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Abstract. In this paper, we explain some facts on the discrete case of weak KAM theory. In
that setting, the Lagrangian is replaced by a cost c W X � X ! R, on a “reasonable” space X .
This covers for example the case of periodic time-dependent Lagrangians. As is well known, it
is possible in that case to adapt most of weak KAM theory. A major difference is that critical
sub-solutions are not necessarily continuous. We will show how to define a Mañé potential. In
contrast to the Lagrangian case, this potential is not continuous. We will recover the Aubry set
from the set of continuity points of the Mañé potential, and also from critical sub-solutions.
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Introduction

In the past twenty years, new techniques have been developed in order to study time-
periodic or autonomous Lagrangian dynamical systems. Among them,Aubry–Mather
theory (for an introduction see [Ban88] for the annulus case and [Mat93], [MF94] for
the compact, time periodic case) and Albert Fathi’s weak KAM theory (see [Fat05]
for the compact case and [FM07] for the non-compact case) have appeared to be
very fruitful. More recently, a discretization of weak KAM theory applied to optimal
transportation has allowed to obtain deep results of existence of optimal transport
maps (see for example [BB07], [FF07]). A quite similar formalism was also used in
the study of time periodic Lagrangians, for example in ([CISM00] or [Mas07]). In
this paper, we give analog results in this discrete setting of those already obtained in
the continuous one. In particular, our phase space X will be required to have very
little regularity (for example a length space with compact closed balls will do) and
no global compactness assumption.

In a first part we introduce the Lax–Oleinik semi-groups T �
c and TC

c and study
their sub-solutions. We start with a (continuous) cost c W X2 ! R which verifies:

(1) Uniform super-linearity: for every k > 0, there exists C.k/ 2 R such that

8.x; y/ 2 X2; c.x; y/ > k d.x; y/ � C.k/:
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(2) Uniform boundedness: for every R 2 R, there exists A.R/ 2 R such that
d.x; y/ 6 R ) c.x; y/ 6 A.R/.

A function u is an ˛-sub-solution for c if

8.x; y/ 2 X2; u.y/ � u.x/ 6 c.x; y/C ˛: (1)

The critical constant˛Œ0� is the smallest constant˛ such that there are˛-sub-solutions.
In the first part we prove, as in [FS04], the existence of critical sub-solutions which
are strict on a maximal set:

Theorem 0.1. There is a continuous function u1 W X ! R which is an ˛Œ0�-sub-
solution such that for every .x; y/ 2 X2, if there exists an ˛Œ0�-sub-solution u such
that

u.y/ � u.x/ < c.x; y/C ˛Œ0�;

then we also have
u1.y/ � u1.x/ < c.x; y/C ˛Œ0�:

The proof is done using the Lax–Oleinik semi-groups T �
c and TC

c and the notion
of Aubry set as introduced in [BB07].

The second part is devoted to the study of the continuity of sub-solutions and of an
analogue of Mañé’s potential. Those two problems are closely related. As a matter of
fact, in the Lagrangian continuous case, all critical sub-solutions are equi-Lipschitz
maps and the projected Aubry set may be defined as the set of points x 2 X such that
any sub-solution is differentiable at x. Moreover, this information is encrypted in the
Mañé potential� W X2 ! R. more precisely, Fathi and Siconolfi ([FS04]) proved that
a point x is in the projected Aubry set if and only if the function �x W y 7! �.x; y/

is differentiable at x. In the discrete case, we will see that sub-solutions are not
necessarily continuous. However, analogously to the continuous case, the projected
Aubry set is the set of points where all sub-solutions are continuous. Moreover, our
Mañé potential will verify the following:

Theorem 0.2. There is a function ' W X2 ! R which satisfies the following:

(1) for any x 2 X , '.x; x/ D 0;

(2) a function u is a critical sub-solution if and only if

8.x; y/ 2 X2; u.y/ � u.x/ 6 '.x; y/I

(3) for any x 2 X , the function 'x W y 7! '.x; y/ is a critical sub-solution;

(4) a non-isolated point x 2 X is in the Aubry set if and only if the function
'x W y 7! '.x; y/ is continuous at x;
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(5) if x 2 X is non-isolated, the function 'x is continuous at x if and only if it is a
negative weak KAM solution, that is, a fixed point of T �

c C ˛Œ0�.

For the definition of the semi-group T �
c see Section 1.
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1. On critical sub-solutions

In this section we will fix a metric space X which is a B-length space at scale K for
some constants B andK (see A.1 for the exact definition) with compact closed balls
and let c W X �X ! R be a continuous function which is uniformly super-linear and
uniformly bounded, that is, which verifies condition 1 and 2 of the introduction.

Definition 1.1. If ˛ 2 R and u W X ! R is a (not necessarily continuous) function,
we will say that u is ˛-dominated (in short u � c C ˛) if

8.x; y/ 2 X2; u.y/ � u.x/ 6 c.x; y/C ˛:

We will denote by H .˛/ the set of ˛-dominated functions.
Following Albert Fathi’s weak KAM theory we introduce the Lax–Oleinik semi-

groups:
T �

c u.x/ D inf
y2X

u.y/C c.y; x/I

TC
c u.x/ D sup

y2X

u.y/ � c.x; y/:

Theorem 1.2 (weak KAM). There exists a constant ˛Œ0� such that the equation
u D T �

c uC˛Œ0� (resp. u D TC
c u�˛Œ0�) admits a continuous solution and such that

H .˛/ is empty for ˛ < ˛Œ0�.

Proof. See the end of the appendix (page 37). �

We say that a function u is critically dominated or that it is a critical sub-solution
if it is ˛Œ0�-dominated. Finally, we call negative (resp. positive) weak KAM solution
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a fixed point of the operator T �
c C ˛Œ0� (resp. TC

c � ˛Œ0�). Let us state that weak
KAM solutions exist by 1.2. The following proposition is a direct consequence of
the definitions:

Proposition 1.3. A function u is a critical sub-solution if and only if it verifies one
of the following properties:

(i) 8.x; y/ 2 X2; u.x/ � u.y/ 6 c.y; x/C ˛Œ0� (or u � c C ˛Œ0�);

(ii) u 6 T �
c uC ˛Œ0�;

(iii) u > TC
c u � ˛Œ0�.

The more analytical denomination of sub-solution is useful because it allows to
introduce the notion of being strict at some point:

Definition 1.4. Consider x0 2 X and u � c C ˛Œ0� a critical sub-solution. We will
say that u is strict at .x; y/ 2 X2 if and only if

u.x/ � u.y/ < c.y; x/C ˛Œ0�:

We will say that u is strict at x 2 X if

8y 2 X; u.y/ � u.x/ < c.x; y/C ˛Œ0� and u.x/ � u.y/ < c.y; x/C ˛Œ0�:

We first give a characterization of continuous strict sub-solutions.

Proposition 1.5. A continuous sub-solution u is strict at x if and only if u.x/ <
T �

c u.x/C ˛Œ0� and u.x/ > TC
c u.x/ � ˛Œ0�.

Proof. By definition, if u is strict at x then

8y 2 X; u.x/ � u.y/ < c.y; x/C ˛Œ0�:

In the appendix (A.10 and A.11), it is shown that the function y 7! c.y; x/C ˛Œ0��
u.y/Cu.x/ tends to C1 when d.x; y/ tends to C1. Since closed balls are compact,
by continuity of u, the infimum in the definition of T �

c is achieved. Therefore we
must have

u.x/ < T �
c u.x/C ˛Œ0�:

Similarly, if for every y 2 X , u.y/ � u.x/ < c.x; y/C ˛Œ0� then

u.x/ > sup
y2X

u.y/ � c.x; y/ � ˛Œ0� D TC
c u.x/ � ˛Œ0�:

The converse is clear. �

Before going any further, let us give some definitions:
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Definition 1.6. Let u W X ! R verify u � c C ˛Œ0�. We will say that a chain
.xi /06i6n of points in X is .u; c; ˛Œ0�/-calibrated if

u.xn/ D u.x0/C c.x0; x1/C � � � C c.xn�1; xn/C n˛Œ0�:

Notice that a sub-chain formed by consecutive elements of a calibrated chain is again
calibrated since u � c C ˛Œ0�.

Following Bernard and Buffoni [BB07] we will call Aubry set of u the subset QAu

ofXZ consisting of the sequences whose finite sub-chains are .u; c; ˛Œ0�/-calibrated.
The projected Aubry set of u is

Au D fx 2 X; 9.xn/n2Z; .u; c; ˛Œ0�/-calibrated with x0 D xg:
The Aubry set is

QA D
\

u�cC˛Œ0�

QA u:

The projected Aubry set is
A D

\
u�cC˛Œ0�

Au;

where in both cases, the intersection is taken over all critically dominated functions.

We begin by a very simple lemma that will be of great use:

Lemma 1.7. Let u � c C ˛Œ0� be a critically dominated function and .x; y/ 2 X2.
If the identity

u.x/ � u.y/ D c.y; x/C ˛Œ0�

is verified, then u.x/ D T �
c u.x/C ˛Œ0�. If the identity

T �
c u.x/ � T �

c u.y/ D c.y; x/C ˛Œ0�

is verified, then u.y/ D T �
c u.y/C ˛Œ0� and T �

c u.x/ D u.y/C c.y; x/.

Proof. The first part is straightforward from the definitions. For the second point
write

T �
c u.x/ D T �

c u.y/C c.y; x/C ˛Œ0� > u.y/C c.y; x/ > T �
c u.x/:

Therefore, all inequalities must be equalities which proves the lemma. �

The following lemma, along with the fact that the image by the Lax–Oleinik
semi-group of a dominated function is continuous (cf. A.10), shows that all the inter-
sections in the definitions of the Aubry sets and projected Aubry sets may be taken
on continuous functions.
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Proposition 1.8. Let u � cC ˛Œ0� be a dominated function. Then QA u D QA T �
c u. In

particular, we also have Au D AT �
c u.

