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Bounding the regularity of subschemes invariant under
Pfaff fields on projective spaces
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Abstract. A Pfaff field on P n
k

is a map � W �s
Pn

k

! L from the sheaf of differential s-forms to an

invertible sheaf. The interesting ones are those arising from a Pfaff system, as they give rise to a
distribution away from their singular locus. A subscheme X � P n

k
is said to be invariant under �

if � induces a Pfaff field �s
X

! LjX . We give bounds for the Castelnuovo–Mumford regularity
of invariant complete intersection subschemes (more generally, arithmetically Cohen–Macaulay
subschemes) of dimension s, depending on how singular these schemes are, thus bounding the
degrees of the hypersurfaces that cut them out.
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1. Introduction

In 1891, Poincaré [Po], p. 161, posed the problem of bounding a priori the degree of
the first integral of a polynomial vector field on the complex plane, when the integral
is algebraic. The importance of such a bound is that it allows us to decide whether
the integral is algebraic or not by making purely algebraic computations.

Poincaré himself produced bounds in special cases. But no bounds have been
found in general. Actually, many obstructions to finding such bounds have been
discovered: For instance, Lins Neto [Ln] produced examples to show that a bound
cannot depend only on the degree m of the vector field and on the analytic type of its
singularities in the plane or at infinity.

The current interest in Poincaré’s problem was revived exactly a hundred years
later by Lins Neto and Cerveau [CeLn], who showed that an algebraic curve invariant
under the vector field has degree at most m C 2 if the singularities of the curve are
ordinary double points, the bound achieved only if the curve is reducible; see loc. cit.,
Theorem 1, p. 891. Since then many papers have concentrated on this related problem,
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Processos 300004/95-8 and 470761/2006-7.
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of bounding the degrees of algebraic curves invariant under the vector field. This has
often been called the Poincaré problem. Works on this problem, allowing for more
singular curves, are [CmCr], [Cr], [EKl3], [dPW] and [Pe], to cite a few.

The problem has also been considered for higher dimensional spaces. One of the
first to do so was Soares [S]. In today’s language, and in great generality, let P n

k
denote

the n-dimensional projective space over an algebraically closed field k, and consider
a Pfaff field, a map � W �s

Pn
k

! L from the sheaf of s-forms �s
Pn

k

WD Vs
�1

Pn
k

, for

an integer s between 1 and n � 1 called the rank of �, to an invertible sheaf L.
Besides its rank, the unique other numerical global invariant under deformations of
� is m WD deg.L/ C s, the degree of �. The singular locus of � is its degeneracy
scheme � , supported on the set of points where � is not surjective. A closed subscheme
X � P n

k
is said to be invariant under � if � induces a Pfaff field �s

X ! LjX on
X . The above terminology is taken from [EKl2], Section 3, to where the reader is
directed for more details.

The Pfaff field � may arise by taking determinants from a Pfaff system, which, as
defined by Jouanolou [J], pp. 136–138, is a map �1

Pn
k

! E to a locally free sheaf E of

rank s. (This is automatic for s D 1 but a strong condition for s > 1.) A Pfaff system
may be seen as a “singular distribution,” as it gives rise to an actual distribution on
P n

k
�� . Then subschemes of pure dimension s that are invariant under � are solutions

of the corresponding Pfaff system; see [EKl2], Proposition 3.2, p. 3782, for a precise
statement. Also, the degree m can be given a geometric interpretation in this case;
see Section 4.

If s D 1 then � is the homogenization of a polynomial vector field on Cn. If
s D n � 1, through the perfect pairing �s

Pn
k

˝ �n�s
Pn

k

! �n
Pn

k

, we may view � as the

homogenization of a polynomial differential 1-form on Cn. In both cases, � arises
from a distribution away from � .

Some of the statements in the literature, and all of the statements in the present
article, work in positive characteristic, under suitable assumptions. However, to
simplify the ongoing discussion, assume that k has characteristic zero.

For s D n � 1 one may search for bounds on the degrees of hypersurfaces
invariant under �. For instance, under the harmless assumption that dim.�/ � n � 2,
Brunella and Mendes [BMe] showed that an invariant reduced hypersurface with
at most normal-crossings singularities has degree at most m C 2, generalizing the
theorem by Cerveau and Lins Neto mentioned above; see loc. cit., p. 594, for a more
general statement.

For s D 1 many inequalities have been produced for the degree and the genus of
(reduced, equidimensional) curves invariant under �, for instance in [CmCrG] and
[EKl1]. However, in the spirit of Poincaré’s original problem, one should look for
bounds on global invariants that could reduce to purely algebraic computations the
question of whether � has an invariant curve or not. The (Castelnuovo–Mumford)
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regularity is such an invariant, as it is well-known that a subscheme X � P n
k

is cut
out by hypersurfaces with degree at most its regularity, reg.X/.

