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Abstract. In genus two and higher, the fundamental group of a closed surface acts naturally
on the curve complex of the surface with one puncture. Combining ideas from previous work
of Kent–Leininger–Schleimer and Mitra, we construct a universal Cannon–Thurston map from
a subset of the circle at infinity for the closed surface group onto the boundary of the curve
complex of the once-punctured surface. Using the techniques we have developed, we also show
that the boundary of this curve complex is locally path-connected.
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1. Introduction

1.1. Statement of results. Fix a hyperbolic metric on a closed surface S of genus
at least two. This identifies the universal cover with the hyperbolic plane p W H ! S .
Fix a basepoint z 2 S and a point Qz 2 p�1.z/. This defines an isomorphism between
the group �1.S; z/ of homotopy classes of loops based at z and the group �1.S/ of
covering transformations of p W H ! S .

We will also regard the basepoint z 2 S as a marked point on S . As such, we
write .S; z/ for the surface S with the marked point z. We could also work with the
punctured surface S � fzg; however a marked point is more convenient for us.

Let C.S/ and C.S; z/ denote the curve complexes of S and .S; z/, respectively,
with zero skeleta, C0.S/ and C0.S; z/, identified with the sets of isotopy classes of
essential simple closed curves in S and .S; z/, respectively. Write … W C.S; z/ !
C.S/ to denote the forgetful projection. See Section 1.2.4.

From [KLS09], the fiber over v 2 C0.S/ is �1.S/-equivariantly isomorphic to
the Bass–Serre tree Tv determined by v. The action of �1.S/ on C.S; z/ comes from
the inclusion into the mapping class group Mod.S; z/ via the Birman exact sequence;
see Section 1.2.3. We define a map

ˆ W C.S/ � H ! C.S; z/

by sending fvg � H to Tv Š …�1.v/ � C.S; z/ in a �1.S/-equivariant fashion and
then extending over simplices using barycentric coordinates; see Section 2.2. Given
v 2 C0.S/, let ˆv denote the restriction to H Š fvg � H:

ˆv W H ! C.S; z/:

Suppose that r � H is a geodesic ray that eventually lies in the preimage of
some proper essential subsurface of S. We prove in Section 3 that ˆv.r/ � C.S; z/

has finite diameter. The remaining rays define a subset A � @H (of full Lebesgue
measure); see Section 3.2. Our first result is the following.

Theorem 1.1 (Universal Cannon–Thurston map). For any v 2 C0.S/, the map
ˆv W H ! C.S; z/ has a unique continuous �1.S/-equivariant extension

x̂
v W H [ A ! xC.S; z/:

The map @ˆ D x̂
vjA does not depend on v and is a quotient map onto @C.S; z/.

Given distinct points x; y 2 A, @ˆ.x/ D @ˆ.y/ if and only if x and y are ideal
endpoints of a leaf (or ideal vertices of a complementary polygon) of the lift of an
ending lamination on S .

We recall that a Cannon–Thurston map was constructed by Cannon and Thurston
[CT07] for the fiber subgroup of the fundamental group of a closed hyperbolic 3-
manifold fibering over the circle. The construction was then extended to simply
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degenerate, bounded geometry Kleinian closed surface groups by Minsky [Min92],
and to the general simply degenerate case by the second author [Mj06]. In all these
cases, one produces a quotient map from the circle @H onto the limit set of the
Kleinian group � . In the quotient, distinct points are identified if and only if they are
ideal endpoints of a leaf (or ideal vertices of a complementary polygon) of the lift of
an ending lamination for � . This is either one or two ending laminations depending
on whether the group is singly or doubly degenerate; see [Mj07].

In a similar fashion, the second author [Mit97] has constructed a Cannon–Thurston
map for any ı-hyperbolic extension � of a group G by �1.S/,

1 ! �1.S/ ! � ! G ! 1

(for a discussion of such groups see [Mos97], [FM02]). This is a �1.S/-equivariant
quotient map from @H onto the Gromov boundary of � . As above, the quotient
identifies distinct points if and only if they are ideal endpoints of a leaf (or ideal
vertices of a complementary polygon) of the lift of an ending lamination for G.

The map @ˆ is universal in that distinct points are identified if and only if they
are the ideal endpoints of a leaf (or ideal vertices of a complementary polygon) of the
lift of any ending lamination on S . We remark that the restriction to A is necessary
to get a reasonable quotient: the same quotient applied to the entire circle @H is a
non-Hausdorff space.

It follows from the above description of the various Cannon–Thurston maps that
the universal property of @ˆ can also be rephrased as follows. If F W @H ! � is any
Cannon–Thurston map as above – so, � is either the limit set of a Kleinian group, or
the Gromov boundary of a hyperbolic extension � – then there exists a map

�F W F.A/ ! @C.S; z/

so that �F B F jA D @ˆ. Moreover, because @ˆ identifies precisely the required
points to make this valid, one sees that any �1.S/-equivariant quotient of A with this
universal property is actually a �1.S/-equivariant quotient of @C.S; z/.

It is a classical fact, due to Nielsen, that the action of �1.S/ on @H extends to the
entire mapping class group Mod.S; z/. It will become apparent from the description
of A given below that this Mod.S; z/ action restricts to an action on A. In fact, we
have

Theorem 1.2. The quotient map

@ˆ W A ! @C.S; z/

is equivariant with respect to the action of Mod.S; z/.
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As an application of the techniques we have developed, we also prove the follow-
ing.

Theorem 1.3. The Gromov boundary @C.S; z/ is path-connected and locally path-
connected.

We remark that A is noncompact and totally disconnected, so unlike the proof
of local connectivity in the Kleinian group setting, Theorem 1.3 does not follow
immediately from Theorem 1.1.

This strengthens the work of the first and third authors in [LS09] in a special
case: in [LS09] it was shown that the boundary of the curve complex is connected
for surfaces of genus at least 2 with any positive number of punctures and for closed
surfaces of genus at least 4. The boundary of the complex of curves describes the space
of simply degenerate Kleinian groups as explained in [LS09]. These results seem to
be the first ones providing some information about the topology of the boundary
of the curve complex. The question of connectivity of the boundary was posed by
Storm, and the general problem of understanding its topology was posed by Minsky
in his 2006 ICM address. Gabai [Gab09] has now given a proof of Theorem 1.3 for
all surfaces † for which C.†/ is nontrivial, except the torus, 1-punctured torus and
4-punctured sphere, where it is known to be false.

Acknowledgements. The authors wish to thank the Mathematical Sciences Research
Institute for its hospitality during the Fall of 2007 where this work was begun. We
would also like to thank the other participants of the two programs, Kleinian Groups
andTeichmüllerTheory and Geometric GroupTheory, for providing a mathematically
stimulating and lively atmosphere, and the referee for useful suggestions.

1.2. Notation and conventions

1.2.1. Laminations For a discussion of laminations, we refer the reader to [PH92],
[CEG87], [Bon88], [Thu80, CB87].

By a lamination on S , we mean a 1-dimensional foliation of a closed subset of
S (see e.g. [PH92] and [CC00]). We require that all our laminations be essential,
meaning that the leaves lift to quasigeodesics in the universal cover. A measured
lamination on S is a lamination with a transverse measure of full support. A measured
lamination on S will be denoted � with the support – the underlying lamination –
written j�j.

If a is an arc or curve in S and � a measured lamination, we write �.a/ D R
a

d�

for the total variation of � along a. We say that a is transverse to � if a is transverse
to every leaf of j�j. If v is the isotopy class of a simple closed curve, then we write

i.v; �/ D inf
˛2v

�.˛/
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for the intersection number of v with �, where ˛ varies over all representatives of the
isotopy class v.

Two measured laminations �0 and �1 are measure equivalent if for every isotopy
class of simple closed curve v, i.v; �0/ D i.v; �1/. Every measured lamination
is equivalent to a unique measured geodesic lamination (with respect to the fixed
hyperbolic metric on S ). This is a measured lamination � for which j�j is a geodesic
lamination.

We similarly define measured laminations on .S; z/ as compactly supported mea-
sured laminations on S � fzg. In the situations that we will be considering, these
will generally not arise as geodesic laminations for a hyperbolic metric on S � fzg,
though any one is measure equivalent to a measured geodesic lamination for a com-
plete hyperbolic metric on S � fzg.

The spaces of (measure classes of) measured laminations will be denoted by
ML.S/ and ML.S; z/. The topology on ML is the weakest topology for which
� 7! i.v; �/ is continuous for every simple closed curve v. Scaling the measures
defines an action of RC on ML.S/ � f0g and ML.S; z/ � f0g, and we denote the
quotient spaces PML.S/ and PML.S; z/, respectively.

A particularly important subspace is the space of filling laminations which we
denote FL. These are the measure classes of measured geodesic laminations � for
which all complementary regions of its support j�j are disks (for S � fzg, there is
also a single punctured disk). The quotient of FL by forgetting the measures will
be denoted EL and is the space of ending laminations. For notational simplicity, the
image of � 2 FL in EL will also be denoted by j�j.

When there is no confusion, we will let � simultaneously represent a measured
lamination as well as the equivalence class in either ML or PML which it determines.

Remark 1.4. Because there is a unique measured geodesic lamination in any equiv-
alence class the reader can, unless otherwise stated, consider an element of ML as a
measured geodesic lamination. In Sections 2.4 and 2.5 it will be preferable to choose a
slightly different representative for an arbitrary element of ML.S/, though elements
of FL.S/ will still be chosen to be measured geodesic laminations. Beginning in
Section 3, only FL.S/ and EL.S/ are relevant, and so again, measured geodesic
laminations will suffice.

1.2.2. Train tracks. Train tracks provide another useful tool for describing mea-
sured laminations. See [Thu80] and [PH92] for a detailed discussion of train tracks
and their relation to laminations. We recall some of the most relevant information.

A lamination L is carried by a train track � if there is a map f W S ! S homotopic
to the identity with f .L/ � � so that for every leaf ` of L the restriction of f to ` is
an immersion (for .S; z/, we replace S here by S �fzg). If � is a measured lamination
carried by a train track � , then the transverse measure defines weights on the branches
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of � satisfying the switch condition – the sum of the weights on the incoming branches
equals the sum of the weights on the outgoing branches. Conversely, any assignment
of nonnegative weights to the branches of a train track satisfying the switch condition
uniquely determines an element of ML; see [PH92], Theorem 2.7.4. Given a train
track � carrying �, we write �.�/ to denote the train track � together with the weights
defined by �.

Proposition 1.5. Suppose that f�ng1
nD1 [ f�g � ML are all carried by the train

track � . Then �n ! � if and only if the weights on each branch of � defined by �n

converge to those defined by �.

Proof. This is an immediate consequence of [PH92], Theorem 2.7.4. �

There is a well-known construction of train tracks carrying a given lamination
which will be useful for us. For a careful discussion, see [PH92], Theorem 1.6.5, or
Section 4 of [Bro00]. Starting with a geodesic lamination L one chooses � > 0 very
small and constructs a foliation, transverse to L, of the �-neighborhood N�.L/. The
leaves of this foliation are arcs called ties. Taking the quotient by collapsing each tie
to a point produces a train track � on S ; see Figure 1.

We can view N�.L/ as being built from finitely many rectangles, each foliated by
ties, glued together along arcs of ties in the boundary of the rectangle. In the collapse
each rectangle R projects to a branch ˇR of � . When � is trivalent we may assume
that � � S is contained in N�.L/, transverse to the foliation by ties, and the branch
ˇR is contained in the rectangle R.

Suppose now that � is any measured lamination with j�j � N�.L/, and j�j
transverse to the ties. If R is a rectangle and a a tie in R, then the weight on the
branch ˇR, defined by �, is given by �.a/ D R

a
d�; see Figure 1.

1.2.3. Mapping class groups. Recall that we have fixed a hyperbolic structure on S

as well as a locally isometric universal covering p W H ! S . We also have a basepoint
Qz 2 p�1.z/ determining an isomorphism from �1.S/, the covering group of p, to
�1.S; z/, the group of homotopy classes of based loops. All of this is considered
fixed for the remainder of the paper.

The mapping class group of S is the group Mod.S/ D �0.DiffC.S//, where
DiffC.S/ is the group of orientation preserving diffeomorphisms of S . We define
Mod.S; z/ to be �0.DiffC.S; z//, where DiffC.S; z/ is the group of orientation
preserving diffeomorphisms of S that fix z.