Proof. First we prove the inclusion QA u � QA T �
c u. Let us consider the sequence

.xn/n2Z 2 QA u. Since u is dominated and the sequence .xn/n2Z 2 QA u is (u; c; ˛Œ0�)-
calibrated we have

u.xkC1/ D u.xk/C c.xk; xkC1/C ˛Œ0�

for all k 2 Z. Therefore Lemma 1.7 yields

8k 2 Z; T �
c u.xkC1/C ˛Œ0� D u.xkC1/:

Therefore, the sequence .xn/n2Z is (T �
c u; c; ˛Œ0�)-calibrated and belongs to QA T �

c u.
We now prove the reverse inclusion QA T �

c u � QA u. Let .xn/n2Z 2 QA T �
c u. We

have that for any k 2 Z,

T �
c u.xkC1/ D T �

c u.xk/C c.xk; xkC1/C ˛Œ0�;

therefore using the second part of 1.7

8k 2 Z; u.xk/ D T �
c u.xk/C ˛Œ0�;

and the sequence .xn/n2Z is (u; c; ˛Œ0�)-calibrated. �

Here is a lemma that will be useful in the sequel:

Lemma 1.9. There is a continuous function u � c C ˛Œ0� such that QA u D QA .

Proof. Let us consider the set � D fu 2 C 0.X;R/; u � c C ˛Œ0�g of continuous
dominated functions . This set is separable for the compact open topology so let
.un/n2N� be a sequence dense in � . Consider now .an/n2N� a sequence of positive
real numbers such that

P
an D 1 and u D P

anun converges uniformly on each
compact subset of X . To construct such a sequence, one can for example fix an
x0 2 X and for any n > 1, take an D minf2�n; 1=.2nkunk1;B.x0;n//g then take
a1 D 1�P

n>1 an > 0. The function u is clearly continuous and since u is a convex
sum of elements of � , one can easily verify that u 2 � . Moreover, since each un

is dominated, if a chain is .u; c; ˛Œ0�/-calibrated then it is .un; c; ˛Œ0�/-calibrated for
every n 2 N�. As a matter of fact, if

u.xn0/ � u.xn/ D
X

k2N�

ak.uk.xn0/ � uk.xn// D .n0 � n/˛Œ0�C
n0�1X
iDn

c.xi ; xiC1/;
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then, since for each k 2 N� the inequality

uk.xn0/ � uk.xn/ 6 .n0 � n/˛Œ0�C
n0�1X
iDn

c.xi ; xiC1/;

holds and considering that
P
an D 1 and an > 0, the inequalities above must be

equalities:

8k 2 N�; uk.xn0/ � uk.xn/ D .n0 � n/˛Œ0�C
n0�1X
iDn

c.xi ; xiC1/:

Finally, since the uk are dense in � we obtain

8u0 2 � ; u0.xn0/ � u0.xn/ D .n0 � n/˛Œ0�C
n0�1X
iDn

c.xi ; xiC1/:

Hence such a calibrated chain is calibrated by every element of � . In particular, for
every u0 2 � , we have QA u � QA u0 therefore QA u � QA . The reverse inclusion follows
from the definition of QA . Similarly, projecting on X , we get that Au D A. �

As an immediate consequence we get the following:

Corollary 1.10. The following equality holds:

A D p. QA /;

where p denotes the canonical projection from XZ to X .

The following lemma is useful:

Lemma 1.11. If u � c C ˛Œ0� and x 2 X then x 2 Au implies

8p 2 N; .T �
c /

pu.x/C p˛Œ0� D u.x/ D .TC
c /

pu.x/ � p˛Œ0�:
Moreover, if u is continuous then the converse is true, that is, if

8p 2 N; .T �
c /

pu.x/C p˛Œ0� D u.x/ D .TC
c /

pu.x/ � p˛Œ0�;
then x 2 Au.

Proof. If .xn/n2Z 2 XZ is calibrating for u then for every positive integer p,

u.x0/ � u.x�p/ D p˛Œ0�C
�1X

iD�p

c.xi ; xiC1/;
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u.xp/ � u.x0/ D p˛Œ0�C
p�1X
iD0

c.xi ; xiC1/:

Therefore, the domination hypothesis gives us that

8p 2 N�; .T �
c /

pu.x0/C p˛Œ0� D u.x0/;

and
8p 2 N�; .TC

c /
pu.x0/ � p˛Œ0� D u.x0/:

Conversely, let us assume that for every p 2 N,

.T �
c /

pu.x/C p˛Œ0� D u.x/ D .TC
c /

pu.x/ � p˛Œ0�:
Then by successive applications of point (iv) of Proposition A.10 we can find chains
.x

p�p; : : : ; x
p
�1; x

p
0 D x; x

p
1 ; : : : ; x

p
p / such that

8p 2 N; .T �
c /

pu.x/ D u.xp�p/C
�1X

iD�p

c.x
p
i ; x

p
iC1/;

and

8p 2 N; .TC
c /

pu.x/ D u.xp
p / �

p�1X
iD0

c.x
p
i ; x

p
iC1/:

Using the assumption we made, we obtain that

8p 2 N; u.x/ � u.xp�p/ D
�1X

iD�p

c.x
p
i ; x

p
iC1/C p˛Œ0�;

and

8p 2 N; u.xp
p / � u.x/ D

p�1X
iD0

c.x
p
i ; x

p
iC1/C p˛Œ0�:

Summing these two last equalities we get

8p 2 N; u.xp
p / � u.xp�p/ D

p�1X
iD�p

c.x
p
i ; x

p
iC1/C 2p˛Œ0�;

which proves that the chains .xp�p; : : : ; x
p
�1; x

p
0 D x; x

p
1 ; : : : ; x

p
p / are calibrating

for u.
ByA.11, for every integern 2 Z, the sequence .xp

n /; p > jnj is bounded hence, by
a diagonal extraction (pl ! C1 as l ! C1) we can assume each .xpl

n /; pl > jnj



Vol. 87 (2012) Strict sub-solutions and Mañé potential in discrete weak KAM theory 9

converges to a xn 2 X . Let us now fix two integers m and n such that m 6 n. If
pl > jmj; jnj we have

u.xpl
n / � u.xpl

m / D
n�1X
iDm

c.x
pl

i ; x
pl

iC1/C .n �m/˛Œ0�;

letting pl go to C1, using the continuity of u, the following holds:

u.xn/ � u.xm/ D
n�1X
iDm

c.xi ; xiC1/C .n �m/˛Œ0�:

Since m and n were taken arbitrarily, this proves that the sequence .xk/k2Z is cali-
brating for u and therefore is the bi-infinite chain that we are looking for. �

Let us define yet another Aubry set:

Definition 1.12. Let S from XZ to XZ be the shift operator. We define

OAu D f.x; y/ 2 X2; 9 z 2 QA u; x D p.z/ and y D p B S.z/g;
and

OA D f.x; y/ 2 X2; 9 z 2 QA ; x D p.z/ and y D p B S.z/g:

We are now ready to prove the following theorem, which in particular is stronger
than Theorem 0.1. The proof is inspired from the unpublished manuscript [FS03].

Theorem 1.13. For every sub-solution u there is a continuous sub-solution u0 which
is strict at every .x; y/ 2 X2 � OAu and such that u D u0 on Au. There is a continuous
sub-solution which is strict at every .x; y/ 2 X2 � OA.

Proof. Replacing u by T �
c u (which does not change the Aubry set by 1.8) we can

assume that u is continuous. Consider the function

u0 D
X
n2N

an.T
�
c /

nuC
X

n2N�

bn.T
C
c /

nu;

where thean and the bn are chosen as in the proof of Lemma 1.9, positive, such that the
sums above are convergent for the compact open topology and

P
anCP

bn D 1. For
the same reasons as in the proof of 1.9, u0 is a continuous and critically dominated
function. Let .x; y/ 2 X2 verify u0.x/ � u0.y/ D c.y; x/ C ˛Œ0�. This equality
implies the following ones (cf. the proof of 1.9) for all integers n:

.T �
c /

n.u/.x/ � .T �
c /

nu.y/ D c.y; x/C ˛Œ0�;

.TC
c /

n.u/.x/ � .TC
c /

nu.y/ D c.y; x/C ˛Œ0�:
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By domination of u, we therefore have for every n,

.T �
c /

.nC1/u.x/C ˛Œ0� D .T �
c /

nu.y/C c.y; x/C ˛Œ0�

D .T �
c /

nu.x/
(2)

and

.TC
c /

.nC1/u.y/ � ˛Œ0� D .TC
c /

nu.x/ � c.y; x/ � ˛Œ0�
D .TC

c /
nu.y/:

(3)

Using the same argument as in the previous Lemma 1.11, by successive applications
of A.10 we can find chains .xn�n; : : : ; x

n�1 D y; xn
0 D x/ such that

8n 2 N; .T �
c /

nu.x/ D u.xn�n/C
�1X

iD�n

c.xn
i ; x

n
iC1/;

and chains .xn�1 D y; xn
0 D x; : : : ; xn

n/ such that

8n 2 N; .TC
c /

nu.x/ D u.xn
n/ �

n�1X
iD0

c.xn
i ; x

n
iC1/:

Using (2) and (3), we get that

8n 2 N; u.x/ � u.xn�n/ D
�1X

iD�n

c.xn
i ; x

n
iC1/C n˛Œ0�;

and

8n 2 N; u.xn
n/ � u.x/ D

n�1X
iD0

c.xn
i ; x

n
iC1/C n˛Œ0�:

Summing these two last equalities we get

8n 2 N; u.xn
n/ � u.xn�n/ D

n�1X
iD�n

c.xn
i ; x

n
iC1/C 2n˛Œ0�;

which proves that the chains .xn�n; : : : x
n�1 D y; xn

0 D x; xn
1 ; : : : ; x

n
n/ are calibrating

for u.
ByA.11, for every integer k 2 Z, the sequence .xn

k
/; n > jkj is bounded hence, by

a diagonal extraction (nl ! C1 as l ! C1) we can assume each .xnl

k
/; nl > jkj

converges to a xk 2 X . Let us now fix two integers m and m0 such that m 6 m0. If
nl > jmj; jm0j we have

u.x
nl

m0/ � u.xnl
m / D

m0�1X
iDm

c.x
nl

i ; x
nl

iC1/C .m0 �m/˛Œ0�;
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letting n go to C1, using the continuity of u, the following holds:

u.xm0/ � u.xm/ D
m0�1X
iDm

c.xi ; xiC1/C .m0 �m/˛Œ0�:

Since m and m0 were taken arbitrarily, this proves that the sequence .xk/k2Z is
calibrating for u and therefore that .x; y/ 2 OAu. Therefore, u0 is a sub-solution strict
at X2 � OAu. Moreover, by 1.11 and since

P
an C P

bn D 1, u and u0 coincide on
A which finishes to prove the first part of the theorem.

