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Height pairings, exceptional zeros and Rubin’s formula:
the multiplicative group
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Abstract. In this paper we prove a formula, much in the spirit of one due to Rubin, which
expresses the leading coefficients of variousp-adicL-functions in the presence of an exceptional
zero in terms of Nekovář’s p-adic height pairings on his extended Selmer groups. In a particular
case, the Rubin-style formula we prove recovers a p-adic Kronecker limit formula. In a disjoint
case, we observe that our computations with Nekovář’s heights agree with the Ferrero–Greenberg
formula (more generally, Gross’ conjectural formula) for the leading coefficient of the Kubota–
Leopoldt p-adic L-function (resp., the Deligne–Ribet p-adic L-function) at s D 0.
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1. Introduction

The celebrated formula of Gross and Zagier [GZ86] expresses the first derivative at
s D 1 of a RankinL-series of a modular form f of weight 2 on �0.N / in terms of the
Néron–Tate height of a Heegner point on the f -quotient Af of the Jacobian J0.N /
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of the modular curve X0.N /. A p-adic variant of this formula has been proved by
Perrin-Riou [PR87], relating the p-adic height of a Heegner point on Af to a first
derivative (taken in the cyclotomic direction) of a two-variable p-adic L-function
associated to f . (See also [How05] for a generalization of this formula with more
Iwasawa theoretical flavor). Later, Nekovář [Nek95] extended the results of [PR87]
to higher weight modular forms, where he utilized his p-adic heights defined earlier
in [Nek93].

When E is an elliptic curve defined over Q with CM and p is an odd prime
at which E has good, ordinary reduction, Perrin-Riou [PR83] gives a purely alge-
braic construction of the canonical p-adic height pairing on the p-adic Selmer group
Sp.E=Q/. If further L.E=Q; 1/ D 0, Rubin [Rub92] obtains a formula for the
special values of the associated Katz two-variable p-adic L-function in terms of the
p-adic height of an element xp 2 Sp.E/ (which is constructed from elliptic units).
When E does not have CM, but still good, ordinary at p, results along this line
have been obtained by Perrin-Riou [PR93] utilizing Nekovář’s definition of p-adic
heights [Nek93] and Kato’s zeta-elements [Kat04]. Perrin-Riou’s formula in [PR93]
goes hand-in-hand with Rubin’s result [Rub94], Theorem 1 (which follows from
Theorem 3.2 of loc.cit.; this is the version of Rubin’s formula we refer to in the ab-
stract). Rubin uses in [Rub94] the definition of [PR92] for p-adic height pairings.
We finally note that Rubin’s formula [Rub94]. Theorem 3.2, has been generalized by
Howard [How04], Theorem 3.4, for abelian varieties (resp., by Nekovář in §11.5.10
of [Nek06] for general motives) whose L-functions vanish to higher order. We pro-
vide an overview of Rubin’s formula since it is one of the main motivations for the
results of the current paper.

SupposeE=Q is an elliptic curve which has good, ordinary reduction atp. Let Q1
be the unique Zp-extension of Q, and for every n, let Qn be the unique sub-extension
of Q of degree pn. Put ˆn D Qn ˝Qp and ˆ1 D [ˆn. Let Tp.E/ denote the p-
adic Tate module of E, and suppose we are given a sequence of cohomology classes
z D fzng 2 lim �H

1.Qn; Tp.E//. Using local Tate cup-product pairing, one obtains
an element fz 2 Hom.E.ˆ1/;Zp/; see equation (5) of [Rub94]. The following is
Theorem 3.2 (i) of loc.cit.:

Theorem (Rubin). Let Sp.E=Q/ denote the p-adic Selmer group of EQ over Q.
Then z0 2 Sp.E=Q/ if and only if fz.E.Qp// D 0.

When fz.E.Qp// D 0, Rubin constructs in §3 of [Rub94] a derivative Der�.fz/

of fz along �, where � is any nonzero homomorphism Gal.Q1=Q/ �! Zp . See
also the remarks preceding Theorem 3.2 and Proposition 7.1 of [Rub94]. Rubin’s
formula can be stated as follows:

Theorem (Rubin). Suppose z0 2 Sp.E=Q/ � H 1.Q; Tp.E//. Then for every
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x 2 E.Q/˝ Zp ,

hz0; xi� D Der�.fz/.x/;

where h ; i� is the p-adic height pairing.

This formula should be compared to our formula stated in Theorem 5.1. Having
spelled out the first link between our work and results mentioned above, let us describe
our results in greater detail.

In [Nek06], Nekovář defines extended Selmer groups associated to (ordinary)
Galois representations, which are strictly larger than the classical Selmer groups in
the presence of an exceptional zero (in the sense of [Gre94]). He also defines p-adic
height pairings on his extended Selmer groups. One natural question is what portion
of the results above may be transferred to this new setting when an exceptional zero is
present. We tackle this problem in the simplest and the most classical setting: Fixing a
number fieldK, the Galois representation in consideration is T D O.1/˝��1. Here,
O is the ring of integers of a finite extension F of Qp and O.1/ D O ˝Zp

Zp.1/,
where Zp.1/ D Tp.Gm/ is as usual the p-adic Tate module of the multiplicative
group, and � W Gal. xK=K/! O� is a non-trivial Dirichlet character with the property
that �.}/ D 1 for a prime } ofK lying above p. The Rubin-style formula we prove
here (Corollary 5.7) is akin to Theorem 1 in [Rub94]. Before we state it, we introduce
the necessary notation.

Suppose in this introduction that K D Q and � is an even Dirichlet character.
See §6.3 below for the case when K is a general totally real number field but � is
totally odd, and §6.4 when the base field K is totally imaginary. Let L be the field
cut by the Dirichlet character �, i.e., the fixed field of ker.�/. Let c�1 2 zH 1

f
.Q; T /

be tame cyclotomic unit inside of L defined as in §6.1 of [MR04], see also §3 below
for a recap. Here (and below) zH 1

f
.K; T / stands for the extended Selmer groups of

Nekovář; for an overview (and explicit calculations specific to our case of interest,
including a description of how we view the cyclotomic units as elements of the
extended Selmer groups) see §2.1 and §3 below. Set T � D Hom.T;O.1// D O.�/.
Let h ; iNek denote Nekovář’s p-adic height pairing, see [Nek06], §11, for a general
definition, and also §2 below for the portion of the theory that concerns us. Attached
to an arbitrary element ˛ 2 zH 1

f
.Q; T �/ and the collection of cyclotomic units � along

the cyclotomic Zp-tower, we construct a ‘p-adic L-function’L�;ˆ in §5 below. The
Rubin-style formula we prove reads as follows:

Theorem A (Corollary 5.7 below). hc�1 ; ˛iNek D L0
�;ˆ
.1/:

Here, 1 is the trivial character and L0
�;ˆ

is the derivative of L�;ˆ along the cy-
clotomic character, see §5 for details. Using Coleman’s map, one may choose a
particular ˆ and ˛, and apply Theorem A above to prove:
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Theorem B (Theorem 6.7 below). hc�1 ; col
�
0iNek D zL0

p.1; �/:

Here, col
�
0 2 zH 1

f
.Q; T �/ is the element we obtain from Coleman’s homomor-

phism and zLp.s; �/ is an imprimitive Kubota–Leopoldt p-adic L-function. See §6.2
for details. See also §6.4 for the version of this result when the base field is a quadratic
imaginary number field. We remark that our formula above recovers a p-adic variant
of Kronecker’s limit formula with a new perspective offered by Nekovář’s theory.

In §6.3, we present similar results for totally odd characters � (when the base field
K is totally real). We remark for now that whenK is an arbitrary totally real number
field and � is totally odd, our calculations provide a new interpretation for Gross’
conjecture (and for the Ferrero–Greenberg theorem when k D Q). See Theorem 6.9
and Remark 6.12 below.

See also Remark 6.14 for a related observation when the Galois representation
in question is the p-adic Tate-module of an elliptic curve E=Q which has split-
multiplicative reduction at p.