The evaluation map
ev W DiffC.S/ ! S

given by ev.f / D f .z/ defines a locally trivial principal fiber bundle

DiffC.S; z/ ! DiffC.S/ ! S:
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Figure 1. The train track � is obtained by collapsing the ties of N�.L/. The lamination � defines
weights on � : the weight on ˇR is �.a/, where a is a tie in the rectangle R.

a

j�j

N�.L/

�

R

ˇR

�.a/

A theorem of Earle and Eells [EE69] says that Diff0.S/, the component containing
the identity, is contractible. So the long exact sequence of a fibration gives rise to
Birman’s exact sequence [Bir69], [Bir74]

1 ! �1.S/ ! Mod.S; z/ ! Mod.S/ ! 1:

We elaborate on the injection �1.S/ ! Mod.S; z/ in Birman’s exact sequence.
Let

DiffB.S; z/ D Diff0.S/ \ DiffC.S; z/:

The long exact sequence of homotopy groups identifies �1.S/ Š �0.DiffB.S; z//.
This isomorphism is induced by a homomorphism

ev� W DiffB.S; z/ ! �1.S/

given by ev�.h/ D Œev.ht /	 where ht , t 2 Œ0; 1	, is an isotopy from h to IdS , and
Œev.ht /	 is the based homotopy class of ev.ht / D ht .z/, t 2 Œ0; 1	. To see that this is
a homomorphism, suppose h; h0 2 DiffB.S; z/ and ht and h0

t are paths from h and
h0 respectively to IdS . Write 
.t/ D ht .z/ and 
 0.t/ D h0

t .z/. There is a path Ht
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from h B h0 to IdS given as

Ht D
´

h2t B h0 for t 2 Œ0; 1=2	;

h0
2t�1 for t 2 Œ1=2; 1	:

Then Ht .z/ is the path obtained by first traversing 
 then 
 0, while H0 D h B h0 and
H1 D IdS . So, ev�.h B h0/ D 

 0, and ev� is the required homomorphism.

Given h 2 DiffB.S; z/, we will write 
h for a loop (or the homotopy class)
representing ev�.h/. Similarly, we will let h� denote the mapping class (or a rep-
resentative homeomorphism) determined by 
 2 �1.S/. When convenient, we will
simply identify �1.S/ with a subgroup of Mod.S; z/.

1.2.4. Curve complexes. A closed curve in S is essential if it is homotopically
nontrivial in S . We will refer to a closed curve in S � fzg simply as a closed curve in
.S; z/, and will say it is essential if it is homotopically nontrivial and nonperipheral
in S � fzg. Essential simple closed curves in .S; z/ are isotopic if and only if they
are isotopic in S � fzg. We write C0.S/ and C0.S; z/ to denote the sets of isotopy
classes of essential simple closed curves on S and .S; z/, respectively.

The curve complex of S is the simplicial complex C.S/ with vertex set C0.S/

so that k C 1 distinct curves v0; : : : ; vk span a k-simplex if and only if the isotopy
classes can be realized disjointly in S ; see [Har81] and [MM99]. The curve complex
of .S; z/ is denoted C.S; z/ and is defined similarly. A simplex fv0; : : : ; vkg in C.S/

or C.S; z/ naturally determines an isotopy class of multi-curve, which is the union
of the pairwise disjoint representatives of v0; : : : ; vk .

We consider C.S/ and C.S; z/ as geodesic metric spaces so that each simplex
is isometric to a regular Euclidean simplex with all edge lengths equal to one. The
following is proven in [MM99].

Theorem 1.6 (Masur–Minsky). The spaces C.S/ and C.S; z/ are ı-hyperbolic for
some ı > 0.

Given a simplex v � C.S/ or u � C.S; z/ we will not distinguish between
this simplex and the isotopy class of multicurve it determines. Any simple closed
curve u in .S; z/ can be viewed as a curve in S which we denote ….u/. This gives a
well-defined “forgetful” map

… W C.S; z/ ! C.S/

which is simplicial.
Unless otherwise stated we assume that a multicurve v � C.S/ is realized by its

geodesic representative in S (isotopy classes can be realized disjointly if and only
if the geodesic representatives are disjoint; see [CB87]). Associated to v there is an
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action of �1.S/ on a tree Tv , namely, the Bass–Serre tree for the splitting of �1.S/

determined by v. We will make use of the following theorem of [KLS09].

Theorem 1.7 (Kent–Leininger–Schleimer). The fiber of … over a point x 2 C.S/

is �1.S/-equivariantly homeomorphic to the tree Tv , where v is the unique simplex
containing x in its interior. �

1.2.5. Measured laminations and the curve complex. The curve complex C natu-
rally injects into PML sending a simplex v to the simplex of measures supported on v.
We denote the image subspace PMLC . We note that this bijection PMLC ! C

is not continuous in either direction. We will use the same notation for a point of
PMLC and its image in C .

In [Kla99] Klarreich proved that @C Š EL. Therefore, if we define

PML xC D PMLC [ PFL

then there is a natural surjective map

PML xC ! xC
extending PMLC ! C . The following is a consequence of Klarreich’s work
[Kla99], stated using our terminology.

Proposition 1.8 (Klarreich). The natural map PML xC ! xC is continuous at every
point of PFL. Moreover, a sequence fvng � C converges to j�j 2 EL if and only if
every accumulation point of fvng in PML has j�j as its support.

Proof. Theorem 1.4 of [Kla99] implies that if a sequence fvng converges in xC to j�j,
then every accumulation point of fvng in PML has j�j as its support. We need only
verify that if � 2 PFL and every accumulation point �0 in PML of a sequence fvng
has j�j D j�0j then fvng converges to j�j in xC . For this it suffices to assume that fvng
converges in PML to �0 with j�0j D j�j.

To see this, let fXng � T be any sequence in the Teichmüller space T for which
vn is the shortest curve in Xn. In particular `Xn

.vn/ is uniformly bounded. Since
every accumulation point of fvng is in PFL, it follows that Xn exits every compact
set and so accumulates only on PML in the Thurston compactification of T .

Moreover, if �00 is an accumulation point of Xn in PML, then i.�00; �0/ D 0 and
so j�00j D j�0j D j�j since � is filling.

Now according to Theorem 1.1 of [Kla99], the map

sys W T ! C

sending X 2 T to any shortest curve in X extends to

sys W T [ PFL ! xC
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continuously at every point of PFL. It follows that

lim
n!1 vn D lim

n!1 sys.Xn/ D j�j
in xC and we are done. �

1.2.6. Cannon–Thurston maps. Fix X and Y hyperbolic metric spaces, F W Y !
X a continuous map, and Z � @Y a subset of the Gromov boundary. A Z-Cannon–
Thurston map is a continuous extension xF W Y [ Z ! X [ @X of F . That is,
xF jY D F . We will simply call xF a Cannon–Thurston map when the set Z is clear

from the context. We sometimes refer to the restriction @F D xF jZ as a Cannon–
Thurston map.

This definition is more general than that in [Mit98] in the sense that here we
require F only to be continuous, whereas in [Mit98] it was demanded that F be an
embedding. Also, we do not require xF to be defined on all of xY D Y [ @Y .

To prove the existence of such a Cannon–Thurston map, we shall use the following
obvious criterion:

Lemma 1.9. Fix X and Y hyperbolic metric spaces, F W Y ! X a continuous map
and Z � @Y a subset. Fix a basepoint x 2 X . Then there is a Z-Cannon–Thurston
map xF W Y [ Z ! X [ @X if and only if for every z 2 Z there is a neighborhood
basis Bi � Y [ Z of z and a collection of uniformly quasiconvex sets Qi � X with
F.Bi \ Y / � Qi and dX .x; Qi / ! 1 as i ! 1. Moreover,\

i

SQi D
\

i

@Qi D ˚ xF .z/
�

determines xF .z/ uniquely. �

Remark 1.10. For the purposes of the present work, it is more convenient to use the
more flexible definition of neighborhood basis. This is a collection of sets fBj .x/gj

associated to each point x in the space with the property that a subset U is open if
and only if for every x 2 U , Bj .x/ � U for some j . Equivalently, the interior of
each Bj .x/ is required to contain x, and any open set containing x should contain
some Bj .x/.

2. Point position

We now describe in more detail the map

ˆ W C.S/ � H ! C.S; z/

as promised in the introduction, and explain how this can be extended continuously
to xC.S/ � H.
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2.1. A bundle over H. Recall from Section 1.2.3 that DiffB.S; z/ D Diff0.S/ \
DiffC.S; z/ is the subgroup of diffeomorphisms of .S; z/ isotopic to the identity
on S after forgetting z. The bundle determining the Birman exact sequence has a
subbundle obtained by restricting the evaluation map ev to Diff0.S/:

DiffB.S; z/ �� Diff0.S/
ev �� S:

As noted before, Earle and Eells proved that Diff0.S/ is contractible, and hence there
is a unique lift eev W Diff0.S/ ! H

with the property that eev.IdS / D Qz.
The map eev can also be described as follows. Any diffeomorphism S ! S

has a lift H ! H, and the contractibility of Diff0.S/ allows us to coherently lift
diffeomorphisms to obtain an injective homomorphism Diff0.S/ ! Diff.H/. Theneev is the composition of this homomorphism with the evaluation map Diff.H/ ! H
determined by Qz.

Since p is a covering map, eev is also a fibration. Appealing to the long exact se-
quence of homotopy groups again, we see that the fiber over Qz is precisely Diff0.S; z/.
We record this in the following diagram

H

p

��
DiffB.S; z/ �� Diff0.S/

ev ��

�ev

�����������
S

Diff0.S; z/:

�� �������������

(1)

The group DiffB.S; z/ acts on Diff0.S/ on the left by

h � f D f B h�1

for h 2 DiffB.S; z/ and f 2 Diff0.S/. Also recall from Section 1.2.2 that �1.S/ Š
�0.DiffB.S; z// with this isomorphism induced by a homomorphism

ev� W DiffB.S; z/ ! �1.S/:

Lemma 2.1. The lift eev W Diff0.S/ ! H

is equivariant with respect to ev�.
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Proof. We need to prove

ev�.h/.eev.f // D eev.f B h�1/

for all f 2 Diff0.S/ and h 2 DiffB.S; z/. Observe that since h.z/ D z for every
h 2 DiffB.S; z/, ev.f / D ev.f B h�1/ for every f 2 Diff0.S/. Therefore, since eev
is a lift of ev we have

p.eev.f // D ev.f / D ev.f B h�1/ D p.eev.f B h�1//

and hence eev.f / differs from eev.f B h�1/ by a covering transformation 
 2 �1.S/:

eev.f B h�1/ D 
.eev.f //:

The covering transformation 
 appears to depend on both f and h. However if
Ht , t 2 Œ0; 1	, is a path in DiffB.S; z/ from h D H0 to h0 D H1 then eev.f B H �1

t /

is constant in t : this can be seen from the above description of eev as the evaluation
map on the lifted diffeomorphism group. It follows that 
 depends only on f and
the component of DiffB.S; z/ containing h. In fact, continuity of eev and connectivity
of Diff0.S/ implies that 
 actually only depends on the component of DiffB.S; z/

containing h, and not on f at all.
We have


.Qz/ D 
.eev.IdS // D eev.IdS B h�1/ D eev.h�1/:

So if ht , t 2 Œ0; 1	, is a path in Diff0.S/ from h D h0 to IdS D h1, then since
ev�.h/ D 
h where 
h is represented by the loop ht .z/, t 2 Œ0; 1	, it follows that 
�1

h

is represented by the loop h�1
t .z/, t 2 Œ0; 1	; see Section 1.2.3.

Now observe that eev.h�1
t /, t 2 Œ0; 1	, is a lift of the loop h�1

t .z/, t 2 Œ0; 1	, to a
path from 
. Qz/ to Qz. Therefore, 
�1

h
is 
�1, and hence 
 D 
h D ev�.h/. �

2.2. An explicit construction of ˆ. We are now ready to give an explicit description
of the map ˆ. We will first define a map

ẑ W C.S/ � Diff0.S/ ! C.S; z/

and show that this descends to a map ˆ W C.S/�H2 ! C.S; z/ with ẑ D ˆBId� eev.
Recall that for every v 2 C0.S/, we have realized v by its geodesic representative.

We would like to simply define

ẑ .v; f / D f �1.v/:

However, this is not a curve in .S; z/ when f .z/ lies on the geodesic v. The map we
define in the end will agree with this when f .z/ is not too close to v, and it is helpful
to keep this in mind when trying to make sense of the actual definition of ẑ .

To carry out the construction of ẑ , we now choose f�.v/gv2C0.S/ � RC so that
N.v/ D N�.v/.v/, the �.v/-neighborhood of v, has the following properties:
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� N.v/ Š �1 � Œ0; 1	 and

� N.v/ \ N.v0/ D ; if v \ v0 D ;.

