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have derived a formula for the Heegner point on E in terms of the central derivative of the two
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1. Introduction

In this paper, we give a partial generalization of the main results of Bertolini–Darmon
[4] to elliptic curves over certain totally real fields.

Let F be a totally real field, and E=F be a modular elliptic curve, i.e. associated
with a cuspidal Hilbert eigenform fE over F of parallel weight two.

Let p be a fixed odd prime. We assume that p is inert in F , with p D pOF the
unique prime of F above p. Denote by Lp.s; E=F / the p-adic L-function of E=F .
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Suppose thatE is split multiplicative at p. Then by the results of [26], one always
has Lp.1; E=F / D 0, called the phenomenon of exceptional zero, and a formula
relating L0

p.1; E=F / and the algebraic part of the L-value Lalg.1; E=F / is proved,
generalizing that of Greenberg–Stevens [16], [17]. We briefly recall the setup.

Let ffkg be the Hida family of parallel weights lifting fE , so in particular, fork � 2,
with k sufficiently close to 2 in the weight space, fk is a cuspidal Hilbert eigenform
of parallel weight k, and f2 D fE . One has the p-adic L-function Lp.s; fk/ attached
to fk . The results of [26] show that these p-adic L-functions for different weights
can be interpolated to a two-variable p-adic L-function, i.e., there exists a p-adic
analytic functionLp.s; k/ of the two variables s and k, such that for k � 2 an integer,
sufficiently close to 2 in the weight space, one has Lp.s; k/ D Lp.s; fk/. Under
the assumption that E is split multiplicative at p, Lp.s; k/ satisfies the functional
equation

Lp.k � s; k/ D ��E=FLp.s; k/;
where �E=F is the sign for the functional equation of the complex L-function
L.s;E=F /.

The central critical values for the p-adicL-functions of the Hida family are given
by Lp.k=2; k/. We have Lp.k=2; k/jkD2 D 0 (exceptional zero), and

d

dk
Lp.k=2; k/

ˇ̌̌
kD2 D 1

2

@Lp.s; 2/

@s

ˇ̌̌
sD1 C @Lp.1; k/

@k

ˇ̌̌
kD2:

By [26] one has the formula

@Lp.1; k/

@k

ˇ̌̌
kD2 D d

dk
˛.p; k/

ˇ̌̌
kD2 � Lalg.1; E=F /I (1.1)

here ˛.p; k/ is the Up-eigenvalue of the form fk .
Following Bertolini–Darmon, we treat the case where the order of vanishing of

the complex L-function of E=F at s D 1 is exactly one, i.e., L.1;E=F / D 0, and
L0.1; E=F / ¤ 0. The sign �E=F D �1, so from the functional equation, the order

of vanishing of Lp.s; 2/ D Lp.s; E=F / at s D 1 is even, so @Lp.s;2/

@s

ˇ̌
sD1 D 0. We

also have @Lp.1;k/

@k

ˇ̌
kD2 D 0 by (1.1). Thus d

dk
Lp.k=2; k/

ˇ̌
kD2 D 0. One is thus led

to look at the second derivative of Lp.k=2; k/ at k D 2.
We can now state the main result of this paper. LetQE be the Tate period ofE=Fp.

For � 2 Hom.F; xQp/, let E�=F � be the elliptic curve which is split multiplicative
at the prime p� of F � , whose Tate period is given byQ�

E and which is obtained from
E=F by conjugating with � . Let logE�=F �

p�
be the formal logarithm on E�=F �p� .

Then (see Theorem 5.4 and Corollary 5.6 for the precise statements):

Theorem 1.1. Suppose thatL.1;E=F / D 0 butL0.1; E=F / ¤ 0. In the case where
ŒF W Q� is odd, assume that E=F is multiplicative at some prime other than p. Then
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there exists a global point P 2 E.F / ˝ Q, non-torsion, and a non-zero rational
number l 2 Q�, such that

d2

dk2
Lp.k=2; k/

ˇ̌̌
kD2 D l

� X
�2Hom.F; xQp/

logE�=F �
p�
.P � /

�2
: (1.2)

The proof largely follows the method of Bertolini–Darmon (with the exception
that in the case F ¤ Q, the Shimura curves appearing in the argument are not of PEL
type, and have more than one geometric component when the strict class number of
F is bigger than one; see Section 4). In particular, the global point P turns out to
be the trace of a Heegner point, so the non-torsion assertion follows from Zhang’s
generalization [40] of the Gross–Zagier formula, together with the hypothesis that
L0.1; E=F / ¤ 0.

As in [4], the extra hypothesis on the conductor of E=F , when ŒF W Q� is odd,
is forced upon us by the use of the theorems of Jacquet–Langlands, and Cerednik–
Drinfeld.

In the case where F D Q, we are able to establish Theorem 1.1 without this extra
hypothesis, thus improving the main result of Bertolini–Darmon.

Theorem 1.2. Suppose that E=Q is split multiplicative at p, and satisfies
L.1;E=Q/ D 0 but L0.1; E=Q/ ¤ 0. Then there is a non-zero rational number
l 2 Q� and P 2 E.Q/˝ Q non-torsion, such that

d2

dk2
Lp.k=2; k/

ˇ̌̌
kD2 D l.logE=Qp .P //

2:

To do this, one considers base change to a suitable real quadratic field F , and
apply Theorem 1.1 to E=F . Suitable descent arguments allow one to obtain the
result over Q. See Section 6.

Finally we make some remarks about Theorem 1.1. In the case F D Q, formula
(1.2) can be regarded as a formula for a non-torsion rational point on E, in terms of
the central derivative of the two-variable p-adic L-function of E (by using p-adic
exponential map to invert the p-adic logarithm). However, when F ¤ Q, (1.2)
falls short of giving such a formula, due to the cross terms involving E�=F � , for
� 2 Hom.F; xQp/.

The intrinsic difficulty is that, in the statement of Theorem 1.1, one considers
only the Hida family of parallel weights. In future work, we would like to obtain
such a formula, by considering Hida families of non-parallel weights. This would
involve considering mixed partial derivatives of the several variable-variable p-adic
L-function attached to the Hida family constructed in [2].

Acknowledgement. The author would like to thank Professor Darmon, Professor
Hida, Professor Mazur and Professor Ribet for encouragements and their discussions
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Notation 1.3. As in the introduction, p is a fixed odd prime which we assume to be
inert in the totally real field F , with p the unique prime of OF above p. Denote by
d the degree of F over Q. Thus the norm of p, N p, is equal to pd , which we will
denote by q in the sequel. Denote by F �C the set of totally positive elements of F ,

AF the ring of adeles of F , and by yF the ring of finite adeles. We have the adelic
norms j � jAF and j � j yF on AF and yF respectively.

For each prime l of F , denote by vall the normalized valuation of Fl (or more
generally on the algebraic closure of Fl), whose value on the uniformizer of OFl

is
one.

In general we will denote by N the norm operation from F to Q, either over the
field itself, their completion, the adeles, or at the level of ideal (the subscripts that
occur would indicate the field extensions involved).

Denote by �Q;cycl W Gal.xQ =Q/ ! Z�
p the p-adic cyclotomic character, and by

�F;cycl the restriction of �Q;cycl to Gal.xQ =F /. By class field theory, we will also
regard �F;cycl as a continuous Z�

p -valued character on yF �=F �C D A�
F =F

�F1;C
(here F1;C is the archimedean connected component of A�

F ). The class field theory
isomorphism is normalized so that �F;cycljO�

Fp
is equal to N Fp=Qp .

Fix algebraic closures xQ and xQp of Q and Qp respectively. Denote by ordp the
valuation on xQp , normalized by the condition ordp.p/ D 1. We also fix an embedding
of Fp into xQp . Under our assumption that p is inert in F , we have Fp D Qpd , the
unramified extension of Qp of degree d .

We fix an embedding of xQ into xQp once and for all in this paper. Under this embed-
ding, we can identify Hom.F; xQ/with Hom.F; xQp/, which under the assumption that
p is inert inF , is equal to Hom.Fp; xQp/, so that in particular N F=Q.z/ D N Fp=Qp .z/

for z 2 F .
In general, for any x 2 Fp, and � W Fp ,! xQp an embedding, we let x� 2 xQp

denote the image of x under � .
For any number field L, denote by DL the absolute value of the discriminant of

L over Q. If  is a Hecke character of L of finite order, then by class field theory,  
can be regarded as a character of Gal.xL=L/, and we denote by L the finite abelian
extension of L cut out by ker . The conductor of  is noted as c . Regarding  as
taking values in xQ, we denote, for h 2 Aut.xQ/, the character h B  as  h.

Finally, if S is a group and � is a character of S, then for V a representation of
S, we denote by V� the �-component of V .
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2. Quaternionic automorphic forms

2.1. Basic definitions. Let n� be an integral ideal of OF . We assume throughout
the paper the following:

Condition 2.1. The ideal n� is square-free, relatively prime to p, and such that the
number of prime ideal factors of n� is congruent to ŒF W Q� mod 2. In particular,
n� D OF is allowed if ŒF W Q� is even.

Let B be the quaternion algebra over F , which is ramified exactly at all the
archimedean places, and all places dividing n�. Note that B exists by Condition 2.1
on n�. In particular,B is totally definite, that is,B˝F;�R is isomorphic to Hamilton’s
quaternions, for all the real places � W F ! R. We denote by NrdB=F the reduced
norm from B to F .

Let yB� D .B ˝F
yF /� be the group of finite adelic points of B�. Given b 2 yB�,

and a place � of F , we will denote by b� the component of b at �. We will generally
identify the finite places ofF with prime ideals of OF , so if � corresponds to a prime l,
then we will also write bl for the corresponding component of b.

Fix an isomorphism of Fp-algebras,

�p W Bp D B ˝F Fp ! M2.Fp/;

which induces an isomorphism of B�
p and GL2.Fp/ (here for any ring A, we denote

by M2.A/ the ring of 2 � 2 matrices with coefficients in A).
Let † D Q

l†l be an open compact subgroup of yB�. Assume that the image of
†p under �p is contained in GL2.OFp/.

Let M be a Zp-module, equipped with a left action of �p.†p/.

Definition 2.2. An M -valued automorphic form on B� of level † is a function

ˆ W yB� ! M

that satisfies

ˆ.�bu/ D �p.u
�1
p / �ˆ.b/ (2.1)

for all � 2 B�; b 2 yB�; u 2 †. Denote by S.†;M/ the space of M -valued forms
of level †.

Note that ˆ 2 S.†;M/ is determined by its values on a set of representatives of
the double coset B�n yB�=†, which is finite (being both compact and discrete).



872 C. P. Mok CMH

Definition 2.3. For each embedding � W Fp ! xQp , and any integer n � 0, let Symn
�

be the Cp vector space of homogeneous polynomials of degreen in the indeterminates
X� ; Y � , with coefficients in Cp . Define the right action of GL2.Fp/ on Symn

� by

.P j�/.X� ; Y � /
WD P.a�X� C b�Y � ; c�X� C d�Y � / for � D

�
a b

c d

�
2 GL2.Fp/:

For integers k � 2, put

Bk D
O

� W Fp! xQp
Symk�2

�

with the tensor product right-action of GL2.Fp/. Define Vk to be the Cp-dual of
Bk , with the dual left action of GL2.Fp/. We call S.†; Vk/ the space of classical
automorphic forms on B� of parallel weight k, and level †.

Consider the following action of yF � on S.†; Vk/, where given z 2 yF �, it takes
ˆ 2 S.†; Vk/ to the form ˆ0, with ˆ0.b/ D ˆ.zb/ for b 2 yB�. This action factors
through the infinite idele class group

ZF .†/ WD yF �=F �C. yO�
F \†/p

(here the superscript p refers to the removal of the component at the place p, while
the overline on F �. yO�

F \†/p refers to closure).
We have a natural surjection of ZF .†/ to the finite idele class group ClF .†/:

ZF .†/ ! ClF .†/ WD yF �=F �C. yO�
F \†/

whose kernel is given by the image of O�
Fp

\ †p in ZF .†/ (here we are following
the notation of [21], Section 3, p. 313).

From equation (2.1) and Definition 2.3, we see that the action of yF � on S.†; Vk/,
when restricted to the image of O�

Fp
\†p in ZF .†/, is given by �2�k

F;cycl.z/.

Definition 2.4. For each character 	 of ClF .†/, define

S.†; Vk; 	/ D fˆ 2 S.†; Vk/; ˆ.zb/ D �2�k
F;cycl.z/	.z/

�1ˆ.b/

for all z 2 yF �; b 2 yB�g:
The character 	 is called the nebentype of the form ˆ.

It follows that we have a decomposition

S.†; Vk/ D
M
�

S.†; Vk; 	/;

where 	 runs over the characters of ClF .†/.
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2.2. Hecke operators. Recall the definition of Hecke operators. For each prime l
at which B splits, and at which †l is maximal, one can define the Hecke operators
Tl as follows. Fix an isomorphism �l W Bl ! M2.Fl/ such that †l is identified as
GL2.OFl

/. Let 
l be an uniformizer of OFl
, and let kl be the residue field at l. Given

a double coset decomposition:

GL2.OFl
/

�

l 0

0 1

�
GL2.OFl

/ D
G

a2P1.kl/

�a.l/GL2.OFl
/:

Define Tl on S.†;M/ by the rule:

.Tlˆ/.b/ D
´P

a2P1.kl/
ˆ.b�a.l// if l ¤ p;P

a2P1.kl/
�a.l/ �ˆ.b�a.l// if l D p :

(2.2)

In the case of Tp, we need to assume that the action of �p.†p/ D GL2.OFp/ on M
extends to an action of the semi-group M2.OFp/ \ GL2.Fp/.

If l ¤ p (in addition to the condition that B is split at l and †l is maximal), we
also define the operator Tl;l by (cf. the discussion after definition 2.3):

Tl;lˆ.b/ D ˆ.
lb/ for b 2 yB�

(here 
l is identified as the element of yF � � yB� that is equal to 
l at the place l and
equal to one at other places). Using the fact that the classes of 
l in ClF .†/ for all
such l exhaust ClF .†/, we see that if ˆ 2 S.†; Vk/, then ˆ has a nebentype, i.e.,
lies in one of the component S.†; Vk; 	/, if and only if it is an eigenvector for all the
operators Tl;l, in which case

Tl;lˆ D 	.l/�1 N lk�2ˆ:

(Here 	.l/ WD 	.
l/, noting that 	 in unramified at l. Also note our convention about
�F;cycl and the global class field theory isomorphism as in Notation 1.3.)

We next define the Hecke operators at a prime at which the level is not maximal.
For simplicity we do this only when the level is given by Iwahori subgroups.

In general if l is a prime, m � 1, then we define the Iwahori subgroups Ilm and
I1;lm of GL2.OFl

/ of level lm by

Ilm D
² �
a b

c d

�
2 GL2.OFl

/; c � 0 mod 
lm

³
;

I1;lm D
² �
a b

c d

�
2 Ilm ; a � 1 � 0 mod 
lm

³
:

Also put

M2.l
mI OFl

/ D
² �
a b

c d

�
2 M2.OFl

/; c � 0 mod 
lm

³
;
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M2.1; l
mI OFl

/ D
² �
a b

c d

�
2 M2.l

mI OFl
/; a � 1 mod 
lm

³
:

Suppose that l − n�, and† is a level such that I1;lm � †l � Ilm for somem � 1

(we identify †l with its image under �l). Given a double coset decomposition:

I1;lm

�
1 0

0 
l

�
I1;lm D

G
a2kl

O�a.l/I1;lm ;

define Ul on S.†;M/ by the rule

.Ulˆ/.b/ D
´P

a2kl
ˆ.b O�a.l// if l ¤ pP

a2kl
O�a.l/ �ˆ.b O�a.l// if l D p :

(2.3)

In the case of Up (l D p), we need to assume thatM has an action of the semi-group
M2.1;p

mI OFp/ \ GL2.Fp/ compatible with that of †p.
One can take

O�a.l/ D
�
1 0

Qa
ml 
l

�
;

where Qa 2 OFl
maps to a 2 kl.

In the particular case where l D p and†p D Ip, the matrices O�a D O�a.p/ has the
following interpretation (under our assumption on p we can take the uniformizer 
p

to be p): let fL.a/ga2kp
be the q D pd sub-lattices of OFp ˚pOFp of index equal

to q, other than the lattice p.OFp ˚ OFp/. The matrices O�a satisfy

O�a.OFp ˚ OFp/ D OFp ˚pOFp ;

O�a.OFp ˚pOFp/ D L.a/:

2.3. Choice of levels. In this paper, the level † is defined by the groups of units of
local Eichler orders of B . Thus let a be an ideal of OF , relatively prime to n�. For
any prime l, let Rl be a local order of Bl satisfying the condition

Rl D the (unique) maximal order of Bl if l divides n�;

resp.
Rl D an Eichler order of level lvall.a/ if l is prime to n� :

For l not dividing n�, we will assume that under the isomorphism �l W Bl ! M2.Fl/,
the image of Rl is the subringM2.l

vall aI OFl
/ ofM2.OFl

/. Thus we have �l.R�
l / D

I
lvall.a/ .

Let yR D Q
lRl. Then R WD B

T yR is an Eichler order of B of level a.
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We will denote by †.a;n�/ the level given by yR� for the above choices of the
local orders Rl. Also put

†1.a;n
�/ D fu 2 †.a;n�/; ul 2 I1;lvall a for all l j ag:

Note that for the level †1.a;n�/, the idele class group ClF .†1.a;n�// is the
ray class group ClF .a/ of conductor a times all the archimedean primes. Similarly
the infinite idele class group ZF .†1.a;n�// is equal to the ray class group ZF .a/
of conductor a p1 times all the archimedean primes (in particular independent of
n�). For the levels †.a;n�/ we have ClF .†.a;n�// D ClF .OF / D ClF and
ZF .†.a;n

�// D ZF .OF / D ZF (here ClF D yF �=F �C yO�
F is the strict ideal class

group of F , with similar remark applied to ZF ).

Notation 2.5. For 	 a character of ClF .a/, we will write Sk.a;n�; 	/ for the space
S.†1.a;n

�/; Vk; 	/. If 	 is trivial then it is denoted as Sk.a;n�/.

If ˆ 2 Sk.a;n�; 	/, then it is easy to check that

ˆ.bu/ D 	.u/�1.u�1
p �ˆ.b// for all u 2 †.a;n�/; b 2 yB�:

Here if u 2 †.a;n�/, and ul D
�
al bl

cl dl

�
2 Ilvall a for l j a, then 	.u/ is defined to be

the value of 	 on the idele that is equal to al at places l dividing a, and equal to one
at the other places.

In particular for levels † with †1.a;n�/ � † � †.a;n�/ we have S.†; Vk/ DL
� Sk.a;n

�; 	/, where 	 ranges over the characters of ClF .†/.
For †1.a;n�/ � † � †.a;n�/ one can also define the Hecke operators Ul

for l j n� acting on S.†; Vk/, using the double coset †l!l†l D !l†l, with !l a
uniformizer of the maximal order Rl of Bl (note that †l D R�

l ), i.e., if l j n�, then
.Ulˆ/.b/ D ˆ.b!l/.

Suppose now that † D †.a;n�/, and that l is a prime that divides a. Define the
trace operator

Tra

a l�1 W Sk.a;n�/ ! Sk.
a
l
;n�/

as follows. Given a form ˆ 2 Sk.a;n�/,

Tra

a l�1.ˆ/.g/ D
´P

r ˆ.g�r/ if l ¤ p;P
r �r �ˆ.g�r/ if l D p :

Here f�rg run over a set of left coset representatives of I
ln�1 modulo Iln where

n D vall.a/ (if n D 1 then I
ln�1 is interpreted as GL2.OFl

/). For example if l
divides a exactly (i.e., n D 1) then one can take f�rg with r indexed by P1.kl/, as

�r D
�
1 0

Qr 1

�
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for r 2 kl, and

�1 D
�
0 �1
1 0

�
:

A form ˆ 2 Sk.a;n�/ is said to be new at l, if

Tra

a l�1.ˆ/ D 0:

Otherwise it is called old at l.

2.4. Measure-valued forms. In this section, we define measure-valued forms. First
recall the definition of some relevant Iwasawa type algebras.

Let nC be an ideal relatively prime to p n�. Consider the level † D †.nC;n�/.
In this case ClF .†/ D ClF and ZF .†/ D ZF .

Denote by GF the kernel from ZF to ClF :

1 ! GF ! ZF ! ClF ! 1:

Then GF can be described as follows. Denote by c the closure in O�
Fp

of the group
of totally positive units of OF . Then

GF D O�
Fp
= c :

Each of the profinite abelian groups ZF ;GF is a (non-canonical) direct product
of its finite torsion part and a Zp-free part. The Leopoldt conjecture predicts that
these have Zp-rank one, but we do not need this in the sequel.

Put
XF D Homcts.GF ;C

�
p /

known as the (Cp-points of the) weight space (in [21], Section 3, the weight space
is defined to be Homcts.ZF ;C�

p /. But as in the sequel [22], the above definition is
more natural, especially when one is dealing with forms of non-parallel weight).