Though a good measure of the complexity of a subscheme X � P n
k

, by the
reason explained above, the regularity is a concept of a rather arithmetic nature. At
any rate, if X is arithmetically Cohen–Macaulay (a.C.M.), for example a complete
intersection (see Subsection 2.2), the regularity acquires a more geometric meaning:
cut X by as many general hyperplanes as its dimension to obtain a set � of points;
then the regularity of X is the smallest integer r such that for each P 2 � there is
a hypersurface of degree r � 1 passing through all the points of � but P . So the
regularity of � is higher the more special the position of the points of � is. For
instance, if X is generically reduced, whence � is reduced by Bertini Theorem, and
all the points of � are on a line, then it follows from Bezout Theorem that r is the
number of points of � , the degree of X .

In [E] the second author shows that an invariant a.C.M. curve C , with at most
ordinary double points for singularities, such that � \ C is finite has regularity at
most mC2, with equality only if the curve is reducible; see loc. cit., Theorem 1, p. 3.
Since complete intersections are a.C.M., and since the regularity of a hypersurface
is its degree, the statement is another generalization of Cerveau’s and Lins Neto’s
result.

Later, the second author and Kleiman showed that the inequality reg.X/ � mC2

for an invariant a.C.M. curve (for s D 1) or invariant reduced hypersurface X � P n
k

(for s D n � 1) with normal-crossings singularities was a consequence of the fact
that hs.�s

X .1// D 0, and that the same holds for intermediate s. More precisely, for
any s, an invariant, reduced, a.C.M. subscheme X � P n

k
of pure dimension s whose

irreducible components are not contained in � has regularity bounded by m C 2 if
hs.�s

X .1// D 0, and bounded by m C 1 if hs.�s
X / D 1; see [EKl2], Corollary 4.5,

p. 3790, and Remarks 4.6 and 4.7, p. 3791, from which the assertion can be extracted.
However, no further conditions for when h1.�1

X / D 1 or h1.�1
X .1// D 0 are

given in [EKl2]. These appear later in [EKl3], by the same authors, but only for
n D 2. There a (reduced) plane curve C of degree d is considered, and it is shown
that if the singular locus of C has regularity � bounded by d � 2 then h1.�1

C / D 1;
and hence d � m C 1 if C is invariant. The highly singular case is handled as well,
being shown that if C is invariant and � WD � �d C2 is positive, then d � mC1C�,
with equality if d � 2m C 2 and � is finite; see loc. cit., Theorem 2.5, p. 61.

In the present article, we extend the results of [EKl3] for n > 2 and any s. More
precisely, our Theorem 3.1 states that a connected, reduced subscheme X � P n of
pure dimension s > 0 satisfies hs.�s

X / D 1 if X is a.C.M. and subcanonical, for
instance a complete intersection, and if its singular locus has regularity � bounded
by r � 2, where r is the regularity of X . From it follows Theorem 4.1, stating that
r � m C 1 if in addition X is invariant and dim.� \ X/ < s. Furthermore, by our
Theorem 4.3, if X is simply a.C.M., and is invariant with dim.� \ X/ < s, then
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r � m C 1 C �, where � WD max.1; � � r C 2/. Finally, Theorem 5.3 says that
r D mC1C� if all the following conditions hold: s D 1 and � is finite; X is a.C.M.,
subcanonical and invariant; r � 5 if m D 1 or r � mn � n C 4 if m > 1.

Since complete intersections are a.C.M., subcanonical subschemes, we obtain as
a corollary that, if X � P n

k
is a reduced complete intersection of hypersurfaces of

degrees d1; : : : ; dn�s , and is invariant under � with dim.� \ X/ < s, then

d1 C � � � C dn�s �
´

m C n � s if � � 0;

m C n � s C � if � > 0;

where � WD � C n � s C 1 � d1 � � � � � dn�s , with � denoting the regularity of the
singular locus of X ; see Corollary 4.4.

The techniques we use are quite simple: basically, a detailed analysis of the long
exact sequences in cohomology of several short exact sequences of sheaves associated
to the problem.

The pervasive hypothesis of arithmetic Cohen–Macaulayness is necessary, as the
example of a sequence of smooth curves in P 3 of increasing regularity but invariant
under degree-1 rank-1 Pfaff fields, presented in [E], Remark 21, p. 14, shows. What
is not clearly necessary is the hypothesis of subcanonicalness.

The possibility that r D m C 1 C � is investigated only for s D 1, because then �

is easier to understand. Then, if � has dimension 0, which is the expected dimension
and the case when � is general, the regularity of � is 1 if m D 1 and mn � n C 2 if
m > 1; see Proposition 5.1 and the remark thereafter. This regularity gives the bound
above which r must be for the equality r D m C 1 C � to hold. On the other hand,
for s � 2, those � having an invariant reduced subscheme of pure dimension s have
large singular locus; indeed, dim.�/ � s � 1 by [EKl2], Corollary 4.5, p. 3790. In
particular, � does no have the expected dimension.

Section 2 collects a few results on the Castelnuovo–Mumford regularity and on
arithmetically Cohen–Macaulay subschemes. In Section 3 we give conditions for
when a subscheme X � P n

k
of pure dimension s satisfies hs.�s

X / D 1. In Section 4
we prove our bounds on the regularity of closed subschemes invariant under Pfaff
fields. Finally, in Section 5 we prove that these bounds are attained, if the regularity
is large enough, in the case of rank-1 Pfaff fields.