Let N ı.v/ denote the interior of N.v/ and v˙ denote the boundary components of
N.v/.

Given a simplex v � C.S/ with vertices fv0; : : : ; vkg we consider the barycentric
coordinates for points in v:˚ Pk

j D0 sj vj

ˇ̌ Pk
j D0 sj D 1 and sj � 0, for all j D 0; : : : ; k

�
.

To define our map

ẑ W C.S/ � Diff0.S/ ! C.S; z/

we first explain how to define it for .v; f / with v a vertex of C.S/. If f .z/ 62 N ı.v/,
then we set

ẑ .v; f / D f �1.v/

as suggested above.
If f .z/ 2 N ı.v/, then f �1.vC/ and f �1.v�/ are nonisotopic curves in .S; z/.

We will define ẑ .v; f / to be a point on the edge between these two vertices of
C.S; z/, depending on the distance from f .z/ to the two boundary components vC
and v�. Specifically, set

t D d.vC; f .z//

2�.v/
;

where d.vC; f .z// is the distance inside N.v/ from f .z/ to vC, and define

ẑ .v; f / D tf �1.vC/ C .1 � t /f �1.v�/

in barycentric coordinates on the edge
�
f �1.vC/; f �1.v�/

�
.

In general, for a point .x; f / 2 C.S/ � Diff0.S/ with x D P
j sj vj 2 v D

fv0; : : : ; vkg we define ẑ .x; f / as follows. As before, if f .z/ 62 [j N ı.vj /, then
define

ẑ .x; f / D
X

j

sj f �1.vj /:

Otherwise, f .z/ 2 N ı.vi / for exactly one i 2 f0; : : : ; kg. Set

t D d.vC
i ; f .z//

2�.vi /

as above, and define

ẑ .x; f / D si

�
tf �1.vC

i / C .1 � t /f �1.v�
i /

� C
X
j ¤i

sj f �1.vj /:
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The group DiffB.S; z/ acts on C.S/ � Diff0.S/, trivially in the first factor and
as described in Section 2.1 in the second factor. Of course, since DiffB.S; z/ <

DiffC.S; z/ projects into Mod.S; z/ it also acts on C.S; z/. The map ẑ is equivariant:
given h 2 DiffB.S; z/, f 2 Diff0.S/ and v a vertex in C.S/, provided f .z/ 62 N ı.v/

we have

ẑ .h � .v; f // D ẑ .v; f B h�1/

D .f B h�1/�1.v/

D h B f �1.v/

D h � .f �1.v//

D h � ẑ .v; f /:

The general situation is similar, but notationally more complicated.

Proposition 2.2. The map ẑ descends to a map ˆ making the following diagram
commute

C.S/ � Diff0.S/

ẑ
������������������

IdC.S/��ev

��
C.S/ � H

ˆ
�� C.S; z/:

Moreover, ˆ is equivariant with respect to the action of �1.S/.

Here the action of �1.S/ on C.S/�H is trivial on the first factor and the covering
group action on the second.

Proof. We suppose that eev.f0/ D eev.f1/ and must show ẑ .x; f0/ D ẑ .x; f1/.
Appealing to diagram (1) in Section 2.1, it follows that f0 D f1 B h for some

h 2 Diff0.S; z/. We suppose that ˛ is a simple closed curve on S and f0.z/ 62 ˛.
Then f1.z/ D f1.h.z// D f0.z/ 62 ˛ and

d.f0.z/; ˛/ D d.f1.h.z//; ˛/ D d.f1.z/; ˛/:

Moreover, f �1
0 .˛/ D h�1.f �1

1 .˛// and since h�1 is isotopic to the identity in .S; z/,
it follows that f �1

0 .˛/ and f �1
1 .˛/ are isotopic in .S; z/.

Recall that the dependence of ẑ .x; f / on f was only via certain isotopy classes
f �1.˛/ and a single distance d.vC; f .z//. Since these data are the same for f0 and
f1, it follows that

ẑ .x; f0/ D ẑ .x; f1/

and so ẑ descends to C.S/ � H as required.
Lemma 2.1 implies that IdC.S/ � eev is equivariant with respect to ev�. Thus, since

ẑ is equivariant, so is ˆ. �
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Proposition 2.3. Given x 2 C.S/, let v � C.S/ be the simplex containing x in its
interior. Then the restriction

ˆx D ˆjfxg�H W H ! …�1.x/

is obtained by first projecting to Tv , then composing with the equivariant homeomor-
phism Tv Š …�1.x/ from Theorem 1.7.

Proof. Fix x 2 C.S/, the simplex v D fv0; : : : ; vkg � C.S/ containing x in its
interior, and write

x D
kX

iD1

sivi

in terms of barycentric coordinates.
We note that the neighborhoods N.vi / determine a map from H to the Bass–Serre

tree Tv associated to v as follows. We collapse each component U of the preimage
p�1.N.vi // onto an interval, say Œ0; 1	, by the projection defined as the distance to the
component of p�1.vC

i / meeting U , multiplied by 1=.2�.vi //. If we further collapse
each component of the complement of

p�1.N.v0/ [ � � � [ N.vk//

to a point, the quotient space is precisely Tv .
The map ˆx is constant on the fibers of the projection to Tv . That is, ˆx W fxg �

H ! …�1.x/ � C.S; z/ factors through the projection to Tv

fxg � H
ˆx ��

�������� …�1.x/

Tv

		������
:

Moreover, the equivariance of ˆ implies that

Tv ! …�1.x/

is equivariant. According to [KLS09], the edge and vertex stabilizers in the domain
and range agree, and in fact this map is the homeomorphism given by Theorem 1.7,
as required. �

2.3. A further description of C .S; z/. We pause here to give a combinatorial de-
scription of C.S; z/ which will be useful later, but is also of interest in its own right.
Given any simplex v � C.S/, the preimage of the interior of v admits a �1.S/-
equivariant homeomorphism

…�1.int.v// Š int.v/ � Tv
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as can be seen from Theorem 1.7. As is well-known, the edges of Tv can be labeled
by the vertices of v. Now, if � W v0 ! v is the inclusion of a face, then there is a
�1.S/-equivariant quotient map �� W Tv ! Tv0 obtained by collapsing all the edges
of Tv labeled by vertices not in �.v0/ (compare [GL07], for example). This provides
a description of …�1.v/, the preimage of the closed simplex, as a quotient

� G
� W v0!v

v0 � Tv0

	ı�:

Here the disjoint union is taken over all faces � W v0 ! v and the equivalence relation
� is defined by

.�.x/; t/ � .x; ��.t//

for every inclusion of faces � W v00 ! v0 and every x 2 v00, t 2 Tv0 . Said differently,
we take the product v � Tv and for every face � W v0 ! v, we glue v � Tv to v0 � Tv0

along �.v0/ � Tv by ��1 � ��.
We can do this for all simplices, then glue them all together, providing the fol-

lowing useful description of C.S; z/.

Theorem 2.4. The curve complex C.S; z/ is �1.S/-equivariantly homeomorphic to� G
v�C.S/

v � Tv

	ı � :

Here the disjoint union is taken over all simplices v � C.S/, and the equivalence
relation is generated by

.�.x/; t/ � .x; ��.t//

for all inclusions of faces � W v0 ! v all x 2 v0 and all t 2 Tv . �

2.4. Extending to measured laminations. The purpose of this section is to modify
the above construction of ˆ to build a map

‰ W ML.S/ � H ! ML.S; z/

and to prove that this is continuous at every point of FL.S/ � H; see Corollary 2.10.
We do this by defining a map on ML.S/ � Diff0.S/, and checking that it descends
to ML.S/ � H.

Before we can begin, we must specify a particular realization for each element of
ML.S/ as a measured lamination. Given any element � 2 ML.S/, we suppose �

also denotes the measured geodesic lamination representing it. We then produce an
element O� measure equivalent to � by replacing all simple closed geodesic components
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of the support j�j with appropriately chosen foliated annuli. We now explain this more
precisely and set some notation.

Given a measured geodesic lamination �, the support j�j can be decomposed into
a finite union of pairwise disjoint minimal sublaminations; see [CB87]. Write

� D Cur.�/ C Min.�/;

where jCur.�/j is the union of all simple closed geodesics in j�j and jMin.�/j D
j�j � jCur.�/j. We construct a measured lamination O� measure equivalent to � by
taking

O� D Ann. O�/ C Min. O�/;

where Min. O�/ D Min.�/ and Ann. O�/ is a measured lamination whose support is a
foliation on annular neighborhoods of jCur.�/j defined as follows.

The sublamination Cur.�/ can be further decomposed as Cur.�/ D P
j tj vj ,

where tj vj means tj times the transverse counting measure on the simple closed
geodesic component vj of jCur.�/j. Then jAnn. O�/j is the disjoint union [j N.vj /,
with each N.vj / given the foliation by curves equidistant to vj . This foliation of
N.vj / is assigned the transverse measure which is tj =.2�.vj // times the distance
between leaves, and Ann. O�/ is the sum of these measured laminations; see Figure 2
for a cartoon depiction of � and O�. Choosing f�.v/g sufficiently small it follows that
jAnn. O�/j \ jMin. O�/j D ; for all �.
For future use, if Cur.�/ D P

j tj vj , then we define

T .�/ D T . O�/ D max
j

tj :

If jCur.�/j D ; we set T .�/ D T . O�/ D 0.
For any measured geodesic lamination �, by construction we have j�j � jO�j,

meaning that as subsets of S , j�j is a subset of j O�j, and that each leaf of j�j is a
leaf of j O�j. The difference between the total variations assigned an arc by � and O� is
estimated by the following.

Lemma 2.5. If a is any arc transverse to j O�j, then it is also transverse to j�j and we
have

j O�.a/ � �.a/j � T .�/:

Proof. The transversality statement is an immediate consequence of j�j � jO�j.
Since Min.�/ D Min. O�/, we see that

j O�.a/ � �.a/j D jAnn. O�/.a/ � Cur.�/.a/j:
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Figure 2. Removing simple closed geodesics and inserting foliated annuli.

j�j

j O�j

The intersection jAnn. O�/j\a is a union of subarcs of a, each containing an intersection
point of jCur.�/j \ a, with the possible exception of those arcs which meet the
endpoints of a. If a0 � a is one of the subarcs which meets one of the endpoints,
then we have jAnn. O�/.a0/ � Cur.�/.a0/j � T .�/=2. Since there are at most 2 such
arcs, the desired inequality follows. �

The following is also useful.

Lemma 2.6. Suppose �n ! � in ML.S/ with � 2 FL.S/. Further suppose that
j O�nj converges in the Hausdorff topology on closed subsets of S to a set L. Then L

is a geodesic lamination containing the geodesic lamination j�j.
Proof. If j�nj D jO�nj is a geodesic lamination for all n, then the fact that L is a
geodesic lamination is well-known (see [CB87]), as is the fact that any Hausdorff
limit of fj�njg contains j�j (compare [Thu80], Proposition 8.10.3).

Since �n ! � and � 2 FL, it follows that no simple closed geodesic occurs
infinitely often in fjCur.�n/jg. Further note that if fvng is any sequence of distinct
simple closed geodesics in S , then their lengths tend to infinity and hence �.vn/ ! 0.
Therefore, the Hausdorff distance between j�nj and j O�nj tends to zero, and so the
Hausdorff limits of j�nj and j O�nj are the same. As above, we see that L is a geodesic
lamination containing j�j. �

Now, given any .�; f / 2 ML.S/ � Diff0.S/, we would like to simply define

z‰.�; f / D f �1. O�/:
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As before, this does not make sense when f .z/ lies on the supporting lamination j O�j.
This is remedied by first splitting open the lamination along the leaf which f .z/ meets
to produce a new measured lamination O�0 representing the measure class O� (there is
no ambiguity about how the measure is split since O� has no atoms – this is one benefit
of the realization O� over the measured geodesic lamination �). If f .z/ lies on a leaf
of j O�j, then the new lamination j O�0j has either a bigon or annular complementary
region containing f .z/ and f �1. O�/ is defined to be f �1. O�0/. The support jf �1. O�0/j
is contained in f �1.j O�0j/, and this containment can be proper since f �1.j O�j/ may
have an isolated leaf. Indeed, this happens precisely when f .z/ lies on a boundary
leaf of j O�j.