Inside XF is the set of classical weights defined as follows.
For integer k � 2, and � a finite order character of GF , the pair .k; �/ defines an

element Pk;� 2 XF , called a classical weight, given by

Pk;�.a/ D �.a/�F;cycl.a/
k�2 D �.a/N Fp=Qp .a/

k�2 for a 2 GF :

(Note that the norm map

N Fp=Qp W O�
Fp

! Z�
p

factors through

N Fp=Qp W GF D O�
Fp
= c ! Z�

p :/ (2.4)
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For the purpose of this paper, it suffices to consider those weights with � trivial,
in which case we denote the weight by Pk . As we will see below, the weights Pk
parametrize family of automorphic forms of parallel weight k.

Let zƒF be the completed group algebra of GF with coefficients in Zp:

zƒF D ZpŒŒGF ��:

Elements of XF D Homcts.GF ;C�
p / extend by continuity to algebra homomor-

phisms from zƒF to Cp .
In the case F D Q, then

zƒQ D ZpŒŒZ
�
p ��:

As usual, let ƒ � zƒQ be the Iwasawa algebra:

ƒ D ZpŒŒ1C pZp��:

The projection map to the one-units,

h � i W Z�
p ! 1C pZp;

induces the projection

zƒQ ! ƒ:

We denote by !F WD �F;cyclh�F;cycli�1, the Teichmüller character of F . As a
Hecke character its conductor is equal to p times the product of all the archimedean
places. We have !F D !Q B N F=Q.

Let ƒ� � CpŒŒk � 2�� be the subring consisting of power series (with Cp coeffi-
cients) that are convergent in some p-adic neighbourhood of 2. We have the usual
embedding

ƒ ,! ƒ�;

Œa� 7! .k 7! ak�2/I (2.5)

here Œa� is the group algebra element associated to a 2 1 C pZp . The image of ƒ
in ƒ� is called the set of Iwasawa functions. If 
 is an Iwasawa function, then it
converges on the region ordp.k � 2/ > 1 � 1

p�1 . For 
 2 ƒ, and k 2 Zp , we will

denote by 
.k/ the evaluation of 
 at k. Similarly if Q
 2 zƒQ, then we denote by
Q
.k/ the value 
.k/, where 
 is the image of Q
 under the map zƒQ ! ƒ.

The norm map (2.4) induces the map on the completed group algebras:

zƒF ! zƒQ (2.6)

and the weights Pk factor through (2.6). (For this reason the weights Pk are also
referred to as cyclotomic weights.)
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Denote by .O2
Fp
/0 the set of primitive elements of O2

Fp
D OFp ˚ OFp , i.e.,

elements such that at least one of the coordinates lies in O�
Fp

. Consider the space

of orbits X WD c n.O2
Fp
/0, where c acts diagonally. The diagonal action of O�

Fp
on

.O2
Fp
/0 induces the action of GF on X .

The space of continuous Cp-valued functions on X is equipped with the right
action of GL2.OFp/, given by

.f jg/.x; y/ D f .ax C by; cx C dy/ for g D
�
a b

c d

�
2 GL2.OFp/: (2.7)

Let D� be the corresponding space of measures, i.e., its continuous Cp-dual. D�
inherits the dual action of O�

Fp
and GL2.OFp/: for � 2 D�, and � an open compact

subset of X ,Z
�

f .x; y/ d.c � �/ D
Z

�

f .cx; cy/ d� for c 2 O�
Fp
;

Z
�

f d.g � �/ D
Z
g�1�

f jg d� for g 2 GL2.OFp/:

The action of O�
Fp

and hence GF on D� extends by continuity to give the structure

of a zƒF -module on D�.
Let W WD F 2p �f0; 0g. Put Y WD c nW , so we have the natural inclusionX ,! Y .

Let D be the space of compactly supported measures on Y . D is equipped with the
action of GL2.Fp/ similar to the action of GL2.OFp/ on D� defined above, i.e., if
�0 2 D , and � 0 an open compact subset of Y , then for g0 2 GL2.Fp/, and f 0 a
continuous function on Y ,Z

� 0

f 0 d.g0 � �0/ D
Z
.g0/�1� 0

f 0jg0 d�0 (2.8)

(with f 0jg0 being given by the same formula as (2.7)).
There is an inclusion map s W D� ,! D obtained by identifying elements of D�

as measures on Y that are supported onX . On the other hand, restriction of measures
induces the projection map p W D ! D�.

Given � 2 D�, and g 2 M2.OFp/ \ GL2.Fp/, define

g ? � WD p.g � s.�//:
Then it is easy to check that this defines a left action of the semi-group M2.OFp/ \
GL2.Fp/ extending that of GL2.OFp/ (we denote this action by ? in order to distin-
guish this from the action of GL2.Fp/ on D ; indeed ? does not extend to an action
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of GL2.Fp/). Concretely, given a continuous function f on X , and � � X open
compact, element g 2 M2.OFp/ \ GL2.Fp/ and � 2 D� we haveZ

�

f d.g ? �/ D
Z
g�1.�/\X

f jg d�:

Hence g ? � is supported on g.X/ \ X . In particular if g 2 M2.OFp/ \ GL2.Fp/,
and � � X such that g�1� � X , then for � 2 D� we haveZ

�

f dg ? � D
Z
g�1.�/\X

f jg d� D
Z
g�1.�/

f jg d� D
Z

�

f d.g � s.�//:

Definition 2.6. Let s 2 Zp . A function f on X is said to be homogeneous with
respect to the weight character h�F;cyclis , if

f .cx; cy/ D h�F;cycl.c/isf .x; y/ D hN Fp=Qp .c/isf .x; y/
for any c 2 O�

Fp
.

Definition 2.7. We put

D
cycl� WD D� ˝ zƒF zƒQ;

and similarly

D
cycl;�� WD D

cycl� ˝OCp
Ő ƒ ƒ

�

(here Ő is the completed tensor product over Zp). Elements of S.†;M/, where

M D D�;Dcycl� or D
cycl;�� , will be referred to as measure-valued forms.

As in Section 2.1 we have an action of yF � on S.†;D�/, namely if z 2 yF �, then
it takes ˆ1 2 S.†;D�/ to the form ˆ01, where ˆ01.b/ D ˆ1.zb/ for b 2 yB�.
This action factors throughZF . On the subgroup GF ofZF , this action is consistent
with the action of GF � zƒF on D�: if z 2 yF � whose class Nz inZF lies in GF , then

ˆ1.zb/ D Nz�1 �ˆ1.b/ for b 2 yB�:

Similar remarks apply to S.†;Dcycl� /; S.†;D
cycl;�� /.

Homogeneous functions with respect to the weight character h�F;cyclik�2 for some
k 2 Zp can be integrated against elements of D

cycl� , and also against the elements of

D
cycl;�� if k isp-adically sufficiently close to 2: suppose� D Q
1�1C� � �C Q
r�r , with

�i 2 D�, Q
i 2 zƒQ, and k 2 Zp . Then if f is homogeneous of weight h�F;cyclik�2,
the formula Z

X

f d� WD
rX
iD1

Q
i .k/
Z
X

f d�i
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is well defined.
Elements of Bk give homogeneous functions of weight h�F;cyclik�2 : by linearity,

it suffices to consider P D ˝�P� , a pure tensor, with P� 2 Symk�2
� for each

� W Fp ,! xQp . Then the function

fP .x; y/ D !2�k
F .x/

Y
�

P� .x
� ; y� / (2.9)

is a homogeneous function of weight h�F;cyclik�2 onX . Here !2�k
F is interpreted as

the identity function ifk � 2 mod p�1. Otherwise, ifk is not congruent to2modulo
p � 1, then we take the convention that !2�k

F .x/ D 0 if .x; y/ … c n.O�
Fp

� OFp/. It
can be shown that the association P 7! fP is injective.

Definition 2.8. Put X 0 D c n.O�
Fp

� pOFp/ � X . Then for integer k � 2, the
specialization to weight k map is given by

�k W D� ! Vk;

� 7! .P !
Z
X 0

fP d�/:

The same formula defines specialization map �k on D
cycl� , and on D

cycl;�� if k is
sufficiently close to 2 p-adically. The maps �k are surjective for each k � 2.

The specialization map �k respects only the action of I1;p. More precisely, for

k � 2, and � 2 D�;Dcycl� (or D
cycl;�� if k is p-adically sufficiently close to 2):

�k.u � �/ D !2�k
F .u/.u � �k.�// for u 2 Ip:

In particular it respects the action of Ip if k � 2 mod p � 1.
Recall that † D †.nC;n�/. Put †0 D † \ †.p;n�/ D †.p nC;n�/, i.e., †0

is the level obtained from † by replacing †p D GL2.OFp/ by Ip. Similarly put
†0
1 D † \†1.p;n�/. The specialization map �k W D� ! Vk induces

�k;� W S.†;D�/ ! S.†0
1; Vk/: (2.10)

Similarly we have specialization maps �k;� on S.†;Dcycl� /, and on S.†;Dcycl;�� / if

k is sufficiently close to 2 p-adically. More precisely. If ˆ1 2 S.†;Dcycl;�� /, then
there is a p-adic disk U � Zp around 2 such that ˆk WD �k;�.ˆ1/ is defined for all
k 2 U \ Z�2. This can be seen using the finiteness of the double coset B�n yB�=†.

Hence elements of S.†;D�/, S.†;Dcycl� / and S.†;Dcycl;�� / give rise to p-adic
families of forms. As usual p appears in the level under specializations, corresponding
to the phenomenon of removal of the Euler factor at p. It is also immediate from
the definitions that the map �k;� commutes with the Hecke operators Tl and Tl;l for
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l − p nC n� (and also with the Ul with l j nC n�). On the other hand, the action of
Tp on S.†;D�/ (defined because p − nC) is actually transferred to the action of Up

on S.†0
1; Vk/. In other words, we have the following:

Proposition 2.9. Suppose ˆ1 2 S.†;D�/ with † as above. For k � 2 integer, put
ˆk WD �k;�.ˆ1/. Then

�k;�.Tpˆ1/ D Upˆk :

Without interrupting the main reasoning of the paper we refer the reader to Ap-
pendix II for the proof.

2.5. p-adic deformations of quaternionic eigenforms. With notations as in the
previous section, note that the specialization map (for k sufficiently close to two
p-adically)

�k;� W S.†;Dcycl;�� / ! S.†0
1; Vk/

is a map of ƒ�-modules, with the action of 
 2 ƒ� on Sk.†0
1; Vk/ being given by

multiplication by 
.k/.
Let T be the free polynomial algebra over Z in the symbols fTlg for primes

l − nC n� (in particular for Tp), Ul for l j nC n�, and Tl;l for l − p nC n�. The

algebra T acts on S.†;Dcycl;�� / and S.†0
1; Vk/; we caution here that the symbol

Tp 2 T acts on S.†0
1; Vk/ via the operator Up. The map �k;� is then a map of

T ˝Z ƒ
�-modules.

A form ˆ 2 S.†0
1; Vk/ is called an eigenform if it is an eigenvector for the

action of T. In this case ˆ has a nebentype and we denote the eigenvalue of Tl for
l − p nC n�, resp. Ul for l j p nC n�, as C.l; ˆ/. In this case the eigenvalues are
actually algebraic integers. It is called ordinary at p, if the Up-eigenvalue is a p-adic
unit.

Similarly, a formˆ1 2 S.†;Dcycl;�� / is called an eigenform if it is an eigenvector
for the action of T ˝ ƒ� as a ƒ�-module, i.e., the eigenvalues are in ƒ� (there is
a uniform radius of convergence for the whole package of eigenvalues). Denote by
C.l; ˆ1/ 2 ƒ� the eigenvalue for Tl when l − nC n�, andUl if l j nC n�. The form
ˆ1 is called ordinary at p if C.p; ˆ1/ 2 .ƒ�/�.

Suppose that ˆ1 2 S.†;D
cycl;�� / is an eigenform. Then there is a character

	1 on ZF with values in .ƒ�/� such that Tl;lˆ1 D 	1.l/�1ˆ1 for l − p nC n�
(here 	1.l/ D 	1.
l/ with 
l a uniformizer of Fl; the existence of 	1 follows
from the density theorem of Cebotarev, which asserts that the classes of 
l in ZF
for l − p nC n� are dense in ZF ). Assume that ˆ2 is not identically zero. Let U
be a p-adic disk around 2 so that the specializations ˆk D �k;�.ˆ1/ are defined
for k 2 U \ Z�2 and not identically zero. Then the forms ˆk are eigenforms. We
claim that the nebentype of ˆk is given by the character 	!2�k

F on ClF .p/, where
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	 D 	2 is the character on ClF given by the image of 	1 under the evaluation at 2
map 
 7! 
.2/ for 
 2 ƒ�. Indeed, we know that in any case ˆk has a nebentype
character 	k on ClF .p/, satisfying

Tl;lˆk D N lk�2 	k.l/�1ˆk :

Hence

	1.l/.k/ D N l2�k 	k.l/ for k 2 U \ Z�2:

It follows that the element hN lik�2 � 	1.l/.k/ 2 ƒ� (here k is a variable) can
take only finitely many values as k ranges over U \ Z�2, hence must be a constant
equal to 	1.l/.2/ D 	2.l/. The claim follows. In particular, when k 2 U \ Z�2
and k � 2 mod p � 1, the nebentype of ˆk is given by 	 D 	2, and ˆk is of level
†.p nC;n�/ (instead of just †.nC;n�/ \†1.p;n�/).

We now state a version of Hida’s theory on lifting eigenform to a p-adic family,
in the style of Greenberg–Stevens [16]:

Theorem 2.10. Let ˆ D ˆ2 2 S.†.p nC;n�/; V2/ be an eigenform that is p-
ordinary, and is new at primes dividing nC. Then there is an eigenform ˆ1 2
S.†.nC;n�/;Dcycl;�� / such that �2;�.ˆ1/ D ˆ2.

Theorem 2.10 can be proved using the method of [1] and [21]. For the convenience
of the reader we give a sketch of proof in Appendix II.

For k 2 U \ Z�2, the eigenform ˆk 2 S.†.nC;n�/ \†1.p;n
�/; Vk; 	!2�k

F /

corresponds to a unique normalized cuspidal Hilbert eigenform over F under the
Jacquet–Langlands’ correspondence (for the definitions regarding Hilbert modular
forms, we refer to [26], Section 2; here a Hilbert modular form f is called normalized if
the normalized Fourier coefficientC.OF ; f/, in the notation of [26], Section 2, is equal
to one). More precisely, there is a unique normalized cuspidal Hilbert eigenform fk
of parallel weight k, level p nC n�, that is new at primes dividing nC n� and ordinary
at p, such that the Hecke eigenvalues of fk and ˆk with respect to T coincide (again
the symbol Tp acts as the operator Up on fk). Remark that for normalized eigenform
fk , the eigenvalues of fk with respect to the Hecke operators Tl for l − p nC n� (resp.
Ul if l j p nC n�) are given by the normalized Fourier coefficient C.l; fk/. Thus we
have C.l; fk/ D C.l; ˆk/ for all primes l, and the nebentype of fk and ˆk coincide.

The family of eigenforms ffkgk2U\Z�2 forms the set of specializations of a ƒ�-
adic form f1, called the Hida family lifting f2 (cf. [26], Section 4). Theƒ�-adic form
f1 is determined by the data of its normalized Fourier coefficients C.m; f1/ 2 ƒ�

for all ideals m of OF , and is defined as follows. For l a prime put

C.l; f1/ D C.l; ˆ1/
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and define C.m; f1/ for other m by the formal equality

X
m

C.m; f1/
N ms

D
Y

l

1

1 � C.l; f1/N l�s C	1.l/�1 N l�2s : (2.11)

Here 	1 is the character on ZF associated to ˆ1 as above, and 	1.l/ D 	1.
l/ if
l − p nC n�, and zero otherwise. Equation (2.21) means that f1 is an eigenform for
the action of Hecke operators acting onƒ�-adic forms of tame level nC n�, and f1 has
the property that its weight k specialization is the eigenform fk of parallel weight k for
k 2 U \ Z�2. It is ordinary at p (in the sense that C.p; f1/ D C.p; ˆ1/ 2 .ƒ�/�),
which thus defines an algebra homomorphism of Hida’s universal ordinary Hecke
algebra of tame level nC n� lifting f2 ([21], Section 3). We remark that in [21],
Theorem 3.6, one starts with f2 and constructs f1 directly on the Hilbert modular
side independently of ˆ1. By loc. cit. the Hida family f1 is unique.

In the rest of the paper, the form ˆ D ˆ2 to start with is assumed to have trivial
nebentype, so that ˆ 2 S2.p nC;n�/, and we only need to look at the weight k
specializations ˆk of ˆ1, with k 2 U \ Z�2, and k � 2 mod p � 1, so that
ˆk 2 Sk.p nC;n�/.

2.6. Another description of quaternionic forms. Consider the case where † D
†.a;n�/ for some ideal a (a will be either nC or p nC). The theorem of the norm
and the strong approximation theorem (Theorems 4.1 and 4.3 in Chapter 3 of [34])
gives a decomposition

yB� D
hG
iD1

B�xiB�
p†; (2.12)

where xi 2 yB� satisfies .xi /p D 1, and such that the reduced norms NrdB=F .xi / 2
yF �, for i D 1; : : : ; h, give a complete set of representatives of the strict ideal class

group ClF of F . More precisely if y 2 yB�, then the unique index i of (2.12) to
which y belongs is determined by the condition that the class of NrdB=F .yx�1

i / in
ClF is trivial (note that under our assumption that p is inert in F , the image of F �

p

in ClF is trivial).
For i D 1; : : : ; h define

z�i D z�i .a;n�/ WD f� 2 B�; �l 2 .xi /l †l .xi /
�1
l for l ¤ pg;

�i D �i .a;n
�/ D f� 2 z�i .a;n�/; NrdB=F .�/ 2 O�

F;Cg: (2.13)

Here O�
F;C D O�

F \ F �C is the group of totally positive units of OF . Note that

Ri WD B \ xi yRx�1
i is an Eichler order of B of level a, and z�i D Ri Œ

1
p
��. If � 2 z�i ,

then NrdB=F .�/ 2 OF Œ
1
p
�� \F �C . Note also that if a and a0 are two ideals relatively
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prime to n� that are equal except at the place p, then z�i .a;n�/ D z�i .a0;n�/ and
similarly for the �i . For the p-adic constructions we embed z�i as a subgroup of B�

p ,
and hence subgroup of GL2.Fp/ via �p. In the following, we will usually omit the
explicit reference to the isomorphism �p.

Using (2.12), we have a bijection

hG
iD1

z�inB�
p =†p ��!� B�n yB�=†; (2.14)

where for g 2 B�
p , the class of g in z�inB�

p =†p gets mapped to the class of xi � g in

B�n yB�=†.
Using (2.14), we see that a formˆ 2 Sk.a;n�/ can be identified as an h-tuples of

function �1; : : : ; �h on GL2.Fp/, by the rule: �i .g/ D ˆ.xi � g/, for i D 1; : : : ; h.
The functions �i , satisfy:

�i .�guz/

D �2�k
F;cycl.z/.u

�1 � �i .g// for � 2 z�i ; g 2 GL2.Fp/; u 2 †p; z 2 yF �:
(2.15)

Similarly ifˆ1 2 S.†.nC;n�/;Dcycl;�� / is as in the statement of Theorem 2.10,
then it can be identified as an h-tuple �11; : : : ; �h1 on GL2.Fp/, with �i1.g/ D
ˆ1.xi � g/. We have

�i1.�guz/ D 	1.z/�1u�1�i1.g/ for � 2 z�i ; g 2 GL2.Fp/; u 2 †p; z 2 yF �:

Note that this description is similar to the description of automorphic forms on
GL2.AF /, in terms of vectors of Hilbert modular forms, cf. Section 2 of [26].

This description is more convenient for local constructions. On the other hand, the
original description as in Definition 2.2 is more convenient for global constructions
(e.g. CM points as in Section 4).

2.7. Lattices and Bruhat–Tits tree. We can phrase the description of automorphic
forms on B� given in Section 2.6 in terms of the Bruhat–Tits tree. First consider the
level †.a;n�/ with a D nC. Let ˆ 2 Sk.n

C;n�/, corresponding to an h-tuple:
.�1; : : : ; �h/ as in the previous section. For each i D 1; : : : ; h, define a function c�i
on the set of all lattices of Fp ˚ Fp as follows: given a lattice L, let gL 2 GL2.Fp/

be such that L D gL.OFp ˚ OFp/, define

c�i .L/ D gL � �i .gL/:
By (2.15), this is well-defined independent of the choice of gL. It also follows from
(2.15) the following property:

c�i .�L/ D � � c�i .L/ for � 2 z�i .nC;n�/:
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In particular,
c�i .pL/ D pd.k�2/c�i .L/ D qk�2c�i .L/:

Similarly, suppose we take a D p nC. If ˆ 2 Sk.p nC;n�/, then corresponding
to the h-tuple .�1; : : : ; �h/, we can define functions .c1; : : : ; ch/, where c�i is a
function on pairs of lattices

L2 � L1 of index equal to q

by the rule

c�i .L1; L2/ D gL � �i .gL/ (2.16)

with gL 2 GL2.Fp/, such that gL.OFp ˚ OFp/ D L1, gL.OFp ˚pOFp/ D L2.
We have

c�i .�L1; �L2/ D � � c�i .L1; L2/ for all � 2 z�i .p nC;n�/;
c�i .pL1; pL2/ D qk�2c�i .L1; L2/:

In both cases, we denote by cˆ the vector of functions fc�i ghiD1.
When k D 2, the functions c�i .L/; c�i .L1; L2/ factor through homothety classes

of lattices and pairs of lattices respectively, hence correspond to functions on the set
of vertices T0, respectively edges E.T /, of the Bruhat–Tits tree T of PGL2.Fp/ (by
an edge it is always understood to be oriented).