2. Arithmetically Cohen–Macaulay subschemes

2.1. The Castelnuovo–Mumford regularity. Fix a positive integer n. Given m 2
Z, we say that a coherent sheaf F on P n

k
is m-regular if H i .F .m � i// D 0 for each

integer i > 0.
Let X � P n

k
be a closed subscheme. If X ¤ P n

k
then the Castelnuovo–Mumford

regularity of X , or simply regularity, is the smallest integer m for which its sheaf of
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ideals is m-regular. By definition, the regularity of P n
k

is 1. Denote the regularity of
X by reg.X/.

The regularity is well-defined. In fact, let �X denote the sheaf of ideals of X , and
consider the natural exact sequence:

0 �! �X �! OPn
k

�! OX �! 0: (1)

Twisting it by m � n and taking cohomology we get the following exact sequence:

H n.�X .m � n// �! H n.OPn
k

.m � n// �! H n.OX .m � n//:

The middle group is zero if and only if m � 0. If X ¤ P n
k

then the last group is zero,
and hence H n.�X .m � n// D 0 only if m � 0.

The above reasoning shows that reg.X/ � 0. Furthermore, reg.X/ D 0 if and
only if X D ;. Indeed, if X is empty, �X D OPn

k
, which is 0-regular by Serre

computation. On the other hand, if �X is 0-regular then �X is globally generated,
by [Mu], p. 99. Since reg.X/ ¤ 1, we have that X ¤ P n

k
, and hence �X ¤ 0. So

H 0.�X / ¤ 0, which implies that �X D OPn
k

, and thus X D ;.
Also, reg.X/ D 1 if and only if X is a linear subspace of P n

k
. Indeed, if reg.X/ D 1

then �X .1/ is globally generated, which implies that X is cut out by a system of
hyperplanes. Conversely, suppose X is a linear subspace of P n

k
. Twisting (1) by 1� i

and taking cohomology, we get the following exact sequence:

H i�1.OPn
k

.1�i// �! H i�1.OX .1�i// �! H i .�X .1�i// �! H i .OPn
k

.1�i//:

If i > 1, the second and last groups are zero, by Serre computation, and thus
H i .�X .1 � i// D 0 for i > 1. For i D 1 the last group is zero, and the first
map is an isomorphism. Thus H 1.�X / D 0. So reg.X/ � 1. Since X ¤ ;, it
follows that reg.X/ D 1.

Proposition 2.1. Let X � P n
k

be a closed subscheme. If dim.X/ D 0 then reg.X/

is the smallest nonnegative integer r such that H 1.�X .r � 1// D 0, where �X is the
sheaf of ideals of X .

Proof. Clearly, H i .�X .m// D 0 for every i > n and every m 2 Z. Thus the
assertion follows from the definition of regularity if n D 1.

Suppose now that n > 1. We need only show that H i .�X .r � i// D 0 for
each i D 2; : : : ; n and each r � 0. Let m 2 Z. Since X has dimension zero,
H i .OX .m// D 0 for every i � 1. On the other hand, from Serre computation,
H i .OPn

k
.m// D 0 for each i D 1; : : : ; n � 1. Twisting the natural exact sequence

0 �! �X �! OPn
k

�! OX �! 0 (2)
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by m, and taking cohomology, we get, for each i D 2; : : : ; n, the exact sequence

H i�1.OX .m// ! H i .�X .m// ! H i .OPn
k

.m// ! H i .OX .m//:

If i D 2; : : : ; n � 1 then one has H i�1.OX .m// D H i .OPn
k

.m// D 0, and therefore

H i .�X .m// D 0. If i D n, since H n�1.OX .m// D H n.OX .m// D 0 because
n � 2, we have

H n.�X .m// Š H n.OPn
k

.m//:

But, from Serre computation, H n.OPn
k

.m// D 0 if m � �n. Thus H n.�X .r �n// D
0 for each r � 0. �

2.2. Arithmetically Cohen–Macaulay subschemes. An equidimensional closed
subscheme X � P n

k
is said to be arithmetically Cohen–Macaulay (or simply a.C.M.)

if its coordinate ring is Cohen–Macaulay. Alternatively, if X has positive dimension,
X is a.C.M. if the restriction map

H 0.OPn
k

.m// �! H 0.OX .m//

is surjective and H j .OX .m// D 0 for each m 2 Z and j D 1; : : : ; dim.X/ � 1.
Or, equivalently, X is a.C.M. if H j .�X .m// D 0 for each m 2 Z and j D
1; : : : ; dim.X/, where �X is the sheaf of ideals of X . Notice that it follows that
h0.OX / D 1, and hence that X is connected.

Complete intersections are the simplest examples of a.C.M. subschemes.

Proposition 2.2. Let X � P n
k

be a closed subscheme of pure dimension s > 0. If X

is arithmetically Cohen–Macaulay then reg.X/ is the smallest nonnegative integer r

such that H s.OX .r � s � 1// D 0.

Proof. Suppose first that s D n, that is, X D P n
k

. By definition, the regularity of P n
k

is 1. On the other hand, by Serre computation, H n.OPn
k

.r � n � 1// D 0 if and only
if r � 1. So, the proposition holds for s D n.

