|Q|^2 = 4(H^2 + \tau^2)|p|^2 + (\kappa - 4\tau^2)^2|A|^4 - (\kappa - 4\tau^2)(2(H + i\tau)p\overline{A}^2) + 2(H - i\tau)\overline{p}A^2),
$$

we obtain, using also (2.6) , that

$$
|v_z|^2 = (H^2 + \tau^2)|A|^2 + (H^2 - K_e)|A|^2 + (\kappa - 4\tau^2)\frac{|A|^4}{\lambda}
$$

$$
+ 4\left(\frac{H^2 + \tau^2}{\kappa - 4\tau^2}\right)\frac{|p|^2}{\lambda} - \frac{|Q|^2}{(\kappa - 4\tau^2)\lambda}
$$

where we have used that $4|p|^2 = \lambda^2(H^2 - K_e)$ and $\kappa - 4\tau^2 \neq 0$. Thus

$$
\|\nabla v\|^2 = \frac{4}{\lambda} |v_z|^2 = (2H^2 - K_e + \tau^2)(1 - v^2) + \frac{\kappa - 4\tau^2}{4}(1 - v^2)^2
$$

$$
+ 4\left(\frac{H^2 + \tau^2}{\kappa - 4\tau^2}\right)(H^2 - K_e) - \frac{q}{\kappa - 4\tau^2},
$$

and finally, re-ordering in terms of $H^2 - K_e$, we obtain the first expression.

Next, by differentiating (2.5) with respect to \bar{z} and using (2.7), (2.4) and (2.3), one gets

$$
\nu_{z\bar{z}} = -(\kappa - 4\tau^2) \nu |A|^2 - \frac{2}{\lambda} |p|^2 \nu - \frac{H^2 + \tau^2}{2} \lambda \nu.
$$

Then, from (2.6) ,

$$
\nu_{z\bar{z}} = -\frac{\lambda \nu}{4} \Big((\kappa - 4\tau^2)(1 - \nu^2) + \frac{8 |p|^2}{\lambda^2} + 2 (H^2 + \tau^2) \Big),
$$

thus

$$
\Delta \nu = \frac{4}{\lambda} \nu_{z\bar{z}} = -\left((\kappa - 4\tau^2)(1 - \nu^2) + 2(H^2 - K_e) + 2(H^2 + \tau^2) \right) \nu.
$$

Finally,

$$
\Delta \ln q = \Delta \ln \frac{4|Q|^2}{\lambda^2} = -2\Delta \ln \lambda = 4K,
$$

where we have used that $Q dz^2$ is holomorphic and the expression of the Gaussian curvature in terms of a conformal parameter. \Box

Remark 2.1. Note that (2.9) is nothing but the Jacobi equation for the Jacobi field ν .

Next, we rec[al](#page-5-0)l a [defi](#page-6-0)nition in these homogeneous [sp](#page-8-0)aces.

Definition 2.1. We say that $\Sigma \subset \mathbb{E}(\kappa, \tau)$ is a vertical cylinder over α if $\Sigma = \pi^{-1}(\alpha)$, where α is a curve on $\mathbb{M}^2(\kappa)$ where α is a curve on $\mathbb{M}^2(\kappa)$.

It is not hard to verify that if α is a complete curve of geodesic curvature 2H on $\mathbb{M}^2(\kappa)$, then $\Sigma = \pi^{-1}(\alpha)$ is complete and has constant mean curvature H. Moreover, these cylinders are characterized by $y = 0$ these cylinders are characterized by $v \equiv 0$.

We now state two results about the classification of H -surfaces. They will be used in Sections 3 and 4, but we prove them in Section 5 and Section 6 for the sake of clarity. The first one concerns H -surfaces for which the angle function is constant. However, we need to introduce a family of surfaces that appear in the classification.

Definition 2.2. Denote by $S_{\kappa,\tau}$ a family of complete H-surfaces in $\mathbb{E}(\kappa,\tau)$, $\kappa < 0$, satisfying for any $\Sigma \in S_{\kappa, \tau}$:

- $4H^2 + \kappa < 0$.
- q vanishes identically on $\Sigma \in S_{\kappa,\tau}$, i.e., Σ is invariant by a one parameter family of isometries of isometries.
- $0 < v^2 < 1$ is constant along Σ .
- $K_e = -\tau^2$ and $K = (\kappa 4\tau^2)v^2 < 0$ are constants along Σ .

An anonymous referee indicated to us the preprint "Hypersurfaces with a parallel higher fundamental form" by S. Verpoort who observed that we mistakenly omitted the surfaces $S_{\kappa,\tau}$ in a first draft of this paper.

Theorem 2.2. Let $\Sigma \subset \mathbb{E}(\kappa, \tau)$ be a complete H-surface with constant angle function. Then Σ is either a vertical cylinder over a complete curve of curvature $2H$ on *tion. Then* Σ *is either a vertical cylinder over a complete curve of curvature* $2H$ *on* $\mathbb{M}^2(\kappa)$, a slice in $\mathbb{H}^2 \times \mathbb{R}$ or $\mathbb{S}^2 \times \mathbb{R}$, or $\Sigma \in S_{\kappa,\tau}$ with $\kappa < 0$.