The set of even (resp. odd) vertices of the T , noted as T C
0 (resp. T �

0 ), is the set of
vertices whose distances to the class of the lattice OFp ˚ OFp is an even (resp. odd)
integer. An edge will be called even (resp. odd) if its origin is even (resp. odd), and
we denote by E.T /C the set of even edges (resp. E.T /� for the set of odd edges).

On forms of weight two, the Hecke operators Tp; Up has the following interpre-
tation:

cTpˆ.L/ D
X
zL�L

cˆ.zL/;

cUpˆ.L1; L2/ D
X

zL�L2
cˆ.L2; zL/;

where the first sum runs over the q C 1 sub-lattices zL of L of index equal to q. The
second sum runs over the sub-lattices zL of L2 of index equal to q, other than pL1.

Suppose thatˆ# 2 Sk.nC;n�/ is an eigenvector for the Hecke operator Tp, with
eigenvalueC.p; ˆ#/. Assume thatˆ# is ordinary at p (i.e.,C.p; ˆ#/ is ap-adic unit).
Let ˛.p; ˆ#/ be the unit root of the characteristic polynomial

x2 � C.p; ˆ#/x C qk�1: (2.17)
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Then we can define ˆ 2 Sk.p nC;n�/ to be the form whose associated function cˆ
satisfies

cˆ.L1; L2/ D cˆ#.L2/ � qk�2

˛.p; ˆ#/
cˆ#.L1/; (2.18)

which is an eigenvector for Up with eigenvalue ˛.p; ˆ#/, as is easily verified. We

call ˆ the p-stabilization of ˆ#. It is easy to check that Trp nC

nC ˆ D .˛ � qk�2

˛
/ˆ#

(where ˛ D ˛.p; ˆ#/). Hence ˆ is old at p (in the sense of Section 2.3).
We now come back to the setting as in the introduction, namely we take a cuspidal

Hilbert eigenform f of parallel weight two, with conductor p nC n�. Since f is
supposed to correspond to an elliptic curve E=F , we assume that the normalized
Fourier coefficientsC.m; f/ are all (rational) integers. As f is new at all prime dividing
n�, it corresponds under the Jacquet–Langlands’ correspondence to an eigenform
ˆ 2 S2.p nC;n�/, which is unique up to scalar multiples in C�

p . Since the Hecke
eigenvalues of ˆ are integers, we can actually choose ˆ so that the values taken by
ˆ are integers.

As p exactly divides the conductor of f , we haveC.p; f/2 D 1 ([36], Lemma 1.4.5).
In particular f and hence ˆ are ordinary at p. Now by Theorem 2.10, we can lift
the eigenform ˆ D ˆ2 to an eigenform ˆ1 2 S.†.nC;n�/;Dcycl;�� /, which corre-
sponds to the Hida family f1 of cuspidal Hilbert eigenforms lifting f D f2. If U is
a p-adic disk around two such that the weight k specialization maps are defined for
k 2 U \ Z�2, then ˆk corresponds to fk under the Jacquet–Langlands’ correspon-
dence (the conductor of each fk divides p nC n� and is divisible by nC n�). We only
need to look at the specializationsˆk and fk , with k � 2 mod p � 1, in which case
ˆk 2 Sk.p nC;n�/.

Now since the forms fk and ˆk are ordinary at p, Lemma 1.4.5 of [36] implies
that fk and henceˆk cannot be new at p, when k > 2, k � 2 mod p�1. For k > 2,
k � 2 mod p � 1, denote by f#

k
the unique normalized cuspidal Hilbert eigenform

of parallel weight k, conductor nC n�, such that fk is the p-stabilization of f#
k

(for
the definition of p-stabilization of Hilbert modular forms see [26], equation (4.15)).
Putˆ#

k
2 Sk.nC;n�/ to be the unique eigenform onB� that corresponds to f#

k
under

the Jacquet–Langlands correspondence, and such that (2.18) is satisfied (although
the Jacquet–Langlands correspondence determines ˆ#

k
only up to scalar multiples,

equation (2.18) fixes the choice for ˆ#
k

uniquely). For notational consistency we
put f#

2 D f2, and ˆ#
2 D ˆ2 (here we are using a different convention as compared

to [4], where they put f#
2 D 0;ˆ#

2 D 0). As in the situation of (2.17) and (2.18),
for k > 2 we have C.p; ˆk/, the Up eigenvalue of ˆk , is equal to ˛.p; ˆ#

k
/, and

similarly C.p; fk/ D ˛.p; f#
k
/, where ˛.p; f#

k
/ is the p-adic unit root of the Hecke

polynomial X2 � C.p; f#
k
/X C qk�1 (for ˆ2 and f2 we put ˛.p; ˆ#

2/ WD C.p; ˆ2/,
˛.p; f#

2/ WD C.p; f2/).
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We put ˛.p; k/ WD C.p; ˆ1/ 2 ƒ� (here k 2 U as a variable). Then we have
˛.p; k/ D ˛.p; ˆ#

k
/ D ˛.p; f#

k
/ for k 2 U \ Z�2; k � 2 mod p � 1.

2.8. Some lemmas. We maintain the notations of sections 2.6 and 2.7. Thus let
ˆ1 2 S.†.nC;n�/;Dcycl;�� / be a measure-valued form, which corresponds, as in
Section 2.6, to an h-tuple .�11; : : : ; �h1/. LetU be a p-adic neighbourhood of 2 such
that for k 2 U \ Z�2, the weight k specializations ˆk of ˆ1 is defined. For k � 2

mod p � 1, we have ˆk 2 Sk.p nC;n�/. If k > 2, then ˆk is the p-stabilization of
ˆ#
k

2 Sk.n
C;n�/. Let .�1

k
; : : : ; �h

k
/ and ..�#

k
/1; : : : ; .�#

k
/h/ be the corresponding

h-tuples of functions on GL2.Fp/ respectively.
Recall from Section 2.4 that D is the space of compactly supported Cp-valued

measures on Y D c nW . Put Dcycl D D ˝ zƒF zƒQ and Dcycl;� D Dcycl ˝ƒ Ő OCp
ƒ�,

so that the injection s W D� ,! D (extension by zero outsideX) induces the injection
s W D

cycl;�� ,! Dcycl;�. We identify D
cycl;�� with its image in Dcycl;� via the map s.

Elements of Dcycl;� can be used to integrate functions on Y that are homogeneous of
weight h�F;cyclik�2 for k 2 U .

Recall that we have an action of GL2.Fp/ on D as in (2.8). Extend it to an action
on Dcycl;� in the natural way (i.e., trivial action on the factor ƒ�).

Definition 2.11. For a lattice L of Fp ˚ Fp and i 2 1; : : : ; h, define the element
�i;L 2 Dcycl;� by

�i;L D gL � �i1.gL/;
where gL 2 GL2.Fp/ satisfies L D gL.OFp ˚ OFp/.

For any compact open subset � ofY , and homogeneous functionF onY of weight
h�F;cyclik�2 with k 2 U , we haveZ

�

F d�i;L D
Z
g�1
L

�

F jgL d�i1.gL/:

It follows that the measure �i;L is supported on c ngL..O2
Fp
/0/ D c nL0, where

L0 D fl 2 L; l … pLg, the set of primitive vectors of L.
We list several lemmas, whose proofs follow exactly as in Section 2.4 of [4], so

we just give the statements.

Lemma 2.12. For any � 2 z�i .nC;n�/, and F a homogeneous function of weight
h�F;cyclik�2, with k 2 U , we have, for � an open compact subset of Y , thatZ

	�

.F j��1/ d�i;	L D
Z

�

F d�i;L:
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Lemma 2.13. LetL2 � L1 be a sublattice of index equal to q. Then for k 2 U\Z�2,
k � 2 mod p � 1, and F a homogeneous function of weight h�F;cyclik�2,Z

c nL0
1

\L0
2

F d�i;L2 D ˛.p; ˆk/

Z
c nL0

1
\L0

2

F d�i;L1 :

Lemma 2.14. With the notations of Lemma 2.13, we have, for P 2 Bk ,Z
c nL0

1
\L0

2

P d�i;L1 D c�i
k
.L1; L2/.P /:

Proposition 2.15. With the above notations,

Z
c nL0

P d�i;L D ˛.p; ˆk/

�
1 � qk�2

˛.p; ˆk/2

�
c.�#

k
/i .L/.P /:

2.9. Periods of forms of weight two. Let ˆ D ˆ2 2 S2.p nC;n�/ be as in Sec-
tion 2.7. Recall that we assumeˆ is normalized so that it takes integer values, hence
so are the functions c�i defined by (2.16).

Let
pr W c nW ! P1.Fp/

be the natural projection map sending .x; y/ 2 c nW to x
y

2 P1.Fp/. For an even
lattice L define, for i D 1; : : : ; h,

��i D pr�.�i;L/;

i.e., for any open compact Y � P1.Fp/, and continuous function h on P1.Fp/,Z
Y

h d��i D
Z

pr�1.Y/\.c nL0/

h B pr d�i;L

(note that �i;L is supported on c nL0).

Lemma 2.16 ([4], Lemma 2.12). The measures ��i do not depend on the choice of
the even lattice L.

Definition 2.17. Put GLC
2 .Fp/ WD fg 2 GL2.Fp/; ordp det.�/ � 0 mod 2g.

The group GLC
2 .Fp/ preserves the set of even lattices. Also note that if � 2

z�i \ GLC
2 .Fp/, then NrdB=F .�/ D p2ru for some integer r and u 2 O�

F;C, which
implies that p�r� 2 �i .
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Lemma 2.18 ([4], Corollary 2.14). For i D 1; : : : ; h, the measures��i are invariant
under �i , and satisfy

��i .P
1.Fp// D 0: (2.19)

Let H D H=Fp
be the rigid analytic p-adic upper half plane defined over Fp.

The set of Cp-points of H is given by H .Cp/ D P1.Cp/ � P1.Fp/ D Cp � Fp. It
is equipped with the Möbius action of GL2.Fp/:�

a b

c d

�
� z D az C b

cz C d
:

Associated to the measures��i are the rigid analytic functions f�i .z/ on H .Cp/:

f�i .z/ D
Z

P1.Fp/

1

t � z d��i .t/:

A direct calculation shows for any � 2 �i , with
�
a b
c d

�
being the image of � in

B�
p Š GL2.Fp/, we have

f�i .�z/ D NrdB=F .�/
�1.cz C d/2f�i .z/:

Put !�i WD f�i .z/dz. Then !�i is invariant under the action of �i , hence defines a
rigid analytic differential form on the quotient �inH .

For �1; �2 2 H .Cp/, define the period integral of Coleman:Z 
2


1

!�i WD
Z

P1.Fp/

logp

�
t � �2
t � �1

�
d��i .t/;

where logp is Iwasawa’s p-adic logarithm, satisfying logp.p/ D 0. The following
relations hold: Z 
2


1

!�i C
Z 
3


2

!�i D
Z 
3


1

!�i ; (2.20)

Z 	
2

	
1

!�i D
Z 
2


1

!�i for � 2 �i : (2.21)

Under our assumption on the normalization of ˆ, the measure ��i is Z-valued,
and we can define the multiplicative integral (for the precise definition see [12],
equation (5.8)):

�
Z 
2


1

!�i WD �
Z

P1.Fp/

�
t � �2
t � �1

�
d��i .t/:

It satisfies the multiplicative analogue of (2.20) and (2.21). We also have the formulaZ 
2


1

!�i D logp �
Z 
2


1

!�i :
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2.10. Periods and Hida families. Let Qp2d be the unramified quadratic extension
of Fp D Qpd . For � 2 Qp2d , let N� be the image of � under the non-trivial element
of Gal.Qp2d =Qpd /.

For � 2 H .Qp2d / D Qp2d � Fp, define

L
 WD f.x; y/ 2 F 2p ; ordp.x � �y/ � 0g:
It is seen that L
 is a lattice of Fp ˚ Fp. The reduction map from H .Qur

p / to T0
(where Qur

p is the maximal unramified extension of Qp) sends � to the homothety
class of L
 (see [14], Section 1.3). Denote by v
 2 T0 the class of L
 .

By direct calculation, for any � D �
a b
c d

� 2 GL2.Fp/,

L	
 D pt�L
 ; (2.22)

where t D ordp
�
.det �/�1.c� C d/

�
, which implies

v	
 D �v


for any � 2 GL2.Fp/.
An element � 2 H .Qp2d / is said to be even (resp. odd) if v
 is even (resp. odd).

The set of even (resp. odd) elements is preserved by GLC
2 .Fp/.

For any x 2 .Qur
p /

�, write hxi for the projection of x to the one-units, i.e.,

x D pordp.x/�xhxi
with �x a root of unity of order prime to p. We make a definition.

Definition 2.19. Let F be a homogeneous function on c nW of weight h�F;cyclis
for some s 2 Zp � f0g, and � � c nW an open compact subset. Assume that F is
non-zero on � . DefineZ

�

logp F.x; y/ d�i;L� .x; y/ WD s
d

dk

� Z
�

hF.x; y/is�1.k�2/d�i;L� .x; y/
�ˇ̌̌
kD2;

where k takes values in a p-adic neighborhood of 2 . It is not hard to verify that the
derivative exists.

Definition 2.20. For even � 2 H .Qp2d /, define the function F
 on c nW by

F
 .x; y/ WD hN Q
p2d

=Qp .x � �y/i:

The functionF
 is homogeneous of weight h�F;cycli2. Note that we can also write

F
 .x; y/ D hN Fp=Qp

�
.x � �y/.x � N�y/�i:
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It is clear that F
 is nonzero on c nL0

 .

Define

I�i .�/ WD
Z

c nL0
�

logp F
 .x; y/ d�i;L� .x; y/

D 2
d

dk

� Z
c nL0

�

hF.x; y/ik�2
2 d�i;L� .x; y/

�ˇ̌̌
kD2:

(2.23)

Proposition 2.21. For any � 2 z�i we have

I�i .��/ D I�i .�/:

Proof. The function hF
 .x; y/ik�2
2 is homogeneous of weight h�F;cyclik�2. For

� D �
a b
c d

�
we have, with the notations of equation (2.22),Z

c nL0
��

hF	
 .x; y/ik�2
2 d�i;L�� .x; y/

D
Z

c npt	L0
�

hF	
 .x; y/ik�2
2 d�i;pt	L� .x; y/

D
Z

c nL0
�

h.F	
 jpt�/.x; y/ik�2
2 d�i;L� .x; y/ (by Lemma 2.12).

Now by direct computation

.F	
 jpt�/.x; y/ D ˝
N Q

p2d
=Qp

�
det �

c� C d

�˛ � F
 .x; y/:

HenceZ
c nL0

��

hF	
 .x; y/ik�2
2 d�i;L�� .x; y/

D ˝
N Q

p2d
=Qp

�
det �

c� C d

�˛k�2
2

Z
c nL0

�

hF
 .x; y/ik�2
2 d�i;L� .x; y/:

Taking derivative at k D 2 and applying Lemma 2.18, the result follows. �

Thus the value of I�i .�/ depends only on the image of � modulo z�i . By mul-

tiplying � with an element of � 2 z�i with NrdB=F .�/ D p if necessary (that such
an element exists is seen by using Corollary 5.9 of [34], Chapter 3), one can always
normalize � to be even.

Let H 0.Qp2d / � H .Qp2d / be the set of even � ’s. It then follows that

�inH 0.Qp2d / Š z�inH .Qp2d /:
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Lemma 2.22. Let L2 be a sublattice of L1 of index equal to q, and let e D
.ŒL1�; ŒL2�/ 2 E.T / denote the corresponding edge (going from ŒL1� to ŒL2�). Then
for any � 2 H .Qp2d /,Z

c nL0
1

\L0
2

logp F
 .x; y/ d.�i;L2 � �i;L1/ D 2
d

dk
˛.p; k/

ˇ̌̌
kD2c�i .e/

if ˛.p; ˆ/ D 1, andZ
c nL0

1
\L0

2

logp F
 .x; y/ d.�i;L2 C �i;L1/ D 2
d

dk
˛.p; k/

ˇ̌̌
kD2c�i .e/

if ˛.p; ˆ/ D �1.

Proof. For k 2 U \ Z�2; k � 2 mod p � 1, we have by Lemma 2.13,Z
c nL0

1
\L0

2

hF
 .x; y/ik�2
2 d.�i;L2 ˙ �i;L1/

D �
˛.p; k/˙ 1

� Z
c nL0

1
\L0

2

hF
 .x; y/ik�2
2 d�i;L1 :

The result follows from taking derivatives, and using Lemma 2.14 which givesZ
c nL0

1
\L0

2

1 d�i;L1 D c�i .e/: �

For an edge e of T , define jej to be 0 resp. 1, if e is even, resp. odd.

Lemma 2.23. LetL1,L2 be even lattices ofFp˚Fp, and v1, v2 be the corresponding
vertices of T . ThenZ

c nL0
1

[L0
2

logp F
 .x; y/ d.�i;L2 � �i;L1/

D 4
d

dk
˛.p; k/

ˇ̌̌
kD2 �

X
e W v1!v2

˛jej
p c�i .e/;

(2.24)

where the sum is over the oriented edges e in the path that goes from v1 to v2, and
˛p D ˛.p; ˆ/. If ˛.p; ˆ/ D 1, then (2.24) holds without the parity condition on the
lattices.

Proof. This follows easily from Lemma 2.22, cf. the proof of Lemma 2.23 of [4].
�



Vol. 86 (2011) Heegner points and p-adic L-functions 893

Proposition 2.24. For even �1; �2 2 H 0.Qp2d /,

I�i .�2/ � I�i .�1/
D logp N Q

p2d
=Qp

�
�
Z 
2


1

!�i

�
C 4

d

dk
˛.p; k/

ˇ̌̌
kD2 � valp

�
�
Z 
2


1

!�i

�
:

If ˛.p; ˆ/ D 1, then the equality holds without the parity condition on �1, �2.

Proof. Set Lj D L
j . We have

I�i .�2/ � I�i .�1/ D
Z

c nL0
1

�
logp F
2.x; y/ � logp F
1.x; y/

�
d�i;L1

C
Z

c nL0
1

[L0
2

logp F
2.x; y/ d.�i;L2 � �i;L1/:

The second term is handled by Lemma 2.23, together with the equality (which can
be proved as in [4], Proposition 2.15)

valp
�

�
Z 
2


1

!�i
�

D
X

e W v1!v2

˛jej
p c�i .e/:

For the first term:Z
c nL0

1

�
logp F
2.x; y/ � logp F
1.x; y/

�
d�i;L1

D
Z

c nL0
1

logp
F
2
F
1

.x; y/ d�i;L1

D
Z

c nL0
1

logp N Q
p2d

=Qp

�
x � �2y
x � �1y

�
d�i;L1

D
Z

P1.Fp/

logp N Q
p2d

=Qp

�
x � �2y
x � �1y

�
d��i

D logp N Q
p2d

=Qp �
Z

P1.Fp/

x � �2y
x � �1y d��i

D logp N Q
p2d

=Qp �
Z 
2


1

!�i :

Hence the proof of the proposition. �

2.11. The L-invariant. We now assume, as in the introduction, that E=F is an
elliptic curve over F , with conductor n, with multiplicative reduction at p, and is
modular, i.e., it corresponds to a cuspidal Hilbert newform f D fE of conductor n,
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parallel weight 2, such that L.s;E=F / D L.s; fE /. Assume as in Section 2.7 that
n can be written as n D p nC n�, with ˆ D ˆE corresponds to fE under the
Jacquet–Langlands’ correspondence (normalized to take integer values).

Since E has multiplicative reduction at p, we have, by Tate’s theory of p-adic
uniformization, a parametrization ‚E=Fp

:

‚E=Fp
W C�

p =Q
Z
E ��!� E.Cp/;

where QE 2 Fp D Qpd , with ordpQE > 0, called the Tate period of E at the
prime p. The map ‚E=Fp

is defined over Qp2d , i.e., equivariant with respect to the
action of Gal.xQp=Qp2d / on both sides. Furthermore, if s 2 Gal.Qp2d =Qpd / is the
nontrivial element, then for z 2 Q�

p2d
,

s.‚E=Fp
.z// D ˛p‚EFp

.s � z/; (2.25)

where ˛p D ˛.p; E=F / D ˛.p; fE /. Thus in particular, if ˛p D 1, i.e., E=F is split
multiplicative at p, then ‚E=Fp

is defined over Fp.
Let E.Qp2d /˛p � E.Qp2d / be the subgroup consisting of points P such that

s � P D ˛pP:

Then it follows from (2.25) that E.Qp2d /˛p D ‚E=Fp
.Fp/.