The layout of the paper is as follows: In Section 2 we give an overview of
Nekovář’s theory of Selmer complexes and p-adic height pairings. We explicitly
describe these objects in §2.2 in the cases of interest. In sections 3–5 we restrict our
attention to the case K D Q and � even, and to the case when the base field K is
totally imaginary. In Section 3, we define three types of cyclotomic (p-) units which
our calculations rely on. In Section 4, we calculate the p-adic height pairing on these
different types of cyclotomic “units”, and use our computations in Section 5 to prove
a Rubin-style formula. In §6, we use this formula to compute the leading coefficients
of certain p-adic L-functions in terms of Nekovář’s heights.

We remark that the results of this paper are not covered by Nekovář’s [Nek06]
general treatment (e.g., by his variant of Rubin’s formula in §11.3.15 and §11.5.10;
nor by his calculations in §11.4.8). In particular, Remark 11.4.10 in [Nek06] is
erroneous. It would be of interest to extend the formalism developed in [Nek06],
§11.4, to cover our setting.

A line of apology: We gave a very detailed and long outline of prior results of
‘Gross–Zagier type’, although the conclusions of the current paper only concern a
very particular (and simple) Galois representation. This is mainly because of the
author’s desire to translate/transform the results in other settings into the context
of [Nek06].
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1.1. Notation and hypotheses. Fix once and for all a rational prime p > 2. For a
number field K, write GK for the absolute Galois group Gal. xK=K/. Let O be the
ring of integers of a finite extension F of Qp , and let � denote a non-trivial Dirichlet
character

� W GK �! O�;
which has prime-to-p order and which satisfies �.}/ D 1 for a prime } � K lying
above p. In this paper, we will only1 deal with the case K D Q or K D k, where k
is a quadratic imaginary number field such that the prime p splits in k=Q.

Define T D O.1/˝��1 and T � D O.�/, rank one O-modules with aGK-action.
Here O.1/ is the Tate twist.

LetLwill be the fixed field of ker.�/ and let� D Gal.L=K/. Our assumption that
�.}/ D 1 is equivalent to saying that } splits completely in L=K. Let S} D fvj}g
denote the collection of places of L above } (the letter “v” is reserved to stand for
these places of L), and let Lv denote the completion of L at v. Although Lv D K}
for each v, we will distinguish the completions of L at different places (as different
embeddings L ,! xQp) and set Gv D Gal.xQp=Lv/ for a fixed algebraic closure xQp

of Qp .

Fix once and for all embeddings �1 W xQ ,! C, and �p W xQ ,! xQp . The choice of
�p fixes a prime v0 2 S} .

Let Q1=Q denote the cyclotomic Zp-extension of Q and let � D Gal.Q1=Q/.
We write �cyc for the cyclotomic character �cyc W � �!� 1CpZp . Let Qn denote the
unique sub-extension of Q1=Q of degree pn over Q, i.e., the fixed field of �p

n
. Let

ˆn be the completion of Qn at the unique prime of Qn above p, and setˆ1 D [ˆn,
the cyclotomic Zp-extension of Qp . By slight abuse of notation Gal.ˆ1=Qp/will be
denoted by � as well. We fix a topological generator � of � . We also setƒ D OŒŒ�		

as the cyclotomic Iwasawa algebra.

When the base field K is the quadratic imaginary number field k which satisfies
the assumption that p splits in k=Q, we write p D }}� with } ¤ }�. Also in this
case, we assume that p does not divide the class number hk of k. For an Ok-ideal I ,
let k.I / be the ray class field of conductor I . For each n � 0 we write

Gal.k.}nC1/=k/ D Gal.k.}nC1/=k.}// �H;
1Except in Remark 6.12, where we say how the arguments of §6.3 apply for a general totally real number

field.
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where H is isomorphic to Gal.k.}/=k/ by restriction. We set

kn D k.}nC1/H ; k1 D
[
n�0

kn:

Then k1=k is a Zp-extension and we write � WD Gal.k1=k/ also when there is
no danger of confusion. The extension k1=k is the unique Zp-extension which is
unramified outside }. The prime } is totally ramified in k1=k. Let fL � Ok denote
the conductor of L (which is prime to } by our assumptions on �) and let f be a
multiple of fL which is prime to } and which also satisfies the condition that the map
O�
k
! .Ok=f/

� is injective. Attached to a Grössencharacter ' of k of infinity type
.1; 0/ and of conductor f , there is an elliptic curveE defined over F D k.f/with the
properties that

� E has complex multiplication by Ok

� F.Etor/ is an abelian extension of k,

where we write F.Etor/ for the extension of K which is generated by the coordi-
nates of the torsion-submodule Etor � E. Nk/. For such E, we have F.EŒ}nC1	/ D
k.f}nC1/ for all n � 0, and using this fact one obtains a canonical identification
Gal.F.EŒ}1	/=F.EŒ}	// �!� � and the following isomorphisms:

(i) �E W Gal.F.EŒ}1	/=F / ��!� Aut.EŒ}1	/ D O�
k}
��!� Z�

p ,

(ii) �� WD �E
ˇ̌
�
W � ��!� 1C pZp .

The character �� will play the role of cyclotomic character when our base field K is
the quadratic imaginary number field k.

For any finitely generated abelian group M endowed with a GK action, yM will
denote its p-adic completion Hom.Hom.M;Qp=Zp/;Qp=Zp/, andM� will denote
the �-isotypic part of yM ˝Zp

O. Also, let logp W 1C pZp ! Zp denote the p-adic
logarithm.

For a field K (with fixed separable closure xK=K) and a OŒŒGal. xK=K/		-module
X which is finitely generated over O, we will denote the i -th cohomology (with
continuous cochains) of the group Gal. xK=K/ with coefficients in X by H i .K;X/.

For every positive integer n, we define 
n � xQ to be the set of nth roots of unity.

2. Height pairings on extended Selmer groups

2.1. Generalities. In this section we very briefly review Nekovář’s theory of Selmer
complexes and his definition of extended Selmer groups. The treatment in this section
is far more general than what is needed for the purposes of this paper, and it is much
less general than what is covered in [Nek06]. For example, we focus on coefficient
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rings such as the ring of integers O of a finite extension of Qp , or the one variable
Iwasawa algebra OŒŒ�		; and we restrict our attention to a complex of O-modules M
of finite type, endowed with a continuous action of the absolute Galois group GK of
a fixed base fieldK, concentrated in degree zero. From §2.2 on,K will be Q (except
in §6.4 where K D k, a quadratic imaginary number field and Remark 6.12 where
K is an arbitrary totally real field), and M will be one of O.1/˝ ��1, O.�/, O.1/

or O (in degree zero) .

Let G be a profinite group (given the profinite topology) and let O be as above.
Let M be a free O-module of finite type on which G acts continuously. Then M is
admissible in the sense of [Nek06] (see §3.2), and we can talk about the complex
of continuous cochains C �.G;M/ as in §3.4 of loc.cit. Let K be a number field
with a fixed algebraic closure xK and let S denote a finite set of primes of K which
contains all primes above p, all primes at which the representationM is ramified and
all infinite places of K, let Sf denote the subset of finite places of S . Let KS the
maximal sub-extension of xK=K which is unramified outside S , and let GK;S denote
the Galois group Gal.KS=K/. For all w 2 Sf , we write Kw for the completion of
K at w, and Gw for its absolute Galois group. Whenever it is convenient, we will
identify Gw with a decomposition subgroup inside GK WD Gal. xK=K/. We will be
interested in the cases G D GK;S or G D Gw .

2.1.1. Selmer complexes. Classical Selmer groups are defined as elements of the
global cohomology groupH 1.GK;S ;M/ satisfying certain local conditions; see §2.1
of [MR04] for the most general definition. The main idea of [Nek06] is to impose
local conditions on the level of complexes. We go over basics of Nekovář’s theory,
for details see [Nek06].

Definition 2.1. Local conditions for M are given by a collection

�.M/ D f�w.M/gw2Sf
;

where �w.M/ stands for a morphism of complexes of O-modules

iCw .M/ W UC
w �! C �.Gw ;M/

for each w 2 Sf .