Remark 2.2. Theorem 2.2 improves Lemma 2.3 in [ER] for surfaces in $\mathbb{H}^2 \times \mathbb{R}$.

Of special interest for us are those H -surfaces for which the Abresch–Rosenberg differential is constant.

Theorem 2.3. *Let* $\Sigma \subset \mathbb{E}(\kappa, \tau)$ *be a complete H*-surface with q constant.

• If $q = 0$, then Σ is invariant by a one-parameter group of isometries of $\mathbb{E}(\kappa, \tau)$, *and if* $H = 0 = \tau$, then Σ *is a slice in* $\mathbb{H}^2 \times \mathbb{R}$ *or* $\mathbb{S}^2 \times \mathbb{R}$ *.*

Moreover, the Gauss curvature of these examples is as follows.

- $-If4H^2 + \kappa > 0$, then $K = 0$, and they are rotationally invariant spheres.
- $\mathcal{L} = If 4H^2 + \kappa = 0$ and $\nu \equiv 0$, then $K \equiv 0$ and Σ is either a vertical plane $\ddot{H} = 0 = \tau$, then Σ is a slice in $\mathbb{H}^2 \times \mathbb{R}$ or $\mathbb{S}^2 \times \mathbb{R}$.
 in Nil3*, or a vertical cylinder over a horocycle in* $\mathbb{H}^2 \times \mathbb{R}$ or \mathbb{R}^2 .
 if $4H^2 + \kappa > 0$, then $K = 0$, and they are r
- **–** *There exists a point with negative Gauss curvature in the remaining cases.*
- If $q \neq 0$ *on* Σ , then Σ *is a vertical cylinder over a complete curve of curvature* $2H$ *on* $\mathbb{M}^2(\kappa)$.

3. Complete *H*-surfaces Σ with $K \geq 0$

Here we prove

Theorem 3.1. Let $\Sigma \subset \mathbb{E}(\kappa, \tau)$ be a complete H-surface with $K \geq 0$. Then, Σ is either a rotational sphere (in particular $AH^2 + \kappa > 0$) or a complete vertical *is either a rotational sphere (in particular,* $4H^2 + \kappa > 0$), or a complete vertical cylinder over a complete curve of geodesic curvature $2H$ on $\mathbb{M}^2(\kappa)$ *cylinder over a complete curve of geodesic curvature* $2H$ *on* $\mathbb{M}^2(\kappa)$ *.*

Proof. The proof goes as follows: First, we prove that Σ is a topological sphere or a complete non-compact parabolic surface. We show that when the surface is a topological sphere then it is a rotational sphere. If Σ is a complete non-compact parabolic surface, we prove that it is a vertical cylinder by means of Theorem 2.3.

Since $K \ge 0$ and Σ is complete, Lemma 5 in [KO] implies that Σ is either a sphere or non-compact and parabolic.

If Σ is a sphere, then it is a rotational example (see [AR2] or [AR]). Thus, we can assume that Σ is non-compact and parabolic.

We can assume that q does not vanish identically in Σ . If q does vanish, then Σ is either a vertical cylinder over a straight line in Nil₃ or a vertical cylinder over a horocycle in $\mathbb{H}^2 \times \mathbb{R}$ or $\widetilde{PLS(2,\mathbb{C})}$. Note that we have used here that $K \geq 0$ and Theorem 2.3.

On the one hand, from the Gauss equation (2.2)

$$
0 \leq K = K_e + \tau^2 + (\kappa - 4\tau^2)\nu^2 \leq K_e + \tau^2 + |\kappa - 4\tau^2|,
$$

hence

$$
H^2 - K_e \le H^2 + \tau^2 + |\kappa - 4\tau^2|.
$$
 (3.1)

On the other hand, using the very definition of $Q dz^2$, (3.1) and the inequality $|\xi_1 + \xi_2|^2$ $\leq 2(|\xi_1|^2 + |\xi|^2)$ for $\xi_1, \xi_2 \in \mathbb{C}$, we obtain

$$
\frac{q}{2} = \frac{2|Q|^2}{\lambda^2} \le 4(H^2 + \tau^2) \frac{4|p|^2}{\lambda^2} + (\kappa - 4\tau^2)^2 \frac{4|A|^4}{\lambda^2}
$$

= 4(H^2 + \tau^2)(H^2 - K_e) + $\frac{(\kappa - 4\tau^2)^2}{4}(1 - \nu^2)^2$
 $\le 4(H^2 + \tau^2)(H^2 - K_e) + \frac{(\kappa - 4\tau^2)^2}{4}$
 $\le 4(H^2 + \tau^2)(H^2 + \tau^2 + |\kappa - 4\tau^2|) + \frac{(\kappa - 4\tau^2)^2}{4}.$

So, from (2.10), $\Delta \ln q = 4K > 0$ and $\ln q$ is a bounded subharmonic function on a non-compact parabolic surface Σ and since the value $-\infty$ is allowed at isolated points (see [AS]), q is a positive constant (recall that we are assuming that q does not vanish identically). Therefore, Theorem 2.3 gives the result. \Box

4. Complete *H* -surfaces Σ with $K \leq 0$

Theorem 4.1. Let $\Sigma \subset \mathbb{E}(\kappa, \tau)$ be a complete H-surface with $K \leq 0$ and $H^2 + \tau^2 - |\kappa - 4\tau^2| > 0$. Then Σ is a complete vertical cylinder over a complete curve $\tau^2 - |\kappa - 4\tau^2| > 0$. Then, Σ is a complete vertical cylinder over a complete curve
of geodesic curvature 2H on $\mathbb{M}^2(\kappa)$ *of geodesic curvature* $2H$ *on* $\mathbb{M}^2(\kappa)$ *.*

Proof. We divide the proof into two cases, $\kappa - 4\tau^2 < 0$ and $\kappa - 4\tau^2 > 0$.