Let qE WD N Fp=Qp QE . The L-invariant of E at p is defined as

Lp.E=F / D logp qE
valpQE

D fp =p

logp qE
ordp qE

: (2.26)

(Here fp =p is the residue field degree of Fp which, under our assumption that p is
inert in F , is equal to ŒFp W Qp� D ŒF W Q�.)

By [26], Proposition 8.7,

d

dk
˛.p; k/

ˇ̌̌
kD2 D �1

2
Lp.E=F /: (2.27)

In [26], this is proved by generalizing the argument of Greenberg–Stevens. Follow-
ing Section 2.7 of [4], we can give another proof, based on the theory of p-adic
uniformization of Shimura curves; for more details, see Section 4.5 below. For any
i 2 f1; : : : ; hg, there exists even � 2 H 0.Qp2d /, � 2 �i , and non-zero ni 2 Z such
that

�
Z 	





!�i D Q
ni
E : (2.28)

Now Propositions 2.21 and 2.24 imply that

logp N Q
p2d

=Qp

�
�
Z 	





!�i

�
C 4

d

dk
˛.p; k/

ˇ̌̌
kD2 � valp

�
�
Z 	





!�i

�
D 0:
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Hence by equation (2.28), since ni ¤ 0,

logp N Q
p2d

=Qp QE C 4
d

dk
˛.p; k/

ˇ̌̌
kD2 � valpQE D 0;

so

d

dk
˛.p; k/

ˇ̌̌
kD2 D �1

4

logp N Q
p2d

=Qp QE

valpQE

D �1
2

logp N Fp=Qp QE

valpQE
D �1

2
Lp.E=F /

and the claim follows.
For any Q 2 xQ�

p , let logQ be the branch of the p-adic logarithm such that
logQ.Q/ D 0, i.e.,

logQ.�/ D logp.�/ � logpQ

ordpQ
ordp.�/:

Using equation (2.26) and (2.27), we can restate Proposition 2.24 as follows:

Corollary 2.25. For even �1; �2,

I�i .�2/ � I�i .�1/ D logqE N Q
p2d

=Qp

�
�
Z 
2


1

!�i

�
:

Definition 2.26. Given a divisor with rational coefficientsD 2 Div.�inH .Cp//˝Q
of the form D D P

� r��� , with r� 2 Q; �� 2 �inH .Cp/, define

I�i .D/ D
X
�

r�I�i .��/:

More generally let D D Ph
iD1Di 2 Lh

iD1 Div.�inH .Cp//˝ Q. Define

Iˆ.D/ WD
hX
iD1

I�i .Di /:

Definition 2.27. Let f 2 Div0.H 0.Qp2d // be a divisor of degree zero, say written
in the form

f D
X
�

.�� � Q��/ (2.29)

with �� ; Q�� 2 H 0.Qp2d /. Define for i D 1; : : : ; h,

�
Z
f

!�i D
Y
�

�
Z 
�

Q
�
!�i :
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It is clear that this is well defined independently of the way f is written in the
form of (2.29). For f D Ph

iD1 fi 2 Lh
iD1 Div0.H 0.Qp2d //, put

�
Z
f

!ˆ WD
hY
iD1

�
Z
fi

!�i :

As a consequence of Corollary 2.25 and Proposition 2.21, we see that the quantity

logqE N Q
p2d

=Qp

�
�
Z
f

!ˆ

�

depends only the image of f in
Lh
iD1 Div0.�inH 0.Qp2d //. We can thus define, by

linearity, the quantity

logqE N Q
p2d

=Qp

�
�
Z
D

!ˆ

�

for D 2 Lh
iD1 Div0.�inH 0.Qp2d //˝ Q.

With these definitions, we can state the following form of Corollary 2.25:

Corollary 2.28. Let D 2 Div0.�inH 0.Qp2d //˝ Q. Then

Iˆ.D/ D logqE N Q
p2d

=Qp

�
�
Z
D

!ˆ

�
:

For future reference, we record the following formula. For � 2 Hom.F; xQp/ D
Hom.Fp; xQp/, letE�=F �p� be the elliptic curve obtained fromE=Fp by conjugating
with � . It is multiplicative at the prime p� of F � above p, whose Tate period is given
by Q�

E .

Proposition 2.29. For any z 2 F �
p , we have

logqE .N Fp=Qp z/ D
X

�2Hom.F; xQp/
logQ�

E
z� :

Proof. This is a direct computation. �

3. Interpolation of special L-values along Hida family

3.1. Rankin L-functions. In this section we recall the formalism of Rankin L-
functions.

LetK=F be a quadratic extension of F . A Hecke character  K ofK is said to be
anti-cyclotomic, if  K B c D  �1

K (here c is the non-trivial element of Gal.K=F /),
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and K is trivial on the image of A�
F in A�

K . Given a cuspidal Hilbert newform g over
F , and an anti-cyclotomic character  K overK, one defines the Rankin L-functions
L.s; g=K; K/ as in [41], [38].

In this paper, we consider the particular case of genus characters. An anti-
cyclotomic character  K is called a genus character if it is unramified, i.e., factors
through Pic.OK/, and quadratic (namely of order dividing two). Genus characters
can be constructed in the following manner.

Let � be the quadratic Hecke character of F , that corresponds, by class field
theory, to the extension K=F . Consider quadratic Hecke characters  1,  2 of F ,
whose conductors are relatively prime to each other, and such that  1 �  2 D �.

It follows from class field theory, the Hecke characters i correspond to characters
of Gal. xF=F /. Let F  i=F be the quadratic extension of F cut out by  i , and let
F  1; 2 be the composite of F  1 and F  2 over F . Then F  1; 2=K is everywhere
unramified (including the archimedean places) quadratic extension.

Let ti 2 Gal.F  i=F / be the nontrivial element. We have

Gal.F  1; 2=F / D Gal.F  1=F / � Gal.F  2=F /;

and under this decomposition Gal.F  1; 2=K/ D f.1; 1/; .t1; t2/g. Let  K be the
quadratic character of Gal. xK=K/, that factors through Gal.F  1; 2=K/, and is equal
to �1 on the nontrivial element of Gal.F  1; 2=K/. By class field theory,  K corre-
sponds to a Hecke character of K, which can be seen to be a genus character. The
bi-quadratic extension F  1; 2=F is called the genus field extension corresponding
to the pair  1;  2. We have F  1; 2 D K K (the extension of K cut out by  K). If
one of  1;  2 is trivial, then F  1; 2 degenerates to K.

One has

IndFK  K D  1 ˚  2: (3.1)

Using (3.1), we have the factorization formula for the Rankin L-functions asso-
ciated to genus characters:

L.s; g=K; K/ D L.s; g;  1/ � L.s; g;  2/: (3.2)

In the rest of the section K=F is a CM extension.

3.2. Optimal embeddings. We maintain the notations of Section 2.3, regarding the
definite quaternion algebra B , and an Eichler order R of level a.

Definition 3.1. An optimal embedding of K into B of level a is a pair .‰; b/ 2
HomF .K;B/ � yB�= yR� satisfying

‰.OK/ D b yRb�1 \‰.K/:
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Given an optimal embedding .‰; b/ of level a, define

Rb WD B \ b yRb�1:

Then Rb is an Eichler order of level a, and ‰ gives an embedding of OK into Rb .

Proposition 3.2 (Theorems 3.1 and 3.2 of [34]). Suppose that all primes dividing
a splits in K, while those dividing n� are inert in K (this is known as Heegner
condition). Then optimal embeddings of level a exist.

The group B� acts on the set of optimal embeddings by conjugation:

g � .‰; b/ D .g‰g�1; gb/: (3.3)

We denote by Œ‰; b� the conjugacy class containing .‰; b/. The set of conjugacy
classes of optimal embeddings of level a is noted as EmbF .K;B; a/.

The ideal class group Pic.OK/ acts simply transitively on the set of conjugacy
classes of optimal embeddings: identify

Pic.OK/ D yK�=K� yO�
K I

then given � 2 Pic.OK/, we have

� � Œ‰; b� D Œ‰�; b�� WD Œ‰; y‰.�/b�:
WriteK D F.
/, with 
2 2 F being totally negative. Given‰ 2 HomF .K;B/,

let
�
a b
c d

�
be the image of‰.
/ inBp


pŠ GL2.Fp/. DefineQ‰ 2 B4 by the following
formula:

Q‰ D 1pj N F=Q.
2/j
O

�2Hom.Fp; xQp/
q‰;� ; where

q‰;� .X
� ; Y � / D c� .X� /2 C .d� � a� /X�Y � � b� .Y � /2:

(3.4)

Up to the choice of sign for the square root, Q‰ does not depend on the choice of


. For k � 2 even we denote by Q
k�2
2

‰ the element of Bk obtained from Q‰ in the
evident manner, i.e.,

Q
k�2
2

‰ WD
�

1pj N F=Q.
2/j
�k�2

2 O
�2Hom.Fp; xQp/

q
k�2
2

‰;� :

For g 2 B�, we have

Qg‰g�1 D N F=Q.NrdB=F .g// Q‰jg�1
p : (3.5)
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Remark 3.3. Suppose that p is inert inK, soKp D Qp2d . Consider the polynomial
q‰;id of (3.4), with id the identity embedding of Fp D Qpd to xQp . We have the
factorization

q‰;id D cX2 C .d � a/XY � bY 2 D A.X � �‰Y /.X � N�‰Y /; (3.6)

where A 2 F �
p , and �‰; � 0

‰ 2 H .Qp2d / are the fixed points under the action of
�p.‰.K

�
p // on H .Cp/. We order �‰; � 0

‰ in such a way that

�p.‰.˛//

�
�‰
1

�
D ˛

�
�‰
1

�
for all ˛ 2 Kp: (3.7)

The element Q
k�2
2

‰ 2 Bk defines a function on F 2p , where for .x; y/ 2 F 2p , we
have (in the notation of (3.6))

Q
k�2
2

‰ .x; y/ D
� N Fp=Qp Apj N F=Q.
2/j

�k�2
2 � N Q

p2d
=Qp .x � �‰y/k�2

2 : (3.8)

Definition 3.4. Given „ 2 Sk.a;n�/, and an optimal embedding .‰; b/, define the
pairing

„Œ‰� D j NrdB=F .b/j
k�2
2

yF „.b/.Q
k�2
2

‰ jbp/:

By equation (3.5), the value „Œ‰� depends only on the conjugacy class Œ‰; b�.

3.3. Special value formula of Rankin L-functions. As in Section 3.1, let K be an
anti-cyclotomic character over a CM extension K of F . In this section, we state the
formula of Xue [38], that generalizes the works of Gross [18], Hatcher [20], and Zhang
[41]. We make some simplifying assumptions. Let „ 2 Sk.a;n�/ be an eigenform,
with k � 2 even, that corresponds, under the Jacquet–Langlands correspondence, to
a Hilbert newform g of conductor n D a n�. Assume that the conductor n of g is
relatively prime to DK=F , the relative discriminant ideal of K over F . Finally we
assume that the character  K is unramified.

Definition 3.5. The algebraic part of the centralL-valueL.k=2; g=K; K/ is defined
to be

Lalg.k=2; g=K; K/ WD u2K
.k=2 � 1/Š2dp

N F=QDK=F

.2
/.k�2/d hg; gi L.k=2; g=K; K/: (3.9)

Here uK D ŒO�
K W O�

F �. The Peterson inner product hg; gi is normalized as follows:

hg; gi D .8
2/d
Z

A�
F

GL2.F /n GL2.AF /
jgj2 dh
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with dh the measure on GL2.AF / which induces the usual hyperbolic measure on
products of the Poincaré upper half plane, and normalized by the condition

volume of K1IAF .n/ D 1;

where K1 D Q
�j1 SO2.R/, and IAF .n/ D Q

l Ilvall n .

The Petersson inner product on the space of quaternionic forms Sk.a;n�/ is
defined as in Section 2.2 of [4]; see also Section 18 of [19]. Let U � B be the
F -subspace of dimension 3 consisting of elements of reduced trace zero, with right
action of B� on U given by

u � b D b�1ub:

Define the non-degenerate B�-invariant symmetric bilinear pairing

Œ�; �� W U � U ! F;

Œu; v� D 1

2
TrdB=F .u Nv/;

where TrdB=F denotes the reduced trace of B , and Nv denotes the image of v under
the canonical involution of B . For � W Fp ,! xQp , there is an isomorphism

U ˝F;� Cp ��!� Sym2
�

sending
�
a b
c d

� 2 U ˝F;� Cp to the element c� .X� /2C .d� �a� /X�Y � �b� .Y � /2
(cf. equation (3.4)); this isomorphism is B�

1 -equivariant, where B�
1 is the subgroup

of B� of reduced norm one, acting on Sym2
� via its image in Bp


pŠ GL2.Fp/ (there
would be a twist by the inverse of the determinant on the right hand side, if one
considers the full action of B�). For k � 2, even, we have a natural surjection

Symk=2�1.Sym2
� / ! Symk�2

� ;

hence we have a surjection

˝� W Fp,! xQp .Symk=2�1.U ˝F;� Cp// ! ˝� W Fp,! xQp Symk�2
� D Bk :

Upon dualizing, this induces the injection

Vk ,! ˝� W Fp,! xQp .Symk=2�1.U ˝F;� Cp//
�

(where .Symk=2�1.U ˝F;� Cp//� denotes the Cp-dual of Symk=2�1.U ˝F;� Cp/.
Now the symmetric F -bilinear pairing Œ�; �� on U induces the symmetric Cp-

bilinear pairing Œ�; ��� onU˝F;�Cp , which can be extended to Symk=2�1.U˝F;�Cp/
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by

Œ.u1; : : : ; uk=2�1/; .v1; : : : ; vk=2�1/�k;�
D

X
�2�k=2�1

Œu1; v�.1/�� : : : Œuk=2�1; v�.k=2�1/��

with �k=2�1 the symmetric group on k=2 � 1 letters. The non-degenerate pairings
Œ�; ��k;� allow us to identify Symk=2�1.U ˝F;� Cp/ with its dual. We still denote
by Œ�; ��k;� the inner product induced on .Symk=2�1.U ˝F;� Cp//�, and by Œ�; ��k D
˝� Œ�; ��k;� the tensor inner product induced on ˝� W Fp,! xQp .Symk=2�1 U ˝F;� Cp/�.
Its restriction to Vk is still noted as Œ�; ��k . By construction, it is B�

1 -invariant.
Now given „1; „2 2 Sk.a;n�/, define

h„1; „2i D
X

b2B�n yB�=†.a;n�/

1

eb
j NrdB=F .b/jk�2

yF Œbp �„1.b/; bp �„2.b/�k;

where for b 2 yB�, we denote by eb the order of the group R�
b
=O�

F , with Rb D
B� \ b†.a;n�/b�1 the Eichler order of level a determined by g (each summand
depends only on the image of b in the double coset).

We now state the main formula of [38].

Theorem 3.6 ([38], Theorem 1.2). Under the assumptions made in the beginning of
this section,

Lalg.k=2; g=K; K/ D 1

h„;„i
ˇ̌̌ X
�2Pic.OK/

 K.�/„Œ‰
��

ˇ̌̌2
: (3.10)

Here the absolute value in (3.10) is interpreted asˇ̌̌ X
�2Pic.OK/

 K.�/„Œ‰
��

ˇ̌̌2 D
� X
�2Pic.OK/

 K.�/„Œ‰
��

�
�
� X
�2Pic.OK/

 �1
K .�/„Œ‰��

�
:

We remark that in [38], the unitary normalization of automorphic L-function is
used, so that in loc. cit. the central L-value occurs when s D 1=2, and the Rankin
L-function that occurs there is the completed one:

.2
/�2d.sCk�2
2 /�

�
s C k � 2

2

�2d
L

�
s C k � 2

2
; g=K; K

�
:

We also note that the normalization of the Petersson inner product of Hilbert modular
forms in Definition 3.5 above is different from [38], namely that the factor .8
2/d

does not occur in loc. cit.
One corollary of Xue’s formula is the following algebraicity result:
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Corollary 3.7 ([38], Proposition 3.18). The value Lalg.k=2; g=K; K/ lies in
Q.g;  K/, where Q.g;  K/ is the number field generated by the normalized Fourier
coefficients of g and the values of  K . More precisely, for any h 2 Aut.xQ/, we have

Lalg.k=2; g=K; K/h D Lalg.k=2; gh=K; hK/:

Here gh is the cuspidal Hilbert eigenform that satisfies C.q; gh/ D C.q; g/h, and
 hK D h B  K [31].

Remark 3.8. A more general special value formula, valid for more general ring class
characters  K of K, was proved in the thesis of H. P. Yuan [39] (see also the recent
work of B. Howard [23]).

In the rest of the paper, we only consider the case where  K is a genus character.

3.4. p-adic interpolation. We now interpolate the algebraic part of the special
values of the Rankin L-functions, using (3.10). In the rest of the section, the level a
will be taken to be nC, so † D †.nC;n�/ as in Section 2.4.

We first give another description of optimal embeddings. Recall the statement of
strong approximation (2.14): for the fixed choice of elements fxighiD1 � yB�, with
.xi /p D 1, we have a decomposition

hG
iD1

z�inB�
p =R

�
p ��!� B�n yB�= yR�

sending the class of an element g 2 B�
p of the i -th component on the left to the double

coset on the right defined by xig.
Hence we can identify EmbF .K;B;nC/, the set of conjugacy classes of optimal

embeddings of level nC, as a subset of elements of

hG
iD1

z�in
�

HomOF .OK Œ
1
p
�; Ri Œ

1
p
�/ � B�

p =.Ri /
�
p

�

pŠ

hG
iD1

z�in
�

HomOF .OK Œ
1
p
�; Ri Œ

1
p
�/ � GL2.Fp/=GL2.OFp/

�
;

(3.11)

where Ri D B \ xi yRx�1
i .

Write Œ‰; g�i for a conjugacy class of optimal embedding, identified as an element
that belongs to the i -th component of (3.11). Pick a representative .‰; g/i for the
class Œ‰; g�i . Define L‰ WD g.OFp ˚ OFp/. By the optimality condition, and that
.xi /p D 1, one sees that L‰ is stable under the action of �p.‰.OK ˝ Zp//. Define
jL‰j, the generalized index of L‰, as j det gj�1yF D qordp det g .
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In this notation, if Œ‰� D Œ‰; g�i , and „ corresponds to the h-tuple .�1; : : : ; �h/,
then

„Œ‰� D j NrdB=F xi j
k�2
2

yF jL‰j 2�k
2 c�i .L‰/.Q

k�2
2

‰ /: (3.12)

In particular, the expression on the right hand side of (3.12) depends only on the class
Œ‰; g�i .

Remark 3.9. If p is inert in K, then L‰ and L
‰ are homothetic. Indeed, their
homothety classes define the unique fixed point of the action of �p.‰.K�

p // on the

Bruhat–Tits tree. Also notice that the image of �‰ in z�inH .Qp2d / D �inH 0.Qp2d /

depends only on the class Œ‰; g�i .

Definition 3.10. Define the region L00
‰ � L‰ as follows. If p is inert in K, then

L00
‰ WD L0

‰. While if p splits in K, then L‰ admits a basis .v1; v2/ consisting of
eigenvectors under the action of �p.‰.OK˝Zp//. We defineL00

‰ WD O�
Fp
v1�O�

Fp
v2.

Lemma 3.11.

ordp.Q‰.x; y// D ordp jL‰j for .x; y/ 2 L00
‰:

Proof. Since p D pOF is unramified in K, we can write K D F.
/, with 
2 2
F totally negative, and ordp 
2 D 0. As above L‰ D g.O2

Fp
/. Then as in [4],

Lemma 3.7, one can show, for any � 2 Hom.Fp; xQp/, that

ordp q‰;� .x
� ; y� / D ordp det g on L00

‰:

Hence on L00
‰ one has

ordpQ‰.x; y/ D
X

� W Fp,! xQp
ordp q‰;� .x

� ; y� / D
X

� W Fp,! xQp
ordp det g D ordp jL‰j:

�

Definition 3.12. We refer to the notation of Sections 2.5 and 2.7. Associated to the
Hida family f1, and optimal embedding Œ‰� D Œ‰; g�i of level nC, define the p-adic
analytic function Lp.f1=K;‰; k/ of the variable k 2 U :

Lp.f1=K;‰; k/ WD hj NrdB=F xi j yF ik�2
2

Z
c nL00

‰

hQ k�2
2

‰ id�i;L‰ : (3.13)

The function Lp.f1=K;‰; k/ depends only on the class Œ‰; g�i by equation (3.5).
Given a genus character  K of K, define

Lp.f1=K; K ; k/ WD
X

�2Pic.OK/

 K.�/Lp.f1=K;‰�; k/:
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We have the interpolation formula:

Theorem 3.13. Suppose that p is inert in K. Then for k 2 U \ Z>2, k � 2

mod 2.p � 1/,

Lp.f1=K; K ; k/2 D hˆ#
k; ˆ

#
ki˛.p; k/2

�
1 � qk�2

˛.p; k/2

�2
Lalg.k=2; f#

k=K; K/:

For k D 2 we have Lp.f1=K; K ; 2/ D 0.