Also set

U�
v .M/ D Cone

�
UC
v .M/

�iCv����! C �.Gv;M/
�

and

UṠ .M/ D
M
w2Sf

Uẇ .M/I iCS .M/ D .iCw .M//w2Sf
:
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We also define

resSf
W C �.GK;S ;M/ �!

M
w2Sf

C �.Gw ;M/

as the canonical restriction morphism.

Definition 2.2. The Selmer complex associated with the choice of local conditions
�.M/ on M is given by the complex

zC �
f .GK;S ;M;�.M//

WD Cone.C �.GK;S ;M/
M

UC
S .M/

resSf
�iC

S
.M/

���������!
M
w2Sf

C �.Gw ;M//Œ�1	

where Œn	 denotes a shift by n. The corresponding object in the derived category will
be denoted by zR�f .GK;S ;M;�.M// and its cohomology by zH i

f
.GK;S ;M;�.M//

(or simply by zH i
f
.K;M/ or by zH i

f
.M/ when there is no danger of confusion). The

O-module zH 1
f
.M/ will be called the extended Selmer group.

The object in the derived category corresponding to the complex C �.GK;S ;M/

will be denoted by R�.GK;S ;M/.

2.1.2. Comparison with classical Selmer groups. For each w 2 Sf , suppose that
we are given a submodule

H 1
F .Kw ;M/ � H 1.Kw ;M/:

This data which F encodes is called a Selmer structure on M . Starting with F , one
defines the Selmer group as

H 1
F .K;M/ WD ker

²
H 1.GK;S ;M/ �!

M
w2Sf

H 1.Kw ;M/

H 1
F
.Kw ;M/

³
:

On the other hand, as explained in §6.1.3.1–§6.1.3.2 of [Nek06], there is an exact
triangle

U�
S .M/Œ�1	 �!eR�f .GK;S ;M;�.M// �! R�.GK;S ;M/ �! U�

S .M/

This gives rise to an exact sequence in the level of cohomology:

Proposition 2.3 ([Nek06], §0.8.0 and §9.6). For each i , the following sequence is
exact:

� � � �! H i�1.U�
S .M// �! zH i

f .M/ �! H i .GK;S ;M/ �! H i .U�
S .M// �! � � �
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This proposition is used to compare Nekovář’s extended Selmer groups to classical
Selmer groups. Although this may be achieved in greater generality, we will only state
the relevant comparison theorem for Greenberg’s local conditions (and Greenberg’s
Selmer groups) whose definitions we now recall. For further details, see [Gre89],
[Gre94], [Nek06].

Let Iw denote the inertia subgroup of Gw . Suppose we are given an OŒŒGw 		-
submoduleMC

w ofM for each placewjp ofK, setM�
w DM=MC

w . Then Greenberg’s
local conditions (on the complex level, i.e., in the sense of [Nek06], §6) are given by

UC
w D

´
C �.Gw ;MC

w / if wjp;
C �.Gw=Iw ;M Iw / if w − p

with the obvious choice of morphisms

iCw .M/ W UC
w .M/ �! C �.Gw ;M/:

As in Definition 2.2, we then obtain a Selmer complex and an extended Selmer group,
which we denote by zH 1

f
.M/. Greenberg’s local conditions are the only type of local

conditions we will deal with from now on.

We now define the relevant Selmer structure2 Fcan on M .

Definition 2.4. The canonical Selmer structure Fcan is given by

H 1
Fcan

.Kw ;M/ D

8̂̂̂̂
<̂
ˆ̂̂:

im
�
H 1.Gw ;M

C
w /! H 1.Kw ;M/

�
D ker

�
H 1.Gw ;Mw/! H 1.Gw ;M

�
w /

� if wjp;

ker
�
H 1.Gw ;M/! H 1.Iw ;M/

�
D im

�
H 1.Gw=Iw ;M

Iw /! H 1.Gw ;M/
� if w − p:

Hence, we obtain the following Selmer group (which is called the strict Selmer
group in [Nek06], §9.6.1, and denoted by S str

M .K/):

H 1
Fcan

.K;M/ D ker
�
H 1.GK;S ;M/ �!

M
wjp

H 1.Gw ;M
�
w /˚

M
w−p

H 1.Iw ;M/
�
:

(2.1)

Proposition 2.3 now shows that:

Proposition 2.5. The following sequence is exact:

MGK �!
M
wjp

.M�
w /

Gw �! zH 1
f .M/ �! H 1

Fcan
.K;M/ �! 0:

2For a general M , our definition of Fcan (the canonical Selmer structure) slightly differs from its original
definition in [MR04]. However, for the specific Galois representation we use starting from §2.2 on, they do
coincide.
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See [Nek06], Lemma 9.6.3, for a proof.

Remark 2.6. Note that if .M�
w /

Gw D 0 for all wjp, then the extended Selmer group
zH 1
f
.M/ coincides with the canonical Selmer groupH 1

Fcan
.K;M/. However, if some

.M�
w /

Gw ¤ 0 then zH 1
f
.M/ is strictly larger thanH 1

Fcan
.K;M/ (under the assumption

that MGK =0, say). This is the main feature of Nekovář’s Selmer complexes: They
reflect the existence of exceptional zeros, unlike classical Selmer groups.

2.1.3. Height pairings. We now recall Nekovář’s definition of height pairings on
his extended Selmer groups. All the references in this section are to §11 of [Nek06]
unless otherwise stated.

LetM � D Hom.M;O/.1/ (in Nekovář’s language this is D.M/.1/, the Grothen-
dieck dual of M ). Let � be the Galois group Gal.Q1=Q/ (resp., the Galois group
Gal.k1=k/) and � be the cyclotomic character �cyc (resp., the character �� ) when
the base field K is Q (also more generally, when K is a totally real number field)
(resp., when K is the quadratic imaginary number field k). The height pairing

h ; iNek W zH 1
f
.M/˝O

zH 1
f
.M �/ �� O ˝Zp

�
id ˝ logp � �� O

is defined in two steps:

(i) Apply the Bockstein morphism

ˇ WeR�f .M/ ��
eR�f .M/Œ1	˝Zp

�
id ˝ logp � ��

eR�f .M/Œ1	

See §11.1.3 in [Nek06] for the original definition of ˇ. Let ˇ1 denote the map
induced on the level of cohomology:

ˇ1 W zH 1
f .M/ �! zH 2

f .M/:

(ii) Use the global duality pairing

h ; iPT W zH 2
f .M/˝O

zH 1
f .M

�/ �! O

on the image of ˇ1 inside of zH 2
f
.M/. Here the subscript PT stands for Poitou–

Tate, and the global pairing comes from summing up the invariants of the local
cup product pairing, see §6.3 in [Nek06] for more details.

Just as for other height pairings, universal norms are in the kernel of Nekovář’s
height pairing:
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Proposition 2.7 ([Nek06], Proposition 11.5.7 and §11.5.8). For X D M;M �, the
universal norms

im
� zH 1

f .GK;S ; X ˝O OŒŒ�		; �.M/˝OŒŒ�		/ �! zH 1
f .X/

�
are in the kernel of the height pairing h ; iNek.

Here�.M/˝OŒŒ�		 stands for an appropriate propagation of the local conditions
�.M/ on M to M ˝O OŒŒ�		, see §8 of [Nek06] (particularly §8.6) for details.

2.2. The classical case: T D O.1/ ˝ ��1. In this section we explicitly calculate
both the classical Selmer groups and the extended Selmer groups associated with the
representations T D O.1/˝��1 and T � D O.�/, viewed as a representation ofGK .
We keep the notation of §2.1. Let S D fq W q j pf�1g be a set of places of K. We
set TC D T , .T �/C D 0 (hence T � D 0, .T �/� D T �).

Lemma 2.8. (i) zH 1
f
.K; T / ��!� H 1

Fcan
.K; T /.

(ii) The sequence

0 �!
M
}jp

H 0.K} ;O.�// �! zH 1
f .K; T

�/ �! H 1
Fcan

.K; T �/ �! 0

is exact.