Train tracks provide a more concrete description of z‰.f; �/ which will be useful
in proving continuity results. Let L be any geodesic lamination on S and � > 0

sufficiently small so that the quotient of N�.L/ by collapsing the ties defines a train
track � as in Section 1.2.2. Suppose that O� is a measured lamination on S for which
j O�j is contained in N�.L/ and is transverse to the ties. If f .z/ 62 N�.L/, then z‰.f; �/

is the lamination on .S; z/ determined by the weighted train track f �1.�. O�//.
If f .z/ 2 N�.L/ then by a small perturbation of � we may assume that f .z/ does

not lie on a the boundary of any rectangle and that each switch of � is trivalent. Then
either f .z/ is outside N�.L/ and we are in the situation above, or else f .z/ is in
the interior of some rectangle R. Furthermore, � can be realized in N�.L/ with the
branch ˇR associated to R contained in R.

We modify the train track � at the branch ˇR as follows. Remove an arc in the
interior of ˇR leaving two subarcs ˇ`

R and ˇr
R of ˇR. Insert two branches ˇu

R and
ˇd

R creating a bigon containing f .z/; see Figure 3. The result, denoted � 0, is a train
track on .S; f .z//.

Figure 3. Modifying � to � 0.

f .z/
ˇR

R

ˇ`
R ˇr

R

ˇu
R

ˇd
R

If ft 2 Diff0.S/ is an isotopy with f D f0 and ft .z/ 2 int.R/ for every
t 2 Œ0; 1	, and � 0

t is constructed for ft as � is constructed for f (so � 0 D � 0
0), then

f �1
t .� 0

t / is (isotopic to) f �1.� 0/ for all t .
The measured lamination O� makes � 0 into a weighted train track � 0.�/ on .S; f .z//

as follows. For the branches of � 0 that are the same as those of � , the weights are
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defined as before. To define the weights on the new branches, we first consider the
tie a � R that contains f .z/, and write it as the union of subarcs a D au [ ad with
au \ad D ff .z/g. We define the weights on the branches ˇu

R and ˇd
R of the bigon to

be �.au/ and �.ad /, respectively, while the weights on the branches ˇ`
R and ˇr

R are

both O�.a/ D O�.au/ C O�.ad /; see Figure 4. The lamination f �1. O�/ is the lamination
determined by the weighted train track f �1.� 0. O�//.

Figure 4. Weights on � 0 determined by O� and f .z/.

f .z/

R

au

ad

O�.a/ O�.a/

O�.au/

O�.ad /

The proof of the following is similar to that of Proposition 2.2 and we omit it.

Proposition 2.7. z‰ descends to a �1.S/-equivariant map ‰:

ML.S/ � Diff0.S/

z‰
������������������

IdML.S/��ev

��
ML.S/ � H

‰
�� ML.S; z/:

�

Remark 2.8. Our construction of ‰ depends on our choice of representation of
elements in ML. An alternative would be to realize each element of ML by a
measured foliation. Indeed, the hyperbolic metric determines a complex structure,
and for each element � 2 ML there is a unique quadratic differential for which the
vertical foliation realizes �; see [HM79]. Our choices are more compatible with the
use of hyperbolic geometry in Sections 3 and 4.

Because of the particular way we have realized our laminations, neither the map
z‰ nor the map ‰ need be continuous at measured laminations with nontrivial annular
component. However, this is the only place where continuity can break down. In
particular, we have the following.

Proposition 2.9. The map z‰ is continuous on FL.S/ � Diff0.S/.
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Proof. We will show that for any sequence f.�n; fn/g in ML.S/�Diff0.S/ converg-
ing to .�; f / 2 FL.S/ � Diff0.S/ there is a subsequence for which f z‰.�nk

; fnk
/g

converges to z‰.�; f /. Since we will find such a subsequence for any sequence
converging to .�; f /, continuity of z‰ at .�; f / will follow.

We begin by passing to a subsequence for which the supports fj O�njg converge in
the Hausdorff topology to a closed set L. It follows from Lemma 2.6, that L is a
geodesic lamination containing j�j D jO�j.
Case 1. Suppose f .z/ 62 L.

In this case, there is an � > 0 so that the �-neighborhoods of f .z/ and L are
disjoint. Since fn ! f as n ! 1, there exists N > 0 so that for all n � N ,
fn.z/ 2 N�.f .z//, and moreover, fn is isotopic to f through an isotopy ft such
that ft .z/ 2 N�.f .z// for all t . Taking N even larger if necessary, we may assume
that for n � N , j O�nj � N�.L/. Therefore, for all n � N , O� and O�n determine
weighted train tracks �. O�/ and �. O�n/, respectively. Since O�n ! O�, it follows that
�. O�n/ ! �. O�/ as n ! 1.

Since fn is isotopic to f by an isotopy keeping the image of z in N�.f .z//, it fol-
lows that f �1.�/ D f �1

n .�/, up to isotopy. Therefore, f �1.�. O�n// and f �1
n .�. O�n//

are isotopic and so we have convergence of weights f �1.�. O�n// ! f �1.�. O�//

which implies the associated measured laminations converge

z‰.�n; fn/ ! z‰.�; f /

as required. This completes the proof for Case 1.

Case 2. Suppose that f .z/ 2 L.

We choose � > 0 sufficiently small so that the quotient of N�.L/ by collapsing
ties is a train track � , so that f .z/ lies in the interior of some rectangle R of N�.L/

and so that � is trivalent.
Let N > 0 be such that for all n � N , fn.z/ also lies in the interior of R and

f is isotopic to fn by an isotopy ft with ft .z/ contained in R for all t . For each
n � N , the train track � associated to N�.L/ and the points fn.z/ and f .z/ define
tracks � 0

n and � 0, respectively, with bigons as described above. Moreover, f �1
n .� 0

n/

and f �1.� 0/ are isotopic, and we simply identify the two as the same train track on
.S; z/.

Since �n is converging to � as n ! 1, it follows that the weighted train
tracks �. O�n/ converge to �. O�/. Therefore, to prove that the weighted train tracks
f �1.� 0

n. O�n// D f �1
n .� 0

n. O�n// converge to f �1.� 0. O�//, it suffices to prove that the
weights assigned to f �1.ˇu

R/ and f �1.ˇd
R/ by O�n converge to the weights assigned

to these branches by O�. This is sufficient because the weights on the remaining



790 C. J. Leininger, M. Mj and S. Schleimer CMH

branches agree with weights on the corresponding branches of � , where we already
know convergence. From this it will follow that z‰.�n; fn/ ! z‰.�; f /.

Note that the weights on ˇR determined by the O�n converge to the weight defined
by O�. So, since the sum of the weights on f �1.ˇu

R/ and f �1.ˇd
R/ is precisely the

weight on ˇR, it suffices to prove convergence for the weights of one of these, say,
f �1.ˇu

R/.
To define the required weights, first recall that we have the tie an � R with

fn.z/ 2 an, and write an as a union of subarcs an D au
n [ad

n with au
n \ad

n D ffn.z/g.
Similarly, we have a tie a � R with a D au [ ad and au \ ad D ff .z/g. Then the
weights on f �1.ˇu

R/ determined by O�n and O� are given by

O�n.au
n/ and O�.au/;

respectively.
Therefore, we must verify that O�n.au

n/ ! O�.au/. However, since T . O�n/ ! 0 as
k ! 1, Lemma 2.5 implies that it suffices to prove �n.au

n/ ! �.au/.
Fix any ı > 0. Since Cur.�/ D ;, the measure �ja has no atoms. Thus we can

find subarcs au� and auC of a with

au� ¨ au ¨ auC � a

so that
�.au�/ � �.au/ � �.auC/ and �.auC/ � �.au�/ < ı:

Since �n ! �, it follows that we also have

lim
n!1 �n.auC/ D �.auC/

and
lim

n!1 �n.au�/ D �.au�/:

Furthermore, since an ! a and au
n ! au in the C 1-topology, we see that

lim sup
n!1

�n.au
n/ � lim

n!1 �n.auC/ D �.auC/

and
lim inf
n!1 �n.au

n/ � lim
n!1 �n.au�/ D �.au�/:

Since lim inf �n.au
n/ � lim sup �n.au

n/, combining all of the above, we obtainˇ̌
lim sup

n!1
�n.au

n/ � �.au/
ˇ̌ C ˇ̌

lim inf
n!1 �n.au

n/ � �.au/
ˇ̌

< 2ı:

As ı was arbitrary, it follows that

lim
n!1 �n.au

n/ D lim sup
n!1

�n.au
n/ D lim inf

n!1 �n.au
n/ D �.au/
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and this completes the proof of Case 2. Since Cases 1 and 2 exhaust all possibilities,
this also completes the proof of the proposition. �

Corollary 2.10. The map ‰ is continuous on FL.S/ � H.

Proof. The map eev is a quotient map. �

2.5. ˆ and ‰ . The map ‰ descends to a map PML.S/ � H ! PML.S; z/ in the
obvious way. We denote this map by ‰ with the meaning determined by context.

We let ‰C denote the restriction of ‰ to PMLC .S/�H. The map ‰C has image
PMLC .S; z/.

Lemma 2.11. The following diagram commutes:

PMLC .S/ � H
‰C ��

��

PMLC .S; z/

��
C.S/ � H

ˆ �� C.S; z/.

The vertical arrows here are the natural maps.

Proof. The two maps are defined identically on MLC .S/ as there � D Cur.�/. �

If we let ‰ xC be the restriction of the map ‰ to PML xC � H, then we have

Proposition 2.12. There is a continuous �1.S/-equivariant extension ŷ W xC.S/ �
H ! xC.S; z/ which fits into a commutative diagram

PML xC .S/ � H
‰ xC ��

��

PML xC .S; z/

��
xC.S/ � H

ŷ �� xC.S; z/.

Proof. Via Klarreich’s work, as discussed in Section 1.2.5, we identify @C with EL.
Moreover, the vertical maps in the statement of the proposition send PFL.S/ � H
and PFL.S; z/ onto EL.S/�H and EL.S; z/, respectively, using this identification.

From the construction of ‰ and the definition of FL, one can see that

‰.FL.S/ � H/ � FL.S; z/:

Furthermore, if �; �0 2 ML.S/ with j�j D j�0j, then j‰.�; x/j D j‰.�0; x/j. Thus,
‰ determines a map

EL.S/ � H ! EL.S; z/
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which extends ˆ to the required map

ŷ W xC.S/ � H ! xC.S; z/:

Continuity follows from Proposition 1.8 and Corollary 2.10, and equivariance follows
from continuity and the equivariance of ˆ. �

We will also need the following

Proposition 2.13. Suppose fvng � C.S/, fxng � H, and xn ! x 2 H. If fvng
does not accumulate on @C.S/, then fˆ.vn; xn/g does not accumulate on @C.S; z/.

Proof. The proof is by contradiction. Suppose fˆ.vn; xn/g accumulates on some
lamination j�j 2 @C.S; z/, and pass to a subsequence which converges to j�j in
xC.S; z/. If any curve in the sequence fvng occurs infinitely often, then passing to a
further subsequence, we can assume vn is constant and equal to v. Then

j�j D lim
n!1 ˆ.vn; xn/ D lim

n!1 ˆ.v; xn/ D ˆ.v; x/ 2 C.S; z/:

This is a contradiction since j�j 2 @C.S; z/. So without loss of generality, we may
assume that all the vn are distinct.

Fix elements �n 2 ML.S/ representing the projective classes associated to vn

via the natural bijection PMLC .S/ ! C.S/, and as in Section 2.4, we let O�n be
our preferred representative. After passing to a further subsequence and rescaling if
necessary, we may assume that for some � 2 ML.S/, we have convergence �n ! �

in the space ML.S/. Since vn are all distinct, T .�n/ ! 0. Thus, as in the proof
of Lemma 2.6, we may pass to yet a further subsequence if necessary so that j O�nj
converges to a geodesic lamination L.

It follows from Proposition 1.8 that no sublamination of L lies in EL.S/. In
particular, removing the infinite isolated leaves of L, we obtain a lamination which
is disjoint from a simple closed curve v0 and contains the support of �. Choosing
� > 0 sufficiently small, we can assume that the train track � obtained from N�.L/

(as described in Section 1.2.1) contains a subtrack �0 so that (1) �0 is disjoint from
some representative ˛ of v0 and (2) �.�/ has nonzero weights only on the branches
of �0.