To prove the second part, pick u such that Au D A which is possible according
to 1.9. The function u0 is strict outside of OA. �

2. Towards a discrete analogue of Mañé’s potential

In the study of globally minimizing curves in Lagrangian dynamics, two functions
appear naturally. The first one is used to study infinite orbits of the Euler–Lagrange
flow and is Mather’s Peierls’ barrier which was introduced in the Lagrangian setting
in [Mat93]. This barrier was studied in the discrete case in [BB07]. The other
function is Mañé’s potential and was introduced in [Mañ97]. As it is proved in
[FS04], Mañé’s potential gives nice characterizations of the projected Aubry set in
terms of differentiability and weak KAM solutions (see Theorems 4.3 and 5.3 in
[FS04]). However, in the discrete setting, this notion seems less natural.

In this section, we propose two versions of Mañé’s potential. It appears that
they are closely related. Moreover, by analogy with Fathi and Siconolfi’s results, we
characterize the Aubry set in terms of continuity of the potential. In order to stay
consistent with the rest of the text, we will only consider the critical case. However,
all the results of this section hold in the super-critical case (that is, to consider the cost
c C ˛, ˛ > ˛Œ0�). Moreover, in this section, let us stress the fact that X and c only
need to satisfy the hypothesis of the beginning of the article being thatX is aB-length
space at scale K for some constants B and K (see A.1 for the exact definition) with
compact closed balls and c is continuous, super-linear and uniformly bounded (see
conditions (1) and (2) in the introduction).

The following construction is inspired from Perron’s method to construct viscosity
solutions in PDE. It is also reminiscent of ideas of Gabriel Paternain and results
obtained in [FS04].

Definition 2.1. We define the potential

'.x; y/ D sup
u�cC˛Œ0�

u.y/ � u.x/;

where the supremum is taken over all critical sub-solutions (not necessarily continu-
ous).
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We begin with some properties.

Proposition 2.2. The potential satisfies the following properties:

(1) For all .x; y/ 2 X2 we have '.x; y/ 6 c.x; y/ C ˛Œ0�. In particular, the
potential is everywhere finite.

(2) For all x 2 X , the potential verifies '.x; x/ D 0.

(3) A function u is critically dominated if and only if for all .x; y/ in X2 we have
u.y/ � u.x/ 6 '.x; y/.

(4) The function ' verifies the triangular inequality, that is, for all x; y; z in X we
have '.x; y/C '.y; z/ > '.x; z/.

In particular, this proves points (1) and (2) of Theorem 0.2.

Proof. Items (1) and (2) are clear. The third one comes from the fact that for any
dominated function u we clearly have that

8.x; y/ 2 X2; u.y/ � u.x/ 6 '.x; y/:

For the reverse implication, since by the first point of the proposition we have
'.x; y/ 6 c.x; y/C ˛Œ0�, any function which satisfies

8.x; y/ 2 X2; u.y/ � u.x/ 6 '.x; y/;

is necessarily critically dominated. The fourth point is clear from the definition. �

Before going any further, let us state two simple lemmas that we will use through-
out this section. The first one helps to understand how to construct sub-solutions.

Lemma 2.3. Let u � c C ˛Œ0� and let v be a function that verifies the following
inequalities:

u 6 v 6 T �
c uC ˛Œ0�:

Then v itself is a critical sub-solution: v � c C ˛Œ0�.

Proof. The proof is merely based on the monotony of the Lax–Oleinik semi-group,

u 6 v 6 T �
c uC ˛Œ0� 6 T �

c v C ˛Œ0�;

which proves that v is itself critically dominated. �

Lemma 2.4. Let u be any critical sub-solution and let x 2 Au. Then u is continuous
at x.
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Proof. The following inequalities are true

TC
c u � ˛Œ0� 6 u 6 T �

c uC ˛Œ0�

and are equalities at x. Therefore, the conclusion is a direct consequence of the fact
that both T �

c uC ˛Œ0� and TC
c u � ˛Œ0� are continuous (cf. A.10). �

The reason why we are interested in this potential is that it generates the greatest
possible sub-solutions.

Proposition 2.5. The potential verifies the following properties.

(1) For all x 2 X , the function 'x D '.x; :/ is a critical sub-solution.

(2) Let x 2 X . Then for any y ¤ x we have

'x.y/ D T �
c 'x.y/C ˛Œ0�:

Therefore, the function 'x is lower semi-continuous, and continuous onX nfxg.
(3) A point x 2 X is in the projected Aubry set if and only if the function 'x is a

weak KAM solution.

(4) If the point x 2 X is not isolated, the function 'x is continuous at x if and only
if x 2 A.

In particular, this ends the proof of Theorem 0.2.

Proof. The first part is a direct consequence of part 4 and part 3 of the previous
proposition (2.2).

Let us consider the function  x defined as follows:
�  x.x/ D 'x.x/ D 0,
�  x.y/ D T �

c 'x.y/C ˛Œ0� if y ¤ x.

The function x is lower semi-continuous. As a matter of fact, it is continuous outside
of x and at x it verifies

lim inf
y!x

 x.y/ D lim inf
y!x

T �
c 'x.y/C ˛Œ0� > lim inf

y!x
'x.y/ > 0 D  x.x/;

where the last inequality follows from the existence of a continuous critical sub-
solution u which implies

lim inf
y!x

'x.y/ > lim inf
y!x

u.y/ � u.x/ D 0:

Note that 'x 6  x 6 T �
c 'x C ˛Œ0� therefore using the “in between” lemma (2.3),

we obtain at once that the function  x is critically dominated and greater or equal to
'x by definition. Since by definition of ' we also have

8y 2 X; 'x.y/ >  x.y/ �  x.x/ D  x.y/;
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we obtain in fact that 'x D  x . In particular, 'x D T �
c 'x C ˛Œ0� on X n fxg. This

finishes the proof of point (2).
To prove (3), note that if x 2 A, then for any sub-solutionu, the following equality

holds by 1.11:
T �

c u.x/C ˛Œ0� D u.x/:

In particular, 'x.x/ D T �
c 'x.x/C ˛Œ0�, and by the previous point, those functions

also coincide on X n fxg.
To prove the converse, assume x … A and pick a sub-solution u which is strict

at x (such a function exists by 1.13). Without loss of generality, we can assume that
u.x/ D 0. In particular, the following holds

T �
c u.x/C ˛Œ0� > u.x/ D 0:

We already know that
8y 2 X; u.y/ 6 'x.y/:

By the monotony of the Lax–Oleinik semi-group, we obtain that

8y 2 X; T �
c u.y/C ˛Œ0� 6 T �

c 'x.y/C ˛Œ0�:

Taking y D x, we obtain that

'x.x/ D 0 < T �
c u.x/C ˛Œ0� 6 T �

c 'x.y/C ˛Œ0�:

Finally, let us assume x 2 X is not isolated. We prove that 'x is continuous at x
if and only if x 2 A. Assume first that x … A. Pick u � cC˛Œ0� such that u is strict
at x and that u is continuous and vanishes at x. We can find an open neighborhood
V of x and an " > 0 such that on V , u C " 6 T �

c u C ˛Œ0� and juj 6 "
2

. Now the
function v D uC"�V nfxg verifies v.x/ D 0. Again it is dominated by 2.3. Therefore
we have that if y 2 V n fxg (which is not empty because x is not isolated),

'x.y/ > v.y/ D u.y/C " > "

2
;

which proves that 'x is not continuous at x. The other implication is clear since we
know that any sub-solution is continuous at x as soon as x 2 A. �

Part 2 of Proposition 2.5 shows that when x … A, the function 'x has a lower
jump at x. Here is a property of this “jump”. It is a direct consequence of the previous
proposition:

Lemma2.6. Foranyx 2 X , the quantityF.x/ D supu�cC˛Œ0� T
�
c u.x/C˛Œ0��u.x/,

where this supremum is taken on the set of all sub-solutions, exists and is equal to
T �

c 'x.x/C ˛Œ0�.
Moreover, for any non-isolated point x, the function F verifies

F.x/ D lim
y!x
y¤x

'x.y/:
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Proof. For the first equality, let u be any critically dominated function and let x 2 X .
We already know that

8y 2 X; u.y/ � u.x/ 6 'x.y/:

By the monotony of the Lax–Oleinik semi-group, we obtain that

8y 2 X; T �
c u.y/ � u.x/C ˛Œ0� 6 T �

c 'x.y/C ˛Œ0�:

Taking y D x, we obtain that

T �
c u.x/C ˛Œ0� � u.x/ 6 T �

c 'x.x/C ˛Œ0�:

Therefore, the supremum in the definition of F.x/ is reached by the sub-solution 'x ,

F.x/ D T �
c 'x.x/C ˛Œ0� � 'x.x/;

since 'x.x/ D 0.
Now, the continuity of the function T �

c 'x C ˛Œ0� at x together with the equality
'x D T �

c 'x C ˛Œ0� on X n fxg imply the second equality. �

Let us now “reverse time” and look what happens when we consider the reversed
Lax–Oleinik semi-group:

TC
c u.x/ D sup

y2X

u.y/ � c.x; y/:

This semi-group may also be interpreted as a negative Lax–Oleinik semi-group for
the symmetric cost Nc.x; y/ D c.y; x/ by the following relation:

TC
c u D �T �Nc .�u/:

Let us stress the fact that the critical value is unchanged when considering the
positive semi-group TC

c . As a matter of fact, the critical value is the smallest ˛ such
that there exists u � c C ˛. But u � c C ˛ if and only if �u � Nc C ˛. Hence the
critical values are the same.

