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1. Introduction

In this paper, we give a partial generalization of the main results of Bertolini—-Darmon
[4] to elliptic curves over certain totally real fields.

Let F be a totally real field, and £/ F be a modular elliptic curve, i.e. associated
with a cuspidal Hilbert eigenform f ¢z over F of parallel weight two.

Let p be a fixed odd prime. We assume that p is inert in F, with p = pOF the
unique prime of F above p. Denote by L, (s, E/F) the p-adic L-function of E/F.
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Suppose that E is split multiplicative at p. Then by the results of [26], one always
has L,(1, E/F) = 0, called the phenomenon of exceptional zero, and a formula
relating L,,(1, £/ F) and the algebraic part of the L-value L¥9(1, E/F) is proved,
generalizing that of Greenberg—Stevens [16], [17]. We briefly recall the setup.

Let {f; } be the Hida family of parallel weights lifting f g, so in particular, fork > 2,
with k sufficiently close to 2 in the weight space, fy is a cuspidal Hilbert eigenform
of parallel weight k, and f, = f£. One has the p-adic L-function L, (s, fx) attached
to fr. The results of [26] show that these p-adic L-functions for different weights
can be interpolated to a two-variable p-adic L-function, i.e., there exists a p-adic
analytic function L, (s, k) of the two variables s and &, such that for £ > 2 an integer,
sufficiently close to 2 in the weight space, one has L,(s,k) = L,(s,fx). Under
the assumption that E is split multiplicative at p, L, (s, k) satisfies the functional
equation

Ly(k —s,k) = —€eg/rLp(s.k),

where eg,F is the sign for the functional equation of the complex L-function
L(s,E/F).

The central critical values for the p-adic L-functions of the Hida family are given
by L,(k/2.k). We have L,(k/2,k)|xr=>» = 0 (exceptional zero), and

1 aL,,(s 2) dL,(1,k)
p(k/2 k)‘ ds  ls=1 ok k=2
By [26] one has the formula
aLP(lvk) _ d alg .
ok k=2 dka(p’k)‘k=z LA, E/F); (1)

here «(p, k) is the U,-eigenvalue of the form fy.

Following Bertolini—-Darmon, we treat the case where the order of vanishing of
the complex L-function of E/F ats = 1 is exactly one, i.e., L(1, E/F) = 0, and
L'(1,E/F) # 0. The sign eg,r = —1, so from the functional equation, the order

of vanishing of L,(s,2) = L,(s, E/F) ats = 1 s even, so aL”(s 2)|S ;= 0. We

also have 222(L8)| — o by (1.1). Thus &L, (k/2.k)|,_, = 0. One is thus led
to look at the second derlvative of L,(k/2,k)atk = 2.

We can now state the main result of this paper. Let Q g be the Tate period of E / F,.
For o € Hom(F,Q,), let E®/F° be the elliptic curve which is split multiplicative
at the prime p° of F9, whose Tate period is given by Q¢ and which is obtained from
E/F by conjugating with o. Let |0950/F30 be the formal logarithm on E°/F

Then (see Theorem 5.4 and Corollary 5.6 for the precise statements):

Theorem 1.1. Supposethat L(1, E/F) =0but L'(1, E/F) # 0. Inthe case where
[F : Q]isodd, assumethat £/ F ismultiplicative at some prime other than p. Then
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there exists a global point P € E(F) ® Q, non-torsion, and a non-zero rational
number [ € Q*, such that

42 .
mLp(k/Lk)‘k:z :1( > 10Ggepg, (P ))
oeHom(F,Qp)

2

1.2)

The proof largely follows the method of Bertolini—-Darmon (with the exception
that in the case F # Q, the Shimura curves appearing in the argument are not of PEL
type, and have more than one geometric component when the strict class number of
F is bigger than one; see Section 4). In particular, the global point P turns out to
be the trace of a Heegner point, so the non-torsion assertion follows from Zhang’s
generalization [40] of the Gross—Zagier formula, together with the hypothesis that
L'(1,E/F) #0.

As in [4], the extra hypothesis on the conductor of E/F, when [F : Q] is odd,
is forced upon us by the use of the theorems of Jacquet-Langlands, and Cerednik—
Drinfeld.

In the case where F = Q, we are able to establish Theorem 1.1 without this extra
hypothesis, thus improving the main result of Bertolini—-Darmon.

Theorem 1.2. Suppose that E/Q is split multiplicative at p, and satisfies
L(1,E/Q) = 0but L'(1, E/Q) # 0. Then there is a non-zero rational number
[eQ*and P € E(Q) ® Q non-torsion, such that

d2
dk?

To do this, one considers base change to a suitable real quadratic field F, and
apply Theorem 1.1 to E/F. Suitable descent arguments allow one to obtain the
result over Q. See Section 6.

Finally we make some remarks about Theorem 1.1. In the case F = Q, formula
(1.2) can be regarded as a formula for a non-torsion rational point on E, in terms of
the central derivative of the two-variable p-adic L-function of E (by using p-adic
exponential map to invert the p-adic logarithm). However, when F # Q, (1.2)
falls short of giving such a formula, due to the cross terms involving E°/F°, for
o € Hom(F, Q).

The intrinsic difficulty is that, in the statement of Theorem 1.1, one considers
only the Hida family of parallel weights. In future work, we would like to obtain
such a formula, by considering Hida families of non-parallel weights. This would
involve considering mixed partial derivatives of the several variable-variable p-adic
L-function attached to the Hida family constructed in [2].

Lpk/2.K)|, _, = I(loggq, (P))*.
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Notation 1.3. As in the introduction, p is a fixed odd prime which we assume to be
inert in the totally real field F', with p the unique prime of O above p. Denote by
d the degree of F over Q. Thus the norm of p, N p, is equal to p¢, which we will
denote by ¢ in the sequel. Denote by F* the set of totally positive elements of F,

AFr the ring of adeles of F, and by F the ring of finite adeles. We have the adelic
norms | - [, and |- |z on A and F respectively.

For each prime [ of F, denote by val; the normalized valuation of Fy (or more
generally on the algebraic closure of Fy), whose value on the uniformizer of O, is
one.

In general we will denote by & the norm operation from F to Q, either over the
field itself, their completion, the adeles, or at the level of ideal (the subscripts that
occur would indicate the field extensions involved).

Denote by xq,cycl : Gal(Q /Q) — Z, the p-adic cyclotomic character, and by
X F.eyel the restriction of xq,cyel t0 Gal(Q /F). By class field theory, we will also
regard x r.cycl @S @ continuous Z;j—valued character on ﬁX/Fj = AL/ F"Feo
(here Fio 4 is the archimedean connected component of A%). The class field theory
isomorphism is normalized so that XF,cyc||(9;p isequalto N g, /q,,-

Fix algebraic closures Q and Qp of Q and Q, respectively. Denote by ord, the
valuation on Q,, normalized by the condition ord, (p) = 1. We also fix an embedding
of F, into Q,. Under our assumption that p is inert in F, we have F, = Qpa, the
unramified extension of Q,, of degree d.

We fix an embedding of Q into @,, once and for all in this paper. Under this embed-
ding, we can identify Hom(F, Q) with Hom(F, Q,), which under the assumption that
pisinertin F, isequal to Hom(F5, @,,), sothatinparticular N g/q(z) = N £, /q, (2)
forz e F.

In general, for any x € Fy,, and o: F, < Q, an embedding, we let x° € Q,
denote the image of x under o.

For any number field L, denote by Dy, the absolute value of the discriminant of
L over Q. If ¢ is a Hecke character of L of finite order, then by class field theory, v
can be regarded as a character of Gal(L /L), and we denote by L¥ the finite abelian
extension of L cut out by ker y. The conductor of v is noted as c,,. Regarding y as
taking values in Q, we denote, for i € Aut(Q), the character 4 o ¥ as y”.

Finally, if & is a group and y is a character of &, then for V' a representation of
©, we denote by V,, the y-component of V.
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2. Quaternionic automor phic forms

2.1. Basic definitions. Let n™ be an integral ideal of O . We assume throughout
the paper the following:

Condition 2.1. The ideal n™ is square-free, relatively prime to p, and such that the
number of prime ideal factors of n™ is congruent to [F : Q] mod 2. In particular,
n~ = OF isallowed if [F : Q] is even.

Let B be the quaternion algebra over F, which is ramified exactly at all the
archimedean places, and all places dividing n~. Note that B exists by Condition 2.1
onu~. Inparticular, B istotally definite, thatis, B® r , R isisomorphic to Hamilton’s
quaternions, for all the real places v: F — R. We denote by Nrdg,r the reduced
norm from B to F.

Let BX = (B ®F F)* be the group of finite adelic points of BX. Givenb € BX,
and a place v of F, we will denote by b, the component of » at v. We will generally
identify the finite places of F with prime ideals of O, so if v corresponds to a prime [,
then we will also write by for the corresponding component of b.

Fix an isomorphism of Fy-algebras,

lp: By = BQ®F Fy = My(Fy),

which induces an isomorphism of B and GL,(F,) (here for any ring A, we denote
by M, (A) the ring of 2 x 2 matrices with coefficients in A).

Let ¥ = [[; X be an open compact subgroup of B*. Assume that the image of
%, under ¢, is contained in GL2(OF,,).

Let M be a Z,-module, equipped with a left action of ¢, (X;).

Definition 2.2. An M -valued automorphic form on B* of level X is a function
o: B> M
that satisfies
D(ybu) = 1 (uy') - B(b) (2.1)

forally € B*,b € B*,u € X. Denote by S(X, M) the space of M -valued forms
of level X.

Note that ® € S(X, M) is determined by its values on a set of representatives of
the double coset B>\ B*/ X, which is finite (being both compact and discrete).
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Definition 2.3. For each embeddingo: F, — @p, and any integer n > 0, let Sym?.

be the C, vector space of homogeneous polynomials of degree » in the indeterminates

X7, Y7, with coefficients in C,. Define the right action of GL,(F,) on Sym. by
(Ply)(X?.Y?)

=P@®X° +b°Y%,c°X° +d°Y°%) fory = (CZ Z) € GLa(Fp).

For integers & > 2, put
Br= (X Symi?
o: Fp—Qp

with the tensor product right-action of GL,(F,). Define Vi to be the C,-dual of
By, with the dual left action of GL,(F,). We call S(X, V) the space of classical
automorphic forms on B* of parallel weight k, and level X.

Consider the following action of F*on S(Z, Vi), where given z € F*, it takes
® e S(XZ, V) to the form @', with ' (b) = ®(zb) for b € B*. This action factors
through the infinite idele class group

Zr(2) = FX/FX(OF N x)?

(here the superscript p refers to the removal of the component at the place p, while
the overline on F* (@5 N X)P refers to closure).
We have a natural surjection of Z ¢ (X) to the finite idele class group Clr (X):

Zr(2) = Clp(2) = F*/FX(OFNx)

whose kernel is given by the image of (9};p N X, in Zr(X) (here we are following
the notation of [21], Section 3, p. 313). R

From equation (2.1) and Definition 2.3, we see that the action of F>* on S(XZ, V),
when restricted to the image of O N Ty in ZF (), is given by X (@).
Definition 2.4. For each character n of Clg (%), define

S(Z. Vi, 1) = {® € S(T. Vi), ®(zb) = x5 &a(@n() "' 0(b)
forallz € F*,b € B*}.

The character 7 is called the nebentype of the form &.

It follows that we have a decomposition

S(Z. Vi) = P S, Vi, m),
n

where 7 runs over the characters of Clg (X).
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2.2. Hecke operators. Recall the definition of Hecke operators. For each prime [
at which B splits, and at which Xy is maximal, one can define the Hecke operators
Ty as follows. Fix an isomorphism ty: By — M, (Fy) such that Xy is identified as
GL2(OF,). Let 7y be an uniformizer of O, and let k¢ be the residue field at [. Given
a double coset decomposition:
6L, (0r,) (7(’; ?) L) = || 0a(DGLs(OF,).
aeP! (ky)

Define Ty on S(X, M) by the rule:

> aep (k) P(boa(l)) if [ #p,
Y aept () TalD) - @(boa (D)) if [ =p.

In the case of T, we need to assume that the action of ¢,(2Z;,) = GL2(O¢,) on M
extends to an action of the semi-group M>(Og,) N GL2(Fy).

If [ # p (in addition to the condition that B is split at [ and Xy is maximal), we
also define the operator 7ty by (cf. the discussion after definition 2.3):

(Tr@)(b) = { (2.2)

T ®(b) = ®(nh) forb € B

(here 7y is identified as the element of F* C B thatis equal to mr¢ at the place [ and
equal to one at other places). Using the fact that the classes of =y in Clg (%) for all
such [ exhaust Clg (%), we see that if ® € S(Z, V), then @ has a nebentype, i.e.,
lies in one of the component S(X, V4, n), if and only if it is an eigenvector for all the
operators Ty ¢, in which case

Ti® = n()' N (52 .

(Here n(l) := n(my), noting that n in unramified at [. Also note our convention about
X F.eyel @and the global class field theory isomorphism as in Notation 1.3.)

We next define the Hecke operators at a prime at which the level is not maximal.
For simplicity we do this only when the level is given by Iwahori subgroups.

In general if [ is a prime, m > 1, then we define the Iwahori subgroups /;» and
I; ym of GL,(OF,) of level [ by

][m = {(ZI 2) (S GLz(OFI), ¢c=0 mod 7T[m},

Il’Imz{(LCZ Z)EIIW,CI—IEO mOdT[[m}.

Also put

MZ([m;(QFI) = { (Lcl Z) S MZ((DFI)’ ¢c=0 mod T[Im},
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M>(1,0™; Op) = {(f Z) € Mr(I";09r), a=1 mod nrm}.

Suppose that[  n™, and X isalevel such that 7, (;m C Xy C Iym forsomem > 1
(we identify Xy with its image under ;). Given a double coset decomposition:

1 0 o
Iy pm (0 7TI) Iy ym = |_| 0a(D) 1y m,

acky

define Uy on S(X, M) by the rule

Zaek[ cb(baa ([)) if [ 75 p
> aek; Gall) - D(b6, (1)) if [=1p.

In the case of U,, (I = p), we need to assume that M has an action of the semi-group
M>(1,p™; Or,) N GL2(F,) compatible with that of Z,,.

One can take
~ 1 0
540 = (am m1):

where a € O, mapsto a € k.

In the particular case where [ = p and £, = I, the matrices 6, = 6,(p) has the
following interpretation (under our assumption on p we can take the uniformizer
to be p): let {L(a)}aex, bEthe g = p? sub-lattices of OF, ®p OF, of index equal
to g, other than the lattice p(Or, ® Of,). The matrices 6, satisfy

(Ur®)(b) = { (2.3)

6a(OFr, ® Or,) = Or, ®p Of,,
64(OF, ®p Or,) = L(a).

2.3. Choiceof levels. In this paper, the level X is defined by the groups of units of
local Eichler orders of B. Thus let a be an ideal of O, relatively prime to n™~. For
any prime [, let Ry be a local order of By satisfying the condition

Ry = the (unique) maximal order of By if [ divides n™,

resp.
Ry = an Eichler order of level "1 if [ is primeto n~.

For [ not dividing n—, we will assume that under the isomorphism ¢y : By — M, (Fy),
the image of Ry is the subring M, (1"¥1%; Og,) of M,(O¢,). Thus we have w(Ry) =

I valy (a) «
Vel
Let I/é = | |I Ry. Then R := B 1/3\ is an Eichler order of B of level a.
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We will denote by =(a, n™) the level given by R* for the above choices of the
local orders Ry. Also put

Zi(a,nT) ={u € E(a,n"), ur € I, para forall [|a}.

Note that for the level X (a, n™), the idele class group Clg (2 (a,u™)) is the
ray class group Clg (a) of conductor a times all the archimedean primes. Similarly
the infinite idele class group Z g (X1 (a, n™)) is equal to the ray class group Z g (a)
of conductor a p° times all the archimedean primes (in particular independent of
n”). For the levels X(a,n™) we have Clp(2(a,n™)) = Clp(OFr) = Clp and
Zr(Z(a,u7)) = Zr(Of) = ZF (here Clp = F /F (9;; is the strict ideal class
group of F, with similar remark applied to Z ¢).

Notation 2.5. For n a character of Clg (a), we will write S (a, n™, n) for the space
S(Zq1(a,n7), Vi, n). If nistrivial then it is denoted as Si (a, n™).

If & € S(a,n,n), then it is easy to check that

d(bu) = 77(14)_1(14;1 -d(b)) forallu € T(a,n),b € B*.
Hereifu € X(a,n™),and uy = (iI‘ Zi) € Ipaga for [ | a, then n(u) is defined to be
the value of n on the idele that is equal to ay at places [ dividing a, and equal to one
at the other places.

In particular for levels ¥ with £ (a,n™) C ¥ C X(a,n”) we have S(Z, Vi) =
@D, Sk(a,u™,n), where n ranges over the characters of Clr ().

For Xi(a,n”) C ¥ C X(a,u”) one can also define the Hecke operators Uy
for [ |n™ acting on S(X, Vi), using the double coset Zyw Xy = wrXy, with oy a
uniformizer of the maximal order Ry of By (note that Xy = R(), i.e., if [|n™, then
(Ur®)(b) = P(bwy).

Suppose now that ¥ = ¥ (a,n™), and that [ is a prime that divides a. Define the
trace operator

i Sk(a,nT) — Sp(%,n7)
as follows. Given a form ® € Si(a,n7),
> PgTr) if [ #p,
Y, Plgr) ifl=p.

Here {z,} run over a set of left coset representatives of 7,1 modulo /;» where
n = valy(a) (if n = 1 then I, is interpreted as GL2(OF,)). For example if [
divides a exactly (i.e., n = 1) then one can take {z,} with r indexed by P! (ky), as

(10
K VA

TS L (@)(g) = {
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0 -1
o=\ o)

A form ® € Si(a,n™) issaid to be newat [, if

forr € k¢, and

a —
TraI,l(QJ) = 0.
Otherwise it is called old at I.

2.4. Measure-valued forms. In this section, we define measure-valued forms. First
recall the definition of some relevant lwasawa type algebras.

Let n™ be an ideal relatively prime to p n~. Consider the level ¥ = Z(n™,n™).
Inthiscase Clg(X) =Clp and Zp(X) = ZF.

Denote by G the kernel from Zg to Clg:

1—>GF—>ZF—>C|F—>1.

Then G can be described as follows. Denote by c¢ the closure in (9};p of the group
of totally positive units of O. Then

Gr =0OF,/c.