Now let f 2 Diff0.S/ be such that eev.f / D x. After modifying � and �0 to � 0
and � 0

0 as in Section 2.4 if necessary (that is, after a possible isotopy and insertion of
a bigon around f .z/), it follows that for sufficiently large n, f �1.� 0. O�n// determines
the lamination ‰.�n; xn/. After passing to a further subsequence if necessary, we
can assume that f �1.� 0. O�n// converges to some f �1.� 0/.�0/, also having nonzero
weights only on f �1.� 0

0/. It follows that �0, the limit of ‰.�n; xn/, is not in FL.S; z/

since its support is disjoint from f �1.˛/. Since P‰.�n; xn/ 2 PMLC .S; z/, Propo-
sition 1.8 implies j�0j D j�j, which is a contradiction. �
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Lemma 2.14. For .j�j; x/; .j�0j; x0/ 2 EL.S/ � H, ŷ .j�j; x/ D ŷ .j�0j; x0/ if and
only if j�j D j�0j and x and x0 are in the same leaf of p�1.j�j/ or in the closure of
the same complementary region of H � p�1.j�j/.

Proof. If x; x0 lie on the same leaf of p�1.j�j/ or in the closure of the same component
of H � p�1.j�j/, then it is straightforward to see that ŷ .j�j; x/ D ŷ .j�j; x0/.

Now we prove the forward direction; suppose that ŷ .j�j; x/ D ŷ .j�0j; x0/. We
must show that j�j D j�0j and x and x0 are in the same leaf of p�1.j�j/ or in the
closure of the same complementary region of H � p�1.j�j/.

We first apply an isotopy so that the laminations ŷ .j�j; x/ and ŷ .j�0j; x0/ are equal
(not just isotopic). Forgetting z, the laminations remain the same (though they may
have a bigon complementary region, and so are not necessarily geodesic laminations),
and hence j�j D j�0j.

Proving the statement about x and x0 is slightly more subtle. For simplicity, we
assume that x and x0 lie in components of H � p�1.j�j/ (the general case is similar,
but the notation is more complicated). Let f; f 0 2 Diff0.S/ be such that eev.f / D x

and eev.f 0/ D x0. Let Qf and Qf 0 be lifts of f and f 0 with Qf .Qz/ D x and Qf 0. Qz/ D x0
(see Section 2.1). Modifying f and f 0 by an element of Diff0.S; z/ if necessary, we
may assume that f �1.j�j/ D ŷ .j�j; x/ and f 0�1.j�j/ D ŷ .j�j; x0/ are equal (again,
not just isotopic).

Since f �1.j�j/ D f 0�1.j�j/, it follows that f 0 B f �1.j�j/ D j�j. Back in H this
means Qf 0 B Qf �1.p�1.j�j// D p�1.j�j/. Since Qf 0 B Qf �1.x/ D x0, and Qf 0 B Qf �1 is
the identity on @H, it must be that x and x0 lie in the same complementary region of
H � p�1.j�j/, as required. �

3. Universal Cannon–Thurston maps

3.1. Quasiconvex sets. For the remainder of the paper, fix a bi-infinite geodesic �

in the universal covering p W H ! S for which p.�/ is a filling closed geodesic in S ,
by which we mean that p.�/ is a closed geodesic and the complement of p.�/ is a
union of disks in S . Let ı 2 �1.S/ generate the (infinite cyclic) stabilizer of � . We
will make several statements about � , though they will also obviously apply to any
�1.S/-translate of � .

Define
X.�/ D ˆ.C.S/ � �/

where ˆ is the map constructed in Section 2.2. Let H ˙.�/ denote the two half spaces
bounded by � and define

H ˙.�/ D ˆ.C.S/ � H ˙.�//:
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Recall that N.v/ D N�.v/.v/ is a small neighborhood of the geodesic represen-
tative of v 2 C0.S/. We may assume that the �.v/ are small enough to ensure that
every component ˛ � � \ p�1.N.v// is essential in the strip of p�1.N.v// that ˛

meets. Here, we say that arc is essential if it is not homotopic into the boundary
keeping the endpoints fixed.

A subset X of a geodesic metric space is called weakly convex if for any two
points of the set there exists a geodesic connecting the points contained in the set.
Observe that the image of a 1-Lipschitz retraction on any geodesic metric space is
weakly convex. In a Gromov hyperbolic space, weakly convex sets are in particular
uniformly quasi-convex.

Proposition 3.1. X.�/; H ˙.�/ are simplicial subcomplexes of C.S; z/ spanned by
their vertex sets and are weakly convex.

To say that a subcomplex � � C.S; z/ is spanned by its vertex set, we mean that
� is the largest subcomplex having �.0/ as its vertex set.

Proof of Proposition 3.1. We describe the case of X.�/, with H ˙.�/ handled by
similar arguments. First we appeal to Proposition 2.3 and Theorem 2.4 to describe
the structure of X.�/ � C.S; z/. Next we prove that X.�/ is spanned by its vertices
and finally we construct a simplicial retraction 
 W C.S; z/ ! X.�/. The existence
of 
 implies the proposition since a simplicial map is 1-Lipschitz.

For any x 2 int.v/, X.�/\…�1.x/ D ˆ.fxg��/, which is a bi-infinite geodesic
in the tree …�1.x/ Š Tv; see Proposition 2.3. One can also see this as the axis of ı

in Tv (since p.�/ is filling, ı is not elliptic in Tv). We denote this axis by �v � Tv .
Recall from Section 2.3 that an inclusion of faces � W v0 ! v induces a quotient of
associated trees �� W Tv ! Tv0 . Since the axis of ı in Tv is sent to the axis of ı in Tv0

by ��, we have ��.�v/ D �v0 . Therefore, with respect to our homeomorphism with
the quotient of Theorem 2.4, we have

X.�/ Š
� G

v�C.S/

v � �v

	ı � (2)

where, as in Theorem 2.4, the disjoint union is over all simplices v � C.S/, and the
equivalence relation is generated by

.�.x/; t/ � .x; ��.t//

for all faces � W v0 ! v, all x 2 v0 and all t 2 �v . We also use the homeomorphism
in (2) to identify the two spaces.

We can now show that X.�/ is spanned by its vertices. The simplices of C.S; z/

via the homeomorphism of Theorem 2.4 are precisely the images of cells v � 
 in
the quotient, where v � C.S/ is a simplex and 
 � Tv is an edge or vertex. Thus, if
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the image of v � 
 is a simplex, and we let v0; : : : ; vk be the vertices of v and t0; t1
the vertices of 
 (assuming, for example, that 
 is an edge) then the vertices of the
simplex determined by v � 
 are images of .vi ; tj / for i D 0; : : : ; k and j D 0; 1. If
these vertices lie in X.�/, then t0; t1 2 �v , hence 
 � �v and the image of v � 
 lies
in X.�/. It follows that X.�/ is a simplicial subcomplex of C.S; z/ spanned by its
vertex set.

Next, we will define a retraction


 W C.S; z/ ! X.�/:

Let �v W Tv ! �v be the nearest point projection map. Extend this to


v D Id � �v W v � Tv ! v � �v:

Observe that if � W v0 ! v is a face, then nearest-point projections commute

�v0 B �� D �� B �v:

This is because a geodesic segment in Tv from a point t to �v is taken to a geodesic
segment from ��.t/ to �v0 . From this it follows that the maps 
v give a well-defined
map 
.

All that remains is to verify that 
 is simplicial. Given a simplex which is the
image of v � 
 in the quotient, for some v � C.S/ and 
 � Tv , the 
-image of this
simplex is the image of 
v.v � 
/ D v � �v.
/ in the quotient. Since �v.
/ is either
an edge or vertex, v � �v.
/ projects to a simplex in the quotient, as required. �

Throughout what follows we continue to denote the axis of ı in Tv by �v � Tv

or, with respect to the homeomorphism Tv Š …�1.v/, by �v D ˆ.fvg � �/.

Proposition 3.2. We have

H C.�/ [ H �.�/ D C.S; z/

and

H C.�/ \ H �.�/ D X.�/:

Proof. The first statement follows from the fact that H C.�/ [ H �.�/ D H and that
ˆ is surjective.

For the second statement, first observe that since � � H ˙.�/, it follows that

X.�/ � H C.�/ \ H �.�/:

To prove the other inclusion, look in each of the trees …�1.v/ Š Tv . For each vertex
v 2 C.S/, we define the half-tree

H ˙.�v/ WD H ˙.�/ \ …�1.v/ D ˆ.fvg � H C.�//:
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Let u 2 H C.�v/ \ H �.�v/ be any vertex; we will show that u 2 �v . We can
write u D ˆ.fvg � U / where U is a component of H � p�1.N.v//. Therefore,
U \ H C.�/ ¤ ; and U \ H �.�/ ¤ ;. Since U is connected and � separates
H C.�/ from H �.�/ we have U \ � ¤ ;. Hence ˆ.fvg � U / D u 2 �v as required.

Given any simplex u D fu0; : : : ; ukg � H C.�/ \ H �.�/, by the previous
paragraph we have uj 2 X.�/. Since X.�/ is a subcomplex spanned by its vertex
set, we have u � X.�/ and hence

H C.�/ \ H �.�/ � X.�/

which completes the proof. �

It will be convenient to keep the terminology in the proof of this proposition as
well. We therefore think of �v as “bounding the half-trees” H ˙.�v/ � Tv Š …�1.v/.

3.2. Rays and existence of Cannon–Thurston maps. An essential subsurface of
S is either a component of the complement of a geodesic multicurve in S , the annular
neighborhood N.v/ of some geodesic v 2 C0.S/, or else the entire surface S .

A point x 2 @H is a filling point for an essential subsurface Y (or simply, x fills Y )
if

� for every geodesic ray r � H ending at x and for every v 2 C0.S/ which
nontrivially intersects Y , we have p.r/ \ v ¤ ; and

� there is a geodesic ray r � H ending at x so that p.r/ � Y .

For any r , v as in the first item observe that the ray r meets infinitely many
components of p�1.v/. Observe also that every point x 2 @H fills exactly one
essential subsurface of S .

Definition 3.3. Let A � @H be the set of points that fill S .

Lemma 3.4. If x 62 A and r is a ray ending at x then ˆ.fvg � r/ has bounded
diameter for all v 2 C0.S/.

Proof. Since x does not fill S there is a simple closed geodesic v0 � S so that p.r/\v0
is finite. It follows that ˆ.fv0g � r/ has bounded diameter in …�1.v0/ � C.S; z/.
Since ˆ.fv0g�r/ and ˆ.fvg�r/ have bounded Hausdorff distance, we are done. �

Recall that we have fixed once and for all a geodesic � � H which projects to
a non-simple closed filling geodesic in S . Consider a set f�ng of pairwise disjoint
�1.S/-translates of � , with the property that the half spaces are nested:

H C.�1/ 	 H C.�2/ 	 � � � :
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Since the �n are all disjoint, proper discontinuity of the action of �1.S/ on H implies
that 1\

nD1

H C.�n/ D fxg

for some x 2 @H. Here the bar denotes closure in xH D H [ @H. We say that f�ng
nests down to x. Note that fH C.�n/g is a neighborhood basis for x.

Given any x 2 @H, if r � H is a geodesic ray ending at x, then since p.�/ is
filling, p.r/ intersects p.�/ infinitely often. It follows that there is a sequence f�ng
which nest down to x.

Proposition 3.5. If f�ng is a sequence nesting down to a point x 2 A, then for any
choice of basepoint u0 2 C.S; z/,

d.u0; H C.�n// ! 1
as n ! 1.

Proof. Recall that the curve complex and its one-skeleton are quasi-isometric
[MM99]. Thus, in what follows all distances will be computed in the 1-skeleton.
We write u0 D ˆ.v0; y/ for some vertex v0 2 C.S/ and y 2 H. By discarding a fi-
nite number of initial elements of the sequence f�ng we may assume that y 2 H �.�n/

for all n, and so u0 2 H �.�n/ for all n.
Now, fix any R > 0. Since

H C.�1/ 	 H C.�2/ 	 H C.�3/ 	 � � �
we must show that there exists N > 0 so that for all u 2 H C.�N /, d.u0; u/ � R.

Claim 1. It suffices to prove that there exists N > 0, so that for all

u 2 H C.�N / \ …�1.B.v0; R//;

the distance inside …�1.B.v0; R// from u0 to u is at least R.

Proof. Observe that any edge path from a point u 2 C.S; z/ to u0 which meets
C.S; z/ � …�1.B.v0; R// projects to a path which meets both C.S/ � B.v0; R/ and
v0, and therefore has length at length at least R. Since … is simplicial, the length of
the path in C.S; z/ is also at least R. �

The intersection of H C.�n/ with each fiber …�1.v/ Š Tv is a half-tree denoted
by H C.�n;v/ and bounded by �n;v D X.�n/ \ …�1.v/. See the proof of Proposi-
tion 3.2 and comments following it.
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Claim 2. For any k > 0, there exists positive integers N1 < N2 < N3 < � � � < Nk

so that
�Nj ;v \ �Nj C1;v D ; (3)

for all j D 1; : : : ; k � 1 and all v 2 B.v0; R/.