Therefore, the same properties, with the same proofs, hold. Let us simply state
the results.

Lemma 2.7. Let u � c C ˛Œ0� and let v be a function that verifies the following
inequalities:

u > v > TC
c u � ˛Œ0�:

Then v itself is a sub-solution: v � c C ˛Œ0�.
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Proposition 2.8. The function ' verifies the following properties:

(1) For all x 2 X , the function 'x D �'.:; x/ is a critical sub-solution.

(2) Let x 2 X , then for any y ¤ x the function 'x verifies

'x.y/ D TC
c '

x.y/ � ˛Œ0�:
Therefore, it is upper semi-continuous, and continuous on X n fxg.

(3) A point x 2 X is in the projected Aubry set if and only if the function 'x is a
positive weak KAM solution.

(4) If x is not isolated, the function 'x is continuous at x if and only if x 2 A.

Lemma 2.9. For any x 2 X , the quantity f .x/ D infu�cC˛Œ0� T
C
c u.x/�˛Œ0��u.x/

exists and is equal to TC
c '

x.x/ � ˛Œ0�.
Moreover, whenever x is not isolated, the function f verifies

8x 2 X; f .x/ D lim
y!x
y¤x

'x.y/:

Until now, we mostly considered general sub-solutions. However, it is much easier
to deal with semi-continuous or even continuous functions. We have already noticed
that the functions 'x are lower semi-continuous and therefore that in the definition of
' we can restrict the supremum to lower semi-continuous functions. The following
theorem strengthens the result.

Theorem 2.10. Let x 2 X . The function 'x is a simple limit of continuous critical
sub-solutions. Moreover, the limit may be chosen to be uniform outside of any given
neighborhood of x.

Proof. If x 2 A, the function 'x is a weak KAM solution and is therefore continuous.
If x … A, then T �

c 'x.x/C˛Œ0� > 0. Let " 2�0; 1Œ be such that " < T �
c 'x.x/C˛Œ0�.

We will see in the appendix (A.10 and A.11) that any sub-solution has a growth that is
at most linear (and which can be bounded independently from the sub-solution) while
c is super-linear. Therefore, we can find a real number 1 < R such that whenever
y 2 B.x; 1/ and d.x; z/ > R then for any critical sub-solution u,

u.y/ � u.z/ < c.z; y/C ˛Œ0� � 2.T �
c 'x.x/C ˛Œ0�/ (4)

and
u.z/ � u.y/ < c.y; z/C ˛Œ0� � 2.T �

c 'x.x/C ˛Œ0�/: (5)

Using the continuity of c and the compactness of the ball B.x;R/, we can find a
neighborhood V � B.x; 1/ of x verifying:

� if y; z; t; u 2 V then jc.y; z/ � c.t; u/j < "
2

,
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� if z 2 B.x;R/ and y; t 2 V then

jc.z; y/ � c.z; t/j < "
and

jc.y; z/ � c.t; z/j < ":
Cutting down V , by continuity of T �

c 'x we can assume

� if y 2 V n fxg then 'x.y/ D T �
c 'x.y/C ˛Œ0� > ",

� if y; t 2 V then jT �
c 'x.y/ � T �

c 'x.t/j < "
2

.

Note that from the last condition it follows that for .y; t/ 2 V n fxg we have

j'x.y/ � 'x.t/j D jT �
c 'x.y/ � T �

c 'x.t/j < "

2
:

Let us now consider the function '" defined as follows. Let � W X ! Œ0; 1� be an
Urysohn function equal to 1 on X n V which vanishes at x, and define

8z 2 X; '".z/ D �.z/.T �
c 'x.z/ � "/ D �.z/.'x.z/ � "/:

The function '" verifies the following properties:

� on X n V , '".y/ D 'x.y/ � ",
� on V , '" is non-negative, vanishes at x and verifies

8y 2 V n fxg; '".y/ 6 'x.y/ � ":

Now let us check that the function'" is critically dominated. It is enough to separately
consider several cases. If both y; z … V , then

'".y/ � '".z/ D 'x.y/ � 'x.z/ 6 c.z; y/C ˛Œ0�:

If y 2 V and z … V , we distinguish between cases. First, let us notice that if
z … B.x;R/ then, since '" is non-negative on V , taking into consideration the fact
that

T �
c 'x.x/ � 'x.y/C ˛Œ0�C "

2
> 0;

which is clear for y D x, since T �
c 'x.x/ C ˛Œ0� > 'x.x/ D 0, and for y ¤ x,

follows from

jT �
c 'x.x/ � T �

c 'x.y/j < "

2
and 'x.y/ D T �

c 'x.y/C ˛Œ0�;

and the fact (using (5)) that

'x.z/ � 'x.y/ 6 c.y; z/C ˛Œ0� � 2.T �
c 'x.x/C ˛Œ0�/;
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we obtain that

'".z/ � '".y/ 6 'x.z/ � "
6 'x.z/ � " � 'x.y/C T �

c 'x.x/C ˛Œ0�C "

2

6 c.y; z/C ˛Œ0� � 2.T �
c 'x.x/C ˛Œ0�/C T �

c 'x.x/C ˛Œ0� � "

2

< c.y; z/C ˛Œ0�;

because T �
c 'x.x/C ˛Œ0� > 'x.x/ D 0.

If z 2 B.x;R/ then using 'x.x/ D 0 and '".y/ > 0, we obtain

'".z/ � '".y/ 6 'x.z/ � " � 'x.x/ 6 c.x; z/C ˛Œ0� � " 6 c.y; z/C ˛Œ0�:

In both cases, the following inequalities hold

'".y/ � '".z/ 6 'x.y/ � " � .'x.z/ � "/ D 'x.y/ � 'x.z/ 6 c.z; y/C ˛Œ0�:

Finally, if y; z 2 V then since 'x.x/ D 0 and '".z/ > 0,

'".y/ � '".z/ 6 'x.y/ � 'x.x/ � " 6 c.x; y/C ˛Œ0� � " 6 c.z; y/C ˛Œ0�: �

We now propose another version of a discrete Mañé potential. We will show that
it is very much related to '. We begin with a definition

Definition 2.11. Let us define the family of functions, for all n 2 N�; .x; y/ 2 X2,

cn.x; y/ D inf
.x1;:::;xn�1/2Xn�1

fc.x; x1/C c.x1; x2/C � � � C c.xn�1; y/g:

Proposition 2.12. For any n > 0, the function cn is continuous.

Proof. Let n be a positive integer and let us consider a pair of points .x0; y0/ 2 X2.
First, let us notice that for all .x; y/ 2 K D B.x0; 1/ � B.y0; 1/, using the uniform
boundedness of c (condition 2), the following inequality holds:

cn.x; y/ 6 .n � 1/c.x; x/C c.x; y/ 6 nA.d.x0; y0/C 2/: (6)

Furthermore, using the super-linearity of c (condition 1), for any chain of points
.x1; : : : ; xn�1/ 2 Xn�1, we have, setting x0 D x and xn D y:

n�1X
iD0

c.xi ; xiC1/ > �nC.1/C
n�1X
iD0

d.xi ; xiC1/: (7)
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Finally, if the chain verifies that
Pn�1

iD0 c.xi ; xiC1/ 6 cn.x; y/C1, using (6) and (7),
we obtain that

n�1X
iD0

d.xi ; xiC1/ 6 cn.x; y/C nC.1/C 1 6 n.A.d.x0; y0/C 2/C C.1//C 1 D R:

In particular,

8i 2 Œ0; n�; d.x0; xi / 6
i�1X
j D0

d.xj ; xj C1/ 6
n�1X
j D0

d.xj ; xj C1/ 6 R:

We have just proven that restricted to K, in the definition of cn we can take the
infimum on chains of points which belong toB.x;R/n�1, which is relatively compact.
Therefore, by Heine’s theorem, the restriction of cn to K is a finite infimum of equi-
continuous functions and is therefore itself continuous. �

Remark 2.13. In the case where X is compact, one can show that the family of
functions .cn/n2N� is uniformly equi-continuous, however, in the non-compact case,
it is not clear whether this fact remains true.

Let us now introduce another family of functions:

Definition 2.14. For any n 2 N� and .x; y/ 2 X2 let

'n.x; y/ D inf
k>n

ck.x; y/C k˛Œ0�:

This quantity is always greater or equal to '.x; y/ by the triangular inequality.
Moreover, the functions 'n are clearly increasing with n.

Proposition 2.15. For any n 2 N�, the function 'n is upper semi-continuous.
Moreover, for any x, the function 'n;x D 'n.x; :/ is critically dominated. Finally,
T �

c 'n;x C ˛Œ0� D 'nC1;x .

Proof. The upper semi-continuity comes from the fact that 'n is an infimum of
continuous functions. The domination of 'n;x is consequence of the definitions. In
fact, let y; z be in X , then

'n;x.y/C c.y; z/C ˛Œ0� D inf
k>n

ck.x; y/C k˛Œ0�C c.y; z/C ˛Œ0�

> inf
k>nC1

ck.x; z/C k˛Œ0�

D 'nC1;x.z/

> 'n;x.z/:
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To prove the last point, just write that

T �
c 'n;x.z/C ˛Œ0� D inf

y
'n;x.y/C c.y; z/C ˛Œ0�

D inf
y2X

inf
k>n

ck.x; y/C k˛Œ0�C c.y; z/C ˛Œ0�

D 'nC1;x.z/: �

We now link both versions of the potential:

Proposition 2.16. On X2 n�X , ' D '1. Moreover, for any x 2 X ,

'1.x; x/ > '.x; x/ D 0:

Proof. By definition of '1;x , if u � c C ˛Œ0�,

8y 2 X; u.y/ � u.x/ 6 '1;x.y/;

therefore, 'x 6 '1;x .
We then notice that TC

c '1;x.x/ � ˛Œ0� 6 0. As a matter of fact, for any x1 2 X
we have

'1;x.x1/ � c.x; x1/ � ˛Œ0� 6 0;

by definition of the function '1. Taking the supremum on x1, we get the result.
Let us define the function  by

�  .y/ D '1;x.y/ if y ¤ x,

�  .x/ D 0.