Proof. When k > 2 this follows by combining Proposition 2.15, Theorem 3.6,
Lemma 3.11 and equation (3.12). That Lp.f1=K; K ; 2/ D 0 follows from equation
(2.19). �

Note: The function Lp.f1=K; K ; k/ essentially interpolates the square root of
the algebraic part of the central L-values Lalg.k=2; f#

k
;  K/ along the Hida family,

hence the name square root p-adic L-function in [4].
We need a corresponding result, when p splits in K:

Theorem 3.14. Suppose that p splits inK. Then if K corresponds to a pair . 1;  2/
of Hecke characters of F , we have

Lp.f1=K; K ; 2/2 D hˆ;ˆi
�
1 �  1.p/

˛.p; f2/

�2
Lalg.1; f2=K; K/ (3.14)

and for k 2 U \ Z>2, k � 2 mod 2.p � 1/,

Lp.f1=K; K ; k/2

D hˆ#
k; ˆ

#
ki˛.p; k/2

�
1 �  1.p/q

k�2
2

˛.p; k/

�4
Lalg.k=2; f#

k=K; K/:
(3.15)

Proof. The proof is the same as in [4], Theorem 3.12, again using Proposition 2.15,
Theorem 3.6, and Lemma 3.11. �

Remark 3.15. Using the more general formula of [39] for the special values of Rankin
L-functions, it should be possible to construct the two-variable anti-cyclotomic p-
adic L-function, attached to the Hida family f1 and ring class characters of the CM
extensionK=F . Then the function Lp.f1=K; K ; k/would just be the special value
of the two-variable p-adic L-function, evaluated at central critical points and at the
unramified character  K .
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Suppose now that p is inert in K. Corresponding to Œ‰� and the genus character
 K , we form the divisor

P K D
X

�2Pic.OK/

 K.�/�‰� 2
hM
iD1

Div.�inH 0.Qp2d //:

Here the divisor of �‰� lies in the i -th component, if i is the index of the component
of (3.11) to which Œ‰�� belongs.

Proposition 3.16. In the above notations, we have

d

dk
Lp.f1=K; K ; k/

ˇ̌̌
kD2 D 1

2
Iˆ.P K /:

Proof. Suppose that i‰ is the index of the component of ((3.11) to which Œ‰� belongs.
From (3.13) and (3.8), we see, by comparing with (2.23), that

d

dk
Lp.f1=K;‰; k/

ˇ̌̌
kD2 D 1

2

Z
c nL0

�‰

logp F
‰ .x; y/ d�i‰;L�‰ .x; y/

D 1

2
I�i‰ .�‰/:

Similar equations hold with ‰ replaced with ‰�. The proposition thus follows by
linearity. �

4. Heegner points on Shimura curves

4.1. Shimura curves. In this section, we define the Shimura curves that will be
used in the sequel. For more details, see [10], [40].

Fix an archimedean place �0 of F . Denote by B=F the quaternion algebra over
F , obtained from B=F by switching the invariants at �0 and p. Thus the invariants
of B and that of B are related as follows:

inv�0 B D invpB D 0;

invp B D inv�0 B D 1=2;

inv� B D inv� B for � ¤ �0;p :

Fix an isomorphism B ˝�0 R Š M2.R/, so that .B ˝�0 R/� can be identified as
GL2.R/.

Let OB be a maximal order of B, and let R � OB be an Eichler order of level
nC contained in OB . By Shimura’s theory, associated to B and the level nC is
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the Shimura curve XB.n
C/, which is a proper smooth curve defined over F (not

geometrically connected in general), whose C-points (with respect to �0 W F ,! C)
are given by the double coset

XB.n
C/.C/ D B�n.C � R/ � yB�= yR� (4.1)

(here B� acts on C � R via B� ! .B ˝�0 R/� Š GL2.R/, with GL2.R/ acting on
C�R by Möbius transformation). The geometric components ofXB.n

C/ are defined
over the strict Hilbert class field of F , i.e., the abelian extension of F corresponding
to the strict ideal class group ClF of OF . As in (2.12), let h be the order of the
ClF . Then the geometric components are indexed by ClF , and the number of such
components is h.

The (disconnected) Riemann surface (4.1) admits a more classical description as
follows. First, denote by BC the set of elements of B whose reduced norm to F is
totally positive (this is equivalent to saying that the reduced norm is positive under the
embedding �0, as B is ramified at other archimedean places). Let y1; : : : ; yh 2 yB�
be a set of representatives of

B�Cn yB�= yR�:

Define

�i D B�C \ yi yR�y�1
i :

Then if h is denotes the Poincaré upper half plane, we have

XB.n
C/.C/ D

hG
iD1

�inh: (4.2)

When F ¤ Q, the Shimura curve XB.n
C/ is not of PEL type. To describe a

PEL Shimura curve associated to XB.n
C/, we need to consider base change to an

auxiliary CM extension of F . We recall the constructions [10], [40].
Fix a auxiliary CM extension M=F of the form M D F.

p
r/, where r is a

negative integer. Assume that all the primes dividing nC splits in M . Extend the
embedding �0 W F ,! R to an embedding of M to C by

�0.x C y
p
r/ D �0.x/C p

r�0.y/ for x; y 2 F:

Let D D B ˝F M , and denote by V be the underlying Q-vector space D, with
the left D-action. Denote VR WD V ˝Q R. So we can identify:

VR D .B ˝F M/˝Q R D M2.C/˚ .H ˝R C/d�1;
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where H is the set of Hamilton’s quaternions, and the projection to the first factor
corresponds to the isomorphism B ˝F;�0 C Š M2.C/. VR has a complex structure,
with multiplication by

p�1 given by right multiplication on VR by the element

j D
� �

0 1

�1 0

�
; 1˝ p�1; : : : ; 1˝ p�1

�
:

It follows that the action of D on VR is C-linear. It can be shown that, with respect
to this complex structure, tr.l; VR=C/ 2 M for all l 2 D.

Let l ! Nl be the involution of D obtained by tensoring the involution of B and
the conjugation of M over F . Let G be the algebraic group over F defined by the
condition that for any F -algebra T ,

G.T / D fl 2 .D ˝F T /
� such that l Nl 2 T �g:

Define the level subgroups †M � G. yF / by

†M D yR� � yO�
M :

Then by Shimura’s theory, there is a proper smooth curve XD.n
C/ defined over M ,

whose set of C-points is given by the double coset

XD.n
C/.C/ D G.F /n.C � R/ �G. yF /=†M : (4.3)

The geometric components ofXD.n
C/ are defined over the Hilbert class field ofM .

There is a mapXB.n
C/ ,! XD.n

C/, which is both open and closed immersion, and
defined over the Hilbert class field ofM , which at the level of C-points is the natural
map from the double coset of (4.1) to that of (4.3).

One can also describe G as the group of symplectic similitudes of an alternating
form as follows.

For any invertible element ı 2 D, which is symmetric, i.e., Nı D ı, we can define
another involution on D, noted as l ! l�, by

l� D ı�1 Nlı:
For v;w 2 V define

pF .v; w/ WD TrM=F .
p
r TrdD=M .vıw

�//:

Then pF is an F -valued non-degenerate alternating form, satisfying

pF .lv; w/ D pF .v; l
�w/:

Choose a ı, so that the form pF .�; �j / is positive definite on VR, in which case the
involution l ! l� is a positive involution. One can show that the algebraic group G
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defined above is isomorphic to the group of D-linear symplectic similitudes of the
form pF .

The curve XD.n
C/ is a coarse moduli space for abelian varieties whose endo-

morphism algebras contain D. More precisely, let OD WD OB ˝ OM , which is a
maximal order of D, and letVZ WD OD, regarded as a lattice ofV . ThenXD coarsely
represents the functor F , which associates to a scheme S over M , the isomorphism
classes of objects ŒA; �; N�; N�; C �, where

� A is an abelian scheme over S of relative dimension 4ŒF W Q�, with an action
� W OD ! EndS .A/ such that for any l 2 OD,

tr.�.l/ W LieA/ D tr.l; VR=C/I

� N� is an O�
F -class of polarizations � W A ! LA from A to the dual abelian scheme

LA, such that for any l 2 OD, the associated Rosati involution takes �.l/ to �.l�/
(recall that if � 2 End.A/, then the Rosati involution defined by a polarization
� is given by �� WD ��1 L�� , where L� 2 End. LA/ is the dual of �);

� N� is a †M -class of OD-linear isomorphisms � W yVZ ! yT .A/ (where yT .A/ is
the adelic Tate module of A), which is symplectic with respect to the form
pu WD tr yF = yQ.u � pF / on yVZ for some u 2 yF �, and the Riemann form pA on
yT .A/ induced by a polarization � 2 N� :

� C is a subgroup scheme ofA, locally isomorphic to OF =nC, and which is stable
and locally cyclic under the action of R induced by �.

In the following section we will make the abbreviation by referring to such an object
as ŒA; C �.

4.2. CM points. In this section we recall the basic definitions about CM points. For
details, see [40].

As in Section 3, let K=F be a CM extension. For the rest of Section 4, assume
that the primes dividing p n� are inert in K, and the primes dividing nC split in K.

Similar to Definition 3.1, an optimal embedding ofK into B of level nC is a pair
.z‰; c/ 2 HomF .K;B/ � yB�= yR�, such that

z‰ \ c yRc�1 D z‰.OK/:
The group B� acts on the set of such optimal embeddings by conjugation similar to
(3.3), and Pic.OK/ acts on the conjugacy classes of such embeddings.

Given .z‰; c/, let �z‰ 2 C�R be the fixed point under the action of z‰.K�/ � B�,
such that the induced action on the co-tangent line of C � R is given by the character
z ! z=Nz. Let Pz‰ 2 XB.n

C/.C/ be the image of .�z‰; c/ in the double coset (4.1).
Then Pz‰ depends only on the conjugacy class of .z‰; c/.
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By the theory of complex multiplication one hasPz‰ 2 XB.n
C/.H/, whereH=K

is the Hilbert class field of K. The point Pz‰ is called the CM point associated to
z‰. We have the Shimura reciprocity law: identifying Gal.H=K/ Š Pic.OK/ via the
Artin isomorphism (the convention being that a prime q is mapped to the inverse of
the Frobenius at q), one has for � 2 Pic.OK/,

.Pz‰/
� D Pz‰� : (4.4)

The moduli interpretation of Heegner points is as follows ([40], Section 2). First
some notations. For anyM -scheme S , and ŒA; C � 2 F .S/, denote by EndF .ŒA; C �/

the OM -subalgebra of EndOD
.A/ generated by elements �, such that ��� 2 F �

(recall that � ! �� is the Rosati involution defined by a polarization from the data
F .S/), and such that �.C / � C . Also denote K 0 WD K ˝F M .

Now let x 2 XB.n
C/.C/. The image of x in XD.n

C/.C/ can be represented by
ŒA; C � 2 F .C/. Then x is a Heegner point if and only if there is an isomorphism

˛ W K 0 Š EndF .ŒA; C �/˝ Q (4.5)

over M , such that

OK D fa 2 K W ˛.a/ 2 EndF .ŒA; C �/g: (4.6)

4.3. p-adic description. We now give a p-adic description of Heegner points par-
allel to the previous section. This is based on the theorem of Cerednik–Drinfeld [6],
[7], [33].

First recall that B� Š B� for any place � ¤ �0;p. We have chosen Eichler orders
R and R of level nC, of B and B respectively. Assume that for primes l ¤ p, the
isomorphism Bl Š Bl is chosen so that the local Eichler order Rl D R ˝OF OFl

of Bl of level nC is mapped onto the local Eichler order Rl D R˝OF OFl
of Bl of

level nC.
Let XB.n

C/.Cp/an be the rigid analytic space associated to XB.n
C/.Cp/. The

theorem of Cerednik–Drinfeld gives the p-adic analogue of the uniformization (4.2),
with h replaced by the p-adic upper half plane H over Fp.

Recall the subgroup �i D �i .n
C;n�/ � B� defined as in (2.13). As before

identify �i as a discrete subgroup of B�
p Š GL2.Fp/. The result of Cerednik–

Drinfeld states (see Theorem 3.1 of [7] or Theorem 5.3 of [33])

hG
iD1

�inH .Cp/ Š XB.n
C/.Cp/an: (4.7)

Furthermore, the isomorphism is defined over Qp2d , i.e., equivariant with respect
to the action of Gal.xQp=Qp2d / on both sides. There is a corresponding result for
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XD.n
C/.Cp/an, which is the p-adic analogue of (4.3). In fact, in the approach

of [6], [7] the p-adic uniformization for XB.n
C/.Cp/an is deduced from that of

XD.n
C/.Cp/an.

Using this description, we can relate the optimal embeddings of Section 3.2 to
Heegner points. We use the description as in Section 3.4. Thus let Œ‰� D Œ‰; g�i 2
EmbF .K;B;nC/ be a conjugacy class of optimal embeddings ofK toB of level nC,
identified as an element of the i -th component of (3.11). As in (3.6), let �‰; N�‰ 2
�inH 0.Qp2d / D z�inH .Qp2d / be the fixed points under the action of ‰.Kp/, such
that �‰ satisfies (3.7). LetP‰ 2 XB.n

C/.Cp/an be the corresponding point that lives
on the i -th component of (4.7). Using the description of p-adic uniformization as
in [6], [7], it can be shown that (see for example [3], Section 5) the image of P‰ in
XD.n

C/.Cp/an satisfies (4.5) and (4.6). Thus P‰ is a Heegner point, in particular,
P‰ 2 XB.n

C/.H/, and we have the analogue of (4.4): for any � 2 Pic.OK/ Š
Gal.H=K/,

.P‰/
� D P‰� :

4.4. Heegner points on elliptic curves. We refer back to Section 2.11. Thus E=F
is a modular elliptic curve, corresponding to a weight two cuspidal Hilbert eigenform
fE , of conductor n D p nC n�. By the Jacquet–Langlands correspondence applied to
B, the cuspidal Hilbert eigenform fE , and henceE=F , is associated to a quaternionic
eigenform on B�. Geometrically this give rise to parametrization ofE by the Shimura
curve XB.n

C/.
More precisely, let Pic0.XB.n

C//=F be the Picard variety of XB.n
C/=F . Note

that, since XB=F is not geometrically connected, Pic0.XB.n
C// parametrizes di-

visors of degree zero on each geometric component, modulo the principal divisors.
Over C, we have

Pic0.XB.n
C//.C/ D

hY
iD1

Jac.�inh/:

The quaternionic eigenform on B� corresponding to fE then gives rise to the
parametrization 'E defined over F ,

'E W Pic0.XB.n
C// ! E; (4.8)

which is equivariant with respect to the Hecke operators Tl for l − n (here Tl acts
on E by multiplication by C.l; fE / 2 Z).

Let P‰ be the CM point attached to the class of an optimal embedding ofK toB ,
and let  K be as in Section 3.1 a genus character of K, with K K the genus field
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(i.e., the extension of K cut out by  K). As in the situation of Proposition 3.16, put

P K D
X

�2Pic.OK/

 K.�/.P‰/
� D

X
�2Pic.OK/

 K.�/.P‰�/:

Then P K is a divisor on XB.n
C/.

In order to use the parametrization 'E of (4.8) to construct Heegner points on
E, we need to modify P K to obtain a divisor of degree zero on each geometric
component of XB.n

C/.
Let � 2 Pic.XB/.F /˝ Q be the Hodge class [40]; the class � has degree one on

each geometric component, and satisfies the relation

Tl� D .N l C1/� (4.9)

for l prime to n. Let �i be the i -th component of � .
Suppose that i‰� is the index of the component of XB.n

C/ on which P‰� lies.
Define zP K 2 Pic0.XB.n

C//˝ Q as

zP K D class of
X

�2Pic.OK/

 K.�/.P‰� � �i‰� /:

We have zP K 2 �
Pic0.XB/.K

 K /˝ Q
�
 K

. Define

P K D 'E . zP K / 2 .E.K K /˝ Q/ K ;

called the Heegner point attached to ‰ and  K .
We need the following result which follows from Zhang’s generalization of the

Gross–Zagier formula, and the work of Kolyvagin–Logachev:

Theorem 4.1. [40], [24] P K is of infinite order if and only if L0.1; E=K; K/ ¤ 0,
in which case dim.E.K K /˝ Q/ K D 1.

We can compute P K in another way. For any prime l of OF , denote by Cl D
C.l; fE / the normalized Fourier coefficient of fE at l. Choose l to be relatively prime
to n, and whose class in ClF is trivial (such l exists by Cebotarev density theorem).
For such an l, the action of the Hecke correspondence Tl on XB.n

C/ preserves the
geometric components, and is of degree N l C1 on each component. In particular, it
follows from (4.9) that

Tl�i D .N l C1/�i for each i: (4.10)

Then by the Hecke equivariance property of the Shimura curve parametrization
'E and (4.10), we have (here Cl D C.l; fE /)

.N l C1 � Cl/P K D 'E
�
.N l C1 � Tl/ zP K

� D 'E
�
.N l C1 � Tl/P K

�
:
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Hence fix such an l, and set

Q K D .N l C1 � Cl/
�1.N l C1 � Tl/P K : (4.11)

Then Q K 2 Div0.XB.n
C//˝ Q, whose image in E under 'E is P K .

Now suppose that the genus character  K corresponds to the pair of quadratic
Hecke characters  1,  2 of F , so K K D F  1; 2 . Assume that

L.1;E=F; 1/ D 0; L.1;E=F; 2/ ¤ 0: (4.12)

Using (3.2) it follows that

L0.1; E=F; K/ D L0.1; E=F; 1/ � L.1;E=F; 2/;
and hence it follows from Theorem 4.1 that the point P K is of infinite order if and
only if L0.1; E=F; 1/ ¤ 0.

By the results of Kolyvagin–Logachev [24], the assumption thatL.1;E=F; 2/ ¤
0 gives

dim.E.F  2/˝ Q/ 2 D 0: (4.13)

Corollary 4.2. The element P K in .E.F  1; 2/˝ Q/ K lies in .E.F  1/˝ Q/ 1 .

Proof. First note that, in the notation of Section 3.1,

P K C t1 � P K

lies in
.E.F  1; 2/˝ Q/ K \ .E.F  2/˝ Q D .E.F  2/˝ Q/ 2

hence is zero modulo torsion by (4.13). On the other hand, since P K 2 .E.F  1; 2/˝
Q/ K , we have

t1t2 � P K D �P K ;

hence
t2 � P K D �t1 � P K :

So modulo torsion t2 � P K D P K , and so

P K D 1

2
.P K C t2 � P K / 2 .E.F  1/˝ Q/ 1 : �

Corollary 4.3. Let Frobp be the Frobenius element at p of the extension F  1=F .
Then

Frobp P K D  1.p/P K :
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4.5. Heegner points and p-adic periods. We can now relate the p-adic periods
of Section 2.9 with Heegner points. We maintain the notations of Section 4.4, and
assume (4.12) holds.

Fist we give a p-adic analytic description of the Shimura curve parametrization
(4.8).

We refer to the notations of Section 2.11. Replacing the quaternionic form ˆ on
B� by a suitable integer multiple of ˆ, we may assume that the lattice of periods
defined by !�i is contained in the lattice of Tate periods of E=Fp.