Case $\kappa - 4\tau^2 < 0$: On the one hand, since $K \le 0$, we have

$$
H^2 - K_e \ge H^2 + \tau^2 + (\kappa - 4\tau^2)\nu^2 \ge H^2 + \kappa - 3\tau^2,
$$

from the Gauss equation (2.2). Therefore, from (2.8) and $\kappa - 4\tau^2 < 0$, we obtain:

$$
q \ge 4(H^2 + \tau^2)(H^2 - K_e) + (\kappa - 4\tau^2)(1 - \nu^2)
$$

\n
$$
\cdot (H^2 + \tau^2 + H^2 - K_e + \frac{\kappa - 4\tau^2}{4}(1 - \nu^2))
$$

\n
$$
= (H^2 - K_e)(4H^2 + 4\tau^2 + (\kappa - 4\tau^2)(1 - \nu^2))
$$

\n
$$
+ (H^2 + \tau^2)(\kappa - 4\tau^2)(1 - \nu^2) + \frac{(\kappa - 4\tau^2)^2}{4}(1 - \nu^2)^2
$$

\n
$$
\ge (H^2 + \tau^2 + (\kappa - 4\tau^2)\nu^2)(4H^2 + 4\tau^2 + (\kappa - 4\tau^2)(1 - \nu^2))
$$

\n
$$
+ (H^2 + \tau^2)(\kappa - 4\tau^2)(1 - \nu^2) + \frac{(\kappa - 4\tau^2)^2}{4}(1 - \nu^2)^2;
$$

note that the last inequality holds since $4H^2 + 4\tau^2 + (\kappa - 4\tau^2)(1 - \nu^2) \ge 4H^2 + \kappa > 0$.
 $4H^2 + \kappa > 0$ follows from $4H^2 + \kappa > 0$ follows from

$$
0 < 4(H^2 + \tau^2) - |\kappa - 4\tau^2| = 4H^2 + \kappa.
$$

Set $a := H^2 + \tau^2$ and $b := \kappa - 4\tau^2$. Define the real smooth function $f : [-1, 1] \rightarrow$ R as

$$
f(x) = (a + bx2)(4a + b(1 - x2)) + ab(1 - x2) + \frac{b2}{4}(1 - x2)2.
$$
 (4.1)

Note that $q > f(v)$ on Σ , $f(v)$ is just the last part in the above inequality involving q. It is easy to verify that the only critical point of f in $(-1, 1)$ is $x = 0$. Moreover,

$$
f(0) = (4a+b)^2/4 > 0
$$
 and $f(\pm 1) = 4a(a+b) > 0$.

Actually, $f : \mathbb{R} \to \mathbb{R}$ $f : \mathbb{R} \to \mathbb{R}$ $f : \mathbb{R} \to \mathbb{R}$ has two others critical points, $x = \pm \sqrt{\frac{4a+b}{3|b|}}$, but here we have used that

$$
\frac{4a+b}{3|b|} > 1,
$$

since $0 < 4(H^2 + \kappa - 3\tau^2) = (4H^2 + \kappa) - 3|\kappa - 4\tau^2| = (4a + b) - 3|b|.$
So set $c = \min{f(f(0), f(+1))} > 0$ then So, set $c = \min \{ f(0), f(\pm 1) \} > 0$, then

$$
q \ge f(\nu) \ge c > 0.
$$

Now, from (2.10) and $q \ge c > 0$ on Σ , it follows that $ds^2 = \sqrt{q}I$ is a complete flat metric on Σ and

$$
\Delta^{ds^2} \ln q = \frac{1}{\sqrt{q}} \Delta \ln q = \frac{4K}{\sqrt{q}} \le 0.
$$

Since q is bounded below by a positive constant and (Σ, ds^2) is parabolic, then $\ln q$ is constant which implies that q is a positive constant. Thus, the result follows from Theorem 2.3. The case $\kappa - 4\tau^2 < 0$ is proved.