Since '1;x >  > TC
c '1;x �˛Œ0� the “in-between” Lemma 2.7 gives that the function

 is a critical sub-solution. But  vanishes at x and is greater than 'x , therefore
 D 'x . �

As a corollary of the previous proof we also obtain the following:

Corollary 2.17. The following equality holds:

8x 2 X; TC
c '1;x.x/ � ˛Œ0� D 0:

Proof. Let us fix an x 2 X . We just saw that TC
c '1;x.x/ � ˛Œ0� 6 0. Assume now

by contradiction that we can find an " > 0 such that

TC
c '1;x.x/ � ˛Œ0� 6 �" < 0 D 'x.x/ 6 '1;x.x/:

By analogy with the previous proof, let us define the function  by

�  .y/ D '1;x.y/ if y ¤ x,
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�  .x/ D �".
Since'1;x >  > TC

c '1;x �˛Œ0� the “in between” lemma (2.7) gives that the function
 is a critical sub-solution. But if y ¤ x then  .y/ �  .x/ > 'x.y/ which is in
contradiction with the definition of '. �

In the following, we will use this lemma:

Lemma 2.18. Let u W X ! R be a function and n 2 N, then

.T �
c /

n.TC
c /

nu > u and .TC
c /

n.T �
c /

nu 6 u:

Moreover, if u is a negative (resp. positive) weak KAM solution then

.T �
c /

n.TC
c /

nu D u .resp. .TC
c /

n.T �
c /

nu D u/:

Finally, the operators T �
c B TC

c and T �
c B TC

c are idempotent.

Proof. By symmetry, we will only prove one half of the lemma. By definition, for a
given x 2 X we have

T �
c T

C
c u.x/ D inf

z
sup

y
u.y/ � c.z; y/C c.z; x/;

and this quantity is greater than u.x/ (take y D x). Now the first part of the propo-
sition is obtained by induction or by applying the argument to cn instead of c.

If u is a negative weak KAM solution, we have that u > TC
c u � ˛Œ0� (this is

always true for a dominated function) and therefore

u D T �
c uC ˛Œ0� > T �

c T
C
c u:

Hence we have in fact an equality. Once again, the general result follows by induction
or by using cn instead of c.

Finally, we have already seen that .T �
c B TC

c /
2 > T �

c B TC
c . For the reversed

inequality, note that since similarly, TC
c B T �

c 6 Id,

T �
c B .TC

c B T �
c / B TC

c 6 T �
c B TC

c : �

Proposition 2.19. Let x 2 X be any point, then the following inequality holds:
'1;x.x/ 6 T �

c 'x.x/C˛Œ0�. In particular, the function '1;x is continuous. Moreover,
if the point x is not isolated, we have in fact an equality: '1;x.x/ D T �

c 'x.x/C˛Œ0�.

Proof. We have already seen (2.17) that TC
c '1;x.x/ � ˛Œ0� D 0. Therefore, the

following inequality is true:

TC
c '1;x � ˛Œ0� 6 'x :
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As a matter of fact, it is true at x, and at other points y, it is a consequence of the
equality '1;x.y/ D 'x.y/ (2.16) and of the fact that since '1;x is a critical sub-
solution, we have TC

c '1;x � ˛Œ0� 6 '1;x . By the monotony of the Lax–Oleinik
semi-group, the following holds

T �
c T

C
c '1;x 6 T �

c 'x C ˛Œ0�;

which by 2.18 gives us

'1;x 6 T �
c T

C
c '1;x 6 T �

c 'x C ˛Œ0�:

By 2.5 and 2.16 these inequalities are in fact equalities, except possibly at x. Since
by (A.10) the function T �

c 'x C ˛Œ0� is continuous it is clear that '1;x is lower semi-
continuous and therefore continuous by 2.15.

Finally, the equality '1;x.x/ D T �
c 'x.x/C ˛Œ0� whenever x is not isolated is a

straight consequence of the continuity of the functions '1;x and T �
c 'x C ˛Œ0� and of

the fact that they coincide on X n fxg. �

Actually, the last equality of the previous proposition (2.19) holds even when x is
isolated, as shown below:

Proposition 2.20. For any x 2 X , the following holds:

8y 2 X; '1;x.y/ D T �
c 'x.y/C ˛Œ0�:

Proof. We have already proven the result when y ¤ x and we proved above (2.19)
that

'1;x.x/ 6 T �
c 'x.x/C ˛Œ0�:

Let us prove the reverse inequality. By definition and monotony of the Lax–Oleinik
semi-group, since '1;x > 'x the following holds:

8x 2 X; T �
c 'x.x/C ˛Œ0� D inf

y2X
'x.y/C c.y; x/C ˛Œ0�

6 inf
y2X

'1;x.y/C c.y; x/C ˛Œ0�

D T �
c '1;x.x/C ˛Œ0� D '2;x.x/;

where we used the last part of 2.15 for the last equality. Taking y D x in the infimum
of the Lax–Oleinik we also have

T �
c 'x.x/C ˛Œ0� 6 c.x; x/C ˛Œ0�:

Since '1;x.x/ D min.c.x; x/C ˛Œ0�; '2;x.x//, this finishes the proof of the propo-
sition. �
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Obviously, similar results hold when considering the positive time Lax–Oleinik
semi-group TC

c therefore, we obtain the following:

Proposition 2.21. For any n 2 N�, and any x, the function 'n;x D �'n.:; x/ is
critically dominated. Finally, TC

c '
n;x � ˛Œ0� D 'nC1;x .

Lemma 2.22. The following equality holds:

8x 2 X; T �
c '

1;x.x/C ˛Œ0� D 0:

Proposition 2.23. Let x 2 X be any point, then the following equality holds:

'1;x.x/ D TC
c '

x.x/ � ˛Œ0�:
In particular, the function '1;x is continuous.

We are now able to prove the following theorem:

Theorem 2.24. The family of functions 'n; n 2 N is locally equi-continuous on X2.
In particular, '1 is a continuous extension of ' restricted to X2 n�X .

Proof. We first prove the continuity of '1. Let .x; y/ 2 X2 By A.10 we know that
images of critically dominated functions by the Lax–Oleinik semi-groups are locally
equi-continuous. Therefore, let us consider relatively compact neighborhoods V and
V 0 of respectively x and y and let! be a modulus of continuity for images of critically
dominated functions by the Lax–Oleinik semi-groups restricted to V and V 0. Let now
.x0; y0/ 2 V � V 0. Using 2.20 and 2.23 we obtain

j'1.x; y/ � '1.x
0; y0/j 6 j'1.x; y/ � '1.x; y

0/j C j'1.x; y
0/ � '1.x

0; y0/j
6 jT �

c 'x.y/ � T �
c 'x.y

0/j C jTC
c '

y0

.x/ � TC
c 'y

0.x0/j
6 !.d.y; y0//C !.d.x; x0//:

This proves the continuity of '1. Similarly, if n > 2 we have

j'n.x; y/ � 'n.x
0; y0/j 6 j'n.x; y/ � 'n.x; y

0/j C j'n.x; y
0/ � 'n.x

0; y0/j
6 jT �

c 'n�1;x.y/ � T �
c 'n�1;x.y

0/j
C jTC

c '
n�1;y0

.x/ � TC
c '

n�1;y0

.x0/j
6 !.d.y; y0//C !.d.x; x0//:

This proves the local equi-continuity. �

Remark 2.25. It is clear that whenever a point x 2 X is not isolated, the continuous
extension of the potential ' is unique at .x; x/.
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In what follows, we will need this definition:

Definition 2.26. Let us define the Peierls barrier

h.x; y/ D lim inf
n!C1 cn.x; y/C n˛Œ0� D lim

n!C1'n.x; y/:

Lemma 2.27. The following inequality is verified: ' 6 h.

Proof. This point comes from the fact that by definition,

h.x; y/ D lim inf
n!C1 cn.x; y/C n˛Œ0�

while by the triangular inequality we have

'.x; y/ 6 inf
n!C1 cn.x; y/C n˛Œ0�: �

In Mather’s original work ([Mat91]) , the projected Aubry set is not defined the
way we did, however, we will now prove that our definition is equivalent to the one
using the Peierls barrier. Note that the Peierls barrier h takes its values in R [ fC1g
and that it is continuous whenever it is finite by equi-continuity of the 'n (2.24).
Furthermore, since the functions .'n/ are critically dominated, it follows that the
family of functions .'n/n2N is equi-Lipschitz in the large (A.9). Therefore, the
Peierls barrier is either finite everywhere or C1 everywhere. First, let us give some
properties of hwhich are proved in the compact case in [BB07] and in the continuous
case in [FS04]. The proof carries on similarly in the general case with the use of
A.11:

Proposition 2.28. For each n;m 2 N, x; y; z 2 X , we have

'nCm.x; z/ 6 'n.x; y/C cm.y; z/Cm˛Œ0�;

h.x; z/ 6 h.x; y/C cm.y; z/Cm˛Œ0�;

h.x; z/ 6 cm.x; y/C h.y; z/Cm˛Œ0�:

This gives another proof that the function h is either everywhere finite or identically
C1. Moreover, when h is finite, by 2.24, it is continuous.

For each l; m; n 2 N such that n 6 l Cm, for each x; y; z 2 X we have

'n.x; z/ 6 'm.x; y/C 'l.y; z/;

h.x; z/ 6 h.x; y/C 'n.y; z/;

h.x; z/ 6 h.x; y/C h.y; z/:
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Theorem 2.29. If x 2 X , and the Peierls barrier is finite, let us define the functions
hx D h.x; :/ and hx D �h.:; x/. Then hx , hx are respectively a positive and a
negative weak KAM solution.