Choose a Tate uniformization isomorphism

‚E=Fp
W C�

p =Q
Z
E ��!� E.Cp/:

Then over Cp , the Shimura curve parametrization

'E W Pic0.XB.n
C//.Cp/ D

Y
i

Jac.�inH .Cp// ! E.Cp/

can be described as follows. Let

D D
hX
iD1

Di 2 Div0.XB.n
C/.Cp/ D

hM
iD1

Div0.�inH .Cp//;

with Di 2 Div0.�inH .Cp//. Then for each component we have by [13], Theo-
rem 2.32 (which is a reformulation of a theorem of Manin–Drinfeld) that

'E .Di / D ‚E=Fp

�
�
Z
Di

!�i

�
:

So by additivity,

'E .D/ D
hX
iD1

‚E=Fp

�
�
Z
Di

!�i

�
D ‚E=Fp

�
�
Z
D

!ˆ

�
(4.14)

(here
P

is the addition on E).
Given the Tate uniformization, define the maps

logE=Fp
W E.Qp2d /˛p ! Fp;

logNormE=Fp
W E.Qp2d /˛p ! Qp

as the composition of the following maps:

logE=Fp
W E.Qp2d /˛p

‚�1
E=Fp�����! F �

p =Q
Z
E

logQE����! Fp;

logNormE=Fp
W E.Qp2d /˛p

‚�1
E=Fp�����! F �

p =Q
Z
E

NFp=Qp������! Q�
p =q

Z
E

logqE���! Qp
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(recall that qE D N Fp=Qp QE ). The maps logE=Fp
; logNormE=Fp

are homo-
morphisms (with respect to the additive structure). Note that the kernel of logE=Fp

consists exactly of the torsion elements, but this is not the case for logNormE=Fp
. We

extend the definition of logE=Fp
and logNormE=Fp

to E.Qp2d /˛p ˝ Q by linearity.
Applying Corollary 2.28 to the divisor Q K of (4.11), we have

Iˆ.Q K / D logqE N Q
p2d

=Qp

�
�
Z
Q K

!ˆ

�
: (4.15)

The right hand side of (4.15) can be written as

logqE N Q
p2d

=Qp

�
�
Z
Q K

!ˆ

�
D logqE N Fp=Qp N Q

p2d
=Fp

�
�
Z
Q K

!ˆ

�

D logNormE=Fp
‚E=Fp

N Q
p2d

=Fp

�
�
Z
Q K

!ˆ

�
:

Now as in (2.25), let s be the non-trivial element of Gal.Qp2d =Fp/. Then

‚E=Fp
N Q

p2d
=Fp

�
�
Z
Q K

!ˆ

�
D ‚E=Fp

�
�
Z
Q K

!ˆ

�
C‚E=Fp

�
s � �

Z
Q K

!ˆ

�

D ‚E=Fp

�
�
Z
Q K

!ˆ

�
C ˛ps �‚E=Fp

�
�
Z
Q K

!ˆ

�
:

Now by (4.14)

‚E=Fp

�
�
Z
Q K

!ˆ

�
D 'E .Q K / D P K

and by Corollary 4.3,
s � P K D  1.p/P K :

Hence

Iˆ.Q K / D logqE N Q
p2d

=Qp

�
�
Z
Q K

!ˆ

�
D .1C ˛p 1.p// logNormE=Fp

P K :

Now we need a

Lemma 4.4. With respect to the choice of l as in (4.10), we have for any divisor
D 2 Div.XB.n

C/.Cp// D Lh
iD1 Div.�inH .Cp// the equality

Iˆ.TlD/ D ClIˆ.D/:

Proof. As l is trivial in ClF , it preserves the components�inH .Cp/ ofXB.n
C/.Cp/,

so by linearity, it suffice to show that for any � 2 �inH .Cp/,

I�i .Tl�/ D ClI�i .�/

whose proof is the same as Proposition 2.18 of [4]. �
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From this lemma, we have from the definition of Q K as in (4.11) that

Iˆ.Q K / D Iˆ.P K /:

On the other hand, by Proposition 3.16, we have

d

dk
Lp.f1=K; K ; k/

ˇ̌̌
kD2 D 1

2
Iˆ.P K /:

We summarize the discussion as the following proposition (here the point P K is
renamed as P 1):

Proposition 4.5. Assume that L.1;E=F; 1/ D 0;L.1;E=F; 2/ ¤ 0. Then there
is a global point P 1 2 .E.F  1/˝ Q/ 1 such that

d

dk
Lp.f1=K; K ; k/

ˇ̌̌
kD2 D 1C ˛p 1.p/

2
logNormE=Fp

P 1 :

Furthermore, the point P 1 is of infinite order if and only if L0.1; E=F; 1/ ¤ 0.

5. Main results

5.1. p-adic L-functions of Hilbert modular forms. In this section, we recall some
results from [26] about p-adic L-functions of Hilbert modular forms.

First we need some notations. Let D ˝� � be a Hecke character of F of finite
order. Denote by sig. / 2 f˙1gd , the signature of  , as the d -tuple . �.�1//�j1.
Thus sig. / D .1; : : : ; 1/ if  is unramified at all the infinite places. As another
example, for !F the Teichmüller character of F , one has sig.!F / D .�1; : : : ;�1/.

In general, for w D .w�/�j1 2 f˙1gd , denote sgn.w/ WD Q
�j1w� . We ab-

breviate sgn.sig. // as sgn. /. Also denote by �. / the Gauss sum of  ([31],
equation 3.9).

Let g be a Hilbert newform of parallel weight k � 2. Fix an embedding xQ ,! C.
Recall Shimura’s rationality result on L-values, cf. [31], Theorem 4.3 (I) and [11],
Remark (ii) on p. 1027: for every w 2 f˙1gd one can choose �wg 2 C� such that,
for an integer 0 � r � k�2 and a finite order Hecke character ofF with conductor
c , the expression

Lalg.r C 1; g;  / WD Dr
F .rŠ/

d N crC1
 

.�2
i/dr�. �1/
L.r C 1; g;  /

�
.�1/r sig. /
g

(5.1)

is an algebraic number, called the algebraic part of the L-value. Furthermore, for
every h 2 Aut.xQ =Q.g//,

Lalg.r C 1; g;  /h D Lalg.r C 1; g;  h/ (5.2)
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which implies in particular that

Lalg.r C 1; g;  / 2 Q.g;  /;

where Q.g;  / is the number field generated by the (normalized) Fourier coefficients
of g and the values of  . In particular, if the Fourier coefficients of g are rational
integers, and  is quadratic, then the values Lalg.r C 1; g;  / are rational numbers.

Thus the numbers �wg are serving as “transcendental factors" of the special L-

values. Notice that if z�wg 2 C� is another set of numbers such that

z�wg
�wg

2 Q.g/ for each w 2 f˙1gd ;

then one can equally define Lalg.r C 1; g;  / with respect to z�wg instead of�wg , and
such that equation (5.2) still holds. In what follows, we always fix a choice of the
numbers �wg to define the algebraic part of L-values.

Now suppose that g is ordinary at p. Let � be a finite order Hecke character of
F unramified outside p and the infinite places, and  a finite order Hecke character
of F unramified at the conductor of g. In [11], Theorem 1, the p-adic L-function
Lp.s; g; � / is constructed (with respect to a specific choice of �wg ). It satisfies the
interpolation property: for 0 � r � k � 2,

Lp.r C 1; g; � / D
�
1 � � !�r

F .p/N pr

˛.p; g/

�
(5.3)

�
�
1 � .� !�r

F /�1.p/ˇ.p; g/
N prC1

�
Lalg.r C 1; g; .� !�r

F /�1/:

Here ˛.p; g/ and ˇ.p; g/ are the p-adic unit root and non-unit root of the Hecke
polynomial

X2 � C.p; g/X C �p N pk�1

with �p D 1 if p does not divide the conductor of g, and equal to zero otherwise. We
have the convention that � !�r

F .p/ D 0 if � !�r
F is ramified at p.

If �,  are trivial, we denote the p-adic L-function as Lp.s; g/.
As in the previous sections, let f1 be the Hida family lifting fE D f2, with

E a modular elliptic curve over F , whose conductor n can be written in the form
p nC n�, with n� satisfying condition 2.1. In Theorem 6.8 of [26], it was shown
that the p-adic L-functions Lp.s; f#

k
/ attached to the weight k specializations fk

of f1 for k 2 U \ Z�2 (f#
k

is the newform whose p-stabilization is fk) can be
interpolated to a two variable p-adic L-function, i.e., there exists a p-adic analytic
function Lp.s; k/ D Lp.s; k; f1/ of p-adic variables s; k with k taking values in
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a suitable p-adic neighbourhood U of 2, such that for k 2 U \ Z�2, one has
Lp.s; k; f1/ D Lp.s; f#

k
/. In particular, Lp.s; 2/ D Lp.s; fE / WD Lp.s; E=F / (let

us note that one of the technicalities of [26] is to show that one can choose the numbers
�w

f#
k

appropriately so that this interpolation property holds).

As a special case of (5.3), take � to be trivial, and  quadratic, and r D k=2� 1.
Then if k 2 U \ Z�2 satisfies k � 2 mod 2.p � 1/, one has

Lp.k=2; k; f1/ D Lp.k=2; f#
k;  /

D
8<
:.1 �  .p/N pk=2�1

˛.p;f#
k
/

/2Lalg.k=2; f#
k
;  / if k > 2;

.1 �  .p/
˛.p;E=F /

/Lalg.1; E=F; / if k D 2:

(5.4)

5.2. Proof of main results. We first need a fact about the functional equation of the
complex L-function of L.s;E=F /. Let �E=F 2 f˙1g be the sign:

L.2 � s; E=F / D �E=FL.s;E=F /:

For any quadratic Hecke character  , whose conductor is relatively prime to that
of E=F , the twisted L-function satisfies a similar functional equation:

L.2 � s; E=F; / D �E=F . /L.s; E=F; /

with �E=F . / 2 f˙1g given by the expression

�E=F . / D sgn. / .n/ � �E=F : (5.5)

Proposition 5.1. Let w 2 f˙1gd . In the case when nC n� is the square of an ideal
(i.e., n� D OF and nC is the square of an ideal), assume that the following condition
holds:

˛.p; E=F / D � sgn.w/�E=F : (5.6)

Then shrinking U if necessary, there exists a p-adic analytic function 	w defined on
U such that, for integers k 2 U \ Z�2 with k � 2 mod 2.p � 1/, one has

	w.k/ D hˆ#
k; ˆ

#
kiid

�w
f#
k

��w
f#
k

hf#
k
; f#
k
i : (5.7)

In fact, the proof below shows that the expression

id
�w

f#
k

��w
f#
k

hf#
k
; f#
k
i

lies in Q.f#
k
/�.
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Proof. Let S1 be the set of quadratic Hecke characters  1 of F , unramified at the
primes dividing n, and satisfying the following conditions:

(1) sig. 1/ D w.

(2)  1.p/ D �˛.p; E=F /.
(3)  1.nC n�/ D �˛.p; E=F / � sgn.w/ � �E=F .

These conditions amount to specifying the local conditions for 1 at the archimedean
primes and at the primes dividing n. The set S1 is non-empty. Indeed, the only point
that needs to be addressed is condition (3), in the case when nC n� is the square of an
ideal. In this case, since  1 is quadratic, one has  1.nC n�/ D 1, hence the reason
for assuming (5.6) to hold.

For any  1 2 S1, one has, using (5.5), that �E=F . 1/ D 1. By the main theorem
of Friedberg–Hoffstein [15], we can pick a  1 2 S1, such that L.1;E=F; 1/ ¤ 0.
Condition (2) implies that Lp.s; E=F; 1/ does not have exceptional zero at s D 1,
so Lp.1; E=F; 1/ ¤ 0.

Now let S2 be the set of quadratic Hecke characters  2 of F , with conductor
relatively prime to that of  1 and of n, satisfying the following conditions:

(1) sig. 2/ D �w.

(2)  2.p/ D �˛.p; E=F /.
(3)  2.nC n�/ D .�1/dC1˛.p; E=F / � sgn.w/ � �E=F .

Again S2 is non-empty (notice that in the case when nC n� is a square, i.e., n� D OF
and nC is a square, one must haved D ŒF W Q�being even by condition 2.1. Hence the
last condition is again satisfied by (5.6)). For any  2 2 S2, one has �E=F . 2/ D 1.
By [15] again, we can pick a  2 2 S2 so that L.1;E=F; 2/ ¤ 0. Again, the
conditions specified on  2 ensures that Lp.s; E=F; 2/ has no exceptional zero at
s D 1 and so Lp.1; E=F; �2/ ¤ 0.

Hence shrinkingU if necessary, we may assume that thep-adic analytic functions
Lp.k=2; k; f1;  1/ and Lp.k=2; k; f1;  2/ are non-zero on U .

Let � WD  1 � 2. Then sig.�/ D .�1; : : : ;�1/. Hence � cuts out a CM extension
K of F , in which p splits (since  1 2.p/ D 1), and the pair . 1;  2/ corresponds
to a genus character  K of K.

Let k 2 U \ Z�2 be an integer, with k � 2 mod 2.p � 1/. By equation (3.2)
we have

L.k=2; f#
k=K; K/ D L.k=2; f#

k;  1/ � L.k=2; f#
k;  2/: (5.8)

Hence L.k=2; f#
k
=K; / ¤ 0 for k specified as above. By Corollary 3.7, the value

L.k=2; f#
k
=K; / lies in Q.f#

k
/.
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Using (5.1), we have, for j D 1; 2 (noting that k=2 � 1 is even, as p is odd):

Lalg.k=2; f#
k;  j / D

D
k=2�1
F .k=2 � 1/Šd N c

k=2
 j

.2
i/d.k=2�1/�. j /
L.k=2; f#

k
;  j /

�
sig. j /

f#
k

2 Q.f#
k/: (5.9)

Now by Proposition 7.1 of Appendix I, we have the following conductors and
Gauss sums identities:

DKD
�2
F D N F=QDK=F D N F=Q c 1 N F=Q c 2

�. 1/�. 2/ D id
q

N F=Q c 1 N F=Q c 2 :
(5.10)

Putting together (3.9), and (5.8)–(5.10), we obtain

Lalg.k=2; f#
k=K; K/

D u2K

D
k=2�1
K

id
�w

f#
k

��w
f#
k

hf#
k
; f#
k
i L

alg.k=2; f#
k;  1/ � Lalg.k=2; f#

k;  2/:
(5.11)

Equation (5.11) implies that id
�w

f#
k

��w

f#
k

hf#
k
;f#
k

i 2 Q.f#
k
/.

Using equation (3.14), (3.15), and (5.4) we obtain

Lp.k=2; f1=K; K/2 D u2K

D
k=2�1
K

˛.p; k/2hˆ#
k; ˆ

#
ki

id
�w

f#
k

��w
f#
k

hf#
k
; f#
k
i Lp.k=2; f

#
k;  1/Lp.k=2; f

#
k;  2/

D u2K
hDKik=2�1˛.p; k/

2hˆ#
k; ˆ

#
ki

id
�w

f#
k

��w
f#
k

hf#
k
; f#
k
i Lp.k=2; k; f1;  1/Lp.k=2; k; f1;  2/

(for the last equality, note that since k=2 � 1 � 0 mod p � 1, one has Dk=2�1
K D

hDKik=2�1/. Hence the proposition is proved, by defining

	w.k/ WD hDKik=2�1Lp.k=2; f1=K; K/2

u2K˛.p; k/
2Lp.k=2; k; f1;  1/Lp.k=2; k; f1;  2/

: �

Remark 5.2. The function 	w.k/ does not depend on the choice of the characters
 1,  2 made in the proof, because by (5.7), the values of 	w.k/ is independent of
these choices for a set of values of k that accumulates to 2. The same argument also
shows that 	w D 	�w .
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Proposition 5.3. Let 1,  2 be a pair of quadratic Hecke characters of F , which are
unramified at the primes dividing n, and which correspond to a CM extension K=F
and a genus character  K of K. In the case where nC n� is the square of an ideal,
assume the condition

˛.p; E=F / D � sgn. 1/ � �E=F : (5.12)

Then for k 2 U ,

Lp.k=2; f1=K; K/2 (5.13)

D u2KhDKi1�k=2˛.p; k/2	sig. 1/.k/Lp.k=2; k; f1;  1/Lp.k=2; k; f1;  2/:

Proof. The computations in the proof of Proposition 5.1, show that equation (5.13)
holds for k 2 U \Z�2, with k � 2 mod 2.p�1/ (if p is inert inK, i.e., if 1.p/ D
 2.p/, then we use Theorem 3.13 instead of Theorem 3.14 in the computation). Since
both sides of (5.13) are analytic functions of k, they must be equal. �

We now come to the main theorem. We refer to the notations of Section 4.5.

Theorem 5.4. Let  1 be a quadratic Hecke character of F , of conductor prime to
n D p nC n�. Assume the following:

 1.p/ D ˛.p; E=F /;

�E=F . 1/ D �1: (5.14)

Then

(1) The function Lp.k=2; k; f1;  1/ vanishes to order at least two at k D 2.

(2) There exists P 1 2 .E.F  1/˝ Q/ 1 , and l 2 Q�, such that

d2

dk2
Lp.k=2; k; f1;  1/

ˇ̌̌
kD2 D l.logNormE=Fp

.P 1//
2:

(3) The element P 1 is of infinite order if and only if L0.1; E=F; 1/ ¤ 0.

Proof. The proof of assertion (1) in the case when 1 is trivial and ˛.p; E=F / D 1, is
already given in the introduction. The proof for general 1 with 1.p/ D ˛.p; E=F /
is similar. Notice that assertion (1) does not require the conductor n to be of the form
p nC n�.

To prove the remaining claims, consider the set of quadratic Hecke characters
 2 of F , of conductors relatively prime to n and c 1 , that satisfies the following
conditions:

(1) sig. 2/ D � sig. 1/.
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(2)  2.l/ D  1.l/ for l j nC.

(3)  2.l/ D � 1.l/ for l j p n�.

Again by (5.5), one has �E=F . 2/ D ��E=F . 1/ D 1 for any such  2. So by
[15], we can pick a  2 such that L.1;E=F; 2/ ¤ 0. Since  2.p/ D � 1.p/ D
�˛.p; E=F /, Lp.s; E=F; 2/ does not have an exceptional zero at s D 1, so we
have Lp.1; E=F; 2/ 2 Q�.

Thus we are in the setting of Proposition 5.3 (notice that, in the case where nC n�
is a square, conditions (5.14) imply (5.12)). Hence (5.13) holds. Note that since
 1 2.p/ D �1, the prime p is inert in K.

In our case Lp.k=2; k; f1;  1/ vanishes to order two at k D 2, while the other
functions that occur on the right hand side of (5.13) does not vanish. It follows, on
taking second derivative at k D 2, that

u2K	sig. 1/.2/Lp.1; E=F; 2/
d2

dk2
Lp.k=2; k; f1;  1/

ˇ̌̌
kD2

D d2

dk2
L.k; f1=K; K/2

ˇ̌̌
kD2

D 2Œ
d

dk
L.k; f1=K; K/

ˇ̌̌
kD2�

2:

By Proposition 4.5 (noting conditions (5.14)),

d

dk
L.k; f1=K; K/

ˇ̌̌
kD2 D logNormE=Fp

.P 1/

with P 1 2 .E.F  1/˝ Q/ 1 , and is non-torsion if and only ifL0.1; E=F; 1/ ¤ 0.
Hence we obtain the proof, by setting

l�1 D 1

2
u2K	sig. 1/.2/Lp.1; E=F; 2/ (5.15)

D u2K	sig. 1/.2/L
alg.1; E=F; 2/:

It remains to see that l 2 Q�. Note that, by Proposition 5.1, the expression

id
�

sig. 1/
fE

�
� sig. 1/
fE

hfE ; fE i
lies in Q�, while the expression hˆE ; ˆE i lies in Q�, due to our normalization
condition that ˆE is integer-valued. Hence 	sig. 1/.2/ 2 Q�, which gives the result
since Lalg.1; E=F; 2/ 2 Q�. �

Note that when ŒF W Q� is even, then the conductor n of E=F can always be
written in the form p nC n�, for instance by taking n� D OF . If ŒF W Q� is odd,
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then this condition is equivalent to requiring that E=F has multiplicative reduction
at some place other than p. In the next section, we are going to establish Theorem 5.4
without this condition, at least when F D Q.

Remark 5.5. We can be more precise about the value of l mod .Q�/2. Let ı be a
quadratic Hecke character ofF , with conductor relatively prime to that of 1 and 2,
and satisfying the following conditions (whose existence follows again from [15]):

(1) sig.ı/ D sig. 1/.

(2) ı.l/ D  1.l/ for l j nC n�.

(3) ı.p/ D � 1.p/.
(4) L.1;E=F; ı/ ¤ 0.

Let zK=F be the CM extension cuts out by the character Q� WD ı 2, and  zK the
genus character of zK corresponding to the pair by ı; �2. Then as a consequence of
equation (3.10), we have

hˆE ; ˆE i�1 D Lalg.1; fE= zK; zK/ mod .Q�/2: (5.16)

On the other hand, the same calculations that lead to (5.11) gives (noting that sig.ı/ D
sig. 1/)

Lalg.1; fE= zK; zK/ D hˆE ; ˆE i�1 � 	sig. 1/.2/

� Lalg.1; E=F; ı/ � Lalg.1; E=F; 2/ mod .Q�/2:
(5.17)

Combining (5.15), (5.16) and (5.17), we thus obtain

l D Lalg.1; E=F; ı/ mod .Q�/2: (5.18)

In the case F D Q, this gives part (4) of Theorem 5.4 of [4].