Case $\kappa - 4\tau^2 > 0$: Set $w_1 := 2(H + i\tau)\frac{p}{\lambda}$ and $w_2 := (\kappa - 4\tau^2)\frac{A^2}{\lambda}$, i.e., $q = 4|w_1 - w_2|^2$. Then $4|w_1 - w_2|^2$. Then

$$
|w_1|^2 = (H^2 + \tau^2)(H^2 - K_e) \ge (H^2 + \tau^2)^2,
$$

$$
|w_2|^2 = \frac{(\kappa - 4\tau^2)^2}{16}(1 - \nu^2)^2 \le \left(\frac{\kappa - 4\tau^2}{4}\right)^2,
$$

where we have used that $H^2 - K_e \ge H^2 + \tau^2 + (\kappa - 4\tau^2)\nu^2 \ge H^2 + \tau^2$, since $K < 0$ and $\kappa - 4\tau^2 > 0$. $K \leq 0$ and $\kappa - 4\tau^2 > 0$.
We recall a well-know

We recall a well-known inequality for complex numb[ers.](#page-5-0) Let $\xi_1, \xi_2 \in \mathbb{C}$, then $|\xi_1 + \xi_2|^2 \geq | |\xi_1| - |\xi_2| |$ 2 . Thus,

$$
\frac{1}{4}q \ge ||w_1| - |w_2||^2 \ge \left| (H^2 + \tau^2) - \frac{|\kappa - 4\tau^2|}{4} \right|^2
$$

$$
= \frac{1}{16} \left| 4(H^2 + \tau^2) - |\kappa - 4\tau^2||^2 > 0.
$$

So, as q is bounded below by a positive constant, then, arguing as in the previous case, q is a constant. Thus, the result follows from Theorem 2.3. The case $\kappa - 4\tau^2 > 0$ is proved. \square \Box

Remark 4.1. Note that in the above theorem, in the case $\kappa - 4\tau^2 > 0$, we only need to assume that $4(H^2 + \tau^2) - |\kappa - 4\tau^2| > 0$.

5. Complete H **-surfaces with constant angle function**

We classify here the complete H-surfaces in $\mathbb{E}(\kappa,\tau)$ with constant angle function. The purpose is to take advantage of this classification result in the next section.

Theorem 2.2. Let $\Sigma \subset \mathbb{E}(\kappa, \tau)$ be a complete H-surface with constant angle function. Then Σ is either a vertical cylinder over a complete curve of curvature $2H$ on *tion. Then* Σ *is either a vertical cylinder over a complete curve of curvature* $2H$ *on* $\mathbb{M}^2(\kappa)$, a slice in $\mathbb{H}^2 \times \mathbb{R}$ or $\mathbb{S}^2 \times \mathbb{R}$, or $\Sigma \in S_{\kappa,\tau}$ with $\kappa < 0$ (see Definition 2.2).

Proof. We can assume that $\nu \leq 0$. We will divide the proof into three cases:

 \bullet $v = 0$: In this case, Σ must be a vertical cylinder over a complete curve of geodesic curvature $2H$ on $\mathbb{M}^2(\kappa)$.

 $v = -1$: From (2.4), $\tau = 0$ and $H = 0$, then Σ is a slice in $\mathbb{H}^2 \times \mathbb{R}$ or $\mathbb{S}^2 \times \mathbb{R}$.

• $-1 < v < 0$ [: W](#page-3-0)e prove here that $\Sigma \in S_{\kappa, \tau}$ with $\kappa < 0$. From (2.5) we have

$$
(H - i\tau)A = -\frac{2p}{\lambda}\bar{A},\tag{5.1}
$$

then

$$
H^2 + \tau^2 = \frac{4|p|^2}{\lambda^2} = H^2 - K_e
$$

since $|A|^2 \neq 0$ from (2.6), so $K_e = -\tau^2$ on Σ .

Thus, from (2.9) , we have

$$
4H2 + 4\tau2 + (\kappa - 4\tau2)(1 - \nu2) = 0.
$$
 (5.2)

Now, using the definition of q, (5.1), (5.2) and $K_e = -\tau^2$, we have

$$
q = \frac{4|Q|^2}{\lambda^2} = 4(H^2 + \tau^2) \frac{4|p|^2}{\lambda^2} + (\kappa - 4\tau^2)^2 \frac{4|A|^4}{\lambda^2}
$$

$$
-4\frac{\kappa - 4\tau^2}{\lambda^2} (2(H + i\tau)p\bar{A}^2 + 2(H - i\tau)\bar{p}A^2)
$$

$$
= 4(H^2 + \tau^2)(H^2 - K_e) + (\kappa - 4\tau^2)^2 \frac{(1 - \nu^2)^2}{4}
$$

$$
+ 2(\kappa - 4\tau^2)(1 - \nu^2)(H^2 + \tau^2)
$$

$$
= \frac{1}{4} (4H^2 + (\kappa - 4\tau^2)(1 - \nu^2) + 4\tau^2)^2 = 0,
$$

that is, q vanishes identically on Σ . Moreover, from (5.2), we can see that $4H^2 + \kappa < 0$, that is, $\kappa < 0$. Therefore, $\Sigma \in S_{\kappa, \tau}, \kappa < 0$.

6. Complete H **-surfaces with** q **constant**

Here, we prove the classification result for complete H-surfaces in $\mathbb{E}(\kappa,\tau)$ employed in the proof of Theorem 3.1 and Theorem 4.1.

Theorem 2.3. *Let* $\Sigma \subset \mathbb{E}(\kappa, \tau)$ *be a complete H-surface with q constant.*

• *If* $q = 0$ *on* Σ *, then* Σ *is either a slice in* $\mathbb{H}^2 \times \mathbb{R}$ *or* $\mathbb{S}^2 \times \mathbb{R}$ *if* $H = 0 = \tau$ *, or* Σ *is invariant by a one-parameter group of isometries of* $\mathbb{E}(\kappa, \tau)$ *.*

Moreover, the Gauss curvature of these examples is as follows.