Proof. We only prove the theorem for the functions hx , the rest is similar. Recall
that hx is the limit of the 'n;x and is therefore critically dominated. Moreover, by
Dini’s theorem, since the sequence of functions 'n;x is increasing, its convergence is
uniform on compact subsets. Therefore, by the continuity property of T �

c (A.10) the
following holds

T �
c hx C ˛Œ0� D T �

c

�
lim

n!C1'n;x C ˛Œ0�
�

D lim
n!C1T �

c 'n;x C ˛Œ0�

D lim
n!C1'nC1;x C ˛Œ0�

D hx : �

Corollary 2.30. For each n 2 N, x; y 2 X we have

h.x; y/ D min
z2X

h.x; z/C cn.z; y/C n˛Œ0� D min
z2X

cn.x; z/C n˛Œ0�C h.z; y/:

Proof. It is a straight consequence of 2.29 and of point (iv) of A.10. �

We will now prove a characterization of the Aubry set:

Theorem 2.31. The projected Aubry set A coincides with the set

A D fx; h.x; x/ D 0g:

Before proving 2.31, we need some results about what happens when h is finite.
They are very closely related to results in the compact case.

Theorem 2.32. Let u � c C ˛Œ0�, then for all n;m 2 N, and for every x; y 2 X we
have

8.x; y/ 2 X2; h.x; y/ > .T �
c /

nu.y/ � .TC
c /

mu.x/C .nCm/˛Œ0�:

Proof. Let n;m 2 N and let x�n; : : : ; xm verify x�n D x and xm D y. By definition
of the Lax–Oleinik semi-group, we have

.T �
c /

mu.y/ 6 u.x0/C
m�1X
iD0

c.xi ; xiC1/;
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and similarly,

.TC
c /

nu.x/ > u.x0/ �
�1X

iD�n

c.xi ; xiC1/:

Putting these two inequalities together, we find that

.T �
c /

mu.y/ � .TC
c /

nu.x/ 6
m�1X
iD�n

c.xi ; xiC1/:

Since the chain between x and y was taken arbitrarily, we obtain

.T �
c /

mu.y/ � .TC
c /

nu.x/ 6 cnCm.x; y/:

If n0 > n, since u � c C ˛Œ0� we have that

.TC
c /

nu � n˛Œ0� > .TC
c /

n0

u � n0˛Œ0�:

Therefore the following holds:

.T �
c /

mu.y/ � .TC
c /

nu.x/ 6 .T �
c /

mu.y/ � .TC
c /

n0

u.x/:

Thus,

.T �
c /

mu.y/ � .TC
c /

nu.x/C .mC n/˛Œ0� 6 cn0Cm.x; y/C .mC n0/˛Œ0�:

Finally, letting n0 go to infinity and taking the liminf, we obtain

.T �
c /

mu.y/ � .TC
c /

nu.x/C .mC n/˛Œ0� 6 lim inf
n0!C1 cn0Cm.x; y/C .mC n0/˛Œ0�

6 h.x; y/: �

An easy consequence of the previous theorem is that whenever the function h is
finite, then if u is a critically dominated function, the sequences .T �

c /
nuCn˛Œ0� and

.TC
c /

nu�n˛Œ0� are both simply bounded since they are respectively non-decreasing
and non-increasing and therefore converge to u� and uC respectively. Moreover, by
equi-continuity (A.10), the convergences are uniform on compact subsets. Therefore,
by continuity of the semi-groups for the compact open topology (see A.10), u� is a
negative weak KAM solution and uC is a positive weak KAM solution. Let us state
a well-known and useful lemma (cf. [Con01]):

Lemma 2.33. Let .u˛/˛2A be a family of critically dominated functions. Let

u D inf
˛2A

u˛:
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This function is either identically �1 or it is finite everywhere. Moreover, if u is
finite, then the following relation holds:

T �
c inf

˛2A
u˛ D inf

˛2A
T �

c u˛:

If furthermore the u˛ are weak KAM solutions and if the function u is not identically
�1, then it is a weak KAM solution.

Proof. The fact that u is either identically �1 or everywhere finite comes from the
fact that the domination hypothesis is stable by taking an infimum, therefore,

8.x; y/ 2 X; u.y/ 6 u.x/C c.x; y/C ˛Œ0�:

Assume now that u is finite. The following holds:

T �
c u.x/ D inf

y2X
u.y/C c.y; x/

D inf
y2X

inf
˛2A

u˛.y/C c.y; x/

D inf
˛2A

inf
y2X

u˛.y/C c.y; x/

D inf
˛2A

T �
c u˛.x/:

If moreover the u˛ are weak KAM solutions, the following holds:

T �
c u.x/C ˛Œ0� D inf

˛2A
inf

y2X
u˛.y/C c.y; x/C ˛Œ0�

D inf
˛2A

T �
c u˛.x/C ˛Œ0�

D inf
˛2A

u˛.x/ D u.x/: �

As a consequence, still in the case when h is finite, we have the following theorem
whose first part was already established.

Theorem 2.34. Assume h is finite. Let u � c C ˛Œ0� be a dominated function, then
the sequences .T �

c /
nuCn˛Œ0� and .TC

c /
nu�n˛Œ0� converge respectively to u� and

uC, a negative weak KAM solution and a positive weak KAM solution. Moreover,
the functions uC and u� verify the following properties:

u� D inf
w�>u

w�;

where the infimum is taken over negative weak KAM solutions;

uC D sup
wC6u

wC;

where the supremum is taken over positive weak KAM solutions.
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Proof. Let us consider the function u0 defined by

u0 D inf
w�>u

w�:

First notice that the set fw�; w� > ug such that w� is a weak KAM solution is not
empty because u� belongs to it. The previous lemma shows that u0 is a negative weak
KAM solution. Moreover, we have the following inequality:

.T �
c /

nuC n˛Œ0� 6 .T �
c /

nu0 C n˛Œ0� D u0:

Since the sequence .T �
c /

nuC n˛Œ0� converges to the weak KAM solution u� which
is smaller than or equal to u0, we have in fact u� D u0. The proof for the time positive
case is the same. �

We now give a representation formula for the function h:

Theorem 2.35. The Peierls barrier satisfies

8x; y 2 X; h.x; y/ D sup
u�cC˛Œ0�

n;m2N

.T �
c /

nu.y/ � .TC
c /

mu.x/C .nCm/˛Œ0�:

Proof. One inequality has been proved in 2.32, therefore we only have to find a
dominated function which realizes the case of equality. We have already seen (2.17)
that

TC
c '1;x.x/ � ˛Œ0� D 0: (8)

Now using the fact that the sequence of functions

.T �
c /

n'1;x C n˛Œ0� D 'nC1;x

converges to hx , we obtain that

lim
n!C1.T

�
c /

n'1;x � TC
c '1;x.x/C .nC 1/˛Œ0� D h.x; y/: (9)

This ends the proof. �

Corollary 2.36. For all positive integers m we have that

.TC
c /

m'1;x.x/ �m˛Œ0� D 0:

For all integersmwe have .TC
c /

m'x.x/�m˛Œ0� D 0. Moreover, the following hold:

lim
n!C1.T

�
c /

n'1;x.y/ � TC
c '1;x.x/C .nC 1/˛Œ0� D h.x; y/;

lim
n!C1.T

�
c /

n'x.y/ � 'x.x/C n˛Œ0� D h.x; y/:
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Proof. Using (8), and the fact that '1;x is a critical sub-solution, we get the following
generalization of (9):

8m 2 N�; lim
n!C1.T

�
c /

n'1;x.y/ � .TC
c /

m'1;x.x/C .mC n/˛Œ0� > h.x; y/:

Once again, this inequality is in fact an equality (by 2.32). Now using again the fact
that the sequence of functions

.T �
c /

n'1;x C n˛Œ0� D 'nC1;x

converges to hx we obtain that .TC
c /

m'1;x.x/ �m˛Œ0� D 0.
To prove the second point, notice that by 2.20 and '1;x > 'x we get that for all

m > 0 and n 2 N,

.T �
c /

n'x.y/ � .TC
c /

m'x.x/C n˛Œ0� > 'n;x.y/ � .TC
c /

m'1;x.x/:

Therefore we have

lim
n!C1.T

�
c /

n'x.y/ � .TC
c /

m'x.x/C .mC n/˛Œ0� > h.x; y/:

By 2.32, these inequalities are in fact equalities which implies that for all integers m
we have .TC

c /
m'x.x/ �m˛Œ0� D 0. �

We are now able to give the proof of 2.31:

Proof of 2.31. We know that if u is a critically dominated function and .xn/n2Z is a
calibrated sequence for u, then for all n 2 N, we have (1.11)

.T �
c /

nu.x0/C n˛Œ0� D .TC
c /

nu.x0/ � n˛Œ0� D u.x0/:

Therefore if h is identically C1, then there are no calibrated bi-infinite chains for
the critically dominated function '1;x where x is any point of X (the sequence
.T �

c /
n'1;x.x0/Cn˛Œ0� goes to C1 and therefore may not be constant) which proves

that in this case, QA D ¿ and at the same time that A D ¿.
When h is finite, by 2.35 and 1.11, h.x; x/ D 0 if and only if for any critically

dominated function u, the sequences

.T �
c /

nu.x/C n˛Œ0� and .TC
c /

mu.x/ �m˛Œ0�
are constantly equal tou.x/. Assume now thatu is the function given by 1.9. Applying
1.11 we obtain that x 2 Au D A. �

Let us now point out a phenomenon that is of some resemblance with paired weak
KAM solutions in the compact case ([Fat05]).
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Proposition 2.37. Assume that h is finite. Let u be a critically dominated function.
Let u� be the limit of the sequence of functions .T �

c /
nuCn˛Œ0� (it is a negative weak

KAM solution). Let u�C be the limit of the sequence of functions .TC
c /

nu� � n˛Œ0�
which is a positive weak KAM solution. Then, again let u�C� be the limit of the
.T �

c /
nu�C C n˛Œ0� and u�C�C be the limit of the .TC

c /
nu�C� � n˛Œ0�.