Each of the profinite abelian groups Z r, G is a (non-canonical) direct product
of its finite torsion part and a Z,-free part. The Leopoldt conjecture predicts that
these have Z,-rank one, but we do not need this in the sequel.

Put

XF = Homys(GFr, C))

known as the (C,-points of the) weight space (in [21], Section 3, the weight space
is defined to be Homys(Z F, (C;;). But as in the sequel [22], the above definition is
more natural, especially when one is dealing with forms of non-parallel weight).
Inside X  is the set of classical weights defined as follows.
For integer k£ > 2, and ¢ a finite order character of G, the pair (k, £) defines an
element P, ¢ € X, called a classical weight, given by

Prg(a) = £(@) (F.op (@) 2 = £(a) N F,jq, (@) 2 fora e Gp.
(Note that the norm map
‘NFp/Qp: (9;%3 — Z;
factors through

r/va/Qp: Gr =(9}f~p/c—>Z;.) (2.4)
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For the purpose of this paper, it suffices to consider those weights with & trivial,
in which case we denote the weight by Pr. As we will see below, the weights Py
parametrize family of automorphic forms of parallel weight k.

Let A 7 be the completed group algebra of G with coefficients in ZLp:

Ar =Z,[GF].

Elements of X = Homcts(GF,C;) extend by continuity to algebra homomor-
phisms from A to C,,.
In the case F = Q, then B
Aq = Z,lZ,].

As usual, let A C Ag be the Iwasawa algebra:
A =Zp[1 + pZp]l.
The projection map to the one-units,
(\):Z, — 1+ pZp,
induces the projection
7\@ — A.

We denote by wr := XF,Cyd(XF,Cyd)—l, the Teichmiller character of F. As a
Hecke character its conductor is equal to p times the product of all the archimedean
places. We have wr = wg © N F/q.

Let AT C C,[[k — 2] be the subring consisting of power series (with C,, coeffi-
cients) that are convergent in some p-adic neighbourhood of 2. We have the usual
embedding

A — AT,

k2, (2.5)

El

[al— (k—a

here [a] is the group algebra element associated to a € 1 + pZ,. The image of A
in AT is called the set of lwasawa functions. If A is an Iwasawa function, then it
converges on the region ord, (k —2) > 1 — ﬁ. ForA € A, and k € Z,, we will
denote by A(k) the evaluation of A at k. Similarly if 1 € Ag, then we denote by
A(k) the value A(k), where A is the image of A under the map Ag — A.

The norm map (2.4) induces the map on the completed group algebras:

Ap — /~\Q (2.6)

and the weights P, factor through (2.6). (For this reason the weights P are also
referred to as cyclotomic weights.)
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Denote by (OF )" the set of primitive elements of 0% = Op, ® OF,, ie.,
elements such that at least one of the coordinates lies in O . Consider the space
of orbits X := ¢ \((912%)’, where ¢ acts diagonally. The diagonal action of (9};p on
((9,2,p)/ induces the action of Gy on X.

The space of continuous C,-valued functions on X is equipped with the right
action of GL2(OF,,), given by

(/19)(r.y) = f(ax +by.cx +dy) forg = (‘j Z) €GLy(0,). (27)

Let . be the corresponding space of measures, i.e., its continuous C,-dual. D
inherits the dual action of (Ojép and GL3(Or,,): for u € Dy, and § an open compact
subset of X,

[ e dte-w = [ fexeey) dp fore < 05,
S S

[ faew={_ flgdn forgeoLaor,).
S g~ 1s

The action of (9;p and hence G on D, extends by continuity to give the structure

of a A p-module on Ds.

LetW .= sz—{O, 0}. PutY := ¢ \'W, so we have the natural inclusion X — Y.
Let O be the space of compactly supported measures on Y. D is equipped with the
action of GL(Fy) similar to the action of GL>(OF,) on D, defined above, i.e., if
w e D, and §’ an open compact subset of Y, then for g’ € GL,(Fy), and f” a
continuous functionon Y,

/ £ dg ) = / g’ dy (2.8)
s’ g)~ls

(with f’|g’ being given by the same formula as (2.7)).

There is an inclusion map s: D, < D obtained by identifying elements of D,
as measures on Y that are supported on X. On the other hand, restriction of measures
induces the projection map p: O — D..

Given u € Dy, and g € M>(Of,) N GL,(Fy), define

g x = p(g-s(u).

Then it is easy to check that this defines a left action of the semi-group M>(Of,) N
GL,(Fy) extending that of GL(OF, ) (we denote this action by  in order to distin-
guish this from the action of GL,(F,) on O; indeed  does not extend to an action
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of GL,(Fy)). Concretely, given a continuous function f on X, and § C X open
compact, element g € M>(OF,) N GL,(Fp) and o € Dy we have

/fd(g*u)=/ flg du.
S g=1($)nX

Hence g *  is supported on g(X) N X. In particular if g € M>(OF,) N GL2(Fy),
and § C X suchthat g=1S C X, then for u € D, we have

[ragen= [ Aedn= [ sledn= | s dt-so)

Definition 2.6. Lets € Z,. A function f on X is said to be homogeneous with
respect to the weight character (y r cya)®, if

flex,ey) = (xroa(€))’ f(x.y) = (N, () f(x.y)
foranyc € OF .
Definition 2.7. We put
2= 9, 85, Ko,
and similarly

I, |
DY = D" @4, g AT

(here & is the completed tensor product over Z,). Elements of S(X, M), where
M = D,. DY or DY, will be referred to as measure-valued forms.

As in Section 2.1 we have an action of £* on S(X, Dy), namely if z € F*, then
it takes P, € S(X, Dy) to the form P, where O (b) = Po(zh) for b € B*.
This action factors through Z . On the subgroup Gr of Z r, this action is consistent
with the action of Gg C AF on D, ifz € F* whose class Z in Zr liesin G, then

Boo(zh) = 271 - Do (h) forb e B.

Similar remarks apply to S(Z, DY), (T, D).

Homogeneous functions with respect to the weight character ( x 7 cyci )k_2 for some
k € Z, can be integrated against elements of D% and also against the elements of
DYt ¥ if k is p-adically sufficiently close to 2: suppose u = Ayj1 +-+ -+, iy, With
i € Dy, Ai € K@, and k € Z,. Thenif f is homogeneous of weight <XF’CyC|)k_2,
the formula

|1 = gii(mfxf i
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is well defined.

Elements of 8 give homogeneous functions of weight (XF,cyd)k_z . by linearity,
it suffices to consider P = ®,P,, a pure tensor, with P, € Sym’g‘2 for each
o: Fp = Q,. Then the function

fr(x.y) =oF * () [ Pe(x*.y%) (2.9)

is a homogeneous function of weight (x r c,c1)*~2 on X. Here a)};k is interpreted as
the identity functionifk =2 mod p—1. Otherwise, if k is notcongruentto 2 modulo
p — 1, then we take the convention that a)f;" (x)=0if(x,y) ¢ c \((9;;p X OF,). It
can be shown that the association P — fp is injective.

Definition 2.8. Put X' = c\((9j;p x pOFf,) C X. Then for integer k > 2, the
specialization to weight k£ map is given by

Pk Ds — Vi,

MH(P—>/X/fP du).

The same formula defines specialization map px on D&, and on DY if k is
sufficiently close to 2 p-adically. The maps pi are surjective for each & > 2.
The specialization map pi respects only the action of /; ;,. More precisely, for

k>2 and u € Dy, DX (or DY if k is p-adically sufficiently close to 2):

(- ) = 0F K@) - pr(p)) foru e I
In particular it respects the action of 7, if k =2 mod p — 1.
Recallthat ¥ = X(nt,n7). Put ¥’ = ¥ N X(p,n") = Z(pnt,n7),ie, X
is the level obtained from X by replacing X, = GL2(Of,) by I,. Similarly put
Y| = X N Xi(p,n7). The specialization map px : D« — Vi induces

s S(Z. Dy) — S(S4. V). (2.10)

Similarly we have specialization maps py. on S(=, DY), and on S(T, DY) if
k is sufficiently close to 2 p-adically. More precisely. If ®o, € S(T, D¥T), then
there is a p-adic disk U C Z,, around 2 such that ®; := px «(Po) is defined for all
k € U N Z=2. This can be seen using the finiteness of the double coset BX\EX/ 3.

Hence elements of S(Z, Dy), S(T, DY) and S(T, DY"T) give rise to p-adic
families of forms. Asusual p appears in the level under specializations, corresponding
to the phenomenon of removal of the Euler factor at p. It is also immediate from
the definitions that the map px .~ commutes with the Hecke operators 7y and 7y ¢ for
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[ } pnt ™ (and also with the Uy with [ |n™ n™). On the other hand, the action of
Ty on S(T, Dy) (defined because p + n™) is actually transferred to the action of U,
on S(X}, V&). In other words, we have the following:

Proposition 2.9. Suppose ®,, € S(Z, D4) with X asabove. For k > 2 integer, put
O 1= pg,x(Poo). Then
Pk,*(qu)oo) = qu)k-

Without interrupting the main reasoning of the paper we refer the reader to Ap-
pendix Il for the proof.

2.5. p-adic deformations of quaternionic eigenforms. With notations as in the
previous section, note that the specialization map (for &k sufficiently close to two
p-adically)

Pyt S(E, D) — (1. )

is a map of AT-modules, with the action of A € AT on Si (=’ , V) being given by
multiplication by A (k).

Let T be the free polynomial algebra over Z in the symbols {7} for primes
[ + ntu~ (in particular for 7},), Ug for [ |nt n™, and Ty for [ 4 putn~. The
algebra T acts on S(Z, D" and S(T, Vi); we caution here that the symbol
T, € T acts on S(X, V) via the operator U,. The map pi  is then a map of
T ®7 Af-modules.

A form ® € S(X), V) is called an eigenform if it is an eigenvector for the
action of T. In this case ® has a nebentype and we denote the eigenvalue of 7 for
[} putn, resp. Uy for [|pnt n~, as C([, ®). In this case the eigenvalues are
actually algebraic integers. It is called ordinary at p, if the U,-eigenvalue is a p-adic
unit.

Similarly, aform ®. € S(Z, D¥°"") is called an eigenform if it is an eigenvector
for the action of T ® AT as a AT-module, i.e., the eigenvalues are in AT (there is
a uniform radius of convergence for the whole package of eigenvalues). Denote by
C(I, o) € AT the eigenvalue for Ty when [  nt n~, and Uy if [ |n n™. The form
® is called ordinary at p if C(p, Poo) € (AT)*.

Suppose that ®e, € S(T, DY) is an eigenform. Then there is a character
Noo ON Z  with values in (A7) such that T ;®oo = Neo(1) ™! ®eo for [ 4 put n~
(here neo(l) = noo(rry) With ry a uniformizer of Fy; the existence of 1., follows
from the density theorem of Cebotarev, which asserts that the classes of zy in Zg
for [ 4 pu™ n~ are dense in ZFg). Assume that @, is not identically zero. Let U
be a p-adic disk around 2 so that the specializations ®; = pi (Po) are defined
for k € U N Z=? and not identically zero. Then the forms ®; are eigenforms. We
claim that the nebentype of ®; is given by the character nwf;k on Clg(p), where
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n = n, is the character on Clg given by the image of 5, under the evaluation at 2
map A — A(2) for A € AT. Indeed, we know that in any case ®; has a nebentype
character n; on Clg (p), satisfying

Ti®; = N2 (0710

Hence
Noo(D(k) = N 12K np() fork e U NnZ>2.

It follows that the element (N [)¥=2 . oo (0)(k) € AT (here k is a variable) can
take only finitely many values as k ranges over U N Z=2, hence must be a constant
equal t0 700 (1)(2) = n2(1). The claim follows. In particular, when k € U N Z=2
and k =2 mod p — 1, the nebentype of & is given by n = n,, and @ is of level
S(pnt,n7) (instead of just T (nT,n7) N Xy (p, n)).

We now state a version of Hida’s theory on lifting eigenform to a p-adic family,
in the style of Greenberg-Stevens [16]:

Theorem 2.10. Let ® = ®, € S(Z(pnt,n"), V,) be an eigenform that is p-
ordinary, and is new at primes dividing n*. Then there is an eigenform @, €
S(S(@mt, n7), DY) such that ps 4 (Poo) = Ps.

Theorem 2.10 can be proved using the method of [1] and [21]. For the convenience
of the reader we give a sketch of proof in Appendix II.

For k € U N Z=2, the eigenform & € S(S(n™,u™) N 1 (p, n7), Vi, noz*)
corresponds to a unique normalized cuspidal Hilbert eigenform over F under the
Jacquet-Langlands’ correspondence (for the definitions regarding Hilbert modular
forms, we refer to [26], Section 2; here a Hilbert modular form f is called normalized if
the normalized Fourier coefficient C (O, f), inthe notation of [26], Section 2, isequal
to one). More precisely, there is a unique normalized cuspidal Hilbert eigenform f
of parallel weight &, level p n™ n—, that is new at primes dividing n* n™ and ordinary
at p, such that the Hecke eigenvalues of f; and ®; with respect to T coincide (again
the symbol T, acts as the operator U, on fi). Remark that for normalized eigenform
fr, the eigenvalues of f; with respect to the Hecke operators 7y for [ 4 pn™ n™ (resp.
Uy if [ | pn™ n™) are given by the normalized Fourier coefficient C (I, fx). Thus we
have C (L, fx) = C(I, ®y) for all primes [, and the nebentype of f; and ®; coincide.

The family of eigenforms {f; };cpnz=2 forms the set of specializations of a A -
adic form f, called the Hida family lifting f, (cf. [26], Section 4). The A T-adic form
fo is determined by the data of its normalized Fourier coefficients C(m, fo,) € AT
for all ideals m of O, and is defined as follows. For [ a prime put

C([,fo) = C(I, o)
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and define C(w, foo) for other m by the formal equality

> el e 1)
- m 1= Cf) N7 4nee (DTN L
Here 14 is the character on Z ¢ associated to @, as above, and 1o, (1) = neo(my) if
[ 4 pu™ n~, and zero otherwise. Equation (2.21) means that f. is an eigenform for
the action of Hecke operators acting on A T-adic forms of tame level n ™ n~, and f, has
the property that its weight k specialization is the eigenform f;. of parallel weight £ for
k € UNZZ2. Itis ordinary at p (in the sense that C(p, foo) = C(p, Poo) € (AT)X),
which thus defines an algebra homomorphism of Hida’s universal ordinary Hecke
algebra of tame level nt n™ lifting f, ([21], Section 3). We remark that in [21],
Theorem 3.6, one starts with f, and constructs f., directly on the Hilbert modular
side independently of ®,. By loc. cit. the Hida family f, is unique.

In the rest of the paper, the form ® = ®, to start with is assumed to have trivial
nebentype, so that ® € S,(pn™,n™), and we only need to look at the weight k
specializations ®; of @, with k € U N Z=%, and k = 2 mod p — 1, so that
D € Sk(p nt, no).

2.6. Another description of quaternionic forms. Consider the case where ¥ =
¥ (a,n™) for some ideal a (a will be either n™ or pn™). The theorem of the norm
and the strong approximation theorem (Theorems 4.1 and 4.3 in Chapter 3 of [34])
gives a decomposition

h
B* =| | B*xiB}=, (2.12)
i=1

where x; € B> satisfies (x;)p = 1, and such that the reduced norms Nrdg, ¢ (x;) €
ﬁx, fori = 1,...,h, give a complete set of representatives of the strict ideal class
group Clr of F. More precisely if y € B>, then the unique index i of (2.12) to
which y belongs is determined by the condition that the class of Nrdg, ¢ (yx;!) in
ClF is trivial (note that under our assumption that p is inert in F, the image of F
in Clg is trivial).

Fori =1,...,hdefine

Iy =Ti(a,n) :={y € BX,yr € (xi)r =r (x)y! for [ p},

- et ) (2.13)
I =Ti(a,n”) ={y € Ti(a,n”), Nrdg/r(y) € OF .}

Here O , = O N Ff is the group of totally positive units of @. Note that
R; := B Nx; Rx;" isan Eichler order of B of level a,and T; = Ri[3]%. Ify € T,
then Nrdg,r(y) € OF[%]X N F. Note also that if a and o’ are two ideals relatively
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prime to n~ that are equal except at the place p, then T;(a,n™) = T (a’,n™) and
similarly for the T;. For the p-adic constructions we embed I; as a subgroup of B,
and hence subgroup of GL,(F}y) Via t,. In the following, we will usually omit the
explicit reference to the isomorphism ¢;,.

Using (2.12), we have a bijection

h
| |T\B)/ 5y => B*\B*/%, (2.14)
i=1

where for g € B, the class of g in fi\Bg/ >, gets mapped to the class of x; - g in
B*\B*/%X.

Using (2.14), we see thata form & € S (a, n™) can be identified as an A-tuples of
function ¢!, ..., ¢" on GL>(Fy), by the rule: ¢*(g) = ®(x; - g), fori =1,...,h.
The functions ¢?, satisfy:

¢' (yguz)

2—k -1 i T o X (2.15)
= XFoya (D)W -9'(g)) fory €eTi,g € GLa(Fy)u € T,z € F.
Similarly if oo € S(E (@, n7), DY) is as in the statement of Theorem 2.10,

then it can be identified as an h-tuple ¢l , ... ,¢f;o on GL,(Fy), with ¢ (g) =

Do (x; - g). We have

ol (yguz) = neo(z) 'u"l¢l (g) fory e Ti, g € GLa(Fyp), u € Ty, z € F*.

Note that this description is similar to the description of automorphic forms on
GL,(AF), in terms of vectors of Hilbert modular forms, cf. Section 2 of [26].

This description is more convenient for local constructions. On the other hand, the
original description as in Definition 2.2 is more convenient for global constructions
(e.g. CM points as in Section 4).

2.7. Latticesand Bruhat-Titstree. We can phrase the description of automorphic
forms on B> given in Section 2.6 in terms of the Bruhat-Tits tree. First consider the
level (a,n”) witha = n*. Let ® € Si(n™,n™), corresponding to an A-tuple:
(@', ..., ¢") asin the previous section. Foreachi = 1,..., A, define a function Cpi
on the set of all lattices of F}, @ F, as follows: given a lattice L, let g, € GL,(Fy)
be such that L = g7 (Of, ® OF,), define

coi (L) = gL - ¢' (gL).