 \sim *If* $4H^2 + \kappa > 0$, then $K > 0$ they are the rotationally invariant spheres.

- $\mathcal{L} = If 4H^2 + \kappa = 0$ and $\nu \equiv 0$, then $K \equiv 0$ and Σ is either a vertical plane *i*) Complete constant mean curvature surfaces in homogeneous spaces 669
If $4H^2 + \kappa = 0$ *and* $\nu \equiv 0$ *, then* $K \equiv 0$ *and* Σ *is either a vertical plane*
in Nil₃, *or a vertical cylinder over a horocycle in*
- **–** *There exists a point with negative Gauss curvature in the remaining cases.*
- *If* $q \neq 0$ *on* Σ *, then* Σ *is a vertical cylinder over a complete curve of curvature* $2H$ *on* $\mathbb{M}^2(\kappa)$.

The case $q = 0$ has been treated extensively when the target manifold is a product space, but is has not been established explicitly when $\tau \neq 0$. So, we assemble the results in [AR], [AR2] for the reader's convenience.

Lemma 6.1. *Let* $\Sigma \subset \mathbb{E}(\kappa, \tau)$ *be a complete H*-surface whose Abresch–Rosenberg differential vanishes. Then Σ is either a slice in $\mathbb{H}^2 \times \mathbb{R}$ or $\mathbb{S}^2 \times \mathbb{R}$ if $H = 0 = \tau$. *differential vanishes. Then* Σ *is either a slice in* $\mathbb{H}^2 \times \mathbb{R}$ *or* $\mathbb{S}^2 \times \mathbb{R}$ *if* $H = 0 = \tau$, *or* Σ *is inv[arian](#page-14-0)t by a one-parameter group of isometries of* $\mathbb{E}(\kappa, \tau)$ *.* ential vanishes. Then Σ is either a slice in $\mathbb{H}^2 \times \mathbb{R}$ or $\mathbb{S}^2 \times \mathbb{R}$ if $H =$
is invariant by a one-parameter group of isometries of $\mathbb{E}(\kappa, \tau)$.
If $4H^2 + \kappa > 0$, then $K > 0$ they are the rotationa

Moreover, the Gauss curvature of these examples is as follows.

- If $4H^2 + \kappa > 0$, then $K > 0$ they are the rotationally invariant spheres.
- If $4H^2 + \kappa = 0$ and $\nu \equiv 0$, then $K \equiv 0$ and Σ is either a vertical plane in
- *There exists a point with negative Gauss curvature in the remaining cases.*

Proof. The idea of the proof for product spaces that we use below can be found in [dCF] and [FM].

If $H = 0 = \tau$, from the definition of the Abresch–Rosenberg differential, we have

$$
0=-(\kappa-4\tau)A^2,
$$

that is, $v^2 = \pm 1$ usin[g](#page-2-0) [\(2](#page-2-0).6). Thus, Σ is a slice in $\mathbb{H}^2 \times \mathbb{R}$ or $\mathbb{S}^2 \times \mathbb{R}$.
If $H \neq 0$ or $\tau \neq 0$ we have

If $H \neq 0$ or $\tau \neq 0$, we have

$$
2(H + i\tau)p = (\kappa - 4\tau^2)A^2,
$$
\n(6.1)

from where we obtain, taking modulus,

$$
H^{2} - K_{e} = \frac{(\kappa - 4\tau^{2})^{2}(1 - \nu^{2})^{2}}{16(H^{2} + \tau^{2})}.
$$
 (6.2)

Inserting (6.1) in (2.5) ,

$$
(H + i\tau)\nu_z = -\frac{1}{4}(4H^2 + \kappa - (\kappa - 4\tau^2)\nu^2)A,
$$

and taking modulus,

$$
|v_z|^2 = g(v)^2 |A|^2, \quad g(v) = \frac{4H^2 + \kappa - (\kappa - 4\tau^2)v^2}{4\sqrt{H^2 + \tau^2}}.
$$
 (6.3)

Assume that v is not constant. Let $p \in \Sigma$ be a point where $v_z(p) \neq 0$ and let U be a neighborhood of that point p where $v_z \neq 0$ (we can assume $v^2 \neq 1$ at p). In particular, $g(v) \neq 0$ in U from (6.3). Now, inserting (6.3) in (2.6), we obtain

$$
\lambda = \frac{4|v_z|^2}{(1 - v^2)g(v)^2}.
$$
\n(6.4)

[Thus,](#page-10-0) putting (6.2) and (6.4) in the Jacobi equation (2.9)

$$
\nu_{z\bar{z}} = -2\frac{\nu|\nu_z|^2}{1-\nu^2}.
$$
\n(6.5)

So, define the real f[unctio](#page-14-0)n $s := \operatorname{arctgh}(v)$ on U. Such a function is harmonic
means of (6.5), thus we can consider a new conformal parameter w for the first by means of (6.5) , thus we can consider a new conformal parameter w for the first fundamental form so that $s = Re(w)$, $w = s + it$.