Proof. The proof is by induction on k. For k D 1, the condition is vacuously satisfied
by setting N1 D 1. So, we assume it is true for k � 1, and prove it true for k C 1.
Thus, by hypothesis, we have found N1 < N2 < � � � < Nk so that (3) is true, and we
need to find NkC1 so that

�Nk ;v \ �NkC1;v D ; (4)

for all v 2 B.v0; R/.
We suppose that no such NkC1 exists and arrive at a contradiction. Observe that

the nesting
H C.�1;v/ 	 H C.�2;v/ 	 : : :

means that if �n;v \�m;v D ; for some m > n, then �n;v \�mCj;v D ; for all j � 0.
Thus, since no such NkC1 exists, it must be that for every j > 0, there exists a

curve vj 2 B.v0; R/ so that

�Nk ;vj
\ �NkCj;vj

¤ ;:

Let uj 2 �Nk ;vj
\ �NkCj;vj

be a vertex in the intersection. This vertex is the image
under the map ˆvj

of a component Uj � H � p�1.vj / which meets both �Nk
and

�NkCj ; see Figure 5.

Figure 5. The region Uj and the geodesics �Nk
and �NkCj from the sequence nesting down

on x.

�Nk

�NkCj

Uj

x
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Let gj � Uj � H be a geodesic segment connecting a point y�
j 2 �Nk

to

yC
j 2 �NkCj . Furthermore, we may pass to a subsequence so that the y�

j converge
to some point y (possibly in @H) of �Nk

. It follows that the sequence of geodesics
gj converge to a geodesic ray or line r1 connecting y and x.

By passing to a further subsequence, we can assume that vj limits in the Hausdorff
topology to a geodesic lamination L, and that p.r1/ does not transversely intersect L.
Because the vj are all contained in B.v0; R/, L cannot contain an ending lamination
as a sublamination by Proposition 1.8. It follows from [CB87] that L is obtained
from a lamination supported on a proper subsurface † by adding a finite number of
isolated leaves. Any geodesic in S which does not transversely intersect L can only
transversely intersect @† twice (when it possibly exits/enters a crown; see [CB87]).
Since p.r1/ meets @† at most twice the point x does not fill S , a contradiction. �

Now, pick an integer k > R C 1 and let N1 < N2 < � � � < Nk be as in Claim 2.
There can be no vertices in X.�Nj

/ \ X.�Nj C1
/ \ …�1.B.v0; R//, and hence

X.�Nj
/ \ X.�Nj C1

/ \ …�1.B.v0; R// D ;:

Moreover, since

H C.�N1
/ 	 H C.�N2

/ 	 � � � 	 H C.�Nk
/

it follows from Proposition 3.2 that

X.�Nj
/ \ X.�Ni

/ \ …�1.B.v0; R// D ; (5)

for all i ¤ j between 1 and k.
Let u 2 H C.�Nk

/\…�1.B.v0; R// be any point and fu0; u1; : : : ; um D ug be the
vertices of an edge path from u0 to u within …�1.B.v0; R//. We have u0 2 H �.�Nj

/

for all j and u 2 H C.�Nk
/ � H C.�Nj

/ for all j . By Proposition 3.2, the edge path
must meet X.�Nj

/ for each j . That is, for each j , there is some i D i.j / so that
ui.j / 2 X.�Nj

/. By (5), there must therefore be at least k > R C 1 vertices in the
path, and hence the length of the path is at least R.

Therefore, setting N D Nk , we have for all u 2 H C.�N / \ …�1.B.v0; R//, the
distance inside …�1.B.v0; R// from u0 to u is at least R. By Claim 1, this completes
the proof of the proposition. �

We can now prove the first half of Theorem 1.1.

Theorem 3.6. For any v 2 C0.S/, the map

ˆv W H ! C.S; z/

has a continuous �1.S/-equivariant extension to

x̂
v W H [ A ! xC.S; z/:
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Proof. Observe that ˆv is already defined, continuous and equivariant. All that
remains is to extend it to x̂

v on A by checking the criterion of Lemma 1.9 from
which continuity follows. Equivariance is a consequence of equivariance of ˆv and
continuity of x̂

v .
Fix a basepoint u0 2 C.S; z/. Given any x 2 A, let f�ng be any sequence nesting

down on x. According to Proposition 3.5, we have

d.u0; H C.�n// ! 1:

Moreover, by Proposition 3.1, H C.�n/ is weakly convex and hence uniformly quasi-
convex. Finally, observe that ˆv.H C.�n// D ˆ.fvg � H C.�n// � H C.�n/. Since
x 2 A was an arbitrary point, Lemma 1.9 implies the existence of an A-Cannon–
Thurston map x̂

v . �

We note that, given x 2 A, the image x̂
v.x/ depends only on x, not on v, and is

the unique point of intersection of the sets\
n

H C.�n/:

We can therefore unambiguously define @ˆ W A ! @C.S; z/ by @ˆ.x/ D x̂
v.x/ for

any x 2 A, independent of the choice of v 2 C0.S/.

3.3. Separation

Proposition 3.7. Given distinct x; y 2 A, let � be the geodesic connecting them.
Then there are �1.S/-translates �x and �y of � defining half-space neighborhoods

H C.�x/ and H C.�y/ of x and y, respectively, with

@H C.�x/ \ @H C.�y/ D ;
if and only if p.�/ is non-simple.

Before we can give the proof of Proposition 3.7, we will need the analogue of
Proposition 3.2 for the boundaries at infinity. Recall that � was chosen to be a bi-
infinite geodesic with stabilizer hıi and p.�/ a filling closed geodesic.

Proposition 3.8. We have

@H C.�/ [ @H �.�/ D @C.S; z/

and

@H C.�/ \ @H �.�/ D @X.�/:
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Proof. This first statement in an immediate consequence of Proposition 3.2. The
second also follows from this proposition, but requires some additional argument.
Since X.�/ D H C.�/ \ H �.�/, it easily follows that

@X.�/ � @H C.�/ \ H �.�/:

If j�j 2 @H C.�/ \ @H �.�/, then let fuC
n g � H C.�/ and fu�

n g 2 H �.�/ be
sequences converging to j�j in C.S; z/. For each n let gn be a geodesic segment
from uC

n to u�
n . By Proposition 3.2, there is a vertex un 2 gn \ X.�/. Therefore un

also converges to j�j, and so j�j 2 @X.�/, proving

@H C.�/ \ @H �.�/ � @X.�/: �

A theorem of Kra [Kra81] states that, since p.�/ is filling on S , ı is pseudo-
Anosov as an element of Mod.S; z/. We let j�Cj and j��j be the attracting and
repelling fixed points of ı, respectively, in @C.S; z/.

Recall from Proposition 2.12 that ˆ has a continuous �1.S/-equivariant extension
ŷ W xC.S/ � H ! xC.S; z/.

Lemma 3.9.
@X.�/ D ŷ .@C.S/ � �/ [ fj�˙jg

Proof. Continuity of ŷ implies ŷ .@C.S/��/ � @X.�/. Invariance of � by ı implies
invariance of X.�/ by ı so fj�˙jg � @X.�/, and hence

@X.�/ 	 ŷ .@C.S/ � �/ [ fj�˙jg:
We are left to prove the reverse inclusion. Suppose fung is any sequence in X.�/

with un ! j�j 2 @X.�/. We wish to show that j�j 2 ŷ .@C.S/ � �/ [ fj�˙jg. By
definition of X.�/ there exists f.vn; xn/g � C.S/ � � with ˆ.vn; xn/ D un for all
n. There are two cases to consider.

Case 1. fxng � K, for some compact arc K � � .

After passing to a subsequence if necessary xn ! x 2 K. By Proposition 2.13, we
can assume that vn accumulates on @C.S/. So, after passing to a further subsequence
if necessary, we can assume that vn ! j�j 2 @C.S/. Then by continuity of ŷ
(Proposition 2.12) we have

j�j D lim
n!1 ˆ.vn; xn/ D ŷ .j�j; x/ 2 ŷ .@C.S/ � �/:

Case 2. After passing to a subsequence xn ! x, where x is one of the endpoints of
� in @H.
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Note that x 2 A since p.�/ is filling. Indeed, x is either the attracting or repelling
fixed point of ı. Without loss of generality, we assume it is the attracting fixed point.
Now suppose �1 is any �1.S/ translate which nontrivially intersects � . Thus fın.�1/g
nests down on x, and hence

1\
nD1

H C.ın.�1// D
1\

nD1

ın.H C.�1//

consists of the single point j�Cj, the attracting fixed point of the pseudo-Anosov ı.
After passing to a further subsequence if necessary, we can assume xn 2 H C.ın.�1//.
Therefore, ˆ.vn; xn/ 2 H C.ın.�1//, and hence

j�j D lim
n!1 ˆ.vn; xn/ D j�Cj;

completing the proof of Lemma 3.9. �

Proof of Proposition 3.7. We fix x; y 2 A and � the geodesic between them. We
write �x and �y to denote �1.S/-translates of � for which H C.�x/ and H C.�y/

define disjoint neighborhoods of x and y, respectively. We must show that p.�/ is
simple if and only if @H C.�x/ \ @H C.�y/ ¤ ; for all such �x and �y .

First, suppose p.�/ is simple. The closure of p.�/ is a lamination L [CB87].
Since x; y 2 A, L must contain some j�j 2 EL.S/ as the sublamination obtained
by discarding isolated leaves. Therefore � is either a leaf of p�1.j�j/ or a diagonal
for some complementary polygon of p�1.j�j/.

It follows from Lemma 2.14 that if x0 2 �x \� and y0 2 �y \�, then ŷ .j�j; x0/ D
ŷ .j�j; y0/. Appealing to Lemma 3.9 we have

; ¤ ŷ .fj�jg � �x/ \ ŷ .fj�jg � �y/

� @X.�x/ \ @X.�y/

� @H C.�x/ \ @H C.�y/

as required. In fact, it is worth noting that by Lemma 2.14, ŷ .fj�jg � �/ is a single
point which lies in @H C.�x/ \ @H C.�y/ for all allowed choice of �x and �y , and is
therefore equal to x̂

v.x/ D x̂
v.y/.

Before we prove the converse, suppose �1 and �2 are two translates of � for which
H C.�1/ � H �.�2/ and H C.�2/ � H �.�1/. Then we have

@H C.�1/ � @H �.�2/ and @H C.�2/ � @H �.�1/:

Therefore, by Proposition 3.8, it follows that

@H C.�1/ \ @H C.�2/ D @X.�1/ \ @X.�2/:
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Further suppose that �1 ¤ �2, so that fixed points of ı1 and ı2 (elements generating
the stabilizers of �1 and �2, respectively) are disjoint in @C.S; z/. If

@H C.�1/ \ @H C.�2/ ¤ ;
then by Proposition 3.9 there exists x1 2 �1 and x2 2 �2 and j�1j; j�2j 2 @C.S/ for
which ŷ .j�1j; x1/ D ŷ .j�2j; x2/. According to Lemma 2.14, we have j�1j D j�2j,
and x1 and x2 lie on the same leaf, or in the closure of the same complementary region
of j�1j. In particular, there is a bi-infinite geodesic contained in a complementary
region or leaf of p�1.j�1j/ which meets both �1 and �2.

We now proceed to the proof of the converse. Let f�n;xg and f�n;yg be sequences
of �1.S/-translates of � which nest down on x and y, respectively. We suppose that

@H C.�n;x/ \ @H �.�n;y/ ¤ ;
for all n � 0, and prove that p.�/ is simple on S . By the discussion in the preceding
two paragraphs there exists a sequence of laminations fj�njg � @C.S/ so that �x;n

and �y;n both meet a leaf or complementary polygon of p�1.j�nj/. It follows that
there is a sequence of geodesics f�ng in H for which p.�n/ is simple on S , and
�n \ �x;n ¤ ; ¤ �n \ �y;n. The limit � of f�ng has endpoints x and y. Also p.�/ is
simple as it is the limit of simple geodesics [CB87]. �

The following is now immediate from Proposition 3.7 and its proof.