By (2.15), this is well-defined independent of the choice of g;,. It also follows from
(2.15) the following property:

Cpi(YL) =y -cyi(L) fory e L™, n).
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In particular,
C¢i (pL) = pd(k_2)6¢i (L) = qk_2C¢i (L)
Similarly, suppose we take a = pn™. If ® € S (pn™,n™), then corresponding

to the A-tuple (¢',...,$"), we can define functions (ci,...,cs), where Cpi Is @
function on pairs of lattices

L, C L, of index equal to ¢

by the rule

cgi (L1, L2) = g1 - ¢'(g1) (2.16)

with g7 € GL,(Fp), such that g7 (Or, ® Or,) = L1, gL(OF, ®p Of,) = La.
We have

¢yi(YL1.yLy) =y -c4i(L1,L2) forally € Ti(pn™,n7),
cyi (L1, pL2) = q"2c4i (L1, La).

In both cases, we denote by co the vector of functions {c; }f’zl.

When k = 2, the functions ¢, (L), c4i (L1, L2) factor through homothety classes
of lattices and pairs of lattices respectively, hence correspond to functions on the set
of vertices 7y, respectively edges &(7"), of the Bruhat-Tits tree 7 of PGL,(Fy) (by
an edge it is always understood to be oriented).

The set of even (resp. odd) vertices of the 7, noted as 7, (resp. 7"), is the set of
vertices whose distances to the class of the lattice O, ® O, is an even (resp. odd)
integer. An edge will be called even (resp. odd) if its origin is even (resp. odd), and
we denote by & (7)™ the set of even edges (resp. & (7)™ for the set of odd edges).

On forms of weight two, the Hecke operators 75, U, has the following interpre-
tation:

crye(L) = ) ca(l),

LcL

cup,e(L1, L2) = Z co(La, L),
ZCLZ

where the first sum runs over the ¢ + 1 sub-lattices L of L of index equal to ¢. The
second sum runs over the sub-lattices L of L, of index equal to ¢, other than pL;.

Suppose that ®* € Sk (nt, n™) is an eigenvector for the Hecke operator Ty, with
eigenvalue C (p, ). Assume that ®* is ordinary at p (i.e., C (p, ®*) is a p-adic unit).
Let a(p, ) be the unit root of the characteristic polynomial

x2 = C(p, )x + ¢~ 1. (2.17)
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Then we can define ® € S (pn™, n™) to be the form whose associated function ce
satisfies

k-2

co(L1,La) = cot(L2) — W%#(M), (2.18)

which is an eigenvector for U, with eigenvalue o (p, ), as is easily verified. We

call ® the p-stabilization of ®*. It is easy to check that T o = (o — ﬁ)cp#
nt o

(where o = a(p, )). Hence @ is old at p (in the sense of Section 2.3).

We now come back to the setting as in the introduction, namely we take a cuspidal
Hilbert eigenform f of parallel weight two, with conductor pn* n~. Since f is
supposed to correspond to an elliptic curve E/F, we assume that the normalized
Fourier coefficients C (m, f) are all (rational) integers. Asf isnew atall prime dividing
n~, it corresponds under the Jacquet—Langlands’ correspondence to an eigenform
® € S(pn™,n7), which is unique up to scalar multiples in C,. Since the Hecke
eigenvalues of ® are integers, we can actually choose ® so that the values taken by
® are integers.

As p exactly divides the conductor of f, we have C (p, f)? = 1([36], Lemma1.4.5).
In particular f and hence @ are ordinary at p. Now by Theorem 2.10, we can lift
the eigenform ® = ®, to an eigenform ®o. € S(E(nt, n™), D), which corre-
sponds to the Hida family f, of cuspidal Hilbert eigenforms lifting f = f,. If U is
a p-adic disk around two such that the weight & specialization maps are defined for
k € U N Z=2, then ®; corresponds to f; under the Jacquet—Langlands’ correspon-
dence (the conductor of each f; divides pn™ n™ and is divisible by n™ n™). We only
need to look at the specializations @, and fr, withk =2 mod p — 1, in which case
& € Sp(pnt,n).

Now since the forms f; and ®; are ordinary at p, Lemma 1.4.5 of [36] implies
that f; and hence ®; cannot be newatp, whenk > 2,k =2 mod p—1. Fork > 2,
k =2 mod p — 1, denote by f,’j the unique normalized cuspidal Hilbert eigenform
of parallel weight k, conductor n™ n~, such that f; is the p-stabilization of f}j (for
the definition of p-stabilization of Hilbert modular forms see [26], equation (4.15)).
Put q)ﬁ € Sx(n™, n7) to be the unique eigenform on B> that corresponds to f,ﬁ under
the Jacquet-Langlands correspondence, and such that (2.18) is satisfied (although
the Jacquet-Langlands correspondence determines @i only up to scalar multiples,
equation (2.18) fixes the choice for CDi uniquely). For notational consistency we
put f5 = 5, and ® = @, (here we are using a different convention as compared
to [4], where they put f§ = 0, ®%5 = 0). As in the situation of (2.17) and (2.18),
for k > 2 we have C(p, @), the U, eigenvalue of &y, is equal to a(p, cpi), and
similarly C(p.fx) = a(p.f}), where a(p.f}) is the p-adic unit root of the Hecke
polynomial X2 — C(p,f¥)X + ¢*~! (for @, and f, we put a(p, ®3) := C(p, ),
a(p.15) == C(p,f2).
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We put a(p, k) := C(p, Pss) € AT (here k € U as a variable). Then we have
a(p, k) =a(p, ) = a(p,ff) fork e UNZ=2 k=2 mod p—1.

2.8. Some lemmas. We maintain the notations of sections 2.6 and 2.7. Thus let
Do € S(Z(ut, 1), DY) be a measure-valued form, which corresponds, as in
Section 2.6, to an A-tuple (¢, ..., ¢%). Let U be a p-adic neighbourhood of 2 such
that for k € U N Z=2, the weight k specializations ®; of ®, is defined. For k = 2
mod p — 1, we have ®; € Si(pnt,n7). If k > 2, then ®; is the p-stabilization of
f € Sp(nt,n7). Let (pl..... 08 and ((¢))'.....(¢})") be the corresponding
h-tuples of functions on GL,(F}) respectively.

Recall from Section 2.4 that O is the space of compactly supported C,-valued
measureson Y = ¢ \'W. Put D% = D@5 Agand DY = D g, oo AT,
so that the injection s : D, — D (extension by zero outside X) induces the injelz:tion

ot o, povelt, We identify DT with its image in D% via the map s.
Elements of DY can be used to integrate functions on Y that are homogeneous of
weight (x Feyet)¥ =2 fork e U.

Recall that we have an action of GL,(F}) on D as in (2.8). Extend it to an action

on DY in the natural way (i.e., trivial action on the factor AT).

Definition 2.11. For a lattice L of F,, @ Fyand i € 1,...,h, define the element
piL € DY by

[iL = 8L - $h(8L).
where g, € GL,(F,) satisfies L = g7, (O, ® OF,).

For any compact open subset § of Y, and homogeneous function F on Y of weight
(XF.cya)* "2 with k € U, we have

/F dpiL =[ Flgr del(gL).
S gZIS

It follows that the measure pu; ; is supported on c\gL(((Dfpp)’) = c¢\L’/, where
L' ={l €L, | ¢ pL}, the set of primitive vectors of L.

We list several lemmas, whose proofs follow exactly as in Section 2.4 of [4], so
we just give the statements.

Lemma 2.12. For any y € I;(nt,n~), and F a homogeneous function of weight
(X F.eyet)* 2, With k € U, we have, for § an open compact subset of Y, that

/ (Fly_l) dﬂi,yL :/F d/,L,',L.
vS S
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Lemma2.13. Let L, C L, beasublatticeofindexequal tog. Thenfor k € UNZ=2,
k=2 mod p— 1, and F a homogeneous function of weight (XF,cyd)k_z,

[ F duip, = a(p, D) Fodupir,.
c\LiNL, c\L1NL,

Lemma 2.14. With the notations of Lemma 2.13, we have, for P € 8By,
[ P s = ey @i L),
c\L\nL) K

Proposition 2.15. With the above notations,
k—2

W)%ﬁy (L)(P).

f P dpie = (. o)1 -
c\L’

2.9. Periods of forms of weight two. Let ® = ®, € S,(pn™,n™) be as in Sec-
tion 2.7. Recall that we assume @ is normalized so that it takes integer values, hence
so are the functions ¢, defined by (2.16).

Let

pr: c\'W — PY(Fp)

be the natural projection map sending (x, y) € c¢\'W to § € PI(F,). For an even
lattice L define, fori =1,...,h,

Kgi = Pry(ii,L),

i.e., for any open compact ¥ C P!(F,), and continuous function 2 on P! (F,),

/1h dﬂ¢i:=/n hopr d“LL
Y prol(@)N(c\L")

(note that ;7. is supported on ¢\ L').

Lemma 2.16 ([4], Lemma 2.12). The measures 4 do not depend on the choice of
the even lattice L.

Definition 2.17. Put GL;L(FD) := {g € GL,(Fy), ord, det(y) =0 mod 2}.
The group GLJ (F,) preserves the set of even lattices. Also note that if y

LN GL;“(Fp), then Nrdg, r(y) = p?"u for some integer r and u € OF ., Which
impliesthat p~"y e ;.
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Lemma2.18([4], Corollary 2.14). Fori = 1,..., h,themeasures 1, areinvariant
under I';, and satisfy

pgi (P (Fp)) = 0. (2.19)

Let ¢ = J,F, be the rigid analytic p-adic upper half plane defined over F,.
The set of C,-points of ¥ is given by #(C,) = P!(C,) — P!(F,) = C, — Fp. It
is equipped with the Mdbius action of GL,(Fy):

a b . az+b
c d Ccz+d’
Associated to the measures j,,; are the rigid analytic functions £, (z) on J¢(Cp):
1
i(z) = digi(t).
f¢() /Pl(Fp)l—Z He )

A direct calculation shows for any y € I, with (? 2) being the image of y in
By = GL,(Fp), we have

foi(yz) = Nrdp/p ()~ (cz + d)? f4i (2).

Put wyi 1= f,i(z)dz. Then wy is invariant under the action of I';, hence defines a
rigid analytic differential form on the quotient T';\ #.
For 71, 7, € #(C,), define the period integral of Coleman:

T2 t—1
Wyi = log ( ) digi (1),
/n ¢ /Pl(Fp) P\t—n) ¢

where log,, is Iwasawa’s p-adic logarithm, satisfying log,(p) = 0. The following

relations hold:
(%) 3 3
71 (%) 71

)47 1]
/ C()d,[ = [ Cl)¢i fOI’ Y c Fi. (221)
V4

T T]

Under our assumption on the normalization of ®, the measure p,i is Z-valued,
and we can define the multiplicative integral (for the precise definition see [12],

equation (5.8)):
2 r— ‘52)
Wyi = d i(t).
][r] ¢ ][Pl(pp) (l -0 Ho

It satisfies the multiplicative analogue of (2.20) and (2.21). We also have the formula

7 )
/ C()¢i = |ng f a)d’i .
71 )
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2.10. Periodsand Hida families. Let Q24 be the unramified quadratic extension
of F = Q,a. For r € Q,24, let 7 be the image of = under the non-trivial element
of G&|(szd /de).

Fort € #(Qp24) = Q,24 — Fy, define

Ly = {(x,y) € FZ, ordy(x — 7y) > 0},

It is seen that L. is a lattice of F,, © F,. The reduction map from J¢(Q,’) to 7o
(where Q} is the maximal unramified extension of Q,) sends  to the homothety
class of L, (see [14], Section 1.3). Denote by v, € Ty the class of L.

By direct calculation, forany y = (¢ 5) € GL,(F}),

Ly: = p'yLe, (2.22)
where 1 = ord, ((dety)~'(ct + d)), which implies
Vyr = YV

forany y € GL,(Fp).

An element T € #(Q)2«) is said to be even (resp. odd) if v is even (resp. odd).
The set of even (resp. odd) elements is preserved by GL;(Fp).

Forany x € (Q,)*, write (x) for the projection of x to the one-units, i.e.,

X = pordp(x)é-x <x)
with ¢, a root of unity of order prime to p. We make a definition.

Definition 2.19. Let F be a homogeneous function on ¢ \'W of weight (y r cycr)®
for some s € Z, — {0}, and § C ¢ \'W an open compact subset. Assume that F is
non-zero on §. Define

[109, 3y dpietro = s ( [ F@nr T ¢ D))

dk k=2’

where k takes values in a p-adic neighborhood of 2 . It is not hard to verify that the
derivative exists.

Definition 2.20. For even t € J(Q,2a), define the function F; on ¢ \'W by
F‘E(x’ J’) = (‘NQp2a'/Qp(x - ‘[y)>
The function F; is homogeneous of weight ()(F,Cyd)z. Note that we can also write

Fr(x.y) = (N Fy0, ((x — ) (x — T))).
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It is clear that F is nonzero on ¢ \ L.
Define

14i (1) := /\L/ log, Fz(x,y) duirL,(x,y)
C

T

=20 ([ e T

Proposition 2.21. For any y € I'; we have

(2.23)

I¢i (yr) = I¢i (7).

Proof. The function (Fr(x,y))% is homogeneous of weight (x r cye)*~2. For
y = (4 5) we have, with the notations of equation (2.22),

/ (Fye(r )5 dpir,. (x.)
C\Lﬂzr

- / (Fye(ro ) 2 dptipiyr. (5. 7)
c\plyL;

- / )T g, .3 oy Lemma 2:12)

Now by direct computation

dety
(Fyelp'V)(x.y) = (Ng, 20 /0, (m)) Fe(x,y).

Hence

/ (Fye(ro )5 dpir, (5. 7)
C\L;/r

= (Woue, (o T [ R i,
= szd/Qp cT _|_ d C\Lr y ,ul L y
Taking derivative at k = 2 and applying Lemma 2.18, the result follows. O

Thus the value of 7, (r) depends only on the image of = modulo ;. By mul-

tiplying = with an element of y € T; with Nrdg,r(y) = p if necessary (that such

an element exists is seen by using Corollary 5.9 of [34], Chapter 3), one can always
normalize 7 to be even.

Let #'(Q,24) C H(Q,2a) be the set of even z’s. It then follows that

TA\H(Qp2a) = T\H(Q,24).
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Lemma 2.22. Let L, be a sublattice of L; of index equal to ¢, and let e =

([L1], [L2]) € &(T) denote the corresponding edge (going from [L] to [L;]). Then
forany v € H(Q24),

d
log,, Fy(x, ) d(tti 1, — wir,) = 2——a(p, k ;
/c\L/lﬂL’z 09, (X, y) d(Wi,L, — Wi,L,) dka(p )‘k=zc¢ (e)
ifa(p,®) =1, and
/ log, Fu(x, ) d(ti.p, + ji,) = 2-a( k)( ey )
RV 7T 7 e e L T PP

ifa(p, ®) = —1.

Proof. Fork e U NZ=2,k =2 mod p — 1, we have by Lemma 2.13,

k=2

/ (Fo(eo ) 2 d (g, + tir,)
c\LiNL,

k—

— (a(p. k) £ 1) f (Fo(e ) P dpi,
c\LjNL,

The result follows from taking derivatives, and using Lemma 2.14 which gives

/ L dui,L, = cyile). |
c\LjNL,

For an edge e of 7, define |e| to be O resp. 1, if e is even, resp. odd.

Lemma?2.23. Let L, L, beevenlatticesof F}, & Fy, and vy, v, bethe corresponding
vertices of 7. Then

[ Tog, Fulxoy) disa = i)
c\L1UL} (2 24)

where the sum is over the oriented edges ¢ in the path that goes from v; to v,, and
ap = a(p, ). Ifa(p, ) = 1, then (2.24) holds without the parity condition on the
lattices.

Proof. This follows easily from Lemma 2.22, cf. the proof of Lemma 2.23 of [4].
O
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Proposition 2.24. For even 7y, 72 € #'(Q24),

I¢i (7,'2) — I¢i (‘L’l)

(%) 12
= log, NQ,2q/Qp (7[ w¢i) +4—oc(p k)‘ p(j[ C()¢i).
71 71

If a(p, @) = 1, then the equality holds without the parity condition on ty, 5.

Proof. Set L; = L.;. We have

Lyi(2) — Iyi(T1) = [\L’ (log, Fr,(x,y) —log, Fr, (x,y)) dui.r,
Cc

1

+ / 10g, Fey (x.v) d(uiLy — jiL,).
c\L" UL/

The second term is handled by Lemma 2.23, together with the equality (which can
be proved as in [4], Proposition 2.15)

Valp (f Cl)¢z> = Z O{l |C¢z (e)
71 e: v —>vo

For the first term:

/ (Iogp Ffz(x,y)—logp Frl(X’J’)) d:LLi,Ll
c\L}

F,
— / log,, Frz
C\L’l 71

X =1y
= log, &/ ( )dM',L
/c\L’l P ¥ Q2a/Qp \ T y i,L

X—10)

= log, & ( )du i
/Pl(Fp) p NV Q,24/Qp X —11y ¢

X—10)
= log, W@pw/@p][lw x—ty
P

1]

= |ng Nszd/pr w¢,i.

T

dpy

Hence the proof of the proposition. O

2.11. The £-invariant. We now assume, as in the introduction, that £/ F is an
elliptic curve over F, with conductor n, with multiplicative reduction at p, and is
modular, i.e., it corresponds to a cuspidal Hilbert newform f = fg of conductor u,
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parallel weight 2, such that L(s, E/F) = L(s,fg). Assume as in Section 2.7 that
n can be written as n = pntn~, with ® = ®g corresponds to fz under the
Jacquet-Langlands’ correspondence (normalized to take integer values).

Since E has multiplicative reduction at p, we have, by Tate’s theory of p-adic
uniformization, a parametrization ® g,

Og/F,: C5/QF =>E(Cp),

where Qg € Fy = Q,aq, with ord, Qg > 0, called the Tate period of E at the
prime p. The map ® g/, is defined over Q .24, i.e., equivariant with respect to the

action of GaI(Qp/szd) on both sides. Furthermore, if s € Gal(Q,24/Q,«) is the
nontrivial element, then for z Q;M,

5(OE/F,(2)) = apOF,, (s - 2), (2.25)

where ap, = a(p, E/F) = a(p.fg). Thus in particular, if o, = 1, i.e., E/F is split
multiplicative at p, then ® g, ,, is defined over F;,.
Let E(Qp2d)a, C E(Q,24) be the subgroup consisting of points P such that

s+ P =oayP.