Since $\nu = \text{tgh}(s)$ by the definition of s, we have that $\nu \equiv \nu(s)$, i.e., it only depends on one parameter. Thus, we have $\lambda = \lambda(s)$ and $T = T(s)$ from (6.4) and (6.3) respectively, and $p \equiv p(s)$ by the definition of the Abresch–Rosenberg differential. That is, all the fundamental data of Σ depend only on s.

Now, let U be a simply connected domain on Σ and $V \subset \mathbb{R}^2$ a simply connected domain of a surface S so that $\psi_0: \mathcal{V} \to \mathcal{U} \subset \mathbb{E}(\kappa, \tau)$. We parametrize V by the parameters (s, t) obtained above. Then the fundamental data (see [FM]. Theorem 2.3) parameters (s, t) obtained above. Then, the fundamental data (see [FM], Theorem 2.3) $\{\lambda_0, p_0, T_0, \nu_0\}$ of ψ_0 are given by

$$
\begin{cases}\n\lambda_0(s,t) = \lambda(s), \\
p_0(s,t) = p(s), \\
T_0(s,t) = a(s)\partial_s, \\
\nu_0(s,t) = \nu(s),\n\end{cases}
$$

where $a(s)$ is a smooth function.

Let $\vec{t} \in \mathbb{R}$ and let $\mathbf{i}_{\vec{t}}: \mathbb{R}^2 \to \mathbb{R}^2$ be the diffeomorphism given by

$$
\mathbf{i}_{\bar{t}}(s,t) := (s,t+\bar{t}),
$$

and define $\psi_{\bar{t}} := \psi_0 \circ \mathbf{i}_{\bar{t}}$. Then, the fundamental data $\{\lambda_{\bar{t}}, p_{\bar{t}}, T_{\bar{t}}, v_{\bar{t}}\}$ of $\psi_{\bar{t}}$ are given by by

$$
\begin{cases}\n\lambda_{\bar{t}}(s,t) = \lambda(s), \\
p_{\bar{t}}(s,t) = p(s), \\
T_{\bar{t}}(s,t) = a(s)\partial_s, \\
v_{\bar{t}}(s,t) = v(s),\n\end{cases}
$$

that is, both fundamental data match at any point $(s, t) \in \mathcal{V}$. Therefore, using [D],
Theorem 4.3, there exists an ambient isometry $\mathcal{I} \cdot \mathbb{F}(\kappa, \tau) \to \mathbb{F}(\kappa, \tau)$ so that Theorem 4.3, there exists an ambient isometry $\mathcal{I}_{\bar{t}}: \mathbb{E}(\kappa, \tau) \to \mathbb{E}(\kappa, \tau)$ so that

$$
\mathcal{I}_{\bar{t}} \circ \psi_0 = \psi_0 \circ \mathbf{i}_{\bar{t}} \quad \text{for all } \bar{t} \in \mathbb{R},
$$

thus the surface is invariant by a one parameter group of isometries.

Let us prove the claim about the Gauss curvature. Using the Gauss equation (2.2) in (6.2) , one gets

$$
H^{2} + \tau^{2} + (\kappa - 4\tau^{2})\nu^{2} - K = \frac{(\kappa - 4\tau^{2})^{2}(1 - \nu^{2})^{2}}{16(H^{2} + \tau^{2})}.
$$

Set $a := 4(H^2 + \tau^2)$ and $b := \kappa - 4\tau^2$, then one can check easily that the above
ality can be expressed as equality can be expressed as

$$
4aK = a2 - b2 + (2a + b)2 - (2a + b(1 - v2))2.
$$
 (6.6)

So, if $4H^2 + \kappa > 0$ then $a > |b|$ and $K > 0$, that is, Σ is a topological sphere
se it is complete. If $4H^2 + \kappa = 0$, $a = -b$ and the equation reads as since it is complete. If $4H^2 + \kappa = 0$, $a = -b$ and the equation reads as

$$
4aK = a^2(1 - (1 + \nu^2)^2),
$$

that is, Σ has a point with negative Gauss curvature unless $\nu \equiv 0$.

If $4H^2 + \kappa < 0$, one can check that $a^2 - b^2 = (a - b)(a + b) < 0$ since $a + b > 0$
 $a - b < 0$. So, if $\inf_{x \in \Omega} a^2 = 0$ then, from (6.6). Σ has a point with negative and $a - b < 0$. So, if $\inf_{\Sigma} \{v^2\} = 0$ then, from (6.6) , Σ has a point with negative curvature. Therefore, to finish this lemma, we shall prove the following

Claim. There are no complete constant mean curvature surfaces in $\mathbb{E}(\kappa, \tau)$ with $4H^2 + \kappa < 0, q \equiv 0, K \ge 0$, and $\inf \{v^2\} = c > 0$.