Corollary 3.10. Given distinct x; y 2 A then @ˆ.x/ D @ˆ.y/ if and only if x and
y are ideal endpoints of a leaf (or ideal vertices of a complementary polygon) of
p�1.j�j/ for some j�j 2 @C.S/. �

3.4. Surjectivity. In this section, we prove that our map @ˆ is surjective.
Birman–Series [BS85] proved that the closure of the union of simple closed

geodesics [
v2C0.S/

v

is nowhere dense in S . We fix an � > 0, and assume that our chosen constants
f�.v/gv2C0.S/ are sufficiently small so that

S �
[

v2C0.S/

N.v/

is �-dense. It follows that �.v/ � � for all v 2 C0.S/.



804 C. J. Leininger, M. Mj and S. Schleimer CMH

Lemma 3.11. Suppose .v1; x1/; .v2; x2/ 2 C0.S/ � H with ˆ.vi ; xi / D ui a vertex
in C.S; z/ for i D 1; 2. Then there is a path

G D .v; x/ W Œa; b	 ! C.S/ � H

such that ˆ B G is a geodesic from u1 to u2 and x connects x1 to x2 with image
contained in the 2�-neighborhood of a geodesic in H.

Proof. For each i D 1; 2 we can find x0
i in the same component of H � p�1.N ı.vi //

as xi within � of xi such that x0
1 and x0

2 are contained in some geodesic � 0 which
projects to a filling closed geodesic in S (the pairs of endpoints of such geodesics
are dense in @H � @H). Then ˆ.vi ; xi / D ˆ.vi ; x0

i / for i D 1; 2. Moreover, the
geodesic from x0

1 to x0
2 is within � of x1 and x2. Suppose we can find G 0 D .v0; x0/

so that ˆ B G 0 is a geodesic from u1 to u2 and x0 connects x0
1 to x0

2 with image
contained in the �-neighborhood of a geodesic containing x0

1 and x0
2. Then we can

take G D .v; x/ to be such that v D v0 and x first runs from x1 to x0
1, then traverses

x0, and finally runs from x0
2 to x2 (all appropriately reparameterized). This will then

provide the desired path proving the lemma.
To construct G 0, we suppose for the moment that f�.v/gv2C0.S/ have been chosen

so that any arc of � 0 \ p�1.N.v// is essential. With this assumption, Proposition 3.1
applied to � 0 implies that X.� 0/ is weakly convex. Now connect u1 and u2 by a
geodesic edge path within X.� 0/ with vertex set fu1 D w1; w2; w3; : : : ; wk D u2g.

Let vi D ….wi /. We observe that for every i D 1; : : : ; k,

ˆ�1.wi / \ .C.S/ � � 0/ D fvig � ˛i

where ˛i is an arc of � 0 \.H�p�1.N.vi /// and is in particular connected. It follows
from the construction of ˆ that the edges Œwi ; wiC1	, for i D 1; : : : ; k � 1 are images
of paths in C.S/ � � 0 which we denote ai D .bi ; ci /. Explicitly, if vi D viC1, then
bi is constant and equal to vi D viC1, and ci traverses an arc of � 0 \ p�1.N.vi //. If
vi ¤ viC1, then bi traverses the edge Œvi ; viC1	 and ci is constant.

We can now define G 0 D .v0; x0/ as follows.

(1) Begin by holding v0 constant equal to u1 D w1 and let x0 traverse from x0
1 to

the initial point of c1 inside ˛1 � � 0.

(2) Next, traverse a1.

(3) After that, hold v0 constant again and let x0 traverse from the terminal point of
c1 to the initial point of c2 inside ˛2 � � 0.

(4) We can continue in this way, for i D 2; : : : ; k � 2 traversing ai , then holding
v0 constant and letting x0 go from the terminal point of ci to the initial point of
ciC1 inside ˛iC1 � � 0.
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(5) We complete the path by traversing ak�1, then holding v0 constant and letting
x0 traverse the path from the terminal point of ck�1 to x0

2 inside ˛k � � 0.
By construction, the projection of this path ˆ B G 0 onto the first coordinate is the
geodesic from u1 to u2 that we started with (although it stops and is constant at each
of the vertices for some interval in the domain of the parametrization). Moreover, x0
is contained in � 0 and connects x0

1 to x0
2, so therefore stays within a distance zero of

the geodesic from x0
1 to x0

2, as required.
The proof so far was carried out under the assumption that for every v 2 C0.S/,

every arc of � 0 \ N.v/ enters and exits the component of N.v/ which it meets in
different boundary components. If this is not true, then first shrink all �.v/ to numbers
�0.v/ < �.v/ so that it is true, construct the path as above, and call it G 00 D .v00; x00/.
Note that the numbers f�0.v/gv2C0.S/ determine a new map ˆ0 W C.S/�H ! C.S; z/,
and ˆ0 B G 00 is a geodesic. With respect to the original map ˆ, Q�00 is almost good
enough for our purposes. The only problem is that ˆ B G 00 may now no longer be a
geodesic: If there is some interval in the domain in which v00 is constant equal to v

and x00 enters and exits a component p�1.N.v// from the same side, then ˆBG 00 will
divert from being a geodesic by running (less than half way) into an edge of …�1.v/

and running back out. We modify G 00 to the desired path G 0, by pushing x00 outside
of p�1.N.v// whenever this happens, thus changing it by at most �.v/ � �. The
resulting path G 0 has v0 D v00 and x0 still connects x0

1 to x0
2 and stays within � of � 0,

as required. �

Surjectivity of @ˆ requires that every point of @C.S; z/ is the limit of ˆv.r/ for
some v 2 C0.S/ and some ray r � H ending at a point of A. The following much
weaker conclusion is easier to arrive at, and will be used in the proof of surjectivity.

Lemma 3.12. For any v 2 C0.S/, @C.S; z/ � ˆv.H/.

Proof. First, note that since �1.S/ < Mod.S; z/ is a normal, infinite subgroup, its
limit set in PML.S; z/ (in the sense of [MP89]) is all of PML.S; z/. In particular, the
closure of any �1.S/-equivariant embedding H � T .S; z/ in the Thurston compact-
ification of Teichmüller space meets the boundary PML.S; z/ in all of PML.S; z/.
In particular, for any � 2 PFL, there is a sequence of points xn 2 H limiting to �.

The systole map sys W T .S; z/ ! C.S; z/ restricts to a �1.S/-equivariant map
from H to C.S; z/, which is therefore a bounded distance from ˆv . Again appealing
to Klarreich’s work [Kla99], it follows that sys extends continuously to PFL.S; z/,
and hence sys.xn/ ! j�j 2 EL.S; z/ Š @C.S; z/. Therefore ˆv.xn/ ! j�j. Since
� was arbitrary, every point of @C.S; z/ is a limit of a sequence in ˆv.H/, and we
are done. �

Given an arbitrary sequence fxng in H, we need to prove the following.
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Proposition 3.13. If lim
n!1 xn D x 2 @H � A, then ˆv.xn/ does not converge to a

point of @C.S; z/.

One case of this proposition requires a different proof, and we deal with this now.

Lemma 3.14. If fxng and x are as in Proposition 3.13 and x is the endpoint of a lift
of a closed geodesic on S , then ˆv.xn/ does not converge to a point of @C.S; z/

Proof. Under the hypothesis of the lemma, there is an element � 2 �1.S/ with x

as the attracting fixed point. Moreover, because x 62 A, the geodesic representative
of this element of �1.S/ does not fill S . Therefore, the associated mapping class is
reducible (see [Kra81]).

Let �0 be a �1.S/-translate of � such that �0 separates x from the repelling
fixed point of �. Then f�n.�0/g nests down on x. It follows that after passing to a
subsequence (which we continue to denote fxng) we have

xn 2 H C.�n.�0// D �n.H C.�0//:

Appealing to the �1.S/-equivariance of ˆ we have

ˆv.xn/ D ˆ.v; xn/ 2 H C.�n.�0// D �n.H C.�0//:

Suppose now that ˆv.xn/ converges to some element j�j 2 @C.S; z/. It follows
that

j�j 2
1\

nD1

�n.H C.�0//:

However, any such j�j is invariant under � and since � is a reducible mapping class
it fixes no point of @C.S; z/. This contradiction implies ˆv.xn/ does not converge
to any j�j 2 @C.S; z/, as required. �

Proof of Proposition 3.13. Recall that ˆv.x/ D ˆ.v; x/. Suppose, contrary to the
conclusion of the proposition, that

lim
n!1 ˆ.v; xn/ D j�j 2 EL.S; z/ Š @C.S; z/:

We begin by finding another sequence which also converges to j�j to which we can
apply the techniques developed so far. Since x 62 A the surface Y filled by x is
strictly contained in S . By Lemma 3.14 we may assume that Y is not an annulus.
Let r � H be a ray ending at x so that r is contained in a component zY of p�1.Y /

and so that p.r/ fills Y .
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We pass to a subsequence (which we continue to denote fxng) with the property
that for every k > 0, the geodesic segment ˇk connecting x2k to x2kC1 passes within
some fixed distance, say distance 1, of r and so that furthermore

ˇk \ zY ¤ ;:

Now fix any k > 0 and let ˆ B G k W Œak; bk	 ! C.S; z/ be a geodesic from
ˆ.v; x2k/ to ˆ.v; x2kC1/ where G k D .vk; xk/ is given by Lemma 3.11. The path
xk connects x2k to x2kC1 and has image within 2� of a geodesic in H which must
also pass within a uniformly bounded distance of r (in fact, it passes within a distance
1 C 2�).

Choosing the subsequence fxng carefully, we may assume that ˇk spends a very
long time in zY . Doing this ensures that the image of xk nontrivially intersects zY .
Let tk 2 Œak; bk	 be any time where xk meets zY . Then set

yk D xk.tk/ 2 zY and vk D vk.tk/ 2 C0.S/

(recall that xk is constant when vk is not, so we can assume that tk is chosen so that
vk is indeed a vertex).

Observe that since ˆ B G k.Œak; bk	/ is a geodesic from ˆ.v; x2k/ to ˆ.v; x2kC1/,
the sequence fˆ B G k.tk/g D fˆ.vk; yk/g also converges to j�j. Let us write uk D
ˆ.vk; yk/.

Next, for each k > 0 let fk 2 Diff0.S/ be such that eev.fk/ D yk 2 zY . Since
zY is a single component of p�1.Y /, we may assume that any two fj and fk differ
by an isotopy fixing the complement of the interior of Y . That is, there is a path
ft 2 Diff0.S/ for t 2 Œ1; 1/ such that yk D eev.fk/ for all positive integers k, and
so that

f1jS�Y D ft jS�Y

for all t 2 Œ1; 1/.
Let X D f �1

1 .Y / and consider the punctured surfaces

Y ı D Y � ff1.z/g and Xı D X � fzg D f �1
1 .Y ı/:

We will be interested in the set of subsurface projections

f�Xı.uk/g � C 0.Xı/

where C 0.Xı/ is the arc complex of Xı; see [MM00]. We consider the incomplete
metric on Xı for which f1 W Xı ! Y ı is an isometry where Y ı is given the induced
path metric inside of S .

Claim. The length of some arc of �Xı.uk/ tends to infinity.
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Here, length means infimum of lengths over the isotopy class of an arc. The claim
implies that there are infinitely many arcs in the set f�Xı.uk/g which is impossible
if uk ! j�j. Thus, to complete the proof of the proposition, it suffices to prove the
claim.

Proof of Claim. So, to prove that the length of some arc tends to infinity, first sup-
pose that f�Y .vk/g contains an infinite set. Then there are arcs ˛k � �Y .vk/

with `Y .˛k/ ! 1. Now f �1
k

.˛k/ is an arc of �Xı.uk/ and `Xı.f �1
k

.˛k// D
`Y ı.f1f �1

k
.˛k//. However, f1f �1

k
is the identity outside the interior of Y , in partic-

ular it is the identity on the boundary of Y and isotopic (forgetting z) to the identity
in Y . So, we have

`Y ı.f1f �1
k .˛k// � `Y .˛k/ ! 1

and hence there is an arc of �Xı.uk/ with length tending to infinity as required.
We may now suppose that there are only finitely many arcs in the set f�Y .vk/g. By

passing to a further subsequence if necessary, we may assume that �Y .vk/ is constant
and equal to a union of finitely many arcs in Y . We fix attention on one arc, call it ˛.
Again, we see that f �1

k
.˛/ is an arc of �Xı.uk/ and `Xı.f �1

k
.˛// D `Y ı.f1f �1

k
.˛//

with f1f �1
t equal to the identity outside the interior of Y for all t .