Proof. Immediate from Proposition 2.5. �

Remark2.9. For our particular Galois representationT , the Selmer groupH 1
Fcan

.K; T /

as defined above agrees with what [MR04] callsH 1
Fcan

.K; T /. Indeed, in the language
of [MR04], H 1

Fcan
.Q; T / is defined as

H 1
Fcan

.K; T / D ker

�
H 1.GK;S ; T / �!

M
q2S;q−p

H 1.Kq; T /

H 1
f
.Kq; T /

�

where f D f� denotes the conductor of �, and H 1
f
.Kq; T / � H 1.Kq; T / is as in

[Rub00], Definition I.3.4. Let

H 1
ur.Kq; T / D ker.H 1.Kq; T / �! H 1.Iq; T //:

It follows from Lemma I.3.5 (iii) in [Rub00] that

H 1
f .Kq; T / D H 1

ur.Kq; T /
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for every q − p (including primes qjf�), hence it follows that the canonical Selmer
group of [MR04] is given by

H 1
Fcan

.K; T / D ker
�
H 1.GK;S ; T / �!

M
q2S;q−p

H 1.Iq; T /
�
:

This shows that our definition of the canonical Selmer group given by (2.1) agrees
with the definition of [MR04].

Proposition 2.10. Let OL denote the ring of integers of L, OL Œ1=p	 its p-integers,
O�
L its unit group and OL Œ1=p	

� its p-units.

(i) H 1
Fcan

.K; T / D �
OL Œ1=p	

���
,

(ii) H 1
Fcan

.K; T �/ D 0:

Proof. The first part follows from Remark 2.9 and [MR04], Equation (25). For the
second part, observe that H 1

Fcan
.Q; T �/ is contained in the submodule of unramified

homomorphisms inside

H 1.K; T �/ D Hom.GL;O/
��1

;

where the equality is obtained from the inflation-restriction sequence. In other words,

H 1
Fcan

.K; T �/ � Hom.Gal.HL=L/;O/
��1

where HL denotes the Hilbert class field of L. But since Gal.HL=L/ is finite, we
have Hom.Gal.HL=L/;O/ D 0, so H 1

Fcan
.K; T �/ D 0 as well. �

Corollary 2.11. Keep the notation above.

(i) zH 1
f
.K; T / D �

OL Œ1=p	
���

,

(ii)
L
}jpH 0.K} ;O.�// ��!� zH 1

f
.K; T �/:

We suppose until the end of this paper that

.H/ �.}/ D 1 for a prime } � K lying above p, and that �.}0/ ¤ 1 for any other
}0 � K above p.

It follows from Corollary 2.11 that zH 1
f
.Q; T �/ is a free O-module of rank one.

Furthermore, it follows from the proof of Proposition III.2.6 (ii) in [Rub00] that we
have �

OL Œ1=p	
��� D �

OL Œ1=}	
���

since we assume .H/.
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When K D Q and � is an even character, it follows from Theorem 5.2.15 in
[MR04] that the core Selmer rank of the canonical Selmer structure (in the sense of
Definition 4.1.11 of loc.cit., see also Corollary 5.2.6 of loc.cit.) is 2 (since we assumed
� is even and �.p/ D 1); hence H 1

Fcan
.Q; T / D zH 1

f
.Q; T / is a free O-module of

rank 2. We will later describe an explicit F-basis for zH 1
f
.Q; T /˝F.

When K is totally real and � is totally odd, then
�
OL Œ1=p	

��� D �
OL Œ1=}	

���
(resp., O

�;�
L ) is a free O-module of rank one (resp., of rank zero) and hence zH 1

f
.K; T /

is also free of rank one.

Let ˇ1� W zH 1
f
.Q; T / ! zH 2

f
.Q; T / denote the Bockstein morphism, as in §2.1.3

above.

Proposition 2.12. For any x 2 zH 1
f
.K; T / and y 2 zH 1

f
.K; T �/,

hx; yiNek D hˇ1�.x/; yiPT:

Proof. This is just a restatement of the definition of Nekovář’s height pairing we gave
in § 2.1.3. �

3. Cyclotomic units

Throughout §3, our base fieldK is Q and � is an even, non-trivial Dirichlet character
whose order is prime to p and which has the property that �.p/ D 1. Let L be the
field cut by � and write � WD Gal.L=Q/. We set e� WDP

ı2� ��1.ı/ı 2 OŒ�	. In
this section, we define three different types of special elements which will be crucial
in what follows: Tame cyclotomic units, wild cyclotomic units and Solomon’s wild
cyclotomic p-units defined as in [Sol92].

Fix a collection f�m W m � 1g such that �m is a primitive m-th root of unity and
�nmn D �m for every m and n. Let f D f� denote the conductor of �, and recall the
Kummer map which induces a canonical map

F � �! H 1.F;Zp.1//

for every finite abelian extension F of Q.

Definition 3.1. For every positive integer n prime to p, define

cn D NQ.�nf /=L.�n/.�nf � 1/ 2 L.
n/�

and
c�n D e�NQ.�nf /=L.�n/.�nf � 1/ 2 L.
n/�;� D H 1.Q.
n/; T /:
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The collection c D fc�n W .n; p/ D 1g is called the collection of tame �-cyclotomic
units. The element c�1 is called the tame �-cyclotomic unit of L, or simply the tame
cyclotomic unit once � (thus also L) is fixed.

For every finite abelian extension F of Q of conductor m, define

�F D NQ.�mp/=F .�mp � 1/:
Here and elsewhere in this paper, the symbol N stands for the norm map.

Let Q1 be the cyclotomic Zp-extension of Q, and Qn be its unique sub-extension
of degree pn over Q. We set Ln WD LQn. Note that the collection f�F g satisfies
the Euler system distribution relation, in particular the collection f�Ln

W n � 1g is
norm-coherent.

Definition 3.2. The collection

� D ��1 WD fe��Ln
W n � 1g 2 lim �

n

H 1.Qn; T /

is called the wild �-cyclotomic units. When � is understood, this collection will be
called the collection of wild cyclotomic units.

3.1. Cyclotomic units and ‘exceptional zeros’. From our assumption that �.p/ D
1, it follows that p splits completely in L.

Lemma 3.3. Under the running assumptions �L D 1.

Proof. This is [Sol92], Lemma 2.2; see also Remark 6.1.10 in [MR04]. �

Let � D Gal.Q1=Q/ and ƒ D OŒŒ�		. Let logp W Z�
p ! Zp be the p-adic

logarithm, and let �cyc W � ! 1CpZp be the cyclotomic character. Fix a topological
generator � of � . The short exact sequence

0 �! T ˝ƒ ��1�! T ˝ƒ �! T �! 0

induces a long exact sequence of cohomology (where we have the zero on the left
thanks to our assumption that � is non-trivial)

0 D H 0.Q; T / �! H 1.Q; T ˝ƒ/ ��1�! H 1.Q; T ˝ƒ/ N�! H 1.Q; T /: (3.1)

It follows from Proposition II.1.1 in [Col98] that we may identifyH 1.Q; T ˝ƒ/
with lim �nH

1.Qn; T /, and thus view the wild cyclotomic unit � as an element of

H 1.Q; T ˝ƒ/. The image of � under the map N of (3.1) is ��L D 1, hence the exact
sequence (3.1) shows:
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Proposition 3.4. There exists a unique

fz�n g D z�1 2 H 1.Q; T ˝ƒ/ D lim �
n

H 1.Qn; T /

such that
� � 1

logp �cyc.�/
� z�1 D �:

Remark 3.5. Just as we did above, one could have obtained an element z1 2
lim �nH

1.Ln;Zp.1// such that ��1
logp �cyc.�/

� z1 D �1 WD f�ng: Then, �-part of this

element would be our z�1 and ��1 D �, respectively. Although we only need to
analyze the �-parts z�1 and � D �

�1 of these elements for our purposes, it may be
worthwhile to keep this in mind for a comparison with the treatment of [Sol92] and
§9.3 of [BG03].

3.2. Wild cyclotomic p-units. In this section we quickly review Solomon’s [Sol92]
construction of cyclotomic p-units and relate these p-units to z�1 defined above.