Proof of the Claim. Assume such a surface Σ exists. Since we are assuming that $K > 0$ and Σ is complete, then Σ is parabolic and noncompact. If Σ were compact we would have a contradiction with the fact that $\inf_{\Sigma} \{v^2\} = c > 0$ and $4H^2 + \kappa < 0$.
Since a vanishes identically on Σ , arctanb(v) is a bounded harmonic function on

Since q vanishes identically on Σ , arctanh(v) is a bounded harmonic function on Σ and so ν is constant. So, the projection $\pi : \Sigma \to \mathbb{M}^2(\kappa)$ is a global diffeomorphism
and a quasi-isometry. This is impossible since Σ is parabolic and $\mathbb{M}^2(\kappa) \times \mathbb{R} \times 0$ is and a quasi-isometry. This is impossible since Σ is parabolic and $\mathbb{M}^2(k)$, $\kappa < 0$, is hyperbolic. Theref[ore, t](#page-2-0)he Claim is proved and so the lemma is proved.

Proof of Theorem 2.3. We focus on the case $q \neq 0$ because Lemma 6.1 gives the classification when $q = 0$.

Suppose v is not constant in Σ . Since $q = c^2 > 0$, we can consider a conformal parameter z so that $\langle \cdot, \cdot \rangle = |dz|^2$ and $Q dz^2 = c dz^2$ on Σ . Thus,

$$
Q = c = 2(H + i\tau)p - (\kappa - 4\tau^2)A^2.
$$

First, note that we can assume that $H \neq 0$ or $\tau \neq 0$, otherwise v would be constant. So, from (2.5) , we have

$$
(H + i\tau)\nu_z = -\left(H^2 + \tau^2 + \frac{\kappa - 4\tau^2}{4}(1 - \nu^2)\right)A - c\bar{A},
$$

where we have used $2(H + i\tau)p = c + (\kappa - 4\tau^2)A^2$. That is,

$$
16(H2 + \tau2) \|\nabla v\|2 = (g(v) + 4c)2 (1 - v2),
$$
 (6.7)

where

$$
g(v) := 4H^2 + \kappa - (\kappa - 4\tau^2)v^2.
$$
 (6.8)

From (2.10), Σ is flat and $H^2 - K_e = H^2 + \tau^2 + (\kappa - 4\tau^2)\nu^2$ by (2.2), joining
last equation to (2.8) we obtain using the definition of $g(\nu)$ given in (6.8) this last equation to (2.8) we obtain using the definition of $g(v)$ given in (6.8)

$$
\|\nabla v\|^2 = \frac{g(v)^2}{4(\kappa - 4\tau^2)} + v^2 g(v) - \frac{c^2}{\kappa - 4\tau^2}.
$$
 (6.9)

Putting together (6.7) and (6.9) we obtain a polynomial expression in v^2 with coefficients depending on $a := 4(H^2 + \tau^2), b := \kappa - 4\tau^2$ and c:

$$
P(v^2) := C(a, b, c)v^6 + \text{ lower terms} = 0,
$$

but one can easily check that the coefficient of v^6 is $C(a, b, c) = -a^{-1}b^2 \neq 0$, a contradiction. Thus ν is constant, and so, by means of Theorem 2.2, Σ is a vertical cylinder over a complete curve of curvature $2H$.

7. Appendix

Let Σ be a connected Riemannian surface. We establish in this Appendix a result which we think is of independent interest, concerning differential operators of the form $\Delta + g$, acting on $C^2(\Sigma)$ -functions, where Δ is the Laplacian with respect to the Riemannian metric on Σ and $g \in C^0(\Sigma)$.

Lemma 7.1. Let $g \in C^0(\Sigma)$, $v \in C^2(\Sigma)$ such that $\|\nabla v\|^2 \le hv^2$ on Σ , h is a
non-negative continuous function on Σ , and $\Delta v + \sigma v = 0$ in Σ . Then either y never *non-negative continuous function on* Σ *, and* $\Delta v + gv = 0$ *in* Σ *. Then either v never vanishes or v vanishes identically on* Σ .

Proof. Set $\Omega = \{p \in \Sigma : v(p) = 0\}$. We will show that either $\Omega = \emptyset$ or $\Omega = \Sigma$.
So let us assume that $\Omega \neq \emptyset$. If we prove that Ω is an open set then, since Ω .

So, let us assume that $\Omega \neq \emptyset$. If we prove that Ω is an open set then, since Ω is and Σ is connected $\Omega = \Sigma$. Let $n \in \Omega$ and $\mathcal{R}(R) \subset \Sigma$ be the geodesic ball closed and Σ is connected, $\Omega = \Sigma$. Let $p \in \Omega$ and $\mathcal{B}(R) \subset \Sigma$ be the geodesic ball
centered at n of radius R. Such a geodesic ball is relatively compact in Σ centered at p of radius R. Such a geodesic ball is relatively compact in Σ .

Set $\phi = v^2/2 \ge 0$. Then

$$
\Delta \phi = v \Delta v + ||\nabla v||^2 = -gv^2 + ||\nabla v||^2 \le -2(g - h)\phi,
$$

that is,

$$
-\Delta\phi - 2(g - h)\phi \ge 0. \tag{7.1}
$$

Define $\beta := \min \{ \inf_{\Omega} \{ 2(g - h) \}, 0 \} \le 0$. Then, $\psi = -\phi$ satisfies

$$
\Delta \psi + \beta \psi = -\Delta \phi - \beta \phi \ge -\Delta \phi - 2(g - h)\phi \ge 0,
$$

where we have used (7.1) .