Now, assume s < n. Let �X denote the sheaf of ideals of X . Since X is a.C.M.,
H i .�X .r � i// D 0 for every r 2 Z and each i D 1; : : : ; s. On the other hand,
twisting the natural short exact sequence

0 �! �X �! OPn
k

�! OX �! 0 (3)

by r � i , and taking cohomology, we get the following exact sequence, for each
integer i > 0:

H i�1.OPn
k

.r � i// �! H i�1.OX .r � i// �! H i .�X .r � i// �! H i .OPn
k

.r � i//:

(4)
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For i D s C 2; : : : ; n � 1, since

H i�1.OX .r � i// D H i .OPn
k

.r � i// D 0;

we have that H i .�X .r � i// D 0 for every r 2 Z. Also, since H n.OPn
k

.r � n// D 0

for r � 0, and H n�1.OX .r �n// D 0 if s < n�1, it follows that H n.�X .r �n// D 0

for every r � 0 if s < n � 1.
So, reg.X/ is the smallest nonnegative integer r such that H sC1.�X .r �s�1// D

0. But, if r � 0 then

H s.OPn
k

.r � s � 1// D H sC1.OPn
k

.r � s � 1// D 0;

because 0 < s < n, by Serre computation. So, by the exactness of (4) for i D s C 1,

H s.OX .r � s � 1// Š H sC1.�X .r � s � 1//

for every integer r � 0. �

2.3. Subcanonical subschemes. Let X � P n
k

be a closed subscheme. Let !X be
the dualizing sheaf of X , that is,

!X WD Extn�s
OPn

k

.OX ; OPn
k

.�1 � n//;

where s WD dim.X/. If there is a 2 Z such that !X Š OX .a/, then we say that X is
a-subcanonical (or simply subcanonical). If dim.X/ > 0 then a is unique.

Proposition 2.3. Let X � P n
k

be an arithmetically Cohen–Macaulay a-subcanonical
subscheme of pure dimension s > 0. Then a � �s � 1 and reg.X/ D a C s C 2.

Proof. Observe first that H 0.OX .i// D 0 if and only if i < 0. Indeed, since OX .1/

is very ample, h0.OX .i// > 0 for i � 0. On the other hand, if there were a nonzero
global section of OX .i/ for a certain i < 0, multiplying it by �iH , for a sufficiently
general hyperplane section H � X , we would obtain a nonzero global section of OX

vanishing at H , which is absurd.
By duality, since OX .a/ is the dualizing sheaf of X ,

hs.OX .r � s � 1// D h0.OX .a � r C s C 1//:

So, H s.OX .r � s � 1// D 0 if and only if a � r C s C 1 < 0, that is, if and only if
r � aCs C2. It follows now from Proposition 2.2 that reg.X/ D max.aCs C2; 0/.
However, since reg.X/ > 0, we have that a C s C 2 > 0 and reg.X/ D a C s C 2.

�
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3. The singular locus of a k-scheme

Let X be an algebraic k-scheme. For each integer s � 0, denote by �s
X the sheaf

of Kähler s-forms of X , that is, �s
X WD Vs

�1
X , where �1

X is the sheaf of Kähler
differentials of X .

Assume X is reduced, projective and of pure dimension s > 0. Let !X be
its dualizing sheaf and �X W �s

X ! !X the canonical map. The map �X is con-
structed as follows. Let X1; : : : ; Xm be the irreducible components of X with their
reduced induced subscheme structures. For each i D 1; : : : ; m there is a natural
map �i W �s

Xi
! z!Xi

, where z!Xi
is Kunz’s sheaf of regular differential forms of Xi .

Also, the map is an isomorphism on the smooth locus of Xi ; see [Ku], pp. 103–105.
Furthermore, by [Ku], Satz 2.2, p. 95, or [Lp], Theorem 0.2B, p. 15, the sheaf z!Xi

is
dualizing, in a natural way; so there is a natural isomorphism �i W z!Xi

! !Xi
.

The restriction map 	 W OX ! OX1
˚ � � � ˚ OXm

induces a map 	 0 W !X1
˚ � � � ˚

!Xm
! !X . As 	 is an isomorphism on the smooth locus of X , so is 	 0. Then �X is,

by definition, the composition

�s
X ��!

mM
iD1

�s
Xi

.�1;:::;�m/�������!
mM

iD1

z!Xi

.�1;:::;�m/������!
mM

iD1

!Xi

� 0

���! !X ;

where the first map is induced by restriction. All the above maps are isomorphisms
on the smooth locus of X , and thus so is �X .

Let †X be the scheme-theoretic support of the cokernel of �X . We call †X

the singular locus of X . Since X is reduced, whence generically smooth, �X is
generically an isomorphism, and hence dim.†X / < s.

The sheaf !X is torsion-free, rank-1. Indeed, it is generically isomorphic to �s
X ,

whence has rank 1. Its torsion subsheaf T .!X / is supported on a subscheme of
dimension less than s, and hence H s.T .!X // D 0. On the other hand, the injection
T .!X / ! !X corresponds by duality to a map H s.T .!X // ! k. Since this map is
zero, so is the injection, that is, T .!X / D 0.