Then it follows from (2.25) that E(Q24)a, = Of/F,(Fp).
Letge := N F,/q, OE. The L-invariant of E at p is defined as

£o(E/F) = lo (2.26)

valp OE N
(Here f,p is the residue field degree of F;, which, under our assumption that p is
inertin F,isequal to [F, : Q,] = [F : Q].)
By [26], Proposition 8.7,
Lapb)| =y (E/F) @a1)
ak P e T T2 ' '
In [26], this is proved by generalizing the argument of Greenberg—Stevens. Follow-
ing Section 2.7 of [4], we can give another proof, based on the theory of p-adic
uniformization of Shimura curves; for more details, see Section 4.5 below. For any
i €{l,... 1}, there exists even t € H'(Q,24), y € I';, and non-zero n; € Z such
that

YT
7[ wyi = OF. (2.28)
T

Now Propositions 2.21 and 2.24 imply that

YT d yT
Iogp eNQ,,zd/Qp (]{ Cl)¢i) + 4Ea(p,k)‘k=2 - val, (7{ a)¢,-) =0.
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Hence by equation (2.28), since n; # 0,

d
10g, N /0, Ok +4=a(p.k)|, _ -valy O =0,
SO

d 1109, No ,,/0, OF
L a(o.k) _ 17 p2d /Qp
dk k=2 4 val, O

_ _lIOQP eN‘Fp/@p Ok

2 val, Of

1
= _Eip(E/F)

and the claim follows.
Forany 0 € Qp, let log, be the branch of the p-adic logarithm such that
logy(Q) =0, e,

log, O
ord, O

Using equation (2.26) and (2.27), we can restate Proposition 2.24 as follows:

logy () = log, () — ordp ().

Corollary 2.25. For even ty, 15,
©
I¢i(T2)—I¢i('C1)=|quE NQPZd/Qﬁ (f; (1)¢1)
1

Definition 2.26. Given a divisor with rational coefficients D € Div(I;\#(C))) ®Q
oftheform D = ", rete, Withre € Q, e € I\ H (Cp), define

14i (D) = ZFKI¢i ().
K
More generally let D = Zf‘zl D; e @?:1 Div(I;\#(Cp)) ® Q. Define
h
Io(D) := Y 14 (D).
i=1

Definition 2.27. Let f € Divo(%’(szd)) be a divisor of degree zero, say written
in the form

f= Z(TK - T) (2.29)

with 7, 7 € H'(Q,24). Define fori =1,....h,

Tk
f};a)(pi = Uﬁl( C()¢i.
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It is clear that this is well defined independently of the way f is written in the
form of (2.29). For f = Y, fi € @, DVO(H'(Q,24)), put

h
ﬁa)@ = ll:llfl a)¢i.

As a consequence of Corollary 2.25 and Proposition 2.21, we see that the quantity

log, . N @, 24/, (]g w@)

depends only the image of f in @l’.’zl Div°(Fi\J€’(Qp2d)). We can thus define, by

linearity, the quantity
109y, N Q24 /0, (7{) w<1>)

for D e @)_, DV'(I\H'(Q,24)) ® Q.
With these definitions, we can state the following form of Corollary 2.25:

Corollary 2.28. Let D € Div* (I \H'(Q,24)) ® Q. Then

Ie(D) = |quE ‘Nszd/@p (f]_) a)cp).

For future reference, we record the following formula. For o € Hom(F, @,,) =
Hom(F3, Qp), let E9/ F%; be the elliptic curve obtained from £/ F;, by conjugating
with ¢. Itis multiplicative at the prime p® of F'¢ above p, whose Tate period is given
by 0%.

Proposition 2.29. For any z € F*, we have

IOgC]E (NFP/QP Z) = Z IogQ% 27,
geHom(F,Qp)

Proof. This is a direct computation. O

3. Interpolation of special L-valuesalong Hida family

3.1. Rankin L-functions. In this section we recall the formalism of Rankin L-
functions.

Let K/ F be a quadratic extension of F'. A Hecke character yx of K is said to be
anti-cyclotomic, if yx o ¢ = ' (here ¢ is the non-trivial element of Gal(K/ F)),
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and Yk is trivial on the image of A% in A%.. Given a cuspidal Hilbert newform g over
F, and an anti-cyclotomic character v over K, one defines the Rankin L-functions
L(s,9/K, ¥k) asin [41], [38].

In this paper, we consider the particular case of genus characters. An anti-
cyclotomic character ¥k is called a genus character if it is unramified, i.e., factors
through Pic(Ok), and quadratic (namely of order dividing two). Genus characters
can be constructed in the following manner.

Let ¢ be the quadratic Hecke character of F, that corresponds, by class field
theory, to the extension K/F. Consider quadratic Hecke characters vy, ¥, of F,
whose conductors are relatively prime to each other, and such that vy - ¢, = ¢.

It follows from class field theory, the Hecke characters v; correspond to characters
of Gal(F/F). Let F¥i/F be the quadratic extension of F cut out by v;, and let
FY1:¥2 pe the composite of F¥1 and F¥2 over F. Then F¥1-¥2 /K is everywhere
unramified (including the archimedean places) quadratic extension.

Lett; € Gal(FYi/F) be the nontrivial element. We have

Gal(FY''¥2/F) = Gal(FY' /F) x Gal(F¥2/ F),

and under this decomposition Gal(FY-¥2/K) = {(1,1), (t1,t2)}. Let yx be the
quadratic character of Gal(K / K), that factors through Gal(F¥1-¥2 /K), and is equal
to —1 on the nontrivial element of Gal(F¥1-¥2/K). By class field theory, vk corre-
sponds to a Hecke character of K, which can be seen to be a genus character. The
bi-quadratic extension F¥1-¥2/ F is called the genus field extension corresponding
to the pair v, ¥». We have FY1-¥2 = KV« (the extension of K cut out by yg). If
one of ¥, ¥, is trivial, then F¥1-¥2 degenerates to K.
One has

Indg Y& = ¥1 ® V2. (3.1)

Using (3.1), we have the factorization formula for the Rankin L-functions asso-
ciated to genus characters:

L(Svg/K’ WK) =L(S,g, Wl)‘L(S7g7 1pZ) (32)
In the rest of the section K/ F' is a CM extension.

3.2. Optimal embeddings. We maintain the notations of Section 2.3, regarding the
definite quaternion algebra B, and an Eichler order R of level a.

Definition 3.1. An optimal embedding of K into B of level a is a pair (¥,b) €
Hompg (K, B) x B*/R* satisfying

W(Ok) = bRb™' N Y(K).
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Given an optimal embedding (¥, b) of level a, define
Ry, := BNbRb .
Then Ry, is an Eichler order of level a, and ¥ gives an embedding of Ok into Ry.
Proposition 3.2 (Theorems 3.1 and 3.2 of [34]). Suppose that all primes dividing

a splitsin K, while those dividing n~ are inert in K (this is known as Heegner
condition). Then optimal embeddings of level a exist.

The group B* acts on the set of optimal embeddings by conjugation:

g- (¥, h) = (gVg', gb). (3:3)

We denote by [W, b] the conjugacy class containing (W, b). The set of conjugacy
classes of optimal embeddings of level a is noted as Embg (K, B, a).

The ideal class group Pic(Og) acts simply transitively on the set of conjugacy
classes of optimal embeddings: identify

Pic(0g) = K*/K*O%:
then given p € Pic(Ok), we have
p-[W.b] = [WP,b°] := [W, U(p)b].

Write K = F(A), with A2 € F being totally negative. Given ¥ € Homg (K, B),

let (4 2 ) be the image of W(A) in B, = GL(F,). Define Oy € B, by the following
formula:

where

1
Ovw = ﬁ ® q¥,0,
| F/Q( )| oeHom(Fyp,Qp) (3.4)
Q\I/,c(XU, YO') — CO'(XU)Z + (do _ a(T)X(TyU _ bO(YU)Z‘
Up to the choice of sign for the square root, Oy does not depend on the choice of

A. For k > 2 even we denote by Qq, the element of B, obtained from Qy in the
evident manner, i.e.,

k—2

k=2 2 k=2

0y

(/|NF (/\2|) ®_ q‘I’,zo‘
/Q o€Hom(Fp,Qp)

For g € B*, we have

Qeug—1 = Nro(Nrdg r(g)) Qulg, ' (3.5)
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Remark 3.3. Suppose that p is inert in K, so K, = Q24 Consider the polynomial
qw,ia of (3.4), with id the identity embedding of F;, = Q4 to @p. We have the
factorization

quid = cX* +(d —a)XY —bY? = A(X — tgY)(X — TgY), (3.6)

where A € Ff, and Ty, 7y, € H(Q,2a) are the fixed points under the action of
p(W(K)) on #(Cp). We order ty, 7y, in such a way that

L (¥(a)) (ff) —a (Tf’) forall o € K. (3.7)
k=2
The element 0> € By defines a function on F2, where for (x, y) € F2, we
have (in the notation of (3.6))

N A \F _
Io/Qp )2 No o, —ten)' T, (38)

VINFo(A?)]

Definition 3.4. Given E € Si(a,n™), and an optimal embedding (¥, b), define the
pairing

0,7 . = (

. k=2 k=2
E[V] = [Nrdg/r(D)] 57 E(B)(Qy [byp).
By equation (3.5), the value E[¥] depends only on the conjugacy class [V, b].

3.3. Special valueformulaof Rankin L-functions. Asin Section 3.1, let ¥x be an
anti-cyclotomic character over a CM extension K of F. In this section, we state the
formula of Xue [38], that generalizes the works of Gross [18], Hatcher [20], and Zhang
[41]. We make some simplifying assumptions. Let & € S (a, n™) be an eigenform,
with k > 2 even, that corresponds, under the Jacquet-Langlands correspondence, to
a Hilbert newform g of conductor n = an™. Assume that the conductor n of g is
relatively prime to D/, r, the relative discriminant ideal of K over F. Finally we
assume that the character ¥ g is unramified.

Definition 3.5. The algebraic part of the central L-value L(k/2,9/K, ¥k) is defined

to be
, (k/2—1)1?4 /N o Dg/F

LWk /2,9/K, Vk) := u% 2n)&=2d (g, g)

Here ug = [Og : Of]. The Peterson inner product (g, g) is normalized as follows:

L(k/2,9/K,v¥k). (3.9)

(0.9) = (87%)* / Ig? dh
A% GL2(F)O\GL2(AF)
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with dh the measure on GL, (A r) which induces the usual hyperbolic measure on
products of the Poincaré upper half plane, and normalized by the condition

volume of Koo Ia,- (1) =1,
where Koo = Hvloo SOz(]R), and IAF(II) = HI IIvaII n.

The Petersson inner product on the space of quaternionic forms Si(a,n™) is
defined as in Section 2.2 of [4]; see also Section 18 of [19]. Let U C B be the
F-subspace of dimension 3 consisting of elements of reduced trace zero, with right
action of B> on U given by

u-b=>b"tub.

Define the non-degenerate B*-invariant symmetric bilinear pairing

[,]: UxU — F,

1
[u’ U] = 5 TrdB/F(uﬁ)’

where Trdg, F denotes the reduced trace of B, and v denotes the image of v under
the canonical involution of B. Foro: F, — Q,, there is an isomorphism

U ®Fqs Cp —>Sym2
sending (¢ 5) € U ®F,o Cp to the element ¢? (X9)? + (d” —a®) X Y —b° (Y ?)?
(cf. equation (3.4)); this isomorphism is B ‘-equivariant, where B} is the subgroup

L
of B> of reduced norm one, acting on Sym? via its image in B, = GLy(Fy) (there
would be a twist by the inverse of the determinant on the right hand side, if one
considers the full action of B*). For k > 2, even, we have a natural surjection

k—2

o ’

Sym*/2-1(Sym2) — Sym
hence we have a surjection
g Fys) (Sym*/ 271U @F 5 Cp)) — ®,. Fos@, symk=2 = g,
Upon dualizing, this induces the injection
Vi = ®,. pcs, (SYM> (U @ Cp))*

(where (Sym*2=1(U ®F , C,))* denotes the C,-dual of Sym*/2~1(U @, C,).
Now the symmetric F-bilinear pairing [-,-] on U induces the symmetric C,-
bilinear pairing [, ], on U ® F » C,», which can be extended to Sym*/>~ (U ® ¢ , C),)
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by
[(u19 cec uk/z—l)’ (v19 cee Uk/2—1)]k,a
= Y [urvglo - [tkj2-1. Vk/2-n]o
N€Sk/2—1

with S/, the symmetric group on k/2 — 1 letters. The non-degenerate pairings
[, k.o allow us to identify Sym*/2~1(U ®, C,) with its dual. We still denote
by [, Jx.o the inner product induced on (Sym*/2=1(U ® r » C,))*, and by [, ] =
®c [, ]k the tensor inner product induced on ®,,. . .., (Sym*/ 271U @ F » Cp)*.
Its restriction to Vj is still noted as [-, -]x. By construction, it is B}*-invariant.

Now given E1, E, € Si(a,n™), define

1 2 m -
(21, 8,) = > —|Nrdg (D)5 [bp - B1(B), bp - B (b))
beB*\B*/%(a,n™)

where for b € B*, we denote by ¢, the order of the group Ry /0%, with R =
B* N bX(a,n)b~! the Eichler order of level a determined by g (each summand
depends only on the image of b in the double coset).

We now state the main formula of [38].

Theorem 3.6 ([38], Theorem 1.2). Under the assumptions made in the beginning of
this section,

> ke (310

p€EPiIc(OK)

L¥(k/2,9/K. yk) =

(E,8)
Here the absolute value in (3.10) is interpreted as

Y e = (X wwEw) (Y vt wEw).

pePic(O) pePic(Ok) pePic(O)

We remark that in [38], the unitary normalization of automorphic L-function is
used, so that in loc. cit. the central L-value occurs when s = 1/2, and the Rankin
L-function that occurs there is the completed one:

_ k —2)\2¢ k-2
(Zn)—zd(s-l-%)r(s + T) L(s + T, g/K. 1ﬁl{)

We also note that the normalization of the Petersson inner product of Hilbert modular
forms in Definition 3.5 above is different from [38], namely that the factor (872)¢
does not occur in loc. cit.

One corollary of Xue’s formula is the following algebraicity result:
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Corollary 3.7 ([38], Proposition 3.18). The value L¥9(k/2,9/K,¥x) lies in
Q(9, k), where Q(g, ¥ ) isthe number field generated by the normalized Fourier
coefficients of g and the values of yx. More precisely, for any 2 € Aut(Q), we have

L¥k/2,9/K, yx)" = L™(k/2,9" /K, y2).

Here g” is the cuspidal Hilbert eigenform that satisfies C(q,g") = C(q.g)", and
Yh = hoyk [31].

Remark 3.8. A more general special value formula, valid for more general ring class
characters ¥ x of K, was proved in the thesis of H. P. Yuan [39] (see also the recent
work of B. Howard [23]).

In the rest of the paper, we only consider the case where ¥k is a genus character.

3.4. p-adic interpolation. We now interpolate the algebraic part of the special
values of the Rankin L-functions, using (3.10). In the rest of the section, the level a
will be taken to be nt, s0 ¥ = T (n™,n™) as in Section 2.4.

We first give another description of optimal embeddings. Recall the statement of
strong approximation (2.14): for the fixed choice of elements {x; }f’zl C B*, with
(xi)p = 1, we have a decomposition

h
| |T\BS /Ry => B*\B*/R*
i=1

sending the class of an element ¢ € B, of the i -th component on the left to the double
coset on the right defined by x; g.

Hence we can identify Embg (K, B, n™), the set of conjugacy classes of optimal
embeddings of level n, as a subset of elements of

h
LI Ti\(Homo - (O [3]. Ri[5]) x B/ (Ro)y)
=1 (3.11)

lle=

h
|| Ti\(Homo . (Ok [5], Ri[+]) x GL2(Fp)/ GL2(OF,)),
i=1

where R; = B N x; Rx; .

Write [V, g]; for a conjugacy class of optimal embedding, identified as an element
that belongs to the i-th component of (3.11). Pick a representative (W, g); for the
class [V, g];. Define Ly := g(OF, ® OF,). By the optimality condition, and that
(xi)p = 1, one sees that Ly is stable under the action of ¢, (V(Ok ® Z,)). Define
|Ly|, the generalized index of Ly, as | detg|1;1 = ¢Odp detg,
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In this notation, if [¥] = [V, g];, and E corresponds to the Z-tuple (£', ..., £4),
then
k=2 2—k k=2
E[W] = [Nrdg/p xi| 7 |Lw|™Z czi(Lw)(Qy” ). (3.12)
In particular, the expression on the right hand side of (3.12) depends only on the class
[V, gl

Remark 3.9. If p is inert in K, then Ly and L., are homothetic. Indeed, their
homothety classes define the unique fixed point of the action of ¢, (¥(K})) on the

Bruhat-Tits tree. Also notice that the image of 7y in fi\Jf(QPZd) = [\H'(Qp2q)
depends only on the class [, g];.

Definition 3.10. Define the region Ly, C Ly as follows. If p is inert in K, then
Ly = Ly,. While if p splits in K, then Lg admits a basis (vy, v2) consisting of
eigenvectors under the action of 1, (W (Ox ®Z,)). We define Ly, := (9;pv1 x@}pvz.

Lemma 3.11.
ord,(Qu(x,y)) = ord, |Ly| for (x,y) € LY.

Proof. Since p = pOF is unramified in K, we can write K = F(A), with 12 ¢
F totally negative, and ord, A> = 0. As above Ly = g(@f,p). Then as in [4],

Lemma 3.7, one can show, for any o € Hom(F, Qp), that
ord, gw,o(x?, y°) = ord, det g on Ly,.
Hence on Ly, one has
Ordp Q\I/(x, y) = Z ordp Q\[;,G(XU’ yU) = Z ordp detg — ordp |qu|

o: Fp<—>@p o: Fp‘—>@p

O

Definition 3.12. We refer to the notation of Sections 2.5 and 2.7. Associated to the
Hida family f,, and optimal embedding [¥] = [V, g]; of level n, define the p-adic
analytic function £, (fo/ K, W, k) of the variable k € U:

k—2 k=2
£y (foe/ K W) i= (N il ) 7 [ (0 Vi (309
c\Ly
The function £, (f/ K, ¥, k) depends only on the class [V, g]; by equation (3.5).
Given a genus character ¥ of K, define

Lp(oo/ K.Yk K) = Y Yk(p)Lp(foo/ K. V° ).
p€ePic(Ok)



904 C. P. Mok CMH

We have the interpolation formula:

Theorem 3.13. Suppose that p isinert in K. Thenfor k ¢ UNZ>2 k = 2
mod 2(p — 1),

qk—z

2
al #
W) LMk /2,12 /K, V).

9o/ K. Y1) = (@ @)t 0)2(1 -
For k =2wehave £,(fo/ K, ¥x.2) = 0.