Suppose that we take  1 to be trivial in Theorem 5.4; in particular, we have
˛.p; E=F / D 1, i.e., E is split multiplicative at p. Then we can give another
formulation of the statement of the theorem. Thus let QE 2 F �

p be the Tate period,
qE D N Fp=Qp QE , and ‚E=Fp

be the Tate uniformization for E=Fp:

‚E=Fp
W F �

p =Q
Z
E ��!� E.Fp/:

For any � 2 Hom.F; xQ/ D Hom.F; xQp/ D Hom.Fp; xQp/, letF � be the totally real
field obtained by conjugating F with � , with p� the prime of F � above p. Similarly,
let E�=F � be the elliptic curve obtained by conjugating E=F with � . Then E�

is split multiplicative at p� , with Tate period Q�
E 2 .F �p� /

�. We choose the Tate
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uniformization ‚E�=F �
p�

for E�=F �p� , so that the following diagram commutes (the
vertical arrows being the natural maps obtained by conjugating with � ):

‚E=Fp
W F �

p =Q
Z
E

��

��

E.Fp/

��
‚E�=F �

p�
W .F �p� /�=.Q�

E /
Z �� E� .F �p� /:

Define logE�=F �
p�

for each � 2 Hom.F; xQp/ using these compatible families of

Tate uniformizations. Then given any P 2 E.F / � E.Fp/, write

P D ‚E=Fp
.z/ with z 2 F �

p :

Then

logNormE=Fp
P D logqE N Fp=Qp z

D
X

�2Hom.F; xQp/
logQ�

E
z� by Proposition 2:29

D
X

�2Hom.F; xQp/
logE�=F �

p�
‚E�=F �

p�
.z� /

D
X

�2Hom.F; xQp/
logE�=F �

p�
.‚E=Fp

.z//�

D
X

�2Hom.F; xQp/
logE�=F �

p�
P�

with P� 2 E� .F � /.
Thus we obtain

Corollary 5.6. If in addition to the hypothesis of Theorem 5.4, we have E=F being
split multiplicative at p, then

d2

dk2
Lp.k=2; k; f1/

ˇ̌̌
kD2 D l

� X
�2Hom.F; xQp/

logE�=F �
p�

P�
�2

(5.19)

for P 2 E.F /, and l 2 Q�. The point P is non-torsion, if and only ifL0.1; E=F / ¤ 0.

6. Base change arguments

In this final section, let E=Q be an elliptic curve, which is modular by [37], [32],
[8], corresponding to a weight two elliptic eigenform fE (i.e., a Hilbert eigenform
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over Q). Let N be the conductor of E=Q (and hence that of fE ), and as in the
previous sectionE=Q is multiplicative at p. We would like to establish Theorem 5.4
without assuming that E=Q is multiplicative at some prime other than p.

The idea is to consider the base change E=F , where F is a suitably chosen
real quadratic extension of Q. Theorem 5.4 is known for E=F . Suitable descent
arguments allow us to get the statement for E=Q.

First, we would like to establish a factorization formula, relating the p-adic L-
functions of a elliptic modular form, and the p-adic L-function attached to the cor-
responding Hilbert modular form obtained by base change. The situation is parallel
to Proposition 5.1.

The reader may notice that most of the arguments in this section is not specific
to the ground field Q. Indeed, the only place where this is essential is the proof of
Lemma 6.1 and Proposition 6.4 below, where we make use of a non-vanishing result
of Rohrlich [28], [29] on twisted L-values, which was proved only for the ground
field Q. If the result of Rohrlich can be extended to general totally real fields, then
everything in this section would work without the restriction to Q.

Here is the setup: let 1, 2 be two quadratic Hecke characters of Q (i.e., Dirichlet
characters), whose conductors c 1 , c 2 are relatively prime to each other, and also
prime to the integer N above. Assume that sig. 1/ D sig. 2/ D w 2 f˙1g. Then
as in Section 3.1, the character  1 2 defines a quadratic extension F of Q, which
is real quadratic by the condition on the signatures. The pair  ; 2 corresponds to a
genus character  F of F . One sees that sig. F / D w � 1 D .w;w/. In conforming
with the assumption in this paper, p will be inert in F , so this amounts to requiring
that  1.p/ D � 2.p/.

First recall the formalism of the base change operation. Let g be an elliptic cuspi-
dal eigenform of weight k � 2, of levelN . To simplify the arguments, assume that k
is even, and that the character of g is trivial. Given the real quadratic extension F=Q,
denote by g the base change of g from Q to F , which is a cuspidal Hilbert eigenform
of parallel weight k, known as the Doi–Naganuma lift of g (cf. [9], Section 1.7). For
simplicity we assume that the level N is relatively prime to the discriminant of F .

By the definition of base change we have the following relation between the L-
function of g and that of g. Denoting by � the Dirichlet character corresponding to
the real quadratic extension F=Q, we have

L.s; g/ D L.s; g/ � L.s; g; �/:
This is equivalent to the following relations between the (normalized) Fourier coef-
ficients of g and g (cf. [9], p. 89). For any (rational) prime v let c.v; g/ be the v-th
Fourier coefficient of g. First suppose that v − N . Let ˛.v; g/, ˇ.v; g/ be the roots
of the characteristic polynomial

X2 � c.v; g/X C vk�1:
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Similarly if v is a prime of F , with v − N , let ˛.v; g/; ˇ.v; g/ be the roots of

X2 � C.v; g/X C N vk�1 :

If v splits in F , i.e., if vOF D v v0, then we have

˛.v; g/ D ˛.v0; g/ D ˛.v; g/ (6.1)

ˇ.v; g/ D ˇ.v0; g/ D ˇ.v; g/

C.v; g/ D C.v0; g/ D c.v; g/:

On the other hand, if v is inert in F , so that v WD vOF is a prime, then

˛.v; g/ D ˛.v; g/2; ˇ.v; g/ D ˇ.v; g/2

C.v; g/ D ˛.v/2 C ˇ.v/2 D c.v; g/2 � 2vk�1:
(6.2)

One has similar relations for the Fourier coefficients for primes dividing DF or the
level N of g. Namely if vjN , then C.v; g/ D C.v0; g/ D c.v; g/ when vOF D v v0
splits, and C.v; g/ D c.v; g/2 when vOF D v is inert. Finally if v ramifies in F ,
then C.v; g/ D c.v; g/ for the prime v of F above v.

From these relations, one see in particular that Q.g/ � Q.g/.

Lemma 6.1. With the above notations, the expression

�.g/ WD D
�1=2
F .�wg /

2.�w1g /�1 (6.3)

lies in Q.g/.

Proof. Let T be the set of finite order Hecke characters � of Q, that are unramified
at primes outside p (including the infinite place); in classical language, this is the set
of even Dirichlet characters with conductors a power of p. Consider the following
condition:

L.k � 1; g;  1�/ ¤ 0; L.k � 1; g;  2�/ ¤ 0: (6.4)

If k � 4, then by Proposition 2 of [30], condition (6.4) is satisfied for any � 2 T .
For k D 2, then by the main result of [28], [29], (6.4) is satisfied for all but finitely
many � 2 T . Thus pick a non-trivial Q� 2 T that satisfies (6.4) (so in particular p
divides the conductor of Q�).

Let Q�F be the Hecke character of F obtained by pulling back Q� via the norm map
N F=Q, i.e.,

Q�F D Q� B N F=Q :

Then we have the following identity of the complex L-functions:

L.s; g;  F Q�F / D L.s; g;  1 Q�/ � L.s; g;  2 Q�/:
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So in particular

L.k � 1; g;  F Q�F / D L.k � 1; g;  1 Q�/ � L.k � 1; g;  2 Q�/ ¤ 0: (6.5)

Again from Proposition 7.1 ofAppendix I, we have the following identities relating
the conductors and the Gauss sums:

N F=Q c F Q�F D N F=Q c Q�F D c2Q�;
DF D c 1c 2 ;

�.. F Q�F /�1/ D D
�1=2
F �.. 1 Q�/�1/ � �.. 2 Q�/�1/:

(6.6)

Making use of equations (5.1) (applied to L.k � 1; g;  F Q�F /, L.k � 1; g;  1 Q�/ and
L.k � 1; g;  2 Q�/), (6.5) and (6.6), we obtain by direct computation

�.g/ D Lalg.k � 1; g;  F Q�F /
Lalg.k � 1; g;  1 Q�/ � Lalg.k � 1; g;  2 Q�/ (6.7)

with �.g/ defined as in (6.3).
Since the numbers

Lalg.k � 1; g;  F Q�F /; Lalg.k � 1; g;  1 Q�/ and Lalg.k � 1; g;  2 Q�/
are algebraic numbers, we deduce that �.g/ is algebraic. To pin down its field of
definition more precisely, let h 2 Aut.xQ =Q.g// be arbitrary. Since Q.g/ � Q.g/,
we also have h 2 Aut.xQ =Q.g//.

Noticing that since  1,  2 and  F take values in f˙1g, we see, by (5.2),

Lalg.k � 1; g;  1 Q�h/ D Lalg.k � 1; g;  1 Q�/h ¤ 0;

Lalg.k � 1; g;  2 Q�h/ D Lalg.k � 1; g;  2 Q�/h ¤ 0;

Lalg.k � 1; g;  F Q�hF / D Lalg.k � 1; g;  F Q�F /h ¤ 0:

In particular, in the above computation, we could replace Q� by Q�h, and so equation
(6.7) holds with Q� replaced by Q�h. We deduce

�.g/ D Lalg.k � 1; g;  F Q�F /
Lalg.k � 1; g;  1 Q�/ � Lalg.k � 1; g;  2 Q�/

D Lalg.k � 1; g;  F Q�hF /
Lalg.k � 1; g;  1 Q�h/ � Lalg.k � 1; g;  2 Q�h/

D
�

Lalg.k � 1; g;  F Q�F /
Lalg.k � 1; g;  1 Q�/ � Lalg.k � 1; g;  2 Q�/

�h
D �.g/h

which implies that �.g/ 2 Q.g/, as required. �
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Now assume that g is ordinary at p. For the sake of simplifying the arguments,
assume that the weight k satisfies k � 2 mod p� 1. As in the proof of Lemma 6.1,
for any finite order Hecke character� of Q, let�F WD �BN F=Q be the corresponding
Hecke character of F .

Lemma 6.2. For any finite order Hecke character � of Q, unramified at places
outside p, we have

Lp.k � 1; g;  F �F / D �.g/Lp.k � 1; g;  1�/ � Lp.k � 1; g;  2�/:

Proof. Similar to the computations leading to equation (6.7) in the proof of Lemma 6.1,
we have

Lalg.k � 1; g;  F �F / D �.g/Lalg.k � 1; g;  1�/ � Lalg.k � 1; g;  2�/: (6.8)

Lemma 6.2 then follows by combining equation (6.8) with equation (5.3) (applied to
Lp.k�1; g;  F �F /; Lp.k�1; g;  1�/ andLp.k�1; g;  2�/), and the computation
(using  1.p/ D � 2.p/ and that ˛.p; g/ D ˛.p; g/2):

�
1 �  1�.p/p

k�2

˛.p; g/

��
1 �  2�.p/p

k�2

˛.p; g/

�
D

�
1 � .�.p/pk�2/2

˛.p; g/2

�

D
�
1 �  F �F .p/N pk�2

˛.p; g/

�

(here we have used  F .p/ D 1, because the image of p D pOF in Pic.OF / comes
from the image of p in Pic.Z/, which is trivial). Similarly,

�
1 � . 1�/

�1.p/ˇ.p; g/
pk�1

��
1 � . 2�/

�1.p/ˇ.p; g/
pk�1

�

D
�
1 � . F �F /

�1.p/ˇ.p; g/
N pk�1

�
: �

Proposition 6.3. We have the factorization formula of p-adic L-function:

Lp.s; g;  F / D �.g/Lp.s; g;  1/ � Lp.s; g;  2/:

Proof. The proof follows the same lines of argument of Proposition 9.3 of [26], using
Lemma 6.2 above. �

We now come back to the setting of the beginning of this section. Let fE be the
base change of fE to F . Then fE corresponds to E=F (so E=F is modular). Let
f1 be the Hida family lifting fE . The Hida family f1 lifting fE can be obtained
from f1 by base change. More precisely we can construct the ƒ�-adic eigenform
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f1 using formula similar to (6.1) and (6.2), i.e., for primes v of F define C.v; f1/
by the following formula:

C.v; f1/ D C.v0; f1/ D c.v; f1/ if vOF D v v0 splits:

If vOF D v is inert in F , then

C.v; f1/ D
´
c.v; f1/2 � 2vhvik�2 if v − N (here k is a variable),

c.v; f1/2 if vjN (in particular for v D p/:

If v ramifies in F , with v the prime of F above v, then

C.v; f1/ D c.v; f1/:

One then definesC.m; f1/ for other ideals by (2.11). These data defines theƒ�-adic
form f1, and for integers k 2 U \ Z�2 for a suitable p-adic neighbourhood U of 2,
the weight k specialization fk of f1 is the cuspidal Hilbert eigenform that is the base
change lift of the weight k specialization fk of f1. Let f #

k
and f#

k
be the newforms

attached to weight k specializations of f1 and f1 (so that f#
k

is the base change lift
of f #

k
to F ).

Proposition 6.4. Up to shrinkingU , there is a p-adic analytic function �.k/, defined
on U , such that for k 2 U \ Z�2, with k � 2 mod p � 1, one has

�.k/ D �.f #
k /:

Proof. With notations as in the proof of Lemma 6.1, choose a Q� 2 T , whose conductor
is divisible by p, such that

L.1;E=F; F Q�F /; L.1;E=Q;  1 Q�/ and L.1;E=Q;  2 Q�/
are non-zero. Since p divides the conductor of Q�, we have by equation (5.3) that

Lp.1; E=Q;  1 Q�/ D Lalg.1; E=Q;  1 Q�/;
Lp.1; E=Q;  2 Q�/ D Lalg.1; E=Q;  2 Q�/;

Lp.1; E=F; F Q�F / D Lalg.1; E=F; F Q�F /:
Hence up to shrinking U , we may assume that the p-adic analytic functions

Lp.k � 1; k; f1;  1/; Lp.k � 1; k; f1;  2/ and Lp.k � 1; k; f1;  F /

are non-zero on U . Thus, if we define

�.k/ WD Lp.k � 1; k; f1;  F /
Lp.k � 1; k; f1;  1/Lp.k � 1; k; f1;  2/

;
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then �.k/ is p-adic analytic on U , and Lemma 6.2 shows that, for k 2 U \ Z�2,
with k � 2 mod p � 1,

�.k/ D �.f #
k /

as required. �

We now draw the corollary that we need:

Corollary 6.5. For k 2 U , we have

Lp.k=2; k; f1;  F / D �.k/Lp.k=2; k; f1;  1/ � Lp.k=2; k; f1;  2/: (6.9)

Proof. Propositions 6.3 and 6.4 show that this holds for integers k 2 U \ Z�2, with
k � 2 mod p � 1. Since both sides are p-adic analytic functions of k, the result
follows. �

We are now in a position to extend Theorem 5.4 to the elliptic curveE=Q, without
assuming that E=Q is multiplicative at some prime other than p. Thus we are only
assuming that N D Mp, where p does not divide M . Let  1 be a quadratic Hecke
character of Q, with conductor relatively prime to N , satisfying

 1.p/ D ˛.p/ WD ˛.p;E=Q/;

�E=Q. 1/ D �1:
Let  2 be a quadratic Hecke character of Q, with conductor relatively prime to

that of  1 and to N , satisfying the following conditions:

(1) sig. 2/ D sig. 1/.

(2)  2.p/ D � 1.p/.
(3)  2.q/ D  1.q/ for all primes q dividing M .

(4) L.1;E=Q;  2/ ¤ 0.

Note that for any  2 satisfying (1) to (3), we have (using (5.5) again)

�E=Q. 2/ D ��E=Q. 1/ D 1;

so the existence of  2 that satisfies (1) to (4) follows again from [15]. Note that (2)
implies  2.p/ D �˛.p;E=Q/, so the p-adic L-function Lp.s; E=Q;  2/ does not
have an exceptional zero at s D 1. So Lp.1; E=Q;  2/ 2 Q�.

Let F be as above the real quadratic extension of Q cut out by  1 2, and  F the
genus character of F defined by the pair  1;  2.

Consider the base change E=F . We have

˛.p; E=F / D ˛.p;E=Q/2 D 1 D  F .p/:
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On the other hand, the factorization formula for the complex L-functions,

L.s;E=F; F / D L.s;E=Q;  1/ � L.s;E=Q;  2/; (6.10)

together with the hypothesis that L.1;E=Q;  2/ ¤ 0, shows that the order of van-
ishing of L.s;E=F; F / at s D 1 coincides with that of L.s;E=Q;  1/, which is
odd, i.e.,

�E=F . F / D �E=Q. 1/ D �1:
Since ŒF W Q� D 2 is even, we may apply Theorem 5.4 to the p-adic L-function

Lp.k=2; k; f1;  F / to get

d2

dk2
Lp.k=2; k; f1;  F /

ˇ̌̌
kD2 D l.logNormE=Fp

P F /
2;

where l 2 Q�, and P F 2 .E.F  F /˝ Q/ F is non-torsion if and only if

L0.1; E=F; F / ¤ 0:

By (6.10), and the fact that L.1;E=Q;  2/ ¤ 0, we have

L0.1; E=F; F / D L0.1; E=Q;  1/ � L.1;E=Q;  2/:
Hence

L0.1; E=F; F / ¤ 0 if and only if L0.1; E=Q;  1/ ¤ 0:

By (6.9), and the fact that bothLp.k=2; k; f1;  F / andLp.k=2; k; f1;  1/ van-
ishes to order at least two at k D 2, we have

d2

dk2
Lp.k=2; k; f1;  F /

ˇ̌̌
kD2 D �.2/Lp.1; E=Q;  2/

d2

dk2
Lp.k=2; k; f1;  1/

ˇ̌̌
kD2

with �.2/ 2 Q� by Lemma 6.1.
Define

l 0 WD �.2/�1 � Lp.1; E=Q;  2/�1l D 2�1�.2/�1 � Lalg.1; E=Q;  2/
�1l:

Then l 0 2 Q�. It remains to deal with the term involving logNormE=Fp
.

Notice that, in the notations of Section 3.1, we have

F  F D Q 1; 2

and thus P F 2 .E.Q 1; 2/ ˝ Q/ F . As in Corollary 4.2, the assumption that
L.1;E=Q;  2/ ¤ 0 implies, by the result of [24] (applied to E=Q, so this case
already follows from earlier work of Kolyvagin), that

P F 2 .E.Q 1/˝ Q/ 1 :
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Clearing out denominators, we may assume that P F 2 E.Q 1/ 1 without affecting
the value of l mod .Q�/2. In particular, in the notations of Section 4.5, the image
of P F in E.Qp2/ lies in E.Qp2/˛.p/.

Let qE 2 Q�
p be the Tate period of E=Qp , and let

‚E=Qp W C�
p =q

Z
E ��!� E.Cp/

be the Tate uniformization for the Qp2-points of E=Qp , which is also the Tate uni-
formization for E=Fp. Recall from Section 2.11, that the property of the Tate uni-
formization gives E.Qp2/˛p D ‚E=Qp .Qp/, so in particular we have

P F D ‚EQp
.z/

with z 2 Q�
p . So in particular

logNormE=Fp
.P F / D logqE N Fp=Qp .z/ D 2 logqE .z/ D 2 logE=Qp .P F /:

Thus to conclude, if we let

l 00 WD 2�.2/�1Lalg.1; E=Q;  2/
�1l; (6.11)

then

d2

dk2
Lp.k=2; k; f1;  1/

ˇ̌̌
kD2 D l 00.logE=Qp P/2 (6.12)

with P D P F 2 .E.Q 1/˝ Q/ 1 non-torsion if and only if L0.1; E=Q;  1/ ¤ 0.

Remark 6.6. In [5], equation (6.12) is applied to the study of the question of ratio-
nality of Stark–Heegner points. For this purpose, they need to know the value of l 00
mod .Q�/2. See the discussion of Remark 5.5. These suggests that the conclusion
of remark 5.5 holds for E=Q even without assuming that E=Q is multiplicative at
some prime other than p. Thus for  2 as above, we state the following conjectural
formula:

l 00 ‹D Lalg.1; E=Q;  2/ mod .Q�/2: (6.13)

On the other hand, using (6.11), (6.3) and (5.18), we have

l 00 D Lalg.1; E=Q;  2/ � 2D
1=2
F N F=Q cı L.1;E=F; ı/

�.ı/.�
sig. 1/
fE

/2
mod .Q�/2; (6.14)

where ı is a quadratic Hecke character of F , unramified at the primes dividing the
conductor of E=F , that satisfies
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(1) sig.ı/ D sig. F / D .sig. 1/; sig. 1//,

(2) ı.p/ D � F .p/ D �1,

(3) ı.l/ D  F .l/ for any prime l ¤ p dividing the conductor of E=F ,

(4) L.1;E=F; ı/ ¤ 0.

Thus in order for (6.13) to hold, we are led to

2
D
1=2
F N F=Q cı L.1;E=F; ı/

�.ı/.�
sig. 1/
fE

/2

‹D 1 mod .Q�/2: (6.15)

As a particular case, take  1 to be trivial. Let F be a real quadratic extension of
Q, in which p is inert, and all primes q ¤ p dividing the conductor of E=Q splits
in F . Let ı a quadratic Hecke character of F , unramified at the primes dividing the
conductor of E=Q, such that

(1) sig.ı/ D .1; 1/,

(2) ı.p/ D �1,

(3) ı.l/ D 1 for any prime l ¤ p dividing the conductor of E=F .