Since !X is torsion-free, and �X is generically an isomorphism, the kernel of �X

is the torsion subsheaf T .�s
X / � �s

X . Thus, we get an injection

�†X ;X !X ,! �s
X

T .�s
X /

: (5)

If X is Gorenstein then !X is invertible, and hence (5) is an isomorphism.

Theorem 3.1. Let X � P n
k

be a connected, reduced, arithmetically Cohen–Macaulay
subcanonical subscheme of pure dimension s > 0. Let †X be its singular locus. Let
r WD reg.X/ and � WD reg.†X /. If � D 0 or � � r � 2 then H s.�s

X / Š k.
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Proof. The assertion follows from Serre computation if s D n. Assume s < n.
Consider the injection

�†X ;X !X ,! �s
X

T .�s
X /

:

Since X is reduced, both the source and target of this injection are of rank 1. So
the injection is generically an isomorphism. Since the torsion subsheaf T .�s

X / is
supported in dimension at most s � 1, it follows that

H s.�s
X / Š H s.�†X ;X !X /:

Since !X Š OX .r � s � 2/ by Proposition 2.3, we must show that

H s.�†X ;X .r � s � 2// Š k:

Set a WD r � s � 2. Let �†X
and �X be the sheaves of ideals of †X and X in P n

k
.

We claim that
H sC1.�X .a// Š k: (6)

Indeed, twisting the natural exact sequence

0 �! �X �! OPn
k

�! OX �! 0

by a and taking cohomology, we get the exact sequence

H s.OPn
k

.a// �! H s.OX .a// �! H sC1.�X .a// �! H sC1.OPn
k

.a//:

The first and last groups above are zero because s < n and r > 0, respectively. Thus

H sC1.�X .a// Š H s.OX .a//:

But !X Š OX .a/. So, by Serre Duality,

H s.OX .a// Š H 0.OX / Š k;

where the last isomorphism follows from the connectedness of X .
Now, twisting the natural exact sequence

0 �! �X �! �†X
�! �†X ;X �! 0

by a, and taking cohomology, we get the exact sequence

H s.�X .a// �! H s.�†X
.a// �! H s.�†X ;X .a//

�! H sC1.�X .a// �! H sC1.�†X
.a//:

(7)

Since X is a.C.M. of dimension s, the first group is zero. The last group is also zero.
Indeed, twisting the natural exact sequence

0 �! �†X
�! OPn

k
�! O†X

�! 0
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by a and taking cohomology, we get the exact sequence

H s.O†X
.a// �! H sC1.�†X

.a// �! H sC1.OPn
k

.a//:

The first and last groups above are zero because dim.†X / < s and r > 0, respectively.
Thus H sC1.�†X

.a// D 0.
So the boundary map in (7) is surjective. Furthermore, since (6) holds, we have

that H s.�†X ;X .a// Š k if and only if the boundary map is injective, which is the
case if and only if H s.�†X

.a// D 0. But, if � D 0 then †X D ;, and hence
�†X

D OPn
k

; then H s.�†X
.a// D 0 because s < n. And if r � 2 � � , then

a � � � s, and thus H s.�†X
.a// D 0. �

Remark 3.2. The above proof establishes an equivalence:

H s.�s
X / Š k if and only if H s.�†X

.r � s � 2// D 0:

If s D 1 then †X is finite. If X is a line then � D 0. Otherwise, r � 2, and it follows
from Proposition 2.1 that H 1.�†X

.r � 3// D 0 only if � � r � 2. In other words,
the converse to Theorem 3.1 holds if s D 1.

4. Pfaff fields

Let V be an algebraic k-scheme. By definition, a Pfaff field on V is a map � W �s
V ! L

of OV -modules, where L is an invertible sheaf on V and s is a positive integer. We
call s the rank of �. Define the singular locus of � to be the closed subscheme � � V

defined by the sheaf of ideals Im.� ˝ L�1/.
A closed subscheme X � V is said to be invariant under � if there is a Pfaff field

' W �s
X ! LjX making the following diagram commute:

�s
V

� ��

��

L

��
�s

X

' �� LjX
where the vertical maps are the natural restrictions.

If X � V is reduced and invariant by �, then any union Y of components of X ,
with its reduced induced subscheme structure, is also invariant by �. Indeed, in this
situation, the restriction �s

X jY ! �s
Y is surjective with generically zero kernel, and

thus any map �s
X jY ! LjY factors through the restriction.