Since we are assuming that v [has a zero at](http://www.emis.de/MATH-item?0196.33801) [an interior po](http://www.ams.org/mathscinet-getitem?mr=0114911)[int o](#page-6-0)f $\mathcal{B}(R)$, $\beta \le 0$ and so a non-negative maximum at n, the Maximum Principle IGTL Theorem 3.5 ψ has a non-negative maximum at p, the Maximum Principle [GT], Theorem 3.5, implies that ψ is constant and so v is constant as well, [i.e,](http://www.emis.de/MATH-item?1078.53053) $v \equiv 0$ in $\mathcal{B}(R)$ [. Then](http://www.ams.org/mathscinet-getitem?mr=2134864) $\mathcal{B}(R) \subset \Omega$ and Ω is an open set. Thus $\Omega = \Sigma$. $\mathcal{B}(R) \subset \Omega$ [, and](#page-2-0) Ω [is an](#page-10-0) open set. Thus Ω $\Omega = \Sigma.$

References

- [AS] L.Ahlfors and L. Sario, *Riemann surfaces*. Princeton Math. Ser. 26, Princeton University Press, Princeton, N.J., 1960. Zbl 0196.33801 MR [0114911 665](http://www.emis.de/MATH-item?1209.53010)
- [AR] U. Abresch and H. Rosenberg, A Hopf differential for constant mean curvature surfaces in $\mathbb{S}^2 \times \mathbb{R}$ and $\mathbb{H}^2 \times \mathbb{R}$. *Acta Math.* **193** [\(2004\), 1](http://www.emis.de/MATH-item?1123.53029)[41–174.](http://www.ams.org/mathscinet-getitem?mr=2296059) **Zbl** 1[078.5](#page-11-0)3053 MR 2134864 659, 661, 665, 669
- [AR2] U. Abresch, H. Rosenberg, Generalized Hopf differentials. *Mat. Contemp.* **28** (2005), 1–28. [Zbl 1118.](http://www.emis.de/MATH-item?1163.53036)[53036 MR 21](http://www.ams.org/mathscinet-getitem?mr=2481955)[9518](#page-0-0)7 659, 661, 665, 669
- [Ch] S. Y. Cheng, Eigenfunctions and nodal sets. *Comment. Math. Helv.* **51** (1976), 43–55. Zbl 0334.35022 MR 0397805
- [CoR] P. Collin and H. Rosenberg, Construction of harmonic diffeomorphisms and minimal graphs. *Ann. of Math.* (2) **172** (2010), 1879–1906. Zbl 1209.53010 MR 2726102 659
- [D] [B. Daniel, Isome](http://www.emis.de/MATH-item?1180.53062)[tric immersion](http://www.ams.org/mathscinet-getitem?mr=2534989)[s int](#page-0-0)[o 3-di](#page-5-0)mensional homogenouos manifolds.*Comment. Math. Helv.* **82** (2007), 87–131. Zbl 1123.53029 MR 2296059 670
- [DH] B. Daniel and L. Hauswirth, Half-space theorem, embedded minimal annuli and min[imal graphs in t](http://www.emis.de/MATH-item?1125.53007)[he Heisenberg](http://www.ams.org/mathscinet-getitem?mr=2330457) [grou](#page-0-0)[p.](#page-2-0) *P[roc. L](#page-10-0)[ond.](#page-11-0) Math. Soc.* (3) **98** (2009), 445–470. Zbl 1163.53036 MR 2481955 659
- [dCF] M. do Carmo and I. Fernández, A Hopf theorem for open surfaces in p[roduct spaces.](http://www.emis.de/MATH-item?05626126) *[Forum Math.](http://www.ams.org/mathscinet-getitem?mr=2529912)* **[21](#page-0-0)** (2009), 951–963. Zbl 1188.53072 MR 2574142 669
- [ER] J. M. Espinar and H. Rosenberg, Complete constant mean curvature surfaces and Bernstein type theorems in $\mathbb{M}^2 \times \mathbb{R}$. *J. Di[fferential Geom.](http://www.emis.de/MATH-item?0562.35001)* **82** [\(2009\),](http://www.ams.org/mathscinet-getitem?mr=0737190) 611–628. Zbl 1180.53062 MR 2534989 659, 664
- [FM] I. Fernández and P. Mira, A characterization of constant mean curvature surfaces in homogeneous three-manifolds. *Differential Geom. Appl.* **25** (2007), 281–289. Zbl 1125.53007 MR 2330457 659, 661, 669, 670
- [FM2] I. Fernández and P. Mira, Holomorphic quadratic differentials and the Bernstein problem in Heisenberg space. *Trans. Amer. Math. Soc.* **361** (2009), 5737–5752. Zbl 05626126 MR 2529912 659
- [GT] D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations of second order*. 2nd edition, Springer-Verlag, New York, 1983. Zbl 0562.35001 MR 0737190 673

Received March 14, 2009

José M. Espinar, Departamento de Geometría y Topología, Universidad de Granada, Avda Fuentenueva s/n, 18071 Granada, Spain

E-mail: jespinar@ugr.es

Harold Rosenberg, Instituto de Matematica Pura y Aplicada, 110 Estrada Dona Castorina, Rio de Janeiro 22460-320, Brazil E-mail: rosen@impa.br