Solomon’s construction3 starts with the observation that there exists (thanks to
Hilbert 90) a unique ˇ�n 2 L�;�

n =L�;� such that

� � 1
logp �cyc.�/

� ˇ�n D ��n :

Thus, from our definition of z�1 D fz�n g it follows that

ˇ�n D z�n inside L�;�
n =L�;�:

Applying NLn=L on both sides of this equality we see that

��n WD NLn=Lˇ
�
n � NLn=Lz

�
n D z�0 mod pn: (3.2)

Solomon proves (and (3.2) above shows as well) that

�
�
n0 � ��n mod pn ; for n0 � n;

and he defines
�� WD lim � �

�
n 2 L�;�:

This is what he calls the cyclotomic p-unit. By (3.2), we clearly have �� D z�0 .

3The attentive reader will notice that Solomon’s construction is carried out without taking �-parts. However
his arguments apply on the �-parts verbatim. In fact, it is easy to see that the p-unit 	� constructed below is
simply the �-part of the p-unit 	 which Solomon constructs in §2 of [Sol92].
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Definition 3.6. The element z�0 is called the cyclotomic p-unit and the collection

z�1 2 lim �
n

H 1.Qn;p; T / D lim �
n

L�;�
n

is called the collection of wild cyclotomic p-units.

Remark 3.7. By [Sol94] that fc�1 ; z�0 g is an ordered F-basis for zH 1
f
.Q; T /˝F.

3.3. Local Tate duality. In this section we give a review of well-known results from
local duality which we will need later in §4. For each n � 0, we have the local Tate
pairing

H 1.Qn;p; T / �H 1.Qn;p; T
�/ �! O;

induced from cup-product pairing composed with the invariant isomorphism, for more
details see §5.1–§5.2 of [Nek06]. This induces a map

H 1.Qn;p; T /

n��! Hom.H 1.Qn;p; T

�/;O/

thus, in the limit a map (using Proposition II.1.1 in [Col98] once again)

H 1.Qp; T ˝ƒ/ 
1���! Hom.lim�!
n

H 1.Qn;p; T
�/;O/:

Definition 3.8. (i) Let L� be the image of � under the compositum

H 1.Q; T ˝ƒ/ locp���! H 1.Qp; T ˝ƒ/ 
1���! Hom.lim�!
n

H 1.Qn;p; T
�/;O/:

(ii) Let L0
�

be the image of z�1 under the compositum

H 1.Q; T ˝ƒ/ 
1 B locp������! Hom.lim�!
n

H 1.Qn;p; T
�/;O/ �! Hom.H 1.Qp; T

�/;O/:

Remark 3.9. For n � n0 we have a commutative diagram

H 1.Qn;p; T / ��

N
��

Hom.H 1.Qn;p; T
�/;O/

res�

��
H 1.Qn0;p; T / �� Hom.H 1.Qn0;p; T

�/;O/,

where res� is induced from the restriction map

res W H 1.Qn0;p; T
�/ �! H 1.Qn;p; T

�/:
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We therefore have a commutative diagram

z
�1�

��

2 H 1.Qp; T ˝ƒ/ ��

��

Hom.lim�!n
H 1.Qn;p; T

�/;O/

��
z
�
0 2 H 1.Qp:T / �� Hom.H 1.Qp; T

�/;O/

Thus L0
�

is simply the image of z�0 under the map


0 W H 1.Qp; T / �! Hom.H 1.Qp; T
�/;O/:

4. Computation of the height pairing

Throughout §4, our base fieldK is Q and � is an even, non-trivial Dirichlet character
whose order is prime to p, and which has the property that �.p/ D 1. In this section
we calculate the height pairing on the cyclotomic unit c�1 . Note that, in view of
Remark 3.7, Proposition 2.7 and the fact that z�0 2 zH 1

f
.Q; T / is a universal norm (by

its definition), this gives the only non-trivial output of the machinery we described
in §2 we could hope for.

For  D �˙1, we write as usual O. / for the free O-module of rank one, on
which GQ acts via  . Define e WD P

ı2�  �1.ı/ı as the idempotent of OŒ�	

associated to  . We identify the module O. / with .
L
vjp O � v/ (therefore we

regard g WD e v0 as a generator of O. /, where we recall that v0 is the place of L
we fixed in §1.1 via choosing an embedding �p W xQ ,! xQp) and we define

pr W
� M
vjp

O � v� ��!� O

by setting pr W g 7! 1. In other words, pr is the map induced from projection onto
the v0-coordinate. For each place v of L lying above p, write �v W L ,! Lv D Qp

for the induced embedding.

Let �� denote the compositum

zH 1
f
.Q;O.1/˝ ��1/

ˇ1
� ��

��

������������������
zH 2
f
.Q;O.1/˝ ��1/ � �� H 2.Q;O.1/˝ ��1/

��
H 2.Qp;O.1/˝ ��1/
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and ˇ� the compositum

zH 1
f
.Q;O.1/˝ ��1/ �� ��

ˇ�

������������������������
H 2.Qp;O.1/˝ ��1/ Š

h
��
� L

vjpH 2.Lv;O.1//
��

P
v invv

��� L
vjp O � v��

Š pr�

��
O,

where the map ˇ1� in the first diagram is the Bockstein morphism applied on the first
cohomology; � comes from Proposition 2.3; the isomorphism h in the second diagram
from the Hochschild–Serre spectral sequence. Let logp WbQ�

p ! Zp be the p-adic

logarithm extended to the p-adic completion bQ�
p of Q�

p by setting logp.p/ D 0. We
extend logp by linearity to define an O-module homomorphism

logp W O ˝Zp
bQ�
p �! O:

Proposition 4.1. ˇ�.c
�
1 / D logp.�p.c

�
1 // D v0.z�0 / 2 O:

Proof. The second equality is the main calculation of [Sol92], hence it suffices to
check the first claimed equality. This assertion is essentially Proposition 9.3 (ii) in
[BG03]. In fact, the statement of loc.cit. is that

ˇ�.c
�
1 / D pr�

�
e�

X
vjp

logp.�v.c1// � v
�
;

where the equality takes place in O. Furthermore, we have the following brute-force
calculation:

O.�/ 3 e�
X
vjp

logp.�v.c1// � v D
X
ı2�

��1.ı/ı
X
vjp

logp.�v.c1// � v

D
X
ı2�

X
vjp

��1.ı/ logp.�v.c1// � vı

D
X
ı2�

X
!jp

��1.ı/ logp.�!ı�1 .c1// � !

D
X
ı2�

X
!jp

��1.ı/ logp.�!.c
ı
1// � !

D
X
!jp

logp.�!.c
�
1 // � ! 2 O.�/;
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where vı is the place obtained by the action of ı 2 � on the set of places fv W vjpg;
and we have the final equality by the O-linearity of logp , and the forth equality thanks
to the following commutative diagram:

L

ı
��

�v �� Qp

L �
vı

�� Qp .

(4.1)

We further haveX
!jp

logp.�!.c
�
1 // � ! D

X
ı2�

logp.�vı
0
.c
�
1 // � vı0

D
X
ı2�

logp
�
�v0
..c

�
1 /
ı�1

/
� � vı0

D
X
ı2�

logp
�
�v0
.c
�
1 /
��1.ı/

� � vı0
D

X
ı2�

��1.ı/ logp
�
�v0
.c
�
1 /

� � vı0
D logp

�
�v0
.c
�
1 /

� � e�v0 2 O.�/;

where the second equality holds thanks to (4.1) and the third because .c�1 /
ı�1 D

.c
�
1 /
��1.ı/. Putting all this together (and noting that �v0

jL D �pjL by definition), we
conclude that

ˇ�.c
�
1 / D ��

�
logp

�
�v0
.c
�
1 /

� � e�v0� D logp.�p.c
�
1 //

as desired. �

Remark4.2. Note that if we replacev0 by another placevı0 ofL, the value ofˇ�.c
�
1 / D

logp.�v0
.c
�
1 // changes by ��1.ı/: logp.�vı

0
.c
�
1 // D ��1.ı/ logp.�v0

.c
�
1 //:

We are now ready to complete the computation of Nekovář’s height pairing
hc�1 ; ˛iNek for ˛ 2 zH 1

f
.Q; T �/ and c�1 as above. We have the following identifi-

cations:

zH 1
f .Q; T

�/ ��!� H 0.Qp;O.�// ��!�
� M
vjp

O � v
���1 pr

��1�! O: (4.2)

Let ˛.v0/ denote the image of ˛ under the compositum of the maps (4.2).