Assume now that V D P n
k

and � W �s
Pn

k

! L is a nonzero Pfaff field on P n
k

of

rank s < n. Then m � 0, where m WD deg.L/ C s. Indeed, since P n
k

is smooth of
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dimension n, the field � corresponds to a nonzero element of

H 0.�n�s
Pn

k
˝ L ˝ .�n

Pn
k

/�1/:

So H 0.�n�s
Pn

k

.m C n C 1 � s// ¤ 0. By [D], Theorem 1.1, p. 40, this is only possible

if m C n C 1 � s > n � s, that is, if m � 0.
We say that m is the degree of �. If � arises from a Pfaff system, that is, if

� D Vs
�0 for a map �0 W �1

Pn
k

! E to a locally free sheaf E of rank s, then the

degree has a geometric interpretation: Given a general linear subspace H of P n
k

of
codimension s, the degree m is the degree of the “critical” hypersurface Y � H

consisting of the points P 2 H for which the tangent space TH;P of H at P and
the subspace of TPn

k
;P given by the image of .�0jP /� do not generate TPn

k
;P . More

precisely, Y is the degeneration scheme of the map of locally free sheaves

�1
Pn

k
jH .�0jH ;ˇ/�����! EjH ˚ �1

H ;

where ˇ is the natural restriction. If H is general then Y is a hypersurface. That
its degree is indeed m follows by taking determinants, noticing that det �1

Pn
k

Š
OPn

k
.�n � 1/ and det �1

H Š OH .�n C s � 1/.

Theorem 4.1. Let X � P n
k

be a connected, reduced, arithmetically Cohen–Macaulay
subcanonical subscheme of pure dimension s > 0 and degree d . Let †X be the
singular locus of X . Assume the characteristic of k is 0 or does not divide d . Assume
X is invariant under a Pfaff field � W �s

Pn
k

! L of rank s in such a way that no

irreducible component of X is contained in the singular locus of �. Set

� WD reg.†X /; r WD reg.X/; m WD deg.L/ C s:

If � D 0 or � � r � 2 then r � m C 1.

Proof. By Theorem 3.1, we have hs.�s
X / D 1. So, by [EKl2], Corollary 4.5, p. 3790,

since X is a.C.M., r � s C deg.L/ C 1, as claimed. �

Lemma 4.2. Let X be an equidimensional, reduced, projective k-scheme. Let Y be a
union of irreducible components of X , with its reduced induced subscheme structure.
Let †X and †Y be the singular loci of X and Y . Then †Y � †X .

Proof. Let H be the cokernel of �X and G that of �Y . It is enough to observe that
G is a subsheaf of a quotient of H jY . If Y D X the assertion is trivial. So assume
Y ¤ X . Let Z WD X � Y , again with the reduced induced subscheme structure.
From the way �X is defined, we see that �X decomposes as

�s
X �! �s

Y ˚ �s
Z

.�Y ;�Z/�����! !Y ˚ !Z
����! !X ; (8)
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where the first map is induced by restriction of forms, and the last map, 
, is induced
from the natural restriction map OX ! OY ˚ OZ . Let T .!X jY / be the torsion
subsheaf of !X jY , and denote by !X;Y the quotient. Restricting (8) to Y and removing
torsion, we get the following composition:

�s
X jY ˇ���! �s

Y

�Y����! !Y
���! !X;Y ;

where ˇ is the restriction map of s-forms, and � is the composition of the canonical
injection !Y ! !Y ˚ !Z with 
 and the quotient map !X ! !X;Y . Since 
 is
generically an isomorphism and !Y is torsion-free, � is injective. Since ˇ is surjective
and � is injective, we get an injective map from G to

!X jY
Im.�X jY / C T .!X jY /

;

which is a quotient of H jY . �

Theorem 4.3. Let X � P n
k

be a reduced, arithmetically Cohen–Macaulay subscheme
of pure dimension s > 0. Let †X be the singular locus of X . Assume X is invariant
under a Pfaff field � W �s

Pn
k

! L of rank s in such a way that no irreducible component

of X is contained in the singular locus of �. Set

� WD reg.†X /; r WD reg.X/; m WD deg.L/ C s:

Then r � m C 1 C �, where � WD max.1; � � r C 2/.

Proof. Set a WD r � s � 2. Let ` be any integer such that ` � �. Since � � 1, we
have a C ` � r � s � 1. Let H � P n

k
be a general hyperplane. Multiplication by

.a C ` � r C s C 1/H induces an injection OX .r � s � 1/ ! OX .a C `/. Since
H s.OX .r � s � 1// D 0 by Proposition 2.2, and since the cokernel of the injection
is supported in dimension at most s � 1, it follows that

H s.OX .a C `// D 0: (9)

Let �X and �†X
be the sheaves of ideals of X and †X in P n

k
. Twisting the natural

short exact sequence

0 �! �X �! OPn
k

�! OX �! 0

by a C ` and taking cohomology we get the exact sequence

H s.OX .a C `// �! H sC1.�X .a C `// �! H sC1.OPn
k

.a C `//:

Since a C ` � r � s � 1 > �s � 1 � �n � 1, the last group is zero by Serre
computation, and thus, using (9), we get

H sC1.�X .a C `// D 0: (10)
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On the other hand, since � D reg.†X / and a C � � � � s, we have

H s.�†X
.a C `// D 0: (11)

If Y is a union of irreducible components of X , with its reduced induced sub-
scheme structure, then, since �X � �Y with quotient supported in dimension at
most s, Equation (10) implies that

H sC1.�Y .a C `// D 0: (12)

Similarly, since �†X
� �†Y

by Lemma 4.2, and the quotient is supported in dimen-
sion at most s � 1, Equation (11) implies

H s.�†Y
.a C `// D 0: (13)