Proof. When & > 2 this follows by combining Proposition 2.15, Theorem 3.6,
Lemma 3.11 and equation (3.12). That £, (f/ K, ¥k, 2) = 0 follows from equation
(2.19). O

Note: The function £, (f/ K. ¥k, k) essentially interpolates the square root of
the algebraic part of the central L-values L¥9(k /2, f,’j, Yk ) along the Hida family,
hence the name square root p-adic L-function in [4].

We need a corresponding result, when p splits in K:

Theorem 3.14. Supposethat p splitsin K. Thenif ¢ x correspondstoapair (1, )
of Hecke characters of F, we have

_ Yi(p)

2
al
a(p,fz)) L9112/ K. ¥k) (3.14)

£p(0uc/ K. .2 = (0,0) 1

andfork e UNZ>2, k=2 mod 2(p — 1),

Lp(foo/ K. Vi, k)

g (3.15)

4
al #
2.0 ) L3k /2,f¥ /K, k).

= (@] @)oo, k(1

Proof. The proof is the same as in [4], Theorem 3.12, again using Proposition 2.15,
Theorem 3.6, and Lemma 3.11. O

Remark 3.15. Using the more general formula of [39] for the special values of Rankin
L-functions, it should be possible to construct the two-variable anti-cyclotomic p-
adic L-function, attached to the Hida family f,, and ring class characters of the CM
extension K/ F. Then the function £, (fo./ K, ¥k, k) would just be the special value
of the two-variable p-adic L-function, evaluated at central critical points and at the
unramified character ¥ .



Vol. 86 (2011) Heegner points and p-adic L-functions 905

Suppose now that p is inert in K. Corresponding to [¥] and the genus character
vk, we form the divisor

h
Pye = Y yx(p)twr € @ DVTNH' (Qy2q)).
1

PpEPic(Ok) i=

Here the divisor of Ty, lies in the i-th component, if i is the index of the component
of (3.11) to which [¥*] belongs.

Proposition 3.16. In the above notations, we have

d 1

Ly (foo/ KV, B)| = S 10(Py).

Proof. Suppose that iy is the index of the component of ((3.11) to which [¥] belongs.
From (3.13) and (3.8), we see, by comparing with (2.23), that

d 1
o/ KR =5 [ g, Fuy(v.3) dpig.r, (5.3)

c\L7,

|
= §I¢’\I1 ('L'\I/)
Similar equations hold with W replaced with W*, The proposition thus follows by
linearity. |

4. Heegner pointson Shimura curves

4.1. Shimura curves. In this section, we define the Shimura curves that will be
used in the sequel. For more details, see [10], [40].

Fix an archimedean place vy of F. Denote by 8/ F the quaternion algebra over
F, obtained from B/ F by switching the invariants at vy and p. Thus the invariants
of B and that of B are related as follows:

inv,, 8 =invy, B =0,
inv, 8 =inv,, B =1/2,
inv, 8 =inv, B forv # v, p.

Fix an isomorphism 8 ®,,, R
GL,(R).

Let O g be a maximal order of B, and let R C @ g be an Eichler order of level
nT contained in @g. By Shimura’s theory, associated to B and the level nt is

M>(R), so that (B ®,, R)* can be identified as

I
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the Shimura curve X g(n™), which is a proper smooth curve defined over F (not
geometrically connected in general), whose C-points (with respect to vy: F — C)
are given by the double coset

Xg@mt)(C) = 8X\(C —R) x B%/R* (4.1)

(here 8> actson C —R via B* — (B ®,, R)* = GL,(R), with GL,(RR) acting on
C —R by Mdbius transformation). The geometric components of X g (n™) are defined
over the strict Hilbert class field of F, i.e., the abelian extension of F corresponding
to the strict ideal class group Clg of Of. As in (2.12), let i be the order of the
Clr. Then the geometric components are indexed by Clg, and the number of such
components is 4.

The (disconnected) Riemann surface (4.1) admits a more classical description as
follows. First, denote by 8 the set of elements of 8 whose reduced norm to F is
totally positive (this is equivalent to saying that the reduced norm is positive under the
embedding vy, as B is ramified at other archimedean places). Let yq,..., y; € 8%
be a set of representatives of

BN\B*/R™.
Define
A =BinN yiﬁxyi_l.

Then if ) is denotes the Poincaré upper half plane, we have
h
Xg@h)(©) = || Ai\b. (42)
i=1

When F # Q, the Shimura curve X g(n™) is not of PEL type. To describe a
PEL Shimura curve associated to X g(n™), we need to consider base change to an
auxiliary CM extension of F. We recall the constructions [10], [40].

Fix a auxiliary CM extension M/F of the form M = F(./r), where r is a
negative integer. Assume that all the primes dividing n™ splits in M. Extend the
embedding vo: F <— R to an embedding of M to C by

vo(x + y/1) = vo(x) + Vrvo(y) forx,y e F.

Let © = 8 ® r M, and denote by V' be the underlying Q-vector space D, with
the left ©-action. Denote Vg := V ®¢g R. So we can identify:

VR =(B®F M)®gR = M(C) ® (Her C)4,



Vol. 86 (2011) Heegner points and p-adic L-functions 907

where H is the set of Hamilton’s quaternions, and the projection to the first factor
corresponds to the isomorphism 8 ® r,,, C = M,(C). Vg has a complex structure,
with multiplication by +/—1 given by right multiplication on Vg by the element

J'Z((_Ol (1)),1®\/—_1,...,1®\/—_1),

It follows that the action of © on Vg is C-linear. It can be shown that, with respect
to this complex structure, tr(/, Vg /C) € M forall/ € ®©.

Let / — [ be the involution of © obtained by tensoring the involution of B and
the conjugation of M over F. Let G be the algebraic group over F defined by the
condition that for any F-algebra T,

G(T)={l € (®®p T)* suchthatll € T*}.
Define the level subgroups £a; C G(F) by
Sy = R0,
Then by Shimura’s theory, there is a proper smooth curve X o (n™) defined over M,
whose set of C-points is given by the double coset
Xo(m™)(C) = G(F\(C ~R) x G(F)/ Sy (43)

The geometric components of X5 (n™) are defined over the Hilbert class field of M .
Thereisamap Xg(nt) < Xo(u™), which is both open and closed immersion, and
defined over the Hilbert class field of M, which at the level of C-points is the natural
map from the double coset of (4.1) to that of (4.3).

One can also describe G as the group of symplectic similitudes of an alternating
form as follows. B

For any invertible element § € , which is symmetric, i.e., § = §, we can define
another involution on ®, noted as [ — [*, by

I* =§7118.
For v, w € V define
pr(v,w) = Tryyr (Vr Trdo p (v6w™)).
Then pr is an F-valued non-degenerate alternating form, satisfying
pr(lv.w) = pr(v.[I*w).

Choose a §, so that the form pg(-,-j) is positive definite on Vg, in which case the
involution / — [* is a positive involution. One can show that the algebraic group G
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defined above is isomorphic to the group of ©-linear symplectic similitudes of the
form ppg.

The curve X (n™) is a coarse moduli space for abelian varieties whose endo-
morphism algebras contain ©. More precisely, let O := Og ® O, Which is a
maximal order of ©, and let V7 := O, regarded as a lattice of V. Then X5 coarsely
represents the functor ¥, which associates to a scheme S over M, the isomorphism
classes of objects [4, ¢, 9 i, C], where

e A is an abelian scheme over S of relative dimension 4[F : Q], with an action
t:Op — Endg(A4) such that forany / € Oy,

tr(e(/) : LieA) = tr(l, Vg /C);

« @ isan O%-class of polarizations #: A — A from A to the dual abelian scheme
A, such that for any I € 9, the associated Rosati involution takes ¢ (/) to ¢ (I*)
(recall that if ¢ € End(A), then the Rosati involution defined by a polarization
0 is given by ¢* := 07140, where ¢ € End(A) is the dual of ¢);

* & isa Zp-class of @p-linear isomorphisms «: Vz — T'(A4) (where T'(A) is
the adelic Tate module of A), which is symplectic with respect to the form
pu = tr /Q(u pF) 0N VZ for some u € F*, and the Riemann form p4 On

T(A) induced by a polarization 6 € 6:

« C isasubgroup scheme of 4, locally isomorphicto @/ n™, and which is stable
and locally cyclic under the action of R induced by .

In the following section we will make the abbreviation by referring to such an object
as[A,C].

4.2. CM points. In this section we recall the basic definitions about CM points. For
details, see [40].
As in Section 3, let K/ F be a CM extension. For the rest of Section 4, assume
that the primes dividing p n™ are inert in K, and the primes dividing n™ splitin K.
Similar to Definition 3.1, an optimal embedding of K into B of level n™ is a pair
(U, ¢) € Hompg (K, B) x 8%/R*, such that

T NneRe™t = T(0k).

The group 8 acts on the set of such optimal embeddings by conjugation similar to
(3.3), and Pic(O ) acts on the conjugacy classes of such embeddings.

Given (U, ¢), let g € C—R be the fixed point under the action of U(K*) C 8%,
such that the induced action on the co-tangent line of C — R is given by the character
z — z/Z. Let Pg € Xg(u™)(C) be the image of (zg. ¢) in the double coset (4.1).
Then Pg depends only on the conjugacy class of (U, ¢).
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By the theory of complex multiplication one has Pg € Xg(u™)(H ), where H/K
is the Hilbert class field of K. The point Pg is called the CM point associated to
W, We have the Shimura reciprocity law: identifying Gal(H/K) = Pic(O) via the
Aurtin isomorphism (the convention being that a prime g is mapped to the inverse of
the Frobenius at g), one has for p € Pic(Ok),

(Pg)’ = Pg,. (4.4)

The moduli interpretation of Heegner points is as follows ([40], Section 2). First
some notations. Forany M-scheme S, and [4, C] € #(S), denote by End# ([4, C])
the Oar-subalgebra of Ende (A) generated by elements ¢, such that ¢p¢* € F*
(recall that ¢ — ¢™* is the Rosati involution defined by a polarization from the data
F(S)), and such that ¢ (C) C C. Also denote K’ := K Q p M.

Now let x € Xg(nu1)(C). The image of x in Xo(n*)(C) can be represented by
[4,C] € F(C). Then x is a Heegner point if and only if there is an isomorphism

a: K'~Endg([4,C]) ® Q (4.5)
over M, such that
Ok ={a€ K: aa) € End#([4, C])}. (4.6)

4.3. p-adic description. We now give a p-adic description of Heegner points par-
allel to the previous section. This is based on the theorem of Cerednik-Drinfeld [6],
[71, [33].

Firstrecall that 8, =~ B, for any place v # vy, p. We have chosen Eichler orders
R and R of level n™, of B and B respectively. Assume that for primes [ # p, the
isomorphism By = By is chosen so that the local Eichler order Ry = R ®o, OF
of By of level n™ is mapped onto the local Eichler order Ry = R ®0 OF of By of
level nt.

Let Xg(u™)(C,)* be the rigid analytic space associated to X g(u™)(C,). The
theorem of Cerednik—Drinfeld gives the p-adic analogue of the uniformization (4.2),
with b replaced by the p-adic upper half plane # over F;,.

Recall the subgroup I'; = Ii(n™,n~) C B* defined as in (2.13). As before
identify I'; as a discrete subgroup of B =~ GL(Fp). The result of Cerednik-
Drinfeld states (see Theorem 3.1 of [7] or Theorem 5.3 of [33])

h
| | Ti\#(Cp) = Xg@™)(Cp)™ (4.7)

i=1

Furthermore, the isomorphism is defined over Q 24, i.e., equivariant with respect
to the action of Gal(@p /Q,2a) on both sides. There is a corresponding result for
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Xo(mt)(C,)™, which is the p-adic analogue of (4.3). In fact, in the approach
of [6], [7] the p-adic uniformization for X g(n™)(C,)™ is deduced from that of
X:s)(n+)(Cp)an-

Using this description, we can relate the optimal embeddings of Section 3.2 to
Heegner points. We use the description as in Section 3.4. Thus let [V] = [V, g]; €
Embr (K, B, n") be a conjugacy class of optimal embeddings of K to B of level n,
identified as an element of the i-th component of (3.11). As in (3.6), let oy, Ty €
CAH(Qp2a) = fi\Jf(szd) be the fixed points under the action of W(K,), such
that 7y satisfies (3.7). Let Py € Xg(nt)(Cp)™" be the corresponding point that lives
on the i-th component of (4.7). Using the description of p-adic uniformization as
in [6], [7], it can be shown that (see for example [3], Section 5) the image of Py in
Xo(ut)(C,)™ satisfies (4.5) and (4.6). Thus Py is a Heegner point, in particular,
Py € Xg(n™)(H), and we have the analogue of (4.4): for any p € Pic(Ok) =
Gal(H/K),

(Pg)? = Pyo.

4.4. Heegner pointson eliptic curves. We refer back to Section 2.11. Thus E/F
is a modular elliptic curve, corresponding to a weight two cuspidal Hilbert eigenform
fg, of conductor n = pn™ n~. By the Jacquet—Langlands correspondence applied to
B, the cuspidal Hilbert eigenform f g, and hence E/ F, is associated to a quaternionic
eigenformon B*. Geometrically this give rise to parametrization of £ by the Shimura
curve Xg(u™).

More precisely, let Pic®(X g(nT))/ F be the Picard variety of Xg(n™)/F. Note
that, since X g/ F is not geometrically connected, Pic®(Xg(nt)) parametrizes di-
visors of degree zero on each geometric component, modulo the principal divisors.
Over C, we have

h
Pic’(Xg(m*))(C) = [ ] Jac(Ai\b).

i=1

The quaternionic eigenform on B> corresponding to fz then gives rise to the
parametrization ¢ defined over F,

¢E: Pic(Xg(n™)) — E, (4.8)

which is equivariant with respect to the Hecke operators T for [ } n (here Ty acts
on E by multiplication by C(L,fg) € Z).

Let Py be the CM point attached to the class of an optimal embedding of K to B,
and let yx be as in Section 3.1 a genus character of K, with K¥X the genus field
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(i.e., the extension of K cut out by ¥x). As in the situation of Proposition 3.16, put

Pye= Y yx(@(Po)’ = Y Yx(p)(Pus).

pePic(O) pePic(O)

Then Py, is a divisor on Xg(n™).

In order to use the parametrization ¢ of (4.8) to construct Heegner points on
E, we need to modify Py, to obtain a divisor of degree zero on each geometric
component of Xg(n™).

Let & € Pic(Xg)(F) ® Q be the Hodge class [40]; the class £ has degree one on
each geometric component, and satisfies the relation

TiE = (NI+1)E (4.9

for [ prime to n. Let &; be the i-th component of &.
Suppose that iy. is the index of the component of X g (n™) on which Pgo lies.
Define Py, € Pic®(Xg(n™)) ® Q as

Py, = classof > v (o) (Pur — Eiyp).
pEPIC(OK)

We have Py, € (Pic®(Xg)(K¥K) ® Q),, - Define

Pyx = 0E(Pyy) € (E(KV5) ® Q)yy.

called the Heegner point attached to W and k.
We need the following result which follows from Zhang’s generalization of the
Gross—Zagier formula, and the work of Kolyvagin—Logachev:

Theorem 4.1. [40], [24] Py, isof infiniteorder ifand only if L'(1, E/K, k) # 0,
inwhich case dim(E(K¥%) ® Q)y, = 1.

We can compute Py, in another way. For any prime [ of Of, denote by Cy =
C(L, fg) the normalized Fourier coefficient of f ¢ at [. Choose [ to be relatively prime
to i1, and whose class in Clg is trivial (such [ exists by Cebotarev density theorem).
For such an [, the action of the Hecke correspondence 7y on X g(n™) preserves the
geometric components, and is of degree & [ 41 on each component. In particular, it
follows from (4.9) that

Ti&; = (N +1)§ foreachi. (4.10)

Then by the Hecke equivariance property of the Shimura curve parametrization
g and (4.10), we have (here Cy = C(l,fg))

(N L+1 = C)Pyy = e (N L+1 = T7) Py ) = g (N L+1 = Tp) Py ).
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Hence fix such an [, and set
Qux = (NI+1—=C) " (NL+1—Ty) Py, (4.11)

Then Qy, € DiV(Xg(nh)) ® Q, whose image in E under ¢ is Py, .
Now suppose that the genus character yx corresponds to the pair of quadratic
Hecke characters v, ¥, of F, so K¥K = F¥1-¥2, Assume that

L(1,E/F,y1)=0, L(1,E/F,y5) #0. (4.12)
Using (3.2) it follows that

L'(1,E/F.yg) = L'(1.E/F, Y1) - L(1, E/F, ),

and hence it follows from Theorem 4.1 that the point Py, is of infinite order if and
only if L'(1, E/F,y1) # 0.

By the results of Kolyvagin-Logachev [24], the assumptionthat L(1, E/ F, y») #
0 gives

dim(E(F¥2) ® Q)y, = 0. (4.13)
Corollary 4.2. Theelement Py, in (E(FY1:¥2) ® Q)y, liesin (E(F¥1) ® Q)y, .
Proof. First note that, in the notation of Section 3.1,
Pyg +11-Pyg
lies in
(E(FY1"2) ® Q)yx N(E(F"?) ® Q = (E(F"?) ® Q)y,

hence is zero modulo torsion by (4.13). Onthe other hand, since Py, € (E(FV1:¥2)®
Q)y g, We have
itz - Py = =Py,

hence

i - PT/’K = —11 - PWK'
So modulo torsion ¢, - Py, = Py, and so

1
Pyx = 5(Pyx +12-Pyy) € (E(FV) ® Q)y, . 0
Corollary 4.3. Let Frob, be the Frobenius element at p of the extension F¥1/F.

Then
FrObp Pl/fK = WI(D)PWr
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4.5. Heegner points and p-adic periods. We can now relate the p-adic periods
of Section 2.9 with Heegner points. We maintain the notations of Section 4.4, and
assume (4.12) holds.

Fist we give a p-adic analytic description of the Shimura curve parametrization
(4.8).

We refer to the notations of Section 2.11. Replacing the quaternionic form & on
B> by a suitable integer multiple of ®, we may assume that the lattice of periods
defined by w,: is contained in the lattice of Tate periods of £/ F,.

Choose a Tate uniformization isomorphism

OF/F,: (C,);/Q% — E(Cp).