Remark 4.3. Note that since pr��1 depends on the choice of v0, so does ˛.v0/ 2 O.
Write pr��1 D pr��1.v0/ only in this remark to remind us the dependence on v0.
One then has pr��1.vı0/ D �.ı/pr��1.v0/ and in turn ˛.vı0/ D �.ı/˛.v0/.
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Lemma 4.4. Suppose x 2 H 0.Qp;O/ D O and y 2 H 2.Qp;O.1//. Then

(i) x [ y D x � y 2 H 2.Qp;O.1//,

(ii) hx; yiTate D x � invp.y/ 2 O, where h ; iTate is the local Tate pairing.

Proof. Clear. �

Lemma 4.4 may be used to check the following:

Lemma 4.5. The following diagram commutes:

H 0.Qp;O.�//

Š
��

˝ H 2.Qp;O.1/˝ ��1/
Š

��

h ; iTate �� O

� L
vjpH 0.Lv;O/

���1 � L
vjpH 2.Lv;O.1//

��
P

vjp invv Š
��� L

vjp O � v���1

pr��1

��

� L
vjp O � v��

pr�

��
O ˝ O

. ; /
�� O.

Here, .a; b/ WD ab 2 O for a; b 2 O, and the vertical isomorphisms between
first two rows come from the Hochschild–Serre spectral sequence.

The following proposition is key to our main results.

Proposition 4.6. For an arbitrary ˛ 2 QH 1
f
.Q; T �/, we have hc�1 ; ˛iNek D v0.z

�
0 / �

˛.v0/:

Remark 4.7. Both v0.z
�
0 / and ˛.v0/ depend on the choice of v0, yet v0.z

�
0 / � ˛.v0/

is independent of v0 thanks to Remarks 4.2 and 4.3.

Proof. By Proposition 2.12

hc�1 ; ˛iNek D hˇ1�.c�1 /; ˛iPT;

where
h ; iPT W zH 2

f .Q; T /˝ zH 1
f .Q; T

�/ �! O
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denotes the global pairing from [Nek06], §6.3. The definition of this global pairing
(along with the fact that H 2.Q`; T / D 0 for every `jf�) shows that the following
diagram commutes:

zH 2
f
.Q;O.1/˝ ��1/

locp B �
��

˝ zH 1
f
.Q;O.�//

h ; iPT �� O

H 2.Qp;O.1/˝ ��1/ ˝ H 0.Qp;O.�//

��

[ �� H 2.Qp;O.1//

invp

�� (4.3)

We explain the arrows in (4.3): The arrow on the left is the canonical map (coming
from Proposition 2.3)

� W zH 2
f .Q;O.1/˝ ��1/ �! H 2.Q;O.1/˝ ��1/

followed by the restriction map locp . The extended Selmer group zH 1
f
.Q;O.�//may

be canonically identified by H 0.Qp;O.�// (see §2.2), this is how we obtain the
vertical arrow in the center.

The commutative diagram (4.3) gives hc�1 ; ˛iNek D h��.c�1 /; ˛iTate; where �� is
defined as in the beginning of §4. Furthermore, by Lemma 4.5

h��.c�1 /; ˛iTate D
�
ˇ�.c

�
1 /; ˛.v0/

� D v0.z�0 / � ˛.v0/;
where .a; b/ WD a � b for a; b 2 O as in Lemma 4.5, and the final equality is
Proposition 4.1. The proof is now complete. �

5. Rubin’s formula

Throughout §4, our base fieldK is Q and � is an even, non-trivial Dirichlet character
whose order is prime to p, and which has the property that �.p/ D 1. In this section
we complete our main computation, using the calculations carried out in §4. Starting
with ˛ 2 zH 1

f
.Q;O.�// as above, we first wish to define an element �˛:

�˛ 2 H 1.Qp;O.�// D
� L

vjpH 1.Lv;O/
���1 �����!

pr
��1

H 1.Lv0
;O/

D Hom.Gv0
;O/:

(5.1)

Here we recall that Gv D Gal.xQp=Lv/ and pr��1 is the projection onto the v0-
coordinate as in §4. In the equalities above, we are again using an identification com-
ing from Hochschild–Serre spectral sequence, along with the fact thatH 1.Lv;O/ D
Hom.Gv;O/. Note also that Hom.Gv;O/ is the group of continuous homomorphisms
and we have

Hom.Gv;O/ D Hom.Gab
v ;O/ D Hom.Gab;p

v ;O/ D HomO.O ˝Zp
Gab;p
v ;O/;
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where Gab
v for the abelianization of the group Gv and Gab;p

v is its pro-p part.

We write �v0
˛ 2 Hom.Gv0

;O/ for the image of �˛ under the compositum (5.1)
(which we henceforth call r�). Defining �v0

˛ as the unramified homomorphism given
by

�v0
˛ W Gv0

�! O; Frv0
7�! ˛.v0/;

where Frv0
denotes an arithmetic Frobenius at v0, we also define�˛ 2 H 1.Qp;O.�//

using the identification r�. Below, we normalize the local reciprocity isomorphism
(and the local invariant map) by letting uniformizers correspond to arithmetic Frobe-
nius elements.

Let � D ��1 D f��n g 2 H 1.Q; T ˝ƒ/ be the collection of wild cyclotomic units,
as in §3. Recall the definition of the element L0

�
2 H 1.Qp; T / from §3.3 which we

regard as an element of Hom.H 1.Qp; T
�/;O/ via local duality. Recall also the tame

cyclotomic unit c�1 2 H 1.Q; T /.

Theorem 5.1. hc�1 ; ˛iNek D L0
�
.�˛/.

Proof. Let z�0 be Solomon’s cyclotomic p-unit as above. It follows from the discus-
sion in §3.3 that

L0
�.�˛/ D hz�0 ; �˛iTate: (5.2)

The computation of the right hand side of Theorem 5.1 is thus reduced to local class
field theory.

Let r��1 denote the following compositum:

H 1.Qp;O.1/˝ ��1/ D � L
vjpH 1.Lv;O.1//

�� ��!
��

H 1.Lv0
;O.1//

DbL�
v0
˝Zp

O;

(5.3)

where �� is the projection onto the v0-coordinate as above, and cL�
v stands for the

p-adic completion of the multiplicative group L�
v . We note that r��1.locp.z

�
0 // D

�p.z
�
0 /, with �p W L ,! Lv0

is as in the introduction and

locp W H 1.Q; T /! H 1.Qp; T /

is the canonical restriction map, as usual. We then have a commutative diagram

H 1.Qp; T /

r
��1

��

˝ H 1.Qp; T
�/

r�

��

h ; iTate �� O

H 1.Lv0
;O.1// ˝ H 1.Lv0

;O/
h ; iTate �� O
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which translates to
hz�0 ; �˛iTate D h�p.z�0 /; �v0

˛ iTate: (5.4)

Let
av W H 1.Lv;Zp.1// D cL�

v �! Gab;p
v

denote the local reciprocity map. Let further

a(ur)
v W cL�

v �! Gal.Lur
v =Lv/

denote the projection of av to the Galois group of the maximal unramified extension
ofLv . We also write av (resp., a

(ur)
v ) for the induced map O˝Zp

cL�
v ! O˝Zp

G
ab;p
v

(resp., for the map O ˝Zp
cL�
v ! O ˝Zp

Gal.Lur
v =Lv/).