Then u�C D u�C�C.

Proof. We have seen that

u� D inf
w�>u

w�

u�C D sup
wC6u�

wC

u�C� D inf
w�>u�C

w�

u�C�C D sup
wC6u�C�

wC;

wherew� andwC always denote negative and positive weak KAM solutions, respec-
tively. Obviously, since u�C 6 u�C�, by the above formula u�C 6 u�C�C. We
also have u� > u�C�. Therefore, by monotony of the Lax–Oleinik semi-group we
obtain u�C > u�C�C which gives the desired equality. �

Remark 2.38. In other words, the operation which sends a sub-solution u to the weak
KAM solution u�C is idempotent. This is comparable to the result we obtained in
2.18.

The assumption that the Peierls barrier is finite is rather strong in the non-compact
case. To ensure that the sequence .T �

c /
nuCn˛Œ0� (resp. .TC

c /
nu�n˛Œ0�) converges,

it is enough to suppose that there is a negative (resp. positive) weak KAM solution
that is greater (resp. smaller) than u.

We conclude by showing that the function ' may help solving the question of the
finiteness of the Peierls barrier h.

Proposition 2.39. The following statements are equivalent:

(1) the Peierls barrier is finite;

(2) there is an .x; y/ 2 X2 such that the sequence .T �
c /

n'x.y/Cn˛Œ0� is bounded;

(3) there is anx 2 X such that the sequence .T �
c /

n'xCn˛Œ0� is point-wise bounded;

(4) for every x 2 X , the sequence .T �
c /

n'x C n˛Œ0� is point-wise bounded;

(5) for all u critically dominated, the two sequences ..T �
c /

nu C n˛Œ0�/n2N and
..TC

c /
nu � n˛Œ0�/n2N converge uniformly on compact sets to respectively a

negative weak KAM solution and a positive weak KAM solution.
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Proof. It suffices to notice that by 2.20 we have '1;x D T �
c 'x C ˛Œ0� for all x 2 X .

Hence applying 2.15 we obtain

.T �
c /

n'x C n˛Œ0� D 'n�1;x :

Therefore, this sequence of functions converges uniformly on all compact sets to
hx which is either everywhere finite or everywhere C1. The last point is a direct
consequence of 2.32. �

Appendix: Existence of weak KAM solutions

The content of this section is mostly adapted from [FM07]. Let us consider a metric
space X such that its closed balls are compact and which verifies the following for
some constants K and B:

DefinitionA.1. Given constantsK 2 R,B > 1we will say the metric spaceX is aB-
length space at scaleK if for every .x; y/ 2 X2, there exist .x D x0; : : : ; xn D y/ 2
XnC1 such that for all i 6 n � 1, d.xi ; xiC1/ 6 K and,

P
06i6n�1 d.xi ; xiC1/ 6

B d.x; y/ where d denotes the distance function.

We start with a simple but fundamental lemma:

Lemma A.2. If X is a B-length space at scale K then for every .x; y/ 2 X2, there
exist .x D x0; : : : ; xn D y/ 2 XnC1 such that for all i 6 n � 1, d.xi ; xiC1/ 6 K

and,
P

06i6n�1 d.xi ; xiC1/ 6 B d.x; y/ and

n 6 2B d.x; y/

K
C 1:

Proof. Let us take a chain .x D x0; : : : ; xn D y/ verifying the hypothesis of A.1 and
such that n is minimal. Necessarily,

8i 6 n � 2; d.xi ; xiC1/C d.xiC1; xiC2/ > K;

for otherwise, the same sequence without xiC1 would itself verify the hypothesis of
A.1.

Therefore, if we call m D bn=2c then n 6 2mC 1 and mK 6 B d.x; y/. �

Examples A.3. 1. A metric compact space C is a 1-length space at scale diam.C /.
2. A length space is a 1-length space at scale K for every K > 0.
3. A graph endowed with its graph metric is a 1-length space at scale 1.
4. A grid G" D "Zn � Rn endowed with the metric induced by the inclusion in

Rn is a
p
n-length space at scale ".
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5. If a metric space .X; d/ whose closed balls are compact is a B-length space at
scale K for every K > 0, then it is Lipschitz equivalent to a length space.

6. The set P of prime numbers endowed with the distance d.p; p0/ D jp�p0j is
not a length space at any scale.

Proof. Items 1, 2, 3, 4 and 6 are clear. The proof of 5 uses standard ideas in topology
and in the study of length spaces (see for example [Gro99], Theorem 1.8). Let
.x; y/ 2 X2 be two distinct points. We want to construct a continuous curve from x

to y whose metric length is less than B d.x; y/. Applying thatX is a B-length space
at scale 1=n we find for any n > 1 a sequence of points .x D xn

0 ; : : : ; x
n
Nn

D y/ 2
XNnC1 such that for all i 6 Nn � 1 we have d.xn

i ; x
n
iC1/ 6 1=n and

X
06i6Nn�1

d.xn
i ; x

n
iC1/ 6 B d.x; y/: (10)

Moreover, it is clear that the sequence Nn goes to C1, and by A.2 we can assume
that, for n large enough, the following holds:

8n 2 N�; Nn 6 2nB d.x; y/C 1 6 3nB d.x; y/: (11)

Clearly, we also have

8n 2 N�; 8i 6 Nn; d.x; xn
i / 6 B d.x; y/: (12)

We define fn.i=Nn/ D xn
i for any integer n and i 6 Nn. For any integer n large

enough and any i; j 6 Nn, the following holds:

d.fn.i=Nn/; fn.j=Nn// 6 jj � i j
n

6 3B d.x; y/
jj � i j
Nn

: (13)

Let .qk/; k 2 N be a dense sequence in Œ0; 1�. For any k 2 N let us choose a sequence
.ak

n D ikn =Nn/, n 2 N which converges to qk , where ikn is always smaller than Nn.
Up to doing a diagonal extraction, using (12), we can assume that all the sequences
.fn.a

k
n/; n 2 N/ converge to an element xk of X . Let us define

8k 2 N; f .qk/ D xk :

By (13), we have for n large enough,

d.fn.a
k
n/; fn.a

k0

n // 6 3B d.x; y/jak
n � ak0

n j:
Therefore, letting n go to C1, we obtain

8.k; k0/ 2 N2; d.f .qk/; f .qk0// 6 3B d.x; y/jqk � qk0 j:
Since .qk/k2N is dense in Œ0; 1�, X is complete and by the previous inequalities f
is uniformly continuous (it is in fact Lipschitz), we can extend it to a continuous
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function, that we will still call f , from Œ0; 1� to X . Finally, by (10), the length of f
is smaller than B d.x; y/.

Let us now denote dl the distance on X induced by its metric length structure.
More precisely, if x, y are two points, dl.x; y/ is nothing but the infimum of the
length of a path joining x to y over all such paths (see [Gro99] (p. 2 and 3) for a
more precise definition). By the above construction, the space .X; dl/ is a length
space and the application identity from .X; dl/ to .X; d/ is B-Lipschitz. Moreover,
by definition of dl , its inverse from .X; d/ to .X; dl/ is 1-Lipschitz. �

A complete, connected Riemannian manifold is a 1-length space at scaleK for all
K > 0 so this property will clearly hold. Assume from now on that X is a B-length
space at scale K for some .B;K/.

Let c W X � X ! R be a continuous function which verifies the conditions of
uniform super-linearity (1) and uniform boundedness (2) stated in the introduction.
We recall that a function u W X ! R is an ˛-sub-solution or that it is dominated by
cC˛ (in shortu � cC˛) if for every .x; y/ 2 X2 we haveu.x/�u.y/ 6 c.y; x/C˛
(see (1) in the introduction). We will denote by H .˛/ the set of such functions.

Finally, let us state the definitions of the well-known Lax–Oleinik semi-groups:
for a function u W X ! xR we define the functions

T �
c u W X ! xR by T �

c u.x/ D inf
y2X

fu.y/C c.y; x/g ;

TC
c u W X ! xR by TC

c u.x/ D sup
y2X

fu.y/ � c.x; y/g :

The following lemma is not difficult to check.

Lemma A.4. If k 2 R and u W X ! xR then T �
c .u C k/ D k C T �

c u, that is,
the Lax–Oleinik semi-group commutes with the addition of constants. Moreover, if
v W X ! xR is another function such that u 6 v then T �

c u 6 T �
c v. In other words,

the semi-group is monotonous.

Definition A.5. Let .k; b/ 2 R2, we will say that f W X ! R is .k; b/-Lipschitz in
the large or f 2 Lip.k;b/.X;R/ if

8.x; y/ 2 X2; jf .x/ � f .y/j 6 k d.x; y/C b:

Examples A.6. Bounded functions are Lipschitz in the large.
Uniformly continuous functions on a length space are Lipschitz in the large.

Although functions Lipschitz in the large are not necessarily continuous, obviously
they satisfy the following lemma:

Lemma A.7. A function Lipschitz in the large is bounded on any ball of finite radius.
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These functions give a nice setting to apply the Lax–Oleinik semi-groups as shown
in the following proposition:

Proposition A.8. The following properties hold:

(1) If k 2 R and u W X ! R then u 2 H .˛/ if and only if uC k 2 H .˛/.

(2) If u W X ! R is .k; b/-Lipschitz in the large then u 2 H .C.k/C b/.

(3) The subset H .˛/ is convex and closed in the space F .X;R/ of finite real valued
functions on X endowed with the topology of point-wise convergence.

(4) If ˛ 6 ˛0 then H .˛/ � H .˛0/.
(5) If H .˛/ ¤ ¿ then ˛ > supf�c.x; x/; x 2 Xg > �A.0/.