Then over C,, the Shimura curve parametrization
¢r: Pic’(Xg(m™"))(Cp) = [ [Jac(Ty\H#(Cp)) - E(Cp)

can be described as follows. Let

h h
D =) D; e DiV’(Xg(n*)(C,) = @ DIV (T \H(C)p)).

i=1 i=1

with D; € Div®(T';\#(C,)). Then for each component we have by [13], Theo-
rem 2.32 (which is a reformulation of a theorem of Manin-Drinfeld) that

pe(Di) = ®E/Fp(fD' a)¢l.).

l

So by additivity,

¢E (D) ZG)E/FD(f w¢,) = ®E/Fp(]€)wq>) (4.14)

(here ) is the addition on E).
Given the Tate uniformization, define the maps
109z, 7, E(Qp2a)a, = Fp,
IogNormE/Fp: EQp2d)a, = Qp
as the composition of the following maps:

OF/ ryp logo .-
109z, : E(Qp2a)ay ——> Fy'/Q%F — F.

71
@ Fp/@p ng

logNorm gk, + E(Q24)a, L, F /0% ——> Q, /9% —> Qp
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(recall that gg = N F,/Q, QE). The maps logg, g, . logNormg,p ~are homo-

morphisms (with respect to the additive structure). Note that the kernel of logg

consists exactly of the torsion elements, but this is not the case for logNorm g, . . We

extend the definition of logg, ,, and logNormg i t0 E(Q 24 ), ® Q by linearity.
Applying Corollary 2.28 to the divisor Q. of (4.11), we have

qu(Q,/,K) = |quE Nszd/Qp (f a)cp). (4.15)
Q‘//K

The right hand side of (4.15) can be written as

|quE ‘A/szd/@n (é a)q>) = Iong ’NFp/Qp 'Nszd/Fp (% a)q>>

VK VK

=IogNormE/Fp ®E/Fp Nszd/Fp (é a)q>).
VYK

Now as in (2.25), let s be the non-trivial element of Gal(Q 24 / Fy). Then

OF/F, NQ,pa/Fs (][ wé) = @E/Fp(][ C0<I>) + Ok/F, (S ][ w<1>)
Qug Qug Oy
onnf, ) aun(f, )
Q‘/’K Qll/[(

®E/Fp(][ wq>) = e (Qyx) = Pyg
Qllf[(
and by Corollary 4.3,

Now by (4.14)

s PWK =Y (p)PWK-
Hence

lo(Qyy) = IquE ‘Nszd/Qp (fQ w"l’) = (I + apy¥1(p)) IOgNormE/Fp Pyg-
YK
Now we need a

Lemma 4.4. Wth respect to the choice of [ asin (4.10), we have for any divisor
D € Div(Xg(n™)(Cp)) = @Ll Div(I;\# (C,)) the equality

le(T1D) = Cilo(D).

Proof. Aslistrivial inClg, it preserves the components I';\ # (C,) of Xg(n™)(C,),
so by linearity, it suffice to show that for any € I';\# (C)),

I¢i (T[‘L’) = C[I¢i (‘L’)

whose proof is the same as Proposition 2.18 of [4]. O
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From this lemma, we have from the definition of Q. as in (4.11) that

I16(Qyx) = To(Pyy).

On the other hand, by Proposition 3.16, we have

d 1
Tp Lo/ K VK. K)| = STa(Pyg).

We summarize the discussion as the following proposition (here the point Py, is
renamed as Py, ):

Proposition 4.5. Assumethat L(1, E/F,y¥) = 0,L(1, E/F,y,) # 0. Then there
isaglobal point Py, € (E(F¥') ® Q)y, such that

d 1+ ap¥1(p)
ﬁ:tip(foo/l(, VK, k) = + logNorm ;. Py, -

Furthermore, the point Py, is of infinite order if and only if L'(1, E/F, 1) # 0.

5. Main results

5.1. p-adic L-functionsof Hilbert modular forms. Inthis section, we recall some
results from [26] about p-adic L-functions of Hilbert modular forms.

First we need some notations. Let ¥ = ®,v, be a Hecke character of F of finite
order. Denote by sig(y) € {£1}¢, the signature of v, as the d-tuple Wy (=1))y)00-
Thus sig(y) = (1,...,1) if ¢ is unramified at all the infinite places. As another
example, for wg the Teichmuller character of F, one has sig(wr) = (—1,...,—1).

In general, for w = (wy)yj00 € {£1}%, denote sgn(w) := [T,|o, wv. We ab-
breviate sgn(sig(y)) as sgn(y). Also denote by z(y) the Gauss sum of v ([31],
equation 3.9).

Let g be a Hilbert newform of parallel weight k > 2. Fix an embedding Q — C.
Recall Shimura’s rationality result on L-values, cf. [31], Theorem 4.3 (I) and [11],
Remark (i) on p. 1027: for every w e {1} one can choose Qg € C* such that,
foraninteger 0 < r < k—2 and afinite order Hecke character v of F with conductor
¢y, the expression

DE(rH N ey Lir+1,9,v)
(=2mi)dre(y=") Q)" i)

LY +1,9,v) := (5.1)

is an algebraic number, called the algebraic part of the L-value. Furthermore, for
every h € Aut(Q /Q(9)),

L + 1,0,9)" = LY + 1,9, y") (5.2)
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which implies in particular that

Lalg(r +1, g, W) € Q(g9 W)»

where Q(g, ) is the number field generated by the (normalized) Fourier coefficients
of g and the values of v. In particular, if the Fourier coefficients of g are rational
integers, and v is quadratic, then the values L29(r + 1, g, v) are rational numbers.

Thus the numbers €2 are serving as “transcendental factors” of the special L-

values. Notice that if Qg’ € C* is another set of numbers such that

w

$g d
— € Q(g) foreachw e {£1}“,
2y
then one can equally define L¥9(r + 1, g, v) with respect to fzg) instead of 2¢’, and
such that equation (5.2) still holds. In what follows, we always fix a choice of the
numbers Q¢ to define the algebraic part of L-values.

Now suppose that g is ordinary at p. Let y be a finite order Hecke character of
F unramified outside p and the infinite places, and v a finite order Hecke character
of F unramified at the conductor of g. In [11], Theorem 1, the p-adic L-function
Ly(s,9, xy) is constructed (with respect to a specific choice of Q¢’). It satisfies the
interpolation property: for0 <r <k — 2,

—r N r
Ly(r+ 1,9, x¥) = (1 = %) (5.3)
—ry—1
(1= e LD ) 3 1 o).

Here «(p,g) and B(p, Q) are the p-adic unit root and non-unit root of the Hecke
polynomial

X2 —C(p,9)X + ey N pF!

with €, = 1 if p does not divide the conductor of g, and equal to zero otherwise. We
have the convention that yyw " (p) = 0 if yYwy" is ramified at p.

If x, ¥ are trivial, we denote the p-adic L-function as L, (s, g).

As in the previous sections, let fo, be the Hida family lifting fr = f,, with
E a modular elliptic curve over F, whose conductor nt can be written in the form
put n, with n~ satisfying condition 2.1. In Theorem 6.8 of [26], it was shown
that the p-adic L-functions Lp(s,f}f) attached to the weight k specializations fy
of foo for k € U N Z=2 (f] is the newform whose p-stabilization is f;) can be
interpolated to a two variable p-adic L-function, i.e., there exists a p-adic analytic
function L,(s,k) = L,(s,k,fs) Of p-adic variables s, k with k taking values in
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a suitable p-adic neighbourhood U of 2, such that for k € U N ZZ=2, one has
Lp(s.k.foo) = Lp(s.f}). In particular, L,(s,2) = Ly(s,fg) := Ly(s. E/F) (let
us note that one of the technicalities of [26] is to show that one can choose the numbers
Q;’]% appropriately so that this interpolation property holds).

As a special case of (5.3), take y to be trivial, and v quadratic, and r = k/2 — 1.
Thenif k € U N Z=2 satisfies k =2 mod 2(p — 1), one has

Lp(k/2, k. foo) = Lp(k/2,55,9)
- {(1 _ YN 2y ay sy £ gy ifk =2, (5.4)

a(p,ff)
(1 — 8B LA9(1, E/ F. ) itk = 2.

5.2. Proof of main results. We first need a fact about the functional equation of the
complex L-function of L(s, E/F). Leteg,r € {£1} be the sign:

L2—5s,E/F)=¢€g/rL(s,E/F).

For any quadratic Hecke character v, whose conductor is relatively prime to that
of E/F, the twisted L-function satisfies a similar functional equation:

LQ2—s E/F.¥) =¢eg/r(V)L(s.E/F. )

with eg,p () € {£1} given by the expression
eg/F(¥) =sgn(y)y(n) - €g/F. (5.9)

Proposition 5.1. Let w € {£1}¢. Inthe casewhen nt n~ isthe square of an ideal
(i.e,n~ = Of andn™ isthesquare of anideal ), assume that the following condition
holds:

a(p. E/F) = —sgn(w)eg . (5.6)

Then shrinking U if necessary, there exists a p-adic analytic function n,, defined on
U such that, for integersk € U N Z=2 withk =2 mod 2(p — 1), one has

Qs Q"
k k
R
In fact, the proof below shows that the expression

SR

nw (k) = (&F, &F)i? (5.7)

liesin Q(f})*.
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Proof. Let S; be the set of quadratic Hecke characters v, of F, unramified at the
primes dividing n, and satisfying the following conditions:

(1) sig(y1) = w.
@) v1(p) = —a(p, E/F).
() yi(utn7) = —a(p, E/F)-sgn(w) - €g/F.

These conditions amount to specifying the local conditions for yr, at the archimedean
primes and at the primes dividing n. The set S is non-empty. Indeed, the only point
that needs to be addressed is condition (3), in the case when n™ ™~ is the square of an
ideal. In this case, since vy is quadratic, one has ¥; (n™ n™) = I, hence the reason
for assuming (5.6) to hold.

Forany v/, € S1, one has, using (5.5), that ez, r (1) = 1. By the main theorem
of Friedberg—Hoffstein [15], we can pick a yr; € Sy, such that L(1, E/F, ) # 0.
Condition (2) implies that L, (s, E/ F, Y1) does not have exceptional zero at s = 1,
soL,(1,E/F,y) #0.

Now let S, be the set of quadratic Hecke characters v, of F, with conductor
relatively prime to that of v; and of n, satisfying the following conditions:

1) sig(y) = —w.
) ¥2(p) = —a(p. E/F).
@) Y2(nTn7) = (=) la(p, E/F) - sgn(w) - €g/F-

Again S, is non-empty (notice that in the case when n* n~ isasquare, i.e., n~ = Of
andn* isasquare, onemusthaved = [F : Q] beingeven by condition2.1. Hence the
last condition is again satisfied by (5.6)). For any > € S», 0ne has eg,r (y2) = 1.
By [15] again, we can pick a ¥, € S, so that L(1, E/F,vy») # 0. Again, the
conditions specified on vy, ensures that L, (s, E/F, y,) has no exceptional zero at
s=1landso L,(1,E/F,¢2) #0.

Hence shrinking U if necessary, we may assume that the p-adic analytic functions
Ly(k/2,k,foo, Y1) and L, (k/2,k,foo. Y2) are non-zeroon U.

Let¢ := v - 5. Thensig(¢) = (—1,...,—1). Hence ¢ cuts out a CM extension
K of F, in which p splits (since yr1¥,(p) = 1), and the pair (v1, ¥») corresponds
to a genus character yx of K.

Let k € U N Z=? be an integer, with k = 2 mod 2(p — 1). By equation (3.2)
we have

L(k/2.f} /K. yk) = L(k/2.T.y1) - L(k/2.T},¥2). (5.8)

Hence L(k/2, f,ﬁ/K, Y¥) # 0 for k specified as above. By Corollary 3.7, the value
L(k/2,£f/K.,¥) lies in Q(f).
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Using (5.1), we have, for j = 1,2 (noting that /2 — 1 is even, as p is odd):

D’;/Z_l(k/Z _ 1)!d N c%z L(k/2,f#, V)
Q2ri)dk/2=Dz (y;) Q:;zg(%)

Now by Proposition 7.1 of Appendix I, we have the following conductors and
Gauss sums identities:

Lk /2,18, v)) =

e Q(ff). (5.9)

DgD7* = Nrjo Dx/r = N /g cyy NF/Q cys
fW)T(W) = i\ N Fja cuy N Erg v
Putting together (3.9), and (5.8)—(5.10), we obtain

LYk /2,1 /K., ¥k)
2 Q" (5.11)

_ Uk TR a # | #
B Dk/Z—ll (F7,£5) L¥0k /2, ) - LB/ 2,8, 92),
K k> 'k

(5.10)

QL QLY
Equation (5.11) implies that i ¢ (ff’; fi") € Q).
k> k

Using equation (3.14), (3.15), and (5.4) we obtain

2
u
Lk /2. oo/ K Y15)” = o et(p. ) (0. )

k/2—1
K

QuQLY
£

e Lp(k /2, T8 ) Ly (/2,1 )
2

u
= Dm0 o)
QL Qv
idﬁLp(k/z,k,foo, Y1) Lp(k/2,k, foo, ¥2)
k’ 'k

(for the last equality, note that since k/2 — 1 = 0 mod p — 1, one has Di,"”(/z_1 =
(Dg)*/271). Hence the proposition is proved, by defining

(D) > 712, (k /2,00 / K, Y&)?
ug(p, k)2 Ly(k/2,k foo, Y1) Lp(k /2, K, foo, Y2)

Remark 5.2. The function n,, (k) does not depend on the choice of the characters
Y1, ¥ made in the proof, because by (5.7), the values of ny, (k) is independent of
these choices for a set of values of & that accumulates to 2. The same argument also
shows that 1y, = 1—yp.

id

M (k) =

O
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Proposition 5.3. Let ¢, v, beapair of quadratic Hecke charactersof F', whichare
unramified at the primes dividing n, and which correspond to a CM extension K/ F
and a genus character y¢ of K. Inthe casewherent n™ isthe square of an ideal,
assume the condition

a(p, E/F) = —sgn(y1) - €g/F. (5.12)
Thenfor k € U,

£p(k/2.f00/ K. VK)? (5.13)
= u% (Dg ) 20 (p, k) nsigyy) ) Lp(k 2,k Foo, Y1) Lp(k /2, K, foo, ¥r2).

Proof. The computations in the proof of Proposition 5.1, show that equation (5.13)
holds fork € UNZ=2,withk =2 mod 2(p—1) (ifpisinertin K, i.e., if Y1 (p) =
Y2 (p), then we use Theorem 3.13 instead of Theorem 3.14 in the computation). Since
both sides of (5.13) are analytic functions of &, they must be equal. O

We now come to the main theorem. We refer to the notations of Section 4.5.

Theorem 5.4. Let ¢, be a quadratic Hecke character of F, of conductor prime to
n = pnt n. Assume the following:

Yi(p) = a(p. E/F),

5.14
eg/r(Y1) = —1. (.14

Then
(1) Thefunction L,(k/2, k. fx,¥1) vanishesto order at least two at k = 2.
(2) Thereexists Py, € (E(F¥') ® Q)y,, and ! € Q*, such that

2

WLp(k/z,k,foo, )|, _, = I(logNorm g, . (Py))>.

(3) Theelement Py, isof infinite order if and only if L'(1, E/F, 1) # 0.

Proof. The proof of assertion (1) in the case when v/ istrivialand a(p, E/F) = 1,is
already given in the introduction. The proof for general 1 with ¥1 (p) = a(p, E/F)
is similar. Notice that assertion (1) does not require the conductor n to be of the form
puntun.

To prove the remaining claims, consider the set of quadratic Hecke characters
Y, of F, of conductors relatively prime to n and cy,,, that satisfies the following
conditions:

(1) sig(yr2) = —sig(y1).



Vol. 86 (2011) Heegner points and p-adic L-functions 921

(2) Y1) = yu (D) for [ |u™.
) Y2() = =y (1) for [ [pn~.

Again by (5.5), one has €g/r(V2) = —eg/r (Y1) = 1 for any such v,. So by
[15], we can pick a v, such that L(1, E/F,y,) # 0. Since y»(p) = —y¥1(p) =
—a(p, E/F), L,(s, E/F, ) does not have an exceptional zero at s = 1, so we
have L, (1, E/F,y,) € Q™.

Thus we are in the setting of Proposition 5.3 (notice that, in the case where n* n™
is a square, conditions (5.14) imply (5.12)). Hence (5.13) holds. Note that since
Y1¥2(p) = —1, the prime p is inert in K.

In our case L,(k/2,k,fs, 1) vanishes to order two at k = 2, while the other
functions that occur on the right hand side of (5.13) does not vanish. It follows, on
taking second derivative at k = 2, that

d2
ux Nsigty) (2 Lp(1, E/F, Wz)m

£k foo/ K vx)?|_

Ly(k/2,k foou )|

2
~dk?
. d 2
=2 (k. foo/ K, va)}kZZ] :

By Proposition 4.5 (noting conditions (5.14)),

d
2k foo/ K. wK)(kzz — logNormp, 7., (Py,)

with Py, € (E(F¥1) ® Q)y,, and is non-torsion if and only if L'(1, E/F, yr1) # 0.
Hence we obtain the proof, by setting

_ 1
17 = Suknsown D Lp(1 E/F. 1) (5.15)

= U Nsigty) Q) LY (L E/ F, ).
It remains to see that / € Q. Note that, by Proposition 5.1, the expression
sig(¥r1) —sig(¥r1)
id QfE QfE
(fe.fE)

lies in Q*, while the expression (®g, dg) lies in Q*, due to our normalization
condition that ® £ is integer-valued. Hence nsig(y,)(2) € Q, which gives the result
since L¥9(1, E/F,y,) € Q*. O

Note that when [F : Q] is even, then the conductor n of E/F can always be
written in the form pn™ n™, for instance by taking n= = Of. If [F : Q] is odd,
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then this condition is equivalent to requiring that £/ F has multiplicative reduction
at some place other than p. In the next section, we are going to establish Theorem 5.4
without this condition, at least when F = Q.

Remark 5.5. We can be more precise about the value of / mod (Q*)2. Let § be a
quadratic Hecke character of F', with conductor relatively prime to that of v/, and v/,
and satisfying the following conditions (whose existence follows again from [15]):

(1) sig(8) = sig(y1).

@) 8(1) =y (0) for [ |u* u~.
) () = —¥1(p).

@) L(1,E/F,8) # 0.

Let K/F be the CM extension cuts out by the character ¢ := 8, and v ¢ the

genus character of K corresponding to the pair by &, x». Then as a consequence of
equation (3.10), we have

(@p. @)~ = LY9(1,fg/K. yg) mod (Q%)% (5.16)

On the other hand, the same calculations that lead to (5.11) gives (noting that sig(§) =
sig(y1))

LY, fg /K, Yg) = (P, @)™ - nsigy) ()

(5.17)
-L¥(1,E/F,8)- L1, E/F,y,) mod (Q*)2.
Combining (5.15), (5.16) and (5.17), we thus obtain
[ =L%(1,E/F,§) mod (Q*)>2. (5.18)

In the case F = Q, this gives part (4) of Theorem 5.4 of [4].