By the very definition of the local Tate pairing,

h�p.z�0 /; �v0
˛ iTate D �v0

˛

�
av0
.�p.z

�
0 //

� D �v0
˛

�
a(ur)
v0
.�p.z

�
0 //

�
where we have the second equality because �v0

˛ is unramified by construction. Write

�p.z
�
0 / D $

v0.z
�
0
/

v0
� u 2 O ˝Zp

bL�
v0
D O ˝Zp

�
$

Zp
v0
˚1O�

Lv0

�
;

where $v0
is a uniformizer of Lv0

and u 2 O ˝Zp
1O�
Lv0

is a unit at v0. Then

a
(ur)
v0
.�p.z

�
0 // D Fr

v0.z
�
0
/

v0
since av0

.u/ 2 Iv � Gv , the inertia subgroup at v. Thus

h�p.z�0 /; �v0
˛ iTate D �v0

˛

�
Fr
v0.z

�
0
/

v0

� D v0.z�0 / � �v0
˛

�
Frv0

�
and this equals, by the definition of �v0

˛ , to v0.z
�
0 / � ˛.v0/, which equals, by Propo-

sition 4.6 to hz�0 ; ˛iNek and finally, by (5.2) and (5.4) to L0
�
.�˛/. This completes the

proof. �

Next, we relate the right hand side of the statement of Theorem 5.1 to a special
value of a p-adic L-function (that we call L�;ˆ) which we construct below.

Letˆ1 denote the cyclotomic Zp-extension of Qp WD ˆ0, and letˆn denote the
unique sub-extension of ˆ1=Qp of degree pn. Recall that T � D Hom.T;O.1// Š
O.�/. We set

H 11.Qp; T
�/ D lim �

n

H 1.ˆn; T
�/;

where the inverse limit is taken with respect to norm maps. We may identify
Gal.ˆ1=Qp/ naturally by � D Gal.Q1=Q/. Let � be a topological generator
for � and let ƒ D OŒŒ�		 as usual.

Lemma 5.2. The natural mapH 11.Qp; T
�/! H 1.Qp; T

�/ is surjective.
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Proof. By [Col98], Proposition II.1.1, we have H 11.Qp; T
�/ Š H 1.Qp; T

� ˝ ƒ/
and the map above is simply the reduction map modulo � � 1. Hence, the cokernel
of this map isH 2.Qp; T

�˝ƒ/Œ� �1	, the � �1 torsion ofH 2.Qp; T
�˝ƒ/. Since

the cohomological dimension of Gal.xQp=Qp/ is 2, it follows that

H 2.Qp; T
� ˝ƒ/=.� � 1/ Š H 2.Qp; T

� ˝ƒ=.� � 1// D H 2.Qp; T
�/;

which is trivial (by local duality). Thus we have an exact sequence

0 �! H 2.Qp; T
� ˝ƒ/Œ� � 1	 �! H 2.Qp; T

� ˝ƒ/
��1���! H 2.Qp; T

� ˝ƒ/ �! 0:

It is known thatH 2.Qp; T
�˝ƒ/ is an O-module of finite type (cf. Proposition 3.2.1 in

[PR94]), thus it follows from Theorem 2.4 in [Mat89] thatH 2.Qp; T
�˝ƒ/Œ��1	 D

0 as well, hence the lemma is proved. �

By Lemma 5.2, it is possible to chooseˆ D f�.n/˛ gn�0 2 H 11.Qp; T
�/ such that

�
.0/
˛ D �˛ .

Definition 5.3. Attached to � and ˆ, define an O-valued measure 
�;ˆ on � as
follows: For 
 2 � , set


�;ˆ.
�
pn

/ D L�.
�
.n/
˛ /:

The fact that
�;ˆ is a distribution follows from the fact that the collection fˆ.n/˛ gn
is norm-compatible.

We define the “p-adic L-function” associated to � and ˆ by setting

L�;ˆ.�/ D
Z
�

� d
�;ˆ

for each character � W � ! Z�
p . Let 1 be the trivial character, and �cyc W � ! 1CpZp

be the cyclotomic character. We define the derivative at the trivial character 1 as

L0
�;ˆ.1/ WD

d

ds
L�;ˆ.�

s
cyc/

ˇ̌̌
sD0:

We also define P�;ˆ 2 ƒ to be the power series associated with the measure 
�;ˆ.

Remark 5.4. Define

Pn.
�;ˆ/ WD
X


2�=�pn


�;ˆ.
�
pn

/ � 
 2 OŒ�=�p
n

	;

so that P�;ˆ D limn Pn.
�;ˆ/ 2 OŒŒ�		: For the powers �scyc W � ! 1C pZp of the
cyclotomic character, observe that

�scyc.P�;ˆ/ D lim
n!1

X

2�=�pn


�;ˆ.
�
pn

/ � �scyc. Q
/: (5.5)
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Here, Q
 2 � stands for an arbitrary lift of 
 2 �=�pn
, and it is not hard to see that

the limit above does not depend on the choice of these lifts although each sum does
depend on this choice. We therefore see that �scyc.P�;ˆ/ D L�;ˆ.�scyc/, which in turn
implies that

d

ds
�scyc.P�;ˆ/

ˇ̌̌
sD0 D L

0
�;ˆ.1/:

Proposition 5.5. L0
�
.�˛/ D L0

�;ˆ
.1/.

Remark 5.6. Note that the left hand side of the equality in Proposition 5.5 depends
only on �˛ , not on its liftˆ; whereas the right hand side depends a priori onˆ. Hence
Proposition 5.5 shows in particular that L0

�;ˆ
.1/ does only depend on �˛ , and not on

the lifting ˆ.

Corollary 5.7. hc�1 ; ˛iNek D L0
�;ˆ
.1/.

The proof of Proposition 5.5 will be completed in a few steps, all of which are
essentially borrowed from [Rub94] with minor alterations.

Definition5.8. Suppose
 D 
.0/ 2 H 1.ˆ0; T
�/ and
 D f
.n/g2 lim �H

1.ˆn; T
�/.

Define

Der�cyc
.L�/.
/ WD lim

n!1
X


2Gal.Qn=Q/

logp.�cyc.
// �L�.


.n//:

As the notation suggests, this definition only depends only on 
, not on the lift 
.
This fact will follow from Lemma 5.9 below (where we also prove that the limit above
exists).

Lemma 5.9. Suppose � 2 H 1.ˆn; T
�/ is such that Nˆn=ˆ0

.�/ D 0. ThenX

2Gal.Qn=Q/

logp.�cyc.
// �L�.
�/ � 0 mod pn:

Proof. Fix n and to ease notation, set L D L�

ˇ̌
H1.ˆn;T �/

2 Hom
�
H 1.ˆn; T

�/;O
�

and G D Gal.Qn=Q/. Write

ı D
X

2G

logp
�
�cyc.
/

� � 
�1 2 Z=pnZŒG	:

Note that the claim of the lemma is equivalent to showing that

ıL.�/ D 0 .in O=pnO/: (5.6)
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It is easy to see that

.� � 1/ı D logp
�
�cyc.�/

� X

2G




D logp.�cyc.�// � Nˆn=ˆ0
; for all � 2 G;

hence it follows that

.� � 1/ıL D logp.�cyc.�// � Nˆn=ˆ0
L D 0;

where we have the final equality because L
ˇ̌
H1.ˆ0;T �/

D 0 by Lemma 3.3. This is
equivalent to saying that

ıL 2 Hom.H 1.ˆn; T
�/;O=pnO/G : (5.7)

Consider the map

N� W Hom.H 1.ˆ0; T
�/;O=pnO/

� B Nˆn=ˆ0 �� Hom.H 1.ˆn; T
�/;O=pnO/G :

Note that both of the sides of above are finite and the mapN� is injective by Lemma 5.2.
Claim below proves that there is an isomorphism

Hom.H 1.ˆn; T
�/;O=pnO/G Š Hom.H 1.ˆ0; T

�/;O=pnO/

which in turn implies that N� is surjective as well:

Claim. Hom.H 1.ˆn; T
�/;O=pnO/G Š Hom.H 1.ˆ0; T

�/;O=pnO/:

Proof of the Claim: By slight abuse, we let � denote a generator of G. Then, an
element  2 Hom.H 1.ˆn; T