Then, is it true that the expression

2
D
1=2
F N F=Q cı L.1;E=F; ı/

�.ı/.�C
fE
/2

is the square of a rational number? This would be consistent with the Birch and
Swinnerton-Dyer conjecture. For more on this, see [27]. We remark that for such ı,
the restriction ıjA�

Q
is not trivial, so this is not a situation where Waldspurger type

results [35] can be directly applied.

Here, we are content to draw the following:

Corollary 6.7. In the situation (6.15), suppose thatE=Q has multiplicative reduction
at some prime other thanp, and thatL0.1; E=Q;  1/ ¤ 0 (in addition to the condition
L.1;E=Q;  2/ ¤ 0, and the above hypothesis onF and ı), then the expression (6.15)
is the square of a rational number.

Proof. Under the above assumption on E=Q (in particular that it is multiplicative at
some prime other than p), we have by part (4) of Theorem 5.4 of [4] that

d

dk2
Lp.k=2; k; f1;  1/

ˇ̌̌
kD2 D l.logE=Qp P0/2
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for some l 2 Q�, with l D Lalg.1; E=Q;  2/ mod .Q�/2, and P0 2 .E.Q 1/ ˝
Q/ 1 non-torsion (which is the conclusion of remark 5.5 applied to E=Q). On the
other hand, by equation (6.12) and (6.14), we also have

d

dk2
Lp.k=2; k; f1;  1/

ˇ̌̌
kD2 D l 00.logE=Qp P/2

with l 00 D l � c for some c 2 Q� satisfying

c D 2
D
1=2
F N F=Q cı L.1;E=F; ı/

�.ı/.�
sig. 1/
fE

/2
mod .Q�/2

and P 2 .E.Q 1/ ˝ Q/ 1 again non-torsion. The corollary thus follows from the
fact that dimQ.E.Q 1/˝ Q/ 1 D 1. �

To conclude we state another corollary of (6.12), which is a special case of a
conjecture of Greenberg (this is stated in [4] in the case when E=Q is multiplicative
at some prime other than p):

Corollary 6.8. Suppose that E=Q is split multiplicative at p, and L0.1; E=Q/ ¤ 0

(so that the sign of the functional equation of the p-adic L-function Lp.s; E=Q/ is
C1). Then there exists a p-adic neighborhood U of 2, such that L.k=2; f#

k
/ ¤ 0 for

k 2 U \ Z>2, k � 2 mod p � 1.

7. Appendix I

Here we prove a result on Gauss sums that is used for the proof of Proposition 5.1
and Lemma 6.1.

In general, let L be a number field. For any infinite place � of L, define the
modified form of Euler’s � function as follows:

G�.s/ D
´

�s=2�.s=2/ if � is real,

2.2
/�s�.s/ if � is complex.

Let ı be a finite order Hecke character of L, and ı� be the local component of ı at
the place �. Define

m�.ı/ D
´
0 if � is complex, or � is real and ı�.�1/ D 1;

1 if � is real and ı�.�1/ D �1:
Let L.s; ı/ be the Hecke L-function associated to ı. Define the completed L-

function:

ƒ.s; ı/ D .DL NL=Q cı/
s=2

Y
�j1

G�.s Cm�.ı// L.s; ı/:
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Then ƒ.s; ı/ satisfies the functional equation

ƒ.1 � s; ı/ D �.ı/

iM.ı/ NL=Q c
1=2

ı

ƒ.s; ı/ (7.1)

with M.ı/ D P
�j1m�.ı/, and �.ı/ being the Gauss sum of ı.

If ı D 1 is trivial, then L.s; 1/ is just the Dedekind zeta function �L.s/, and
ƒ.s; 1/ is the completed zeta function of L. In this case (7.1) reduces to the familiar
functional equation:

ƒ.1 � s; 1/ D ƒ.s; 1/:

Now let F be a number field, and  1;  2 be quadratic Hecke characters of F ,
whose conductors are relatively prime to each other. As in Section 3.1, the pair 1;  2
cuts out a quadratic extension K of F , and corresponds to a genus character  K of
K. The character  K is unramified at all the finite places ofK, thus c K D OK . On
the other hand, let w be an infinite place of K that lies above �, then w is real if and
only ifm�. 1/ D m�. 2/, in which case there are two real places w;w0 ofK above
�, with mw. K/ D mw0. K/ D m�. 1/ D m�. 2/. One also sees that

M. K/ D 2 � number of (real) places � of F such that m�. 1/ D m�. 2/ D �1:
Let � be a finite order Hecke character of F , assumed to be unramified at all the

infinite places, so thatm�. i�/ D m�. i /. For our purpose, we will also assume that
c� is relatively prime to c 1 and c 2 , so that c i� D c i c�. Define�K WD �BNK=F .

Proposition 7.1. The following identities hold true:

DK D D2
F N F=Q c 1 c 2 ;

�. K�K/ D iM. K/�M. 1/�M. 2/DFD�1=2
K �. 1�/�. 2�/:

(7.2)

Proof. We have the following identities:

L.s;  K�K/ D L.s;  1�/L.s;  2; �/;

.
�s=2�.s=2// � .
�.sC1/=2�..s C 1/=2// D 2.2
/�s�.s/

(the second one is the duplication identity for � function). Hence we obtain

ƒ.s;  K�K/

D .DK NK=Q c�K /
s=2.D2

F N F=Q c 1 N F=Q c 2/
�s=2ƒ.s;  1�/ƒ.s;  2�/:

On the other hand, by comparing the functional equations forƒ.s;  K�K/; ƒ.s;  1�/
and ƒ.s;  2�/, we see that the function

F�.s/ WD .DK NK=Q c�K /
s=2.D2

F N F=Q c 1 N F=Q c 2 N F=Q c2�/
�s=2 (7.3)
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satisfies the functional equation

F�.1 � s/ D A� � F�.s/;
where

A� D iM. 1/CM. 2/�M. K/
�. K�K/

�. 1�/�. 2�/

� .N F=Q c 1 N F=Q c 2 N F=Q c2�/
1=2

NK=Q c
1=2
�K

:

(7.4)

From this, one easily sees that A� and F�.s/ must be identically equal to one.
Take � to be trivial. Then from (7.3) we obtain:

DK D D2
F N F=Q c 1 N F=Q c 2

thus giving the first equation of (7.2). Now going back to general �, we obtain from
(7.3) again:

NK=Q c�K D N F=Q c2� :

Plugging these into (7.4), and using A� D 1, we finally obtain the other identity of
(7.2). �

It is then clear that (6.6) used in the proof of Lemma 6.1 follows from Proposi-
tion 7.1.

For (5.10) used in the proof of Proposition 5.1, we take � to be trivial, and K
to be a CM field. One has M. K/ D 0, while M. 1/ C M. 2/ D d D ŒF W Q�.
Proposition 7.1 implies the claim, by noting that

�. K/ D 1

which follows since c K D OK .

8. Appendix II

Here we prove Proposition 2.9 and Theorem 2.10. The arguments are well-known.
We include the proofs here for the convenience of the reader.

Recall the open compact subspace X 0 of X defined by

X 0 D c n.O�
Fp

� pOFp/

which is stable under Ip (as in Section 2.4, c is the closure in O�
Fp

of the group of
totally positive units of OF ). Let D 0 be the space of Cp-valued measures onX 0, with
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the evident structure of a module over zƒF and the action of Ip. As in the case of D�,
one has maps

D 0 s0

,! D
p0

! D 0

defined in the evident manner, and allow us to define, for �0 2 D 0, and g 2
M2.pI OFp/ \ GL2.Fp/,

g ? �0 WD p0.g � s0.�0//:

One checks that this defines an action of the semigroup M2.pI OFp/ \ GL2.Fp/ on
D 0 extending that of Ip. Thus for f a function on X 0, and � � X 0 open compactZ

�

f d.g ? �0/ D
Z
g�1.�/\X 0

f jg d�0:

The measure g ? �0 is supported on g.X 0/ \X 0.
Consider the map

D� ! D 0 (8.1)

given by restriction of measures. This map is Ip-equivariant.
Let † D †.nC;n�/; †0 D †.nC;n�/ \ †.p;n�/ D †.p nC;n�/. Thus

†0
p D Ip. The restriction map (8.1) induces the Ip-equivariant map

S.†;D�/ ! S.†0;D 0/: (8.2)

It is clear that the specialization map (2.10) factors through (8.2).
First, we observe:

Proposition 8.1. The map (8.2) is an isomorphism.

Proof. For a 2 kp, denote by �a D �
a 1
1 0

� D �
1 a
0 1

� �
0 1
1 0

� 2 GL2.OFp/.
Then one can check that

OFp � O�
Fp

D
G
a2kp

�a.O
�
Fp

� pOFp/:

Denote zX WD XnX 0 D c n.Op � O�
Fp
/. Then

zX D
G
a2kp

�aX
0:
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Now given ˆ0 2 S.†0;D 0/, suppose for the moment that ˆ 2 S.†;D�/ is a
form that maps to ˆ0 under (8.2). Then for any continuous function f on X ,Z

X

f dˆ.g/ D
Z
X 0

f dˆ.g/C
Z

zX
f dˆ.g/

D
Z
X 0

f dˆ.g/C
X
a2kp

Z
	aX 0

f dˆ.g/

D
Z
X 0

f dˆ.g/C
X
a2kp

Z
X 0

f j�a dˆ.g � �a/

D
Z
X 0

f dˆ0.g/C
X
a2kp

Z
X 0

f j�a dˆ0.g � �a/:

Thus in general, given ˆ0 2 S.†0;D 0/ define ˆ by the following rule: for any
continuous function f on X ,Z

X

f dˆ.g/ D
Z
X 0

f dˆ0.g/C
X
a2kp

Z
X 0

f j�a dˆ0.g � �a/:

Then one checks that ˆ 2 S.†;D�/, and this provides the inverse to the map (8.2).
�

The isomorphismS.†;D�/ ! S.†0;D 0/ commutes with the action of the Hecke
operators Tl and Tl;l for l not dividing p nC n� and the Ul for l j nC n�. For the
Hecke operators at p we have:

Proposition 8.2. The isomorphism (8.2) intertwines the action of Tp on S.†;D�/
and that of Up on S.†0;D 0/.

Proof. This is a direct computation. Thus letˆ 2 S.†;D�/, and letˆ0 be the image
of ˆ under the isomorphism (8.2).

Given a continuous function f onX we have, for g 2 yB�, the following formula
for Tpˆ (equation (2.2)): by taking

�a D
�
p a

0 1

�
for a 2 kp

and

�1 D
�
1 0

0 p

�
we have

GL2.OFp/

�
p 0

0 1

�
GL2.OFp/ D

G
a2P1.kp/

�a GL2.OFp/:
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HenceZ
X

f dTpˆ.g/ D
Z
X

f d�1.p/ ? ˆ.g�1/C
X
a2kp

Z
X

f d�a ? ˆ.g�a/

D
Z
X 0

f d�1 ? ˆ.g�1/C
X
a2kp

Z
zX
f d�a ? ˆ.g�a/

(in the last equality we are using the fact that the measures �1 ? ˆ.g�1/ and �a ?
ˆ.g�a/ are supported on X 0 and zX respectively).

Whereas in general for ‰ 2 S.†0;D 0/, and function h on X 0, we have (equation
(2.3)) that Z

X 0

h dUp‰.g/ D
X
b2kp

Z
X 0

h d O�b ? ‰.g�b/

D
X
b2kp

Z
O��1
b
X 0\X 0

hj O�b d‰.g O�b/

D
X
b2kp

Z
X 0

hj O�b d‰.g O�b/:

Here

O�b D
�
1 0

bp p

�
for b 2 kp:

One has

O�
Fp

� pOFp D
G
b2kp

O�b.O�
Fp

� pOFp/

which implies

X 0 D
G
b2kp

O�bX 0:

(In particular O��1
b
X 0 	 X 0, explaining the last equality in the above computation.)

Now suppose that ẑ 2 S.†;D�/ corresponds to Up.ˆ
0/ under the isomorphism

(8.2). Then as we have seen in the proof of Proposition 8.1, for f a continuous
function on X ,Z

X

f d ẑ .g/ D
Z
X 0

f dUpˆ
0.g/C

X
a2kp

Z
X 0

f j�a dUpˆ
0.g�a/:
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Now Z
X 0

f dUpˆ
0.g/ D

X
b2kp

Z
X 0

f j O�b dˆ0.g O�b/

D
X
b2kp

Z
X 0

f j O�b dˆ.g O�b/

D
X
b2kp

Z
O�bX 0

f d O�b ? ˆ.g O�b/:

Notice that O�b D �1�b , where �b D �
1 0
b 1

� 2 GL2.OFp/. Hence

O�b ? ˆ.g�b/ D �1 ? ˆ.g�1/:

So we have Z
X 0

f dUpˆ
0.g/ D

X
b2kp

Z
O�bX 0

f d�1 ? ˆ.g�1/

D
Z
X 0

f d�1 ? ˆ.g�1/:
(8.3)

Similarly we can treat the other terms:Z
X 0

f j�a dUpˆ
0.g�a/ D

X
b2kp

Z
X 0

f j�a O�b dˆ0.g�a O�b/

D
X
b2kp

Z
X 0

f j�a O�b dˆ.g�a O�b/:

Now a direct computation gives

�a O�b D �a�b;

hence the above integral becomes

X
b2kp

Z
X 0

f j�a�b dˆ.g�a�b/ D
X
b2kp

Z
	bX

0

f j�a dˆ.g�a/

D
Z

zX
f j�a dˆ.g�a/

D
Z

zX
f d�a ? ˆ.g�a/:
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The last equality holds because ��1
a . zX/ \X D zX . So we haveZ

X

f d ẑ .g/ D
Z
X

f dTpˆ.g/:

Thus we conclude that ẑ D Tpˆ. �

Now let ˆ01 2 S.†0;D 0/. For integer k � 2, let ˆk D �k;�.ˆ01/. Then

Lemma 8.3.
�k;�.Upˆ

01/ D Upˆk :

Proof. Let P 2 Bk . Then for g 2 yB�,

�k;�.Upˆ
01/.g/.P / D

Z
X 0

fP dUpˆ
01.g/

(where fP is as in equation (2.9)). On the other hand, as we saw in equation (8.3)
during the proof of Proposition 8.2,Z

X 0

fP dUpˆ
01.g/ D

X
a2kp

Z
X 0

fP j O�a dˆ01.g O�a/:

Hence

�k;�.Upˆ
01/.g/.P / D

X
a2kp

Z
X 0

fP j O�a dˆ01.g O�a/

D
X
a2kp

ˆk.g O�a/.P j O�a/

D Up.ˆk/.g/.P /: �

Corollary 8.4 (Proposition 2.9). Assume thatˆ1 2 S.†;D�/, andˆk D �k;�.ˆ1/.
Then

�k;�.Tpˆ1/ D Upˆk :

Proof. Letˆ01 2 S.†0;D 0/ be the image ofˆ1 under the isomorphism (8.2). Then
by Proposition 8.2,

Tpˆ1 D Upˆ
01:

Thus using Lemma 8.3

�k;�.Tp.ˆ1// D �k;�.Up.ˆ
01// D Up.�k;�ˆ01/ D Up.ˆk/: �
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We draw another corollary of Proposition 8.1:

Corollary 8.5. The specialization map

�2;� W S.†;D�/ ! S.†0; V2/

is surjective.

Proof. By Proposition 8.1 this amounts to showing that the specialization map

�2;� W S.†0;D 0/ ! S.†0; V2/

is surjective.
Let R0 be the Eichler order of B of level p nC such that †0 D . yR0/�. Choose a

set of representatives ftigniD1 2 yB� for the double coset B�n yB�=†0. For each i let
R0
i WD B \ ti yR0t�1i be the Eichler order of B of level p nC determined by ti . Then

each of the quotient .R0
i /

�=O�
F;C is a finite group (recall that O�

F;C is the group of
totally positive units of OF ). Let �i be the image of t�1i .R0

i /
�ti=O�

F;C in †0
p= c.

Then in general for any ZpŒ†p�-module M with the action of †p on M factors
through †p= c there is a bijection of Zp-modules:

S.†0;M/ ��!�
nM
iD1

M�i

ˆ 7�! fˆ.ti /gniD1
(hereM�i stands for the Zp-submodule of elements ofM invariant under�i ). So it
suffices to show that the maps �2 W .D 0�/�i ! .V2/

�i are surjective for i D 1; : : : ; n.
But the �i are finite groups, and D 0 is a Qp-vector space, so this follows from the
surjectivity of �2 W D 0 ! V2 D Cp . �

Remark 8.6. For each k � 2 the same argument shows, by using the surjectivity of
�k W D 0 ! Vk , that �k;� W S.†;D�/ ! .†0; Vk/ is surjective.

Proof of Theorem 2.10. This can be proved by the same methods as in [1] and [21]
(see also [2]), so we just provide a sketch. Letˆ 2 S.†0; V2/ D S.†.p;nC;n�/; V2/
be an eigenform that is new at primes dividing nC. Then there is a finite extension
E=Qp such that ˆ takes values in E. Multiplying ˆ by scalars if necessary, we can
further assume thatˆ takes values in O D OE (the ring of integers ofE). Denote by
S.†0; V2;O/ the O-module of forms with values in O, which is a finite free module
over O. Similarly let D�;O be the O-module of measures on X with values in O.
Then S.†;D�;O/ is a module over zƒF;O WD O ˝Zp

zƒF . The ring zƒF;O is compact,
and the zƒF;O-modules D�;O and S.†;D�;O/ are compact.
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The specialization map �2;� sends S.†;D�;O/ to S.†0; V2;O/. As in [1], Sec-
tion 5, let S.†0; V2;O/0 and S.†;D�;O/0 be the ordinary parts of S.†0; V2;O/ and
S.†;D�;O/, which is the maximal direct summand (as O-module and zƒF;O-module
respectively) over which the action of Tp is invertible (as usual Tp acts as Up on
S.†0; V2;O/). Thus ˆ 2 S.†0; V2;O/0. The arguments used for the proof of Theo-
rem 5.1 of [1] (known as control type theorems) show that �2;� induces an injection

�2;� W S.†;D�;O/0=P2S.†;D�;O/0 ,! S.†0; V2;O/0

here we identify the weight P2 2 XF of Section 2.4 as the prime ideal of zƒF;O
given by the kernel of P2. The compact version of Nakayama’s lemma implies that
S.†;D�;O/0 is a finite zƒF;O-module. In particular S WD S.†;D�;O/0˝ zƒF;O zƒQ;O

is finite over zƒQ;O , hence finite over ƒO WD O ˝Zp ƒ. The argument of [1],
Lemma 1.1, shows that S is torsion free over ƒO .

On the other hand, the proof of Corollary 8.5 shows that �2;� W S.†;D�;O/˝O

E ! S.†0; V2;O/˝O E is surjective, so without loss of generality we may assume
that ˆ lies in the image of S.†;D�;O/, hence in the image of S.†;D�;O/0 since ˆ
is ordinary. Let ˆ01 2 S be such that �2;1.ˆ01/ D ˆ.

Let P be the prime ideal of ƒO given by the kernel of the evaluation map at
k D 2. The localization SP is then finite and torsion-free over the discrete val-
uation ring ƒO;P, hence is finite free over ƒO;P. Let R be the ƒO;P-subalgebra
of EndƒO;P

.SP/ generated by the image of the Hecke algebra T (with T as in
Section 2.5). The algebra R is finite free over ƒO;P. The system of Hecke eigen-
values associated to the eigenform ˆ then gives rise to an algebra homomorphism
h W R ! E, and the kernel of h is a maximal ideal of R that lies over PƒO;P. Let
� be the normalization of the quotient of R by the minimal prime of R contained in
ker.h/ (which is again a DVR). Sinceˆ is new at primes dividing nC, the arguments
used to prove Theorem 3.6 of [21] (p. 381–383 of loc. cit.) show that � is unramified
overƒO;P (see especially the second equation on p. 383 of [21]). Fix an embedding
�=m� ! xQp (where m� is the maximal ideal of �). Then since � is unramified
over ƒO;P, there is an unique way to embed � into ƒ� extending the embedding of
ƒO;P into ƒ� (as in equation (2.5)).

As in loc. cit. there is a decomposition of ƒO;P algebras

R ˝ƒO;P
ƒ� Š ƒ� � K;

where the projection R ˝ƒO;P
ƒ� ! ƒ� is induced by the map R ! � ! ƒ�

(here K is just the complimentary algebra direct summand).
Let e� 2 R ˝ƒO;P

ƒ� be the idempotent corresponding to the projection onto
the ƒ�. Under the natural pairing

R ˝ƒO;P
ƒ� � SP �! SP ˝ƒO;P

ƒ� D S ˝ƒO
ƒ�
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put ˆ1 WD e�ˆ
01 2 S ˝ƒO

ƒ�. Then ˆ1 is an eigenform in S ˝ƒO
ƒ�. The

image of ˆ1 in S.†;Dcycl;�� / is then an eigenform that specializes to ˆ. �
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