Writing ht D ftf
�1

1 , we are required to prove that `Y ı.h�1
k

.˛// tends to infinity
as k ! 1. Observe that h1 is the identity on S and ht is the identity outside the
interior of Y for all t 2 Œ1; 1/. We can lift ht to Qht so that Qh1 is the identity in H.
It follows from the definition of eev that Qhk.eev.f1// D yk . Thus, Qht is essentially
pushing the point y D eev.f1/ 2 zY along the ray r (at least, Qhk.y/ D yk comes back
to within a uniformly bounded distance to r for every positive integer k, though it
is not hard to see that we can choose ft so that Qht always stays a bounded distance
from r).

Now h�1
t .˛/ can be described as applying the isotopy ht backward to ˛. There-

fore, if we let Q̨k be the last arc of p�1.˛/ intersected by the path Qht .y/ for t 2 Œ1; k	,
then we can drag Q̨ k backward using the isotopy Qht as t runs from k back to 1, and
the result Qh�1

k
. Q̨k/ projects down by p to h�1

k
.˛/; see Figure 6. Moreover, observe

that `Y ı.h�1
k

.˛// is at least the sum of the distances from y to the two boundary
components of zY containing the end points of Q̨k .

Finally, since x fills Y , the distance from y to the boundary components of zY
containing the endpoints of Q̨k must be tending to infinity as k ! 1; otherwise,
we would find that r is asymptotic to one of the boundary components of zY which
because x fills Y would imply Y is an annulus, and this is a contradiction. This
implies `Y ı.h�1

k
.˛// tends to infinity as k ! 1. This proves the claim, and so

completes the proof of the proposition. �

We can now prove one of the main technical pieces of Theorem 1.1.
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Figure 6. On the left: r inside zY (the complement of the shaded region), the path Qht .y/ as it
goes through yk D Qhk.y/ and the arc Q̨k . On the right: dragging Q̨k back by Qh�1

k
.

zY

Q̨k

y

yk

Qht .y/

Qh�1
k

. Q̨k/

x

r

Theorem 3.15. The map
@ˆ W A ! @C.S; z/

is surjective.

Proof. Let j�j 2 @C.S; z/ be an arbitrary point. According to Lemma 3.12 there
exists a sequence fxng � H with

lim
n!1 ˆv.xn/ D j�j:

By passing to a subsequence, we may assume that fxng converges to a point x 2 @H.
It follows from Proposition 3.13 that x 2 A. Then, by Theorem 3.6

j�j D lim
n!1 ˆv.xn/ D x̂

v.x/ D @ˆ.x/:

Since j�j 2 @C.S; z/ was an arbitrary point, it follows that @ˆ.A/ D @C.S; z/, and
@ˆ is surjective. �

3.5. Neighborhood bases. In this section we find neighborhood bases for points of
@C.S; z/. To do this, we must distinguish between two types of points of A. We say
a point x 2 A is simple if there exists a ray r in H ending at x for which p.r/ is
simple. Otherwise x is not simple. Equivalently, a point x 2 A is simple if and only
if there is a lamination j�j 2 EL.S/ such that x is the ideal endpoint of a leaf (or
ideal vertex of a complementary polygon) of p�1.j�j/.
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Lemma 3.16. If x 2 A is not simple and f�ng are �1.S/-translates of � which nest
down to x, then f@H C.�n/g is a neighborhood basis for @ˆ.x/.

Proof. By Proposition 3.5 the distance of H C.�n/ to any fixed basepoint in C.S; z/

tends to infinity as n ! 1. It follows that the visual diameter of H C.�n/ measured
from any base point also tends to zero. Thus, for any neighborhood U of @ˆ.x/ in
@C.S; z/, there exists N > 0 so that for all n � N , @H C.�n/ � U .

We must prove @ˆ.x/ is in int.@H C.�n// for all n. We already know that\
@H C.�n/ D f@ˆ.x/g

and in particular, @ˆ.x/ 2 @H C.�n/ for all n. Therefore, it suffices to prove that for
any n, there exists m > n so that

@H C.�m/ � int.@H C.�n//:

It follows from Proposition 3.8 and the fact that @H �.�n/ is a closed subset of
@C.S; z/ that

@H C.�n/ � @X.�n/ D @C.S; z/ � @H �.�n/ � int.@H C.�n//:

For any m > n, we also know

@H C.�m/ � @H C.�n/:

Thus, if we can find m > n so that

@X.�n/ \ @X.�m/ D ;;

then appealing to Proposition 3.8 again, it will follow that

@H C.�m/ � @H C.�n/ � @X.�n/ � int.@H C.�n//;

as required.
If for all m > n we have @X.�m/\@X.�n/ ¤ ;, then a similar proof to that given

for Proposition 3.7 shows that x is a simple point which is a contradiction. �

The above lemma gives a neighborhood basis for @ˆ.x/ when x 2 A not a simple
point. The next lemma describes a neighborhood basis @ˆ.x/, where x is a simple
point.

Suppose x1, x2 are endpoints of a nonboundary leaf of p�1.j�j/ or x1; : : : ; xk

are points of a complementary polygon of some p�1.j�j/ for some j�j 2 EL.S/.
We treat both cases simultaneously referring to these points as x1; : : : ; xk . From
Corollary 3.10, @ˆ.x1/ D � � � D @ˆ.xk/, and the @ˆ-image of any simple point has
this form.
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Lemma 3.17. If x1; : : : ; xk are as above, and f�1;ng; : : : ; f�k;ng are sequences of
�1.S/-translates of � with f�j;ng nesting down to xj for each j D 1; : : : ; k, then˚

@H C.�1;n/ [ � � � [ @H C.�k;n/
�1

nD1

is a neighborhood basis for @ˆ.x1/ D � � � D @ˆ.xk/.

Proof. Let j�j D @ˆ.x1/ D � � � D @ˆ.xk/. As in the proof of the previous lemma,
the sets in the proposed neighborhood basis have visual diameter tending to zero as
n ! 1.

Since j�j 2 @H C.�j;n/ for all j and n, we clearly have

j�j 2 @H C.�1;n/ [ � � � [ @H C.�k;n/

for all n. Thus, we are required to show that j�j is an interior point of this set.
This is equivalent to saying that for any sequence fj�mjg � @C.S; z/ converging

to j�j, and every positive integer n, there exists M > 0 so that for all m � M ,

j�mj 2 @H C.�1;n/ [ � � � [ @H C.�k;n/: (6)

So, let fj�mjg � @C.S; z/ be a sequence converging to j�j and n a positive
integer. Choose any sequence fymg � A so that @ˆ.ym/ D j�mj (such a sequence
exists by surjectivity of @ˆ). We wish to show that any accumulation point of fymg is
one of the points x1; : : : ; xk . For then, we can find an M > 0 so that for all m � M

ym 2 H C.�1;n/ [ � � � [ H C.�k;n/

and hence (6) holds.
To this end, we pass to a subsequence so that ym ! x 2 @H. Choosing se-

quences converging to ym for all m and applying a diagonal argument, we see that
there is a sequence fqmg � H with lim

m!1 qm D x and lim
m!1 ˆv.qm/ D j�j. From

Proposition 3.13 we deduce that x 2 A.
Now, if x 2 fx1; : : : ; xkg then we are done. Suppose not. Then the geodesic

�j from x to xj has p.�j / non-simple for all j . Proposition 3.7 guarantees �1.S/-
translates �x; �1;n; : : : ; �k;n of � defining neighborhoods

H C.�x/; H C.�1;n/; : : : ; H C.�k;n/

of x; x1; : : : ; xk , respectively for which

@H C.�x/ \ @H C.�j;n/ D ;
for all j D 1; : : : ; k. Since @ˆ is continuous, we have

j�j D lim
m!1 j�mj D lim

m!1 @ˆ.ym/ D @ˆ.x/ 2 @H C.�x/:

This is impossible since j�j 2 @H C.�j;n/ for all j D 1; : : : ; k. Therefore, x D xj

for some j , and the proof is complete. �
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We are now ready to prove

Theorem 1.1 (Universal Cannon–Thurston map). For any v 2 C0.S/, the map
ˆv W H ! C.S; z/ has a unique continuous �1.S/-equivariant extension

x̂
v W H [ A ! xC.S; z/:

The map @ˆ D x̂
vjA does not depend on v and is a quotient map onto @C.S; z/.

Given distinct points x; y 2 A, @ˆ.x/ D @ˆ.y/ if and only if x and y are ideal
endpoints of a leaf (or ideal vertices of a complementary polygon) of the lift of an
ending lamination on S .

Proof. By Theorem 3.6, Corollary 3.10 and Theorem 3.15 all that remains is to prove
that @ˆ is a quotient map. To see this, we need only show that E � @C.S; z/ is
closed if and only if F D @ˆ�1.E/ is closed. Since @ˆ is continuous, it follows that
if E is closed, then F is closed.

Now, suppose that F is closed. To show that E is closed, we let j�nj ! j�j
with fj�njg � E and we must check that j�j 2 E. By Lemmas 3.16 and 3.17, after
passing to a subsequence if necessary, there is a sequence f�ng nesting down on some
point x 2 @ˆ�1.j�j/ with j�nj 2 @H C.�n/. Let xn 2 @ˆ�1.j�nj/ � F be such
that xn 2 @H C.�n/. It follows that xn ! x, so since F is closed, x 2 F . Therefore,
j�j D @ˆ.x/ 2 E, as required. Thus, E is closed, and @ˆ is a quotient map. �

3.6. Mod.S; z/-equivariance. We now prove

Theorem 1.2. The quotient map

@ˆ W A ! @C.S; z/

constructed in Theorem 1.1 is equivariant with respect to the action of Mod.S; z/.

Proof. It suffices to prove

@ˆ.�.x// D �.@ˆ.x//:

for every � 2 Mod.S; z/ and a dense set of points x 2 A.
Let � 0 � H be a geodesic for which p.� 0/ is a filling closed geodesic in S and let

ı0 2 �1.S/ be the generator of the infinite cyclic stabilizer of � 0. Let x 2 A denote
the attracting fixed point of ı0. As previously discussed, according to Kra [Kra81], ı0
represents a pseudo-Anosov mapping class in Mod.S; z/, and the �1.S/-equivariance
of @ˆ implies @ˆ.x/ is the attracting fixed point for ı0 in @C.S; z/.

Now, given any � 2 Mod.S; z/, note that �.x/ is the attracting fixed point of
� B ı0 B ��1 in A, and �.@ˆ.x// is the attracting fixed point for � B ı0 B ��1 in
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@C.S; z/. Appealing to the �1.S/-equivariance again, we see that @ˆ must take
�.x/ to �.@ˆ.x//. That is

@ˆ.�.x// D �.@ˆ.x//:

Since the set of endpoints of such geodesics is dense in A, this completes the proof.
�

4. Local path-connectivity

The following, together with Lemma 3.17 will prove Theorem 1.3.

Lemma 4.1. @H C.�/ is path-connected.

Proof. Fix any j�j 2 EL.S/. According to Proposition 2.12, ŷ is continuous, so we
have a path-connected subset

ŷ .fj�jg � H C.�// � @H C.�/:

Now let j�j 2 @H C.�/ be any point. We will construct a path in @H C.�/

connecting a point of ŷ .fj�jg � H C.�// to j�j. This will suffice to prove the lemma.
According to Theorem 1.1 there exists x 2 A so that @ˆ.x/ D j�j. Let

r W Œ0; 1/ ! H C.�/ be a ray with

lim
t!1

r.t/ D x:

Let f�ng be a sequence of �1.S/-translates of � which nest down on x. We
assume, as we may, that �1 D � . Therefore, there is a sequence t1 < t2 < � � � with
limn!1 tn D 1 and

r.Œtn; 1// � H C.�n/

and hence again by Proposition 2.12

ŷ .fj�jg � r.Œtn; 1// � ŷ .fj�jg � H C.�n// � @H C.�n/:

Recall that, by definition, @ˆ.x/ is the unique point of intersection

1\
nD1

@H C.�n/;

and hence
lim
t!1

ŷ .j�j; r.t// D j�j:
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Therefore, we can extend Rj�j.t/ D ŷ .j�j; r.t// to a continuous map

Rj�j W Œ0; 1	 ! @H C.�/

with Rj�j.0/ 2 ŷ .fj�jg � H C.�// and Rj�j.1/ D j�j. This is the required path
completing the proof. �

We now prove

Theorem 1.3. The Gromov boundary @C.S; z/ is path-connected and locally path-
connected.

Proof. From Lemma 4.1, we see that every set of the form @H C.�0/ is path-connected
for any �1.S/-translate �0 of � . According to Lemmas 3.16 and 3.17 there is a basis
for the topology consisting of these sets (and finite unions of these sets which all
share a point); this proves local path-connectivity. Path-connectivity follows from
Lemma 4.1 and Proposition 3.8. �
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