Twisting the short exact sequence

0 �! �Y �! �†Y
�! �†Y ;Y �! 0 (14)

by a C `, and taking cohomology, we get the exact sequence

H s.�†Y
.a C `// �! H s.�†Y ;Y .a C `// �! H sC1.�Y .a C `//:

Using (12) and (13) we get that

H s.�†Y ;Y .a C `// D 0: (15)

Now, it follows from Proposition 2.2 that H s.OX .a// ¤ 0. Thus, by Serre
Duality, there is a nonzero map 	 W OX .a/ ! !X . If X is subcanonical, this map
is an isomorphism. At any rate, since both OX .a/ and !X are torsion-free, there
is a union Y of irreducible components of X , with its reduced induced subscheme
structure, such that 	 factors though an injection OY .a/ ! !X . This map factors
through the natural map !Y ! !X , yielding an injection OY .a/ ! !Y . Of course,
this injection induces one from �†Y ;Y .a/ to �†Y ;Y !Y , which can be composed with
the injection �†Y ;Y !Y ! z�s

Y , where

z�s
Y WD �s

Y

T .�s
Y /

;

with T .�s
Y / denoting the torsion subsheaf of �s

Y . Since �†Y ;Y .a/ and z�s
Y are

rank-1, the cokernel of the composition �†Y ;Y .a/ ! z�s
Y is supported in dimension

at most s � 1. Thus, it follows from (15) that

H s. z�s
Y .`// D 0: (16)
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Notice that L D OPn
k

.m � s/. Since X is invariant under �, so is Y . So there is
a Pfaff field ' W �s

Y ! OY .m � s/ making the following diagram commute:

�s
Pn

k

� ��

��

OPn
k

.m � s/

��
�s

Y

' �� OY .m � s/

where the vertical maps are the natural restrictions. The image of � is by definition
��;Pn

k
.m � s/, where � is the singular locus of �. So, since the vertical maps are

surjective, the image of ' is ��\Y;Y .m � s/.
Now, since dim.� \ Y / < s, the map ' is generically surjective, and hence, since

Y is generically smooth, generically injective. In this case, the kernel of ' is the
torsion subsheaf T .�1

Y /. So z�s
Y Š ��\Y;Y .m � s/, and hence (16) implies that

H s.��\Y;Y .m � s C `// D 0: (17)

Twisting the natural exact sequence

0 �! ��\Y;Y �! OY �! O�\Y �! 0

by m � s C ` and taking cohomology, we get the exact sequence

H s.��\Y;Y .m � s C `// �! H s.OY .m � s C `// �! H s.O�\Y .m � s C `//:

Since dim.� \ Y / < s, the last group is zero. So, it follows from (17) that

H s.OY .m � s C `// D 0: (18)

However, since there is an injection OY .a/ ! !Y , we have that H s.OY .a// ¤ 0.
Since (18) holds for each ` � �, we have a � m � s C � � 1, from which follows
the stated inequality. �

Corollary 4.4. Let X � P n
k

be a reduced complete intersection of hypersurfaces of
degrees d1; : : : ; dn�s for a certain positive integer s. Let †X be the singular locus
of X . Set � WD reg.†X / and put

� WD � C n � s C 1 � d1 � � � � � dn�s:

Assume the characteristic of k is 0 or does not divide any of the di . Assume X is
invariant under a Pfaff field � W �s

Pn
k

! L of rank s. Set m WD deg.L/ C s. If

dim.� \ X/ < s, where � is the singular locus of �, then

d1 C � � � C dn�s �
´

m C n � s if � � 0;

m C n � s C � if � > 0:
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Proof. Since X is a complete intersection, and of positive dimension, X is a.C.M. and
connected. Also, the conormal sheaf C of X satisfies

C Š OX .d1/ ˚ � � � ˚ OX .dn�s/:

Thus

!X Š
n̂

�1
Pn

k
jX ˝ � n�ŝ

C
�_ Š OX .d1 C � � � C dn�s � n � 1/:

Hence, by Proposition 2.3,

r D d1 C � � � C dn�s � n C s C 1:

Apply Theorems 4.1 and 4.3 now. �

5. Rank-1 Pfaff fields

Proposition 5.1. Let � W �1
Pn

k

! OPn
k

.m � 1/ be a rank-1 Pfaff field on P n
k

, for

n � 2. If m � 1 and the singular locus � of � is finite then

reg.�/ D nm � n C 2:

Proof. Let �� be the sheaf of ideals of � and �0 WD �.1�m/. Then �0 W �1
Pn

k

.1�m/ !
OPn

k
has image �� , or degeneration scheme � . Consider the Koszul complex of �0:

0 ��! �n
Pn

k
.n � nm/

dn���! � � � d2���! �1
Pn

k
.1 � m/

d1���! 0 (19)

where d1 WD �0. Since � is finite, � is of the expected codimension. Since P n
k

is
Cohen–Macaulay, the dual to �0 is a regular section, and hence the complex above is
exact at positive level.

Let �j WD Im.dj / for j D 1; : : : ; n. Then �1 D �� and �n Š �n
Pn

k

.n � nm/.