Suppose that we take i, to be trivial in Theorem 5.4; in particular, we have
a(p, E/F) = 1, i.e., E is split multiplicative at p. Then we can give another
formulation of the statement of the theorem. Thus let O g € F,* be the Tate period,
4 = N F,/Q, O, and O, g, be the Tate uniformization for £/ Fy:

OF/F,: FpX/Q% =5 E(Fy).

Forany o € Hom(F, Q) = Hom(F,Q,) = Hom(F,, Q,), let F° be the totally real
field obtained by conjugating F with o, with p° the prime of F° above p. Similarly,
let E°/F° be the elliptic curve obtained by conjugating E/F with . Then E¢
is split multiplicative at p°, with Tate period Q% € (Fga)x. We choose the Tate
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uniformization @EO/F;TJ for E7/F, so that the following diagram commutes (the

vertical arrows being the natural maps obtained by conjugating with o):

Op/p,: FY /0% ———— E(Fy)

|

Oro/rg, : (F%)*/(Q5)F —— E°(Fg).
Define loggopo for each o € Hom(F, @,,) using these compatible families of
po
Tate uniformizations. Then givenany P € E(F) C E(Fy), write
P = ®E/Fp(z) Wlth zZ € pr.
Then
IogNormE/Fp P=log,, NF,qQ,2
= > loggq 2% by Proposition 2.29
crEHom(F,@,,)
— [0}
= Y ) 090/ rg, Opo/Fg, (27)
oeHom(F,Qp)
- Z |ogEa/FgU(®E/Fp(z))“

ageHom(F,Qp)

>, 10950k, P
geHom(F,Qp)

with P® € E°(F?).
Thus we obtain

Corollary 5.6. If in addition to the hypothesis of Theorem 5.4, we have E/ F being
split multiplicative at p, then

42 N2
WLp(k/Z,k,foo)‘kzz - z( > 10ggeskg, P ) (5.19)
o€Hom(F,Qp)

forP € E(F),and/ € Q*. Thepoint Pisnon-torsion, ifandonlyif L'(1, E/F) # 0.

6. Base change arguments

In this final section, let £/Q be an elliptic curve, which is modular by [37], [32],
[8], corresponding to a weight two elliptic eigenform fz (i.e., a Hilbert eigenform
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over Q). Let N be the conductor of E/Q (and hence that of f£), and as in the
previous section E/Q is multiplicative at p. We would like to establish Theorem 5.4
without assuming that £/Q is multiplicative at some prime other than p.

The idea is to consider the base change E/F, where F is a suitably chosen
real quadratic extension of Q. Theorem 5.4 is known for E/F. Suitable descent
arguments allow us to get the statement for £/Q.

First, we would like to establish a factorization formula, relating the p-adic L-
functions of a elliptic modular form, and the p-adic L-function attached to the cor-
responding Hilbert modular form obtained by base change. The situation is parallel
to Proposition 5.1.

The reader may notice that most of the arguments in this section is not specific
to the ground field Q. Indeed, the only place where this is essential is the proof of
Lemma 6.1 and Proposition 6.4 below, where we make use of a non-vanishing result
of Rohrlich [28], [29] on twisted L-values, which was proved only for the ground
field Q. If the result of Rohrlich can be extended to general totally real fields, then
everything in this section would work without the restriction to Q.

Here is the setup: let vy, ¥, be two quadratic Hecke characters of Q (i.e., Dirichlet
characters), whose conductors ¢y, , ¢y, are relatively prime to each other, and also
prime to the integer N above. Assume that sig(y;) = sig(y,) = w € {£1}. Then
as in Section 3.1, the character ;v defines a quadratic extension F of Q, which
is real quadratic by the condition on the signatures. The pair v, ¥, corresponds to a
genus character ¢ of F. One sees that sig(¥'r) = w -1 = (w, w). In conforming
with the assumption in this paper, p will be inert in F, so this amounts to requiring
that y1(p) = —v¥2(p).

First recall the formalism of the base change operation. Let g be an elliptic cuspi-
dal eigenform of weight k > 2, of level N. To simplify the arguments, assume that k
is even, and that the character of g is trivial. Given the real quadratic extension F/Q,
denote by g the base change of g from Q to F, which is a cuspidal Hilbert eigenform
of parallel weight k, known as the Doi—-Naganuma lift of g (cf. [9], Section 1.7). For
simplicity we assume that the level N is relatively prime to the discriminant of F.

By the definition of base change we have the following relation between the L-
function of g and that of g. Denoting by & the Dirichlet character corresponding to
the real quadratic extension F/Q, we have

L(S,g) = L(S,g) 'L(S,g, S)

This is equivalent to the following relations between the (normalized) Fourier coef-
ficients of g and g (cf. [9], p. 89). For any (rational) prime v let c(v, g) be the v-th
Fourier coefficient of g. First suppose that v + N. Let «(v, g), B(v, g) be the roots
of the characteristic polynomial

X2 —c(v, @)X +v* L
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Similarly if v is a prime of F, withv } N, let a(v, g), B(v, g) be the roots of
X2 —C(v,g)X + N v* 1.
If v splitsin F,i.e., ifv@r = vv’, then we have
a(v,9) = a(v',9) = a(v, g) (6.1)
B(v,9) = (v, 9) = B(v, g)
C(v,9) = C(v',9) = c(v, ).
On the other hand, if v isinertin F, sothat v := vOF is a prime, then
a(v,9) =a(v.g)? Bv.9)=p.g)°
C(v.9) = a(v)? + B()? = c(v, g)? — 20571,

One has similar relations for the Fourier coefficients for primes dividing D g or the
level N of g. Namely if v|N, then C(v,g) = C(v',g) = ¢(v, g) when vOf = v v’
splits, and C(v,g) = c(v, g)?> when vOFf = v is inert. Finally if v ramifies in F,
then C (v, g) = c(v, g) for the prime v of F above v.

From these relations, one see in particular that Q(g) C Q(g).

(6.2)

Lemma 6.1. With the above notations, the expression
k(g) == D 2@p)2@yh™ (63)
liesin Q(g).

Proof. Let T be the set of finite order Hecke characters y of Q, that are unramified
at primes outside p (including the infinite place); in classical language, this is the set
of even Dirichlet characters with conductors a power of p. Consider the following
condition:

If k > 4, then by Proposition 2 of [30], condition (6.4) is satisfied forany y € T.
For k = 2, then by the main result of [28], [29], (6.4) is satisfied for all but finitely
many y € T. Thus pick a non-trivial y € T that satisfies (6.4) (so in particular p
divides the conductor of ).

Let ¥ r be the Hecke character of F obtained by pulling back j via the norm map
JVF/Q, i.e.,

XF=X°NFjQ.

Then we have the following identity of the complex L-functions:

L(S7g’ WF)?F) = L(S,g, Wl)?) : L(S,g, Wz)?)
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So in particular

Again from Proposition 7.1 of Appendix I, we have the following identities relating

the conductors and the Gauss sums:
NFr/QCyrir = NF/QCir = C)Z?’
DF = Cy1Cyrys (66)
“(Wrir) ™) = DE (D™ (7).
Making use of equations (5.1) (appliedto L(k — 1,9, ¥rjr), L(k—1,g,v¥1 ) and
Lk —1,g,v2%)), (6.5) and (6.6), we obtain by direct computation
Lalg(k - 1’ g, WF)?F)

Lalg(k - 17 g, WI)N() : Lalg(k - 19 g, ‘/fz)?)
with «(g) defined as in (6.3).

Since the numbers

LGk —1,9,¢rjr), LYk—1,gy17) and LYk —1,g v27)

are algebraic numbers, we deduce that «(g) is algebraic. To pin down its field of
definition more precisely, let 1 € Aut(Q /Q(g)) be arbitrary. Since Q(g) C Q(g),
we also have 1 € Aut(Q /Q(g)).

Noticing that since 1, ¥, and ¢ take values in {£1}, we see, by (5.2),

L% —1,g.917") = LYk — Lg.yu )" # 0,
L% —1,8.927") = Lk — 1, g,y )" # 0,
Lk —1.9.yF fF) = LGk — 1.9,y iF)" #0.
In particular, in the above computation, we could replace j by #”, and so equation
(6.7) holds with 7 replaced by 3". We deduce
L9k —1,9.YFJF)

LWk — 1, g, 91 J) - Lk — 1,8, 927)
_ LYk —1.9.Yr 7})
B Lalg(k - 1’ g, Wl)?h) : Lalg(k - 19 g, WZ)?h)
_ ( Lk — 1,9,y FJF) )h
-~ \L(k — 1,8, 917) - LKk — 1,8, ¥27)
= x(g)"

which implies that «(g) € Q(g), as required. O

K(g) = (6.7)

k(g) =
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Now assume that g is ordinary at p. For the sake of simplifying the arguments,
assume that the weight k satisfiesk =2 mod p — 1. As in the proof of Lemma 6.1,
for any finite order Hecke character y of Q, let y r := yoN /g be the corresponding
Hecke character of F.

Lemma 6.2. For any finite order Hecke character y of Q, unramified at places
outside p, we have

Lp(k =1.9.9Fxr) = k(@) Lplk —1.8. Y1) - Lp(k —1.8.92)).

Proof. Similarto the computations leading to equation (6.7) inthe proof of Lemma®é.1,
we have

LYk —1,9.yF xr) = k(g) L%k — 1, 8. Y1 x) - LYk — 1, g.¥2x). (6.8)

Lemma 6.2 then follows by combining equation (6.8) with equation (5.3) (applied to
Ly(k—1,9,YFxF). Lp(k—1,g,¥1yx)and L,(k—1, g,V y)), and the computation
(using ¥1(p) = —¥2(p) and that a(p, g) = a(p, &)?):

(B -
_ (1 B WFXF(D)JVDk_Z)
a(p. Q)

(here we have used ¢ (p) = 1, because the image of p = pOp in Pic(Of) comes
from the image of p in Pic(Z), which is trivial). Similarly,

Wi (p)B(p. g) W20 (p)B(p. 8)
(1 B pk—1 )(1 B pr—1 )

_(i_ Wrxr) " ()B(p.9)

- ( N pk—1 )

Proposition 6.3. We have the factorization formula of p-adic L-function:
Lp(s.9.¥F) = k(&) Lp(s. & V1) - Lp(s. g, ¥2).

Proof. The proof follows the same lines of argument of Proposition 9.3 of [26], using
Lemma 6.2 above. d

We now come back to the setting of the beginning of this section. Let fg be the
base change of fg to F. Then fg corresponds to E/F (so E/F is modular). Let
Jfoo be the Hida family lifting fr. The Hida family fo, lifting fg can be obtained
from f,, by base change. More precisely we can construct the AT-adic eigenform
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foo Using formula similar to (6.1) and (6.2), i.e., for primes v of F define C(v,f)
by the following formula:

C(0,f) = C(V',fo0) = c(v, foo) if vOF = vV splits.
If vOrp = visinertin F, then

c(v, fo)? —2v(v)¥2 ifv 4 N (here k is a variable),

C 1f00 = - - -
(@ Too) {c(v,foo)z if v|N (in particular for v = p).

If v ramifies in F, with v the prime of F above v, then

C(v.f0) = c(v, foo)-

One then defines C(m, f,) for other ideals by (2.11). These data defines the A T-adic
form f, and for integers k € U N Z=2 for a suitable p-adic neighbourhood U of 2,
the weight k specialization f of o, is the cuspidal Hilbert eigenform that is the base
change lift of the weight &k specialization f; of f. Let fk# and f,’j be the newforms
attached to weight k specializations of f, and fo, (S0 that f,’j is the base change lift
of £ to F).

Proposition 6.4. Uptoshrinking U, thereisa p-adic analytic function « (k), defined
on U, suchthat for k € U N Z=2,withk =2 mod p — 1, one has

(k) = k().

Proof. With notationsas in the proof of Lemma6.1, choosea y € T, whose conductor
is divisible by p, such that

L(LE/F.yrxr). LA, E/Q.y1)) and L(1,E/Q,¥2))
are non-zero. Since p divides the conductor of ¥, we have by equation (5.3) that
Ly(1,E/Q.y1]) = L*(1, E/Q. 1),

L,(1,E/Q,y27) = L1, E/Q. 2 7).
L,(1,E/F.yrjr) = L™, E/F.YFjF).

Hence up to shrinking U, we may assume that the p-adic analytic functions
LP(k_l’kufOval)’ LP(k_l’kmeO’wZ) and Lp(k_lvkvaO9WF)

are non-zero on U. Thus, if we define

Lp(k - 1?kvf007 WF)
Lp(k - 1’k’ fOO’ wl)Lp(k - l’kv fOO’ wZ)’

k(k) :=
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then « (k) is p-adic analytic on U, and Lemma 6.2 shows that, for k € U N Z=2,
withk =2 mod p — 1,
K (k) = «(f)

as required. |

We now draw the corollary that we need:
Corollary 6.5. For k € U, we have
Lp(k/2,k Yoo, ¥F) = k(k)Lp(k/2.k, foo, V1) - Lp(k/2.k, foo.¥2).  (6.9)

Proof. Propositions 6.3 and 6.4 show that this holds for integers k € U N Z=2, with
k =2 mod p — 1. Since both sides are p-adic analytic functions of k, the result
follows. 0

We are now in a position to extend Theorem 5.4 to the elliptic curve E /Q, without
assuming that £/Q is multiplicative at some prime other than p. Thus we are only
assuming that N = M p, where p does not divide M. Let v, be a quadratic Hecke
character of Q, with conductor relatively prime to N, satisfying

Vi(p) = a(p) :=a(p, E/Q),
egjo) = -1

Let v, be a quadratic Hecke character of QQ, with conductor relatively prime to
that of v; and to NV, satisfying the following conditions:

(1) sig(¥2) = sig(y1).

(2) Ya(p) = —v1(p).

(3) ¥a(g) = ¥1(q) for all primes ¢ dividing M.

(4) LA, E/Q,y2) #0.

Note that for any v, satisfying (1) to (3), we have (using (5.5) again)

€eQ(¥2) = —€g(¥1) = 1,

so the existence of v, that satisfies (1) to (4) follows again from [15]. Note that (2)
implies ¥2(p) = —a(p, E/Q), so the p-adic L-function L, (s, E/Q, yr») does not
have an exceptional zeroats = 1. So L, (1, E/Q, ¥2) € Q™.

Let F be as above the real quadratic extension of Q cut out by ¥r;y,, and ¥ ¢ the
genus character of F defined by the pair ¥q, V5.

Consider the base change E/F. We have

a(p, E/F) = a(p, E/Q)* = 1 = yFr (p).
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On the other hand, the factorization formula for the complex L-functions,

L(S,E/F,l/fF)=L(S,E/Q,W])'L(S,E/Q,l/fz), (610)

together with the hypothesis that L(1, E/Q, ¥») # 0, shows that the order of van-
ishing of L(s, E/F,¥F) ats = 1 coincides with that of L(s, E/Q, ¥1), which is
odd, i.e.,

€g/F(YF) = €gj(1) = -1

Since [F : Q] = 2 is even, we may apply Theorem 5.4 to the p-adic L-function
Ly(k/2,k,foo, ¥F) to get

2
dk?
where [ € Q*, and Py, € (E(FYF) ® Q). is non-torsion if and only if
L'(1,E/F,yFr) #0.
By (6.10), and the fact that L(1, E/Q, ¥») # 0, we have
L'(1LE/F.yp)=L'(1.E/Q.y1) - L(1. E/Q, ¥2).

Lp(k/2.k.foo, YF)| _ = I(logNoM g, Py )2,

Hence
L'(1,E/F,yr) #0 ifandonlyif L'(1,E/Q,v) # 0.

By (6.9), and the fact that both L, (k /2, k,fo. ¥F) and L, (k/2, k, foo. Y1) Van-
ishes to order at least two at k = 2, we have

d? d?
ml‘p(k/z’k’foo, VF) P k(2)L,(1, E/Q, wz)m

with «(2) € Q* by Lemma 6.1.
Define

1= k@) Ly(1L E/Qu )™ =27 @)™ - L1, E/Q. o)7L

Then/” € Q*. It remains to deal with the term involving logNorm /. .
Notice that, in the notations of Section 3.1, we have

Lyp(k/2,k, foor¥)| _,

FVYF — Qlllmﬁz

and thus Py, € (E(QY1¥2) ® Q). As in Corollary 4.2, the assumption that
L1, E/Q,¥,) # 0 implies, by the result of [24] (applied to E/Q, so this case
already follows from earlier work of Kolyvagin), that

Py, € (E@Q")®Q)y,.
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Clearing out denominators, we may assume that Py, . € E(Q¥1),, without affecting
the value of / mod (Q*)2. In particular, in the notations of Section 4.5, the image

of Py . in E(Q,2) liesin E(Q,2)a(p)-
Letgr € Q, be the Tate period of £/Q,, and let

®r/q,: C) /a5 = E(Cp)

be the Tate uniformization for the Q ,2-points of £/Q,, which is also the Tate uni-
formization for E/F,. Recall from Section 2.11, that the property of the Tate uni-
formization gives E(Q,2)a, = O£/q,(Qp), so in particular we have

Pyr = Okq, (2)
with z € Q. So in particular
IogNormE/Fp(Pl,,F) =log,, NF,/q,(z) =2log,, (z) = 2IogE/Qp(P1,,F).
Thus to conclude, if we let
1" :=2k(2) 'L, E/Q, y) U, (6.11)

then
2

dk?
with P = Py, € (E(QY") ® Q), non-torsion if and only if L'(1, E/Q, 1) # 0.

Ly(k/2,k, foo, ¥1) = I"(logg,q, P) (6.12)

Remark 6.6. In [5], equation (6.12) is applied to the study of the question of ratio-
nality of Stark—Heegner points. For this purpose, they need to know the value of /”
mod (Q*)2. See the discussion of Remark 5.5. These suggests that the conclusion
of remark 5.5 holds for E/Q even without assuming that £/Q is multiplicative at
some prime other than p. Thus for ¥, as above, we state the following conjectural
formula:

1" L1 E/Q.yy) mod Q). (6.13)
On the other hand, using (6.11), (6.3) and (5.18), we have

D> Npjces L(1, E/F,8)
T(B)QF)?