Proof. Statements (1) and (4) are direct consequences of the definitions. If u 2
Lip.k;b/.X;R/ then

8.x; y/ 2 X2; u.x/ � u.y/ 6 k d.x; y/C b 6 c.y; x/C C.k/C b;

which proves statement (2).
To prove statement (3), just notice that H .˛/ is an intersection of closed half

spaces for the given topology, one for each couple of points of X .
As for statement (5), observe that if u 2 H .˛/ and x 2 X then

0 D u.x/ � u.x/ 6 c.x; x/C ˛;

which implies (5). �

In the following, we will need this lemma:

Lemma A.9. Let ˛ 2 R. Then there exist constants k.˛/ and b.˛/ such that any
˛-dominated u is Lipschitz in the large with constants k.˛/ and b.˛/.

Proof. Let us consider u 2 H .˛/ and x0 2 X . Then one has

8y 2 X; u.x0/ � u.y/ 6 c.y; x0/C ˛ 6 A.d.y; x0//C ˛

where we have used first the domination of u and then the uniform boundedness of c.
Moreover, using the assumption we made on the metric d and A.2, the constants K,
B satisfy that for any y 2 X ,

u.x0/ � u.y/ 6 .A.K/C ˛/

�
2B d.x0; y/

K
C 1

�

which proves that u 2 Lip2.A.K/C˛/B=K;A.K/C˛.X;R/. �
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Proposition A.10. The following properties are verified:

(i) Let u W X ! R be a function. We have u � c C ˛ if and only if u 6 T �
c uC ˛.

(ii) The following holds:

T �
c

�
Lip.k;b/.X;R/

� � H .C.k/C b/ \ C 0.X;R/:

Moreover, the set of functions T �
c

�
Lip.k;b/.X;R/

�
is locally equi-continuous.

Finally the mapping T �
c restricted to Lip.k;b/.X;R/ is continuous for the topol-

ogy of uniform convergence on compact subsets.

(iii) The map T �
c sends H .˛/ into H .˛/ \ C 0.X;R/ and is continuous for the

topology of uniform convergence on compact subsets. Moreover, the set of
functions T �

c .H .˛// is locally equi-continuous.

(iv) If u 2 Lip.k;b/.X;R/ is lower semi-continuous, then for every x 2 X , there is
a y 2 X such that T �

c u.x/ D u.y/C c.y; x/.

Proof. To prove (i), remark that domination of u by c C ˛ is equivalent to

8.x; y/ 2 X2; u.x/ 6 u.y/C c.y; x/C ˛;

which is equivalent to

8x 2 X; u.x/ 6 inf
y2X

u.y/C c.y; x/C ˛;

but the right hand side is precisely T �
c u.x/C ˛.

Let us prove (ii). Let u 2 Lip.k;b/.X;R/ and let x0 2 X and r > 0. We know
that

8y 2 X; 8x 2 B.x0; r/; u.y/C c.y; x/ > c.y; x/C u.x0/ � k d.x0; y/ � b;
therefore using the super-linearity of c we get that

u.y/C c.y; x/ > 2k d.x; y/C C.2k/C u.x0/ � k d.x0; y/ � b
> k d.x0; y/ � 2kr C C.2k/C u.x0/ � b: (14)

Now, by definition of the Lax–Oleinik semi-group,

T �
c u.x/ D inf

y2X
u.y/C c.y; x/ 6 u.x0/C c.x0; x/ 6 u.x0/C A.r/;

so by condition (14) it is not restrictive to take the infimum on points at a distance
less than D.r; k; b/ D .A.r/ C 2kr � C.2k/ C b/=k from x0. Using that u (by
Lemma A.7) and c (by continuity) are bounded below on balls of finite radius (which
are compact), the infimum in the Lax–Oleinik semi-group is finite and if reached,
can only be reached in xB.x0;D.r; k; b//. Note that this already proves (iv) because a
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lower semi-continuous function achieves its minimum on a compact set. The constant
D.r; k; b/ is independent of x 2 B.x0; r/ and u 2 Lip.k;b/.X;R/. Therefore if
x1 2 xB.x0; r/ then in the definition of T �

c u.x1/ the infimum may be taken on points
which lie in xB.x0;D.r; k; b//. Since xB.x0;D.r; k; b// � xB.x0; r/ is compact, the
restriction of c to this domain is uniformly continuous, let! be a modulus of continuity
of c on that domain. One has that the restriction ofT �

c u to xB.x0; r/ is a finite infimum
of equi-continuous functions and is therefore itself continuous with same modulus
of continuity which only depends on c, so the family T �

c .Lip.k;b/.X;R// is in fact
locally equi-continuous.

Now that we know it is finite, let us check that T �
c u is .C.k/ C b/-dominated.

This is in fact a direct consequence of the monotony of the Lax–Oleinik semi-group
(A.4). In fact, by (i), since u � c C C.k/C b it follows that u 6 T �

c uC C.k/C b.
We therefore have that T �

c u 6 T �
c .T

�
c u/ C C.k/ C b which proves that T �

c u �
c C C.k/C b.

It remains to prove that the restriction of this mapping to Lip.k;b/.X;R/ is con-
tinuous for the topology of uniform convergence on compact subsets. Let v 2
Lip.k;b/.X;R/ be another dominated function, x 2 X . Let " > 0 and x1 2 X

be such that
jT �

c u.x/ � u.x1/ � c.x1; x/j < ";
and similarly, choose x2 such that

jT �
c v.x/ � v.x2/ � c.x2; x/j < ":

Note that bothx1 andx2 are necessarily in xB.x;D.0; k; b//. The following inequality
holds:

T �
c v.x/ � T �

c u.x/ 6 v.x1/C c.x1; x/ � u.x1/ � c.x1; x/C "

6 sup
xB.x;D.0;k;b//

ju � vj C ":

By a similar argument, we also have

T �
c u.x/�T �

c v.x/ 6 u.x2/Cc.x2; x/�v.x2/�c.x2; x/ 6 sup
xB.x;D.0;k;b//

ju�vjC":

This being true for all " > 0, we have just proved that if A � X is compact, then

sup
A

jT �
c u � T �

c vj 6 sup
AD.0;k;b/

ju � vj;

where AD.0;k;b/ D fx 2 X; d.A; x/ 6 D.0; k; b/g is still compact because it is
contained in a ball of finite large radius. This achieves the proof of (ii).

To prove (iii), note that by Lemma A.9, dominated functions are equi-Lipschitz in
the large. Therefore the family of functions in T �

c .H .˛// is locally equi-continuous.
�
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As an immediate consequence of the previous proof we deduce the following
result:

Lemma A.11 (a priori compactness). Given constants k, b, " > 0 and a compact set
A � X there is a compact set A0 � X such that if v 2 Lip.k;b/.X;R/, x 2 A then

ju.y/C c.y; x/ � T �
c u.x/j 6 " H) y 2 A0:

We now can prove the weak KAM theorem:

Proof of Theorem 1.2. First, notice that saying that H .˛/ is empty is equivalent to
saying that H .˛/ \ C 0.X;R/ is empty, because of part (iii) of the previous propo-

sition (A.10). Let 1 be the constant function equal to 1 on X and let 3C 0.X;R/ be
the quotient of C 0.X;R/ by the subspace of constant functions R1 and let q be the
projection operator. Since the semi-group T �

c commutes with the addition of con-

stants, it induces a semi-group on 3C 0.X;R/ that we will denote yT �
c . The topology on

3C 0.X;R/ is the quotient of the compact open topology on C 0.X;R/, which makes
it a locally convex vector space.

We will call yH .˛/ the image q.H .˛/ \ C 0.X;R//. It is convex because so
is H .˛/ \ C 0.X;R/ . Let us introduce the subset C 0

x0
of C 0.X;R/ consisting of

the functions which vanish at x0, where x0 is any point of X . Then, q induces

a homomorphism of C 0
x0

onto 3C 0.X;R/. Since H .˛/ \ C 0.X;R/ is stable by

addition of constants, yH .˛/ is also the image by q of the set H .˛/\C 0
x0

D Hx0
.˛/.

Now, Hx0
.˛/ is closed for the compact open topology, it consists of functions which

all vanish at x0. We have seen in the proof of A.10 that T �
c .H .˛// is a family

of locally equi-continuous and equi-Lipschitz in the large, therefore locally equi-
bounded functions. By the Ascoli theorem, we deduce that T �

c .Hx0
.˛// is relatively

compact. Furthermore, since

yT �
c .q.u// D q.T �

c u � T �
c u.x0/1/;

we obtain that
yT �

c .
yH .˛// D q.T �

c .Hx0
.˛///

is also relatively compact and the closed convex envelope of yT �
c .

yH .˛// that we will
denoteH.˛/ is compact. Note also thatH.˛/ � yH .˛/, since yH .˛/ is convex, closed
for the compact open topology and it contains T �

c .
yH .˛//.

As a first consequence, if

˛Œ0� D inff˛ 2 R;H .˛/ ¤ ¿g;
then

T
˛>˛Œ0�H.˛/ ¤ ¿ as the intersection of a decreasing family of compact non-

empty sets. It follows that H .˛Œ0�/ is non-empty for it contains q�1
� T

˛>˛Œ0�H.˛/
�
.
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Finally, it is obvious that yT �
c carries H.˛/ into itself. Since this last subset is a

non-empty convex compact subset of a locally convex topological vector space, we
can apply the Schauder–Tykhonov theorem ([Dug66] p. 414, Theorem 2.2). This
gives that yT �

c has a fixed point in H.˛/ as soon as H .˛/ ¤ ¿, that is, for all values
˛ > ˛Œ0�.

If we call q.u/ such a fixed point, with u 2 H .˛Œ0�/, we see there is a constant
˛0 such that T �

c u D uC ˛0. Obviously, u � c � ˛0 so �˛0 > ˛Œ0�. Moreover since
u 2 H .˛Œ0�/we must haveu 6 T �

c uC˛Œ0�which givesu D T �
c u�˛0 6 T �

c uC˛Œ0�
and �˛0 6 ˛Œ0�. We therefore conclude that �˛0 D ˛Œ0�. �
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