Also, we can break (19) in the following short exact sequences:

0 �! �j C1 �! �
j

Pn
k

.j � jm/ �! �j �! 0; j D 1; : : : ; n � 1: (20)

Twisting these sequences by r �1, and taking cohomology, we get the exact sequences

H j .�
j

Pn
k

. j̀;r// �! H j .�j .r � 1//

�! H j C1.�j C1.r � 1// �! H j C1.�
j

Pn
k

. j̀;r//
(21)

for j D 1; : : : ; n � 1, where j̀;r WD j � jm C r � 1.
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Set b WD nm � n C 2. Notice that, since m � 1,

r � m D `1;r � `2;r � � � � � `n�1;r D r C m � b:

So, if r � b � 1 then j̀;r � m � 1 for j D 1; : : : ; n � 1, with equality only if
r D b � 1. In particular, j̀;r � 0 for r � b � 1, with equality only if r D b � 1. So,
from [D], Theorem 1.1, p. 40, it follows that H j .�

j

Pn
k

. j̀;r// D 0 for r � b, while

H j C1.�
j

Pn
k

. j̀;r// D 0 for r � b � 1, for j D 1; : : : ; n � 1. Then, from the exact

sequences (21) we get surjections

H 1.�1.r � 1// �! H 2.�2.r � 1// �! � � �
� � � �! H n�1.�n�1.r � 1// �! H n.�n.r � 1//

for r � b � 1, which are all isomorphisms for r � b. Now, �n.r � 1/ Š �n
Pn

k

.n �
nmCr �1/. So, again by [D], Theorem 1.1, p. 40, we have that hn.�n.r �1// ¤ 0 if
r � b�1, whereas hn.�n.r �1// D 0 if r � b. Then reg.�/ D b by Proposition 2.1.

�

Remark 5.2. If m D 0 and � ¤ 0 then � consists of a point, and thus reg.�/ D 1.

Theorem 5.3. Let C � P n
k

be a reduced, arithmetically Cohen–Macaulay, sub-
canonical subscheme of dimension 1. Let †C be the singular locus of C . Assume C

is invariant under a rank-1 Pfaff field � W �1
Pn

k

! L of degree m � 1. Set

� WD reg.†C / and r WD reg.C /:

Assume that r � 5 if m D 1 or r � mn � n C 4 if m > 1. If the singular locus of �

is finite, then r D m C 1 C �, where � WD � � r C 2.

Proof. Since r � 4, we have n � 2. Then r � m C 4. Indeed,

n.m � 1/ C 4 � 2.m � 1/ C 4 D m C .m � 2/ C 4 � m C 4

if m > 1. So � � 3 and r � m C 1 C � by Theorem 4.3. In particular, � > 0. We
need only prove that r � m C 1 C �.

Let � denote the singular locus of �. Let �� and �C be the sheaves of ideals of
� and C , and ��\C that of � \ C in P n

k
. Set j WD m C � � 2. Twisting the natural

short exact sequence

0 �! �� �! ��\C �! ��\C;� �! 0

by j , and taking cohomology, we obtain the exact sequence

H 1.�� .j // �! H 1.��\C .j // �! H 1.��\C;� .j //: (22)
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Since � is finite, the last group is zero. Furthermore, since r � m C 1 C �, we have

j C 1 � r � 2 � mn � n C 2:

Since reg.�/ D mn � n C 2 by Proposition 5.1, also H 1.�� .j // D 0. Thus

H 1.��\C .j // D 0:

Now, twist the natural short exact sequence

0 �! �C �! ��\C �! ��\C;C �! 0

by j , and take cohomology to get the exact sequence

H 1.��\C .j // �! H 1.��\C;C .j // �! H 2.�C .j //: (23)

Since H 1.��\C .j // D 0, if we show that H 1.��\C;C .j // ¤ 0, then it follows
from the exactness of (23) that H 2.�C .j // ¤ 0, and hence that r � j C 3.

Since j C 3 D m C � C 1, we need only show that H 1.��\C;C .j // ¤ 0. Since
C is invariant under �, and � is finite, we have that ��\C;C .m � 1/ Š z�1

C , where

z�1
C WD �1

C

T .�1
C /

;

with T .�1
C / denoting the torsion subsheaf of �1

C . Since C is subcanonical, !C Š
OC .r � 3/ by Proposition 2.3. Furthermore, C is Gorenstein, whence �†C ;C !C Š
z�1

C . So, since j D mC��2 and r C��2 D � , it follows that H 1.��\C;C .j // ¤ 0

is equivalent to
H 1.�†C ;C .� � 2// ¤ 0: (24)

Let �†C
be the sheaf of ideals of †C in P n

k
. Twisting the natural exact sequence

0 �! �C �! �†C
�! �†C ;C �! 0

by � � 2, and taking cohomology, we get the exact sequence

H 1.�C .� � 2// �! H 1.�†C
.� � 2// �! H 1.�†C ;C .� � 2//: (25)

Since r � m C 4, we have

r � m C � C 1 D m C 3 C � � r � m C 3 C � � m � 4 D � � 1:

So, since r D reg.C /, we have

H 1.�C .� � 2// D 0:

On the other hand, since †C is finite and nonempty, H 1.�†C
.� � 2// ¤ 0 by

Proposition 2.1. So, from the exactness of (25) we get (24). �
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