1" =LY, E/Q.,¥5) -2 mod (QX)2, (6.14)

where § is a quadratic Hecke character of F', unramified at the primes dividing the
conductor of E/ F, that satisfies
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(1) sig(8) = sig(y¥r) = (sig(¥1),sig(¥1)),
(2) 8(p) = —yr(p) =—1,
3) 8(1) = yr (1) for any prime [ # p dividing the conductor of E/ F,
(4) L(1,E/F,8) # 0.
Thus in order for (6.13) to hold, we are led to

20;/2NF/Q s L(LLE/F.8) o
Sig(1) =
(8@

1 mod (Q%)%. (6.15)

As a particular case, take v, to be trivial. Let F be a real quadratic extension of
Q, inwhich p is inert, and all primes g # p dividing the conductor of E/Q splits
in F. Let § a quadratic Hecke character of F, unramified at the primes dividing the
conductor of E/Q, such that

(1) sig(d) = (1, 1),

() 8(p) = -1,

(3) §(1) = 1 for any prime [ # p dividing the conductor of E/F.
Then, is it true that the expression

21)},/2 NEges L(1, E/F, )
1(6)(Qf)?

is the square of a rational number? This would be consistent with the Birch and
Swinnerton-Dyer conjecture. For more on this, see [27]. We remark that for such §,
the restriction SIAE» is not trivial, so this is not a situation where Waldspurger type

results [35] can be directly applied.

Here, we are content to draw the following:

Corollary 6.7. Inthesituation (6.15), supposethat £ /Q hasmultiplicativereduction
at someprimeother than p, andthat L'(1, E/Q, ¥1) # 0 (inadditiontothecondition
L(1, E/Q, ¥,) # 0,andtheabove hypothesison F and §), then theexpression (6.15)
is the square of a rational humber.

Proof. Under the above assumption on E/Q (in particular that it is multiplicative at
some prime other than p), we have by part (4) of Theorem 5.4 of [4] that

d

mLP(k/z,k’ Joos Y1) k=2 - l(logE/Qp P/)z
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for some [ € Q*, with / = L¥9(1, E/Q, ) mod (Q*)2, and P’ € (E(Q¥') ®
Q)y, non-torsion (which is the conclusion of remark 5.5 applied to £/Q). On the
other hand, by equation (6.12) and (6.14), we also have

d "
WLP(k/Z,k,foo,wl) = 1"(logg,q, P)*
with [” = [ - ¢ for some ¢ € Q* satisfying

DY? Npjges L(1, E/F,8)

c=2 -
() Q")

mod (Q*)?

and P € (E(QY') ® Q)y, again non-torsion. The corollary thus follows from the
fact that dimg (E(Q¥") ® Q)y, = 1. O

To conclude we state another corollary of (6.12), which is a special case of a
conjecture of Greenberg (this is stated in [4] in the case when E/Q is multiplicative
at some prime other than p):

Corollary 6.8. Supposethat E/Q is split multiplicativeat p, and L'(1, E/Q) # 0
(so that the sign of the functional equation of the p-adic L-function L, (s, E/Q) is
+1). Then there exists a p-adic neighborhood U of 2, such that L(k/2,f,f) # 0 for
keUNZ>2, k=2 mod p— 1.

7. Appendix |

Here we prove a result on Gauss sums that is used for the proof of Proposition 5.1
and Lemma 6.1.
In general, let L be a number field. For any infinite place v of L, define the

modified form of Euler’s " function as follows:

) n5/2T(s/2) if v is real,

s) =

! 2(27)ST(s) if v is complex.

Let § be a finite order Hecke character of L, and &, be the local component of § at
the place v. Define

my (6) = 0 ifviscomplex, or visreal and §,(—1) = 1,
P71 ifvisreal and 8, (—1) = —1.

Let L(s,d) be the Hecke L-function associated to 6. Define the completed L-
function:

A(s,8) = (DL N g ) ] Guls +mu(8) L(s,5).

v|oco
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Then A(s, §) satisfies the functional equation

(8)

Al —s,8) =
MO N gy

SAGs.6) (7.1)

with M (6) = Zvloo m, (8), and ©(§) being the Gauss sum of §.

If § = 1 is trivial, then L(s, 1) is just the Dedekind zeta function ¢z (s), and
A(s, 1) is the completed zeta function of L. In this case (7.1) reduces to the familiar
functional equation:

Al —s,1) = A(s, 1).

Now let F be a number field, and 1, ¥, be quadratic Hecke characters of F,
whose conductors are relatively prime to each other. Asin Section 3.1, the pair 1, ¥»
cuts out a quadratic extension K of F, and corresponds to a genus character yx of
K. The character ¥k is unramified at all the finite places of K, thus ¢y, = Og. On
the other hand, let w be an infinite place of K that lies above v, then w is real if and
only if m,, (v1) = m, (), in which case there are two real places w, w’ of K above
v, With my, (V) = my (Ygx) = my (Y1) = m, (). One also sees that

M (y¥g) = 2 x number of (real) places v of F such that m, (y1) = m, (¥2) = —1.

Let y be a finite order Hecke character of F, assumed to be unramified at all the
infinite places, so that m,, (¥; x) = m,,(y;). Forour purpose, we will also assume that
¢, isrelatively primeto ¢y, and cy,, sothatcy,, = cy, c,. Define yx 1= yoNk/F.

Proposition 7.1. Thefollowing identities hold true:

Dk = Di N F/q cy, cy. (7.2)
v(Yk ) = iMOROTMODMED D e DAy (920, |

Proof. We have the following identities:
L(S9 ‘/fKXK) = L(S, le)L(s’ 1/’2, X)a
(2T (s/2) - (= OV ((s 4+ 1)/2) = 220) T (s)
(the second one is the duplication identity for I" function). Hence we obtain
A(s, Yk xk)
= (Dk Nk/@ cxx)*>(DF N F/@ ¢y N Fy@ cyn) ™ Als. Y1 ) Als, Y2 70).

Onthe other hand, by comparing the functional equationsfor A(s, ¥x xx), A(s, ¥1x)
and A (s, ¥, x), we see that the function

Fy(s) := (Dx Nk/@ ¢xx)>(DF N Fi@ cyy N Fjg ey, N pjg )2 (1.3)
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satisfies the functional equation
Fy(1—5) = Ay - Fy(s),
where
A, = (MODEM@) M) _TWEIK)
t(Y10)T(Y2x)
Nrgeyi Nrew, Nrjge

/2

2)1/2 (7.4)
X

; .

Nk/Q ey

From this, one easily sees that A4, and F,(s) must be identically equal to one.
Take y to be trivial. Then from (7.3) we obtain:

Dk = DF N FjQ ey N/ cys
thus giving the first equation of (7.2). Now going back to general y, we obtain from
(7.3) again:
N/ crx = Nr/Qcy-
Plugging these into (7.4), and using 4, = 1, we finally obtain the other identity of
(7.2). m

It is then clear that (6.6) used in the proof of Lemma 6.1 follows from Proposi-
tion 7.1.

For (5.10) used in the proof of Proposition 5.1, we take y to be trivial, and K
to be a CM field. One has M(yx) = 0, while M(y1) + M(yp) = d = [F : Q].
Proposition 7.1 implies the claim, by noting that

T(Yg) =1

which follows since ¢y, = Ok.

8. Appendix 1

Here we prove Proposition 2.9 and Theorem 2.10. The arguments are well-known.
We include the proofs here for the convenience of the reader.
Recall the open compact subspace X’ of X defined by

X' = c\((9}f~JD x pOF,)

which is stable under 7, (as in Section 2.4, ¢ is the closure in (9;;p of the group of
totally positive units of O ). Let D’ be the space of C,-valued measures on X’, with
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the evident structure of a module over KF and the action of 7,,. As in the case of D,
one has maps

P Y

defined in the evident manner, and allow us to define, for /' € D', and g €
M>(p; Or,) N GL2(Fy),

g*u = p'(g-s'(u)).

One checks that this defines an action of the semigroup M (p; Of,) N GL2(F,) on
D’ extending that of 7,,. Thus for f a function on X’, and § C X’ open compact

/f d(g 1) =/ £l du'.
S g_l(S)ﬂX’

The measure g % ' is supported on g(X’) N X',
Consider the map

Dy — D’ (8.1)
given by restriction of measures. This map is I,-equivariant.
Let X = Z(nt,n7), ¥ = T(mT,n)NZ(p,n”) = S(pnt,n7). Thus
¥, = I. The restriction map (8.1) induces the /,,-equivariant map

S(Z,Dy) — S, D). (8.2)

It is clear that the specialization map (2.10) factors through (8.2).
First, we observe:

Proposition 8.1. The map (8.2) is an isomor phism.

Proof. Fora € ky, denoteby y, = (48) = (§4) (94) € GL2(Op,).
Then one can check that

Or, x OF, = | | 7a(OF, x p OF,).

acky

Denote X := X\ X’ = ¢\ (09, x OF,)- Then

X = |_| YaX'.

acky
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Now given @' € S(X’, D), suppose for the moment that ® € S(XZ, Dy) is a
form that maps to @’ under (8.2). Then for any continuous function f on X,

| raew = raew+ [ 1 doe
= [ £ ae+ f do(g)

7
acky vaX

:/X/f do(g) + Z/X,f“/“ d®(g - va)

ackyp

= /X/f do'(g) + ) /X'flya d®'(g - ya).

acky

Thus in general, given @ € S(X’, D’) define ® by the following rule: for any
continuous function f on X,

| ravw=[ rav@+ Y [ fivndocon,

acky

Then one checks that ® € S(Z, D.), and this provides the inverse to the map (8.2).
O

The isomorphism S(X, D.) — S(X/, D) commutes with the action of the Hecke
operators Ty and Ty for [ not dividing p n™ n~ and the Uy for [ |nt n™. For the
Hecke operators at p we have:

Proposition 8.2. The isomorphism (8.2) intertwines the action of 7, on S(Z, D)
and that of U, on S(X', D’).

Proof. This is adirect computation. Thus let ® € S(X, D.), and let &' be the image
of @ under the isomorphism (8.2).

Given a continuous function f on X we have, for g € B*, the following formula
for T, ® (equation (2.2)): by taking

0q = (1(; 611) fora € ky

1 0
JOO:Op

0
GLZ(GFP)(’g 1)cst(@Fp): | | 0aGL2(0F,).
aePl (kyp)

and

we have
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Hence

[ 1 d7s0) = [ f do) « 0gom) + 3 [ dou dgon)

ackyp

= [ f domx 0g0) + X [ dows @gon)

acky

(in the last equality we are using the fact that the measures o, * ®(gox) and o, *
®(go,) are supported on X’ and X respectively).

Whereas in general for ¥ € S(¥’, £’), and function 2 on X', we have (equation
(2.3)) that

/ h dU,¥(g) = / h dop x V(gop)
X! beky

=Y [ e dwedy)
b—lX/m X’/

beky

=Y h|6b dU(gbp).

beky
Here

Gy = (blp g) for b € kp.
One has
0%, xp O, = | | 65(0F, x p Or,)
beky

which implies

=[] 6x".
beky

(In particular 6, X’ > X, explaining the last equality in the above computation.)

Now suppose that ® € S(Z, D) corresponds to U, (®’) under the isomorphism
(8.2). Then as we have seen in the proof of Proposition 8.1, for f a continuous
function on X,

[ rade= [ rave@+ Y [ fin v

acky
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Now

| 1 v =% [ rién aolisen)

beky

=% [ 116 doean)

beky

=D | [ déyx0(ehy).

beky Y I X’
Notice that 6, = 0soTp, Where 7, = (3 9) € GL2(Og,). Hence
Op * D(gop) = 000 * P(g000).

So we have

[ f v =3 [ s dowe s digo)

beke (8.3)
- / 1 dos + D(goso).
X/

Similarly we can treat the other terms:

[ £ dUaer) = 3 [ Fivds d0/(eridn)

beky
= Y | Flvads d(eradn)
beky X!
Now a direct computation gives
YaOb = OaVb,
hence the above integral becomes
> [ loans dogoum) = Floa d®(g0,)
beky ' X’ beky VX’

- /~f|0a d9(g0,)
X

= /;f dog, * D(goy).
X
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The last equality holds because o, 1(X) N X = X. So we have
[ 1 dd@ = [ 1 arye.
X X

Thus we conclude that & = 7;,®. O
Now let &7 € S(X', D). Forinteger k > 2, let & = pi «(P). Then

Lemma 8.3.
Pk (Up @) = Up Dy

Proof. Let P € 8. Then for g € B*,

s U@ )@(P) = [ fr AU

(where fp is as in equation (2.9)). On the other hand, as we saw in equation (8.3)
during the proof of Proposition 8.2,

[t atstlue) =Y [ frlou d@eo).
X acky X
Hence

e U@ )@P) = 3 [ frlon d@l(ssu)

acky

= ) Bulgda)(Pla)

acky

= Up(Pr)()(P). .

Corollary 8.4 (Proposition 2.9). Assumethat @, € S(Z, Dx),and Dy = p «(Poo)-
Then

pk,*(TpCI)oo) = Up CDk.

Proof. Let ®, € S(X’, D’) be the image of ®, under the isomorphism (8.2). Then
by Proposition 8.2,
Tpy®oo = Up @,

Thus using Lemma 8.3

Pic, (Tp(Poo)) = pic,sc (Up () = Up (i ,x Po) = Up(Pc). O



\ol. 86 (2011) Heegner points and p-adic L-functions 941
We draw another corollary of Proposition 8.1:

Corollary 8.5. The specialization map
P21 S(Z,Ds) — S(X', V2)

issurjective.

Proof. By Proposition 8.1 this amounts to showing that the specialization map
p2,5: S(Z', D) — S(Z', V2)

is surjective. R
Let R” be the Eichler order of B of level p n™ such that ¥’ = (R)*. Choose a
set of representatives {¢;}7_, € B for the double coset B*\ B*/X’. For each i let

R, := B N R';" be the Eichler order of B of level pu* determined by ;. Then
each of the quotient (R;)X/@j;’Jr is a finite group (recall that O , is the group of
totally_ positive units of OF). Let A; be the im_age of zl.‘l_(Rg)Xti/Of,,Jr in X,/ c.
Then in general for any Z,[X,]-module M with the action of X, on M factors
through X,/ c there is a bijection of Z,-modules:

n
S\ M) => @MAi
i=1
O — (D)),

(here M Ai stands for the Z,-submodule of elements of M invariant under A;). So it

suffices to show that the maps p, : (D.)2 — (V,)?i are surjectivefori = 1,...,n.
But the A; are finite groups, and D’ is a Q,-vector space, so this follows from the
surjectivity of po: D' — Vo = C,p,. O

Remark 8.6. For each k > 2 the same argument shows, by using the surjectivity of
pk: D' — Vi, that pg .2 S(Z, D) — (X', V) is surjective.

Proof of Theorem2.10. This can be proved by the same methods as in [1] and [21]
(seealso [2]), so we just provide asketch. Let® € S(X/, V5) = S(Z(p,nt,n7), V)
be an eigenform that is new at primes dividing n*. Then there is a finite extension
E/Q, such that ® takes values in E. Multiplying ® by scalars if necessary, we can
further assume that @ takes values in @ = O (the ring of integers of E). Denote by
S(X', Va, 0) the @-module of forms with values in @, which is a finite free module
over @. Similarly let D, o be the @-module of measures on X with values in .
Then S(Z, Dx,0) isamodule over Ar g := O ®z, Ar. Thering A r,o is compact,
and the A  o-modules D, ¢ and S(X, Dy ) are compact.



942 C. P. Mok CMH

The specialization map p, « sends S(Z, D4 ) to S(X'. V2, 0). As in [1], Sec-
tion 5, let S(T', V2, 0)° and S(Z, D« 0)° be the ordinary parts of S(T', V>, @) and
S(Z, D«,0), which is the maximal direct summand (as @-module and KF,@-moduIe
respectively) over which the action of T3, is invertible (as usual 7}, acts as U, on
S(2,V,0)). Thus ® € S(X/, V», ©)°. The arguments used for the proof of Theo-
rem 5.1 of [1] (known as control type theorems) show that p, . induces an injection

p2.x: S(Z, Dk0)/P2S(Z, Di0)° — ST/, V5,0)°

here we identify the weight P, € X of Section 2.4 as the prime ideal of KF,@
given by the kernel of P,. The compact version of Nakayama’s lemma implies that
S(Z, Dy 0)isafinite A  o-module. Inparticular & := S(Z, Dy 0)° ®%, o N0

is finite over 7\@,(9, hence finite over Ag := O ®z, A. The argument of [1],
Lemma 1.1, shows that & is torsion free over Ag.

On the other hand, the proof of Corollary 8.5 shows that p; «: S(X, D«,0) e
E — S(X',V5,0) ®e E is surjective, so without loss of generality we may assume
that @ lies in the image of S(Z, D. @), hence in the image of S(X, Dy ) since @
is ordinary. Let ®__ € & be such that p; o (P/,) = ©.

Let 8 be the prime ideal of Aw given by the kernel of the evaluation map at
k = 2. The localization @y is then finite and torsion-free over the discrete val-
uation ring Ao g, hence is finite free over Ao . Let R be the Ao gp-subalgebra
of Enda, 4, (©g) generated by the image of the Hecke algebra T (with T as in
Section 2.5). The algebra N is finite free over Ag . The system of Hecke eigen-
values associated to the eigenform @ then gives rise to an algebra homomorphism
h: R — E, and the kernel of 7 is a maximal ideal of 3 that lies over fA o 5. Let
I be the normalization of the quotient of 3t by the minimal prime of 3t contained in
ker(h) (which is again a DVR). Since ® is new at primes dividing n ™, the arguments
used to prove Theorem 3.6 of [21] (p. 381-383 of loc. cit.) show that I is unramified
over Ao, (see especially the second equation on p. 383 of [21]). Fix an embedding
I/mp — Qp (where mz is the maximal ideal of I). Then since I is unramified
over Ao g, there is an unique way to embed I into AT extending the embedding of
Ao.p into AT (as in equation (2.5)).

As in loc. cit. there is a decomposition of Ao g algebras

R @ngp AT AT X,

where the projection &t ®a,, AT — AT is induced by the map %% — I — A?
(here X is just the complimentary algebra direct summand).
Leter € R Qapq AT be the idempotent corresponding to the projection onto

the AT. Under the natural pairing

R®ppp AT X By —> Gy @npy AT =6 @4, AT
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put @oo 1= er®, € © ®p, AT. Then d is an eigenform in © @4, AT. The

image of o in S(T, DY°"T) is then an eigenform that specializes to ®. O
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