�/;O=pnO/ is fixed by G if and only if

��1 D  ()  .�x/ D  .x/ for all x 2 H 1.ˆn; T
�/

()  ..� � 1/x/ D 0 for all x 2 H 1.ˆn; T
�/

()  factors through H 1.ˆn; T
�/=.� � 1/ Š H 1.ˆ0; T

�/:

where the very last isomorphism comes from the proof of Lemma 5.2. �

We are now ready to complete the proof of Lemma 5.9. It follows from our
conclusion that N� is surjective that there exists g 2 Hom.H 1.ˆ0; T

�/;O=pnO/

such that ıL D g B Nˆn=ˆ, hence

ıL.�/ D g.Nˆn=ˆ0
.�// D 0 in O=pnO:

This is exactly the statement of (5.6). �
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Remark 5.10. As in the remark following Lemma 3.1 in [Rub94], one can check that

Der�cyc
.L�/ D L0

�

using the fact that H 1.Qp; T ˝ƒ/ has no .� � 1/-torsion. Here the equality takes
place in Hom

�
H 1.ˆ0; T

�/;O
�
. Note that the term involving the p-adic logarithm

in loc.cit. does not appear here because we have already normalized z�1 by the factor
logp �cyc.�/.

Proof of Proposition 5.5. (Compare with Proposition 7.1 (ii) in [Rub94].) By Re-
mark 5.10,

L0
�.�˛/ D lim

n!1
X


2Gal.Qn=Q/

logp �cyc.
/ �L�.
ˆ
.n/
˛ /

D lim
n!1

X

2Gal.Qn=Q/

logp �cyc.
/
�;ˆ.
�
pn

/

D
Z
�

logp �cyc � d
�;ˆ:

On the other hand
d

ds
�scyc D .logp �cyc/�

s
cyc;

hence

L0
�;ˆ.1/ D

d

ds

�Z
�

�scyc � d
�;ˆ
� ˇ̌̌

sD0 D
�Z

�

.logp �cyc/�
s
cyc � d
�;ˆ

� ˇ̌̌
sD0

D
Z
�

logp �cyc � d
�;ˆ
D L0

�.�˛/: �

6. p-adic L-functions and Nekovář’s height pairing

In this section, we obtain a formula for the leading term of an imprimitive Kubota–
Leopoldt p-adic L-function in terms of Nekovář’s height pairing, much in the spirit
of a p-adic Gross–Zagier formula, using the Rubin-style formula we proved above.
This in particular suggests a new interpretation of the classicalp-adic Kronecker limit
formula (cf. [Was82], Theorem 5.18, §2.5 of [dS87]) and the formula of Ferrero–
Greenberg [FG78].

6.1. p-adic L-functions. In this section, we give an overview of the well-known
construction of the Kubota–Leopoldt p-adic L-function (resp., Katz’s two variable
p-adic L-function) using cyclotomic units (resp., elliptic units).
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6.1.1. Cyclotomicunits and theKubota–Leopoldtp-adicL-function. We denote
by ! W GQ ! .Z�

p /tors the Teichmüller character giving the action ofGQ on the p-th

roots of unity
p . Fix an embedding O ,! xQp ,! C so that one can identify complex
and p-adic characters of finite order of GQ. Via this identification, a character � of
� of finite order naturally extends to an O-algebra homomorphism � W ƒ! xQp .

For a character � W GQ ! O ,! C of finite order, letL.s; �/ denote the associated
Dirichlet L-series .

Definition 6.1. Attached to a non-trivial even Dirichlet character  of GQ whose
order is prime to p, there is an element L 2 ƒ such that for every k � 1 and every
character � of finite order of � ,

�kcyc�.L / D .1 � !�k� .p/pk�1/L.1 � k; !�k� /:

See Theorem 7.10 in [Was82]. The element L is called the p-adic L-function
attached to  .

Remark 6.2. Starting from L above, one may construct a functionLp.s;  / (which
is analytic at all s 2 Zp) by setting

Lp.s;  / D �1�s
cyc .L /:

Recall thatLn D LQn andL1 D LQ1. For a prime p, letUn;p denote the local
units inside .Ln/p . Let Un WD Q

pjp Un;p be the group of semi-local units and let

Vn D
�
Ln ˝Qp

�� DQ
pjp.Ln/�p . By Kummer theory, we have an identification

H 1..Ln/p ;O.1// ��!� �Vn and H 1..Qn/p ; T / ��!� V�
n ; (6.1)

where we recall that yA denotes thep-adic completion of an abelian groupA and when
A is endowed with an action of Gal.L=Q/, we write A� for the �-part of yA. Define
U1 D lim �n Un and V1 D lim �n Vn, where the inverse limits are taken with respect
to the norm maps. The identifications (6.1) above then gives in the limit

H 1.Qp; T ˝ƒ/ ��!� V�1: (6.2)

Coleman introduced in [Col79] a useful tool which as an input takes a norm
coherent sequences in a tower of local fields and gives as an output a power series.
More precisely, Coleman defines a ƒ-module homomorphism

col 1 W U 1 �! OŒŒ�		 (6.3)

with the property that
col 1.� 1/ D L ; (6.4)
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where we recall that � 1 2 U
 1 is the norm coherent sequence of cyclotomic units

along the tower of fields fLngn�0. Let� be a topological generator of� as fixed above.
If the character is unramified atp, then col 1 extends uniquely to a homomorphism

col 1 W V 1 �!
1

� � 1OŒŒ�		: (6.5)

See §3 of [Sol92], §2 of [Gre92] and §4 of [Tsu99] for a detailed description of
Coleman’s map.

We define using (6.5)

fcol 1 D
� � 1

1
p

logp.�cyc.�//
� col 1 W V 1 �! ƒ; (6.6)

so that fcol 1.� 1/ D
� � 1

1
p

logp.�cyc.�//
�L and fcol 1.z 1/ D pL ; (6.7)

z
 12V

 1 being the collection of wild cyclotomicp-units. Note that 1
p

logp.�cyc.�// 2
Z�
p since � 2 � assumed to be a topological generator and since we assumed p is

odd.

6.1.2. Elliptic units and Katz’s p-adic L-function. Let O be the completion of
the ring of integers of the maximal unramified extension of F and let k be a quadratic
imaginary number field such that p splits in k=Q. Write p D }}� with } ¤ }�.
We adapt the notation and hypotheses from §1.1, in particular, k1 is the unique
Zp-extension of k which is unramified outside } and � D Gal.k1=k/. Write
k.f}1/ DS

n�0 k.f}nC1/ and let

�E W Gal .k.f}1/=k.f// �! Z�
p

be the character whose construction is sketched in §1.1; and let �� be its restriction
to � . We may similarly define ��

E , �� and ��� by replacing } by }�. Set G D
Gal.k.fp1/=k.f// and ƒ D OŒŒG 		. We denote the Grössencharacter character
attached to the elliptic curve E also by �E , which should cause no confusion since
these two characters are related in a manner described in [Wei56].

For a Grössencharacter  of k of type A0 (in the sense of [dS87], §II.1) and an
integral ideal m � k, the HeckeL-series of (with modulus m) is the complex valued
functionL1;m. ; s/ DP

 .a/Na�s , where a runs over all integral ideals relatively
prime to m. Let dk 2 Z� be the discriminant ofK. As before, let � W Gk ! O� be a
Dirichlet character whose order is prime to p and let� be the positive real period of
a global minimal model ofE. For notational simplicity, write � D �E and �� D ��

E .

The following theorem describes the 2-variable }-adic L-function, first con-
structed by Katz [Kat76] and Manin and Vishik.
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Theorem 6.3. For j; k 2 Z, set � D �kE�
�
E
j�. There is a }-adic period �} 2 ƒ

and an element L� 2 ƒ such that for 0 � �j < k,

�j�k
} L�.�

k��j / D �j�k.k � 1/Š
�p�dk

2�

�j
�G.�/

�
1 � �.}/

p

�
� L1;}.�

�1; 0/:

See Theorem II.4.14 in [dS87] for details (e.g., for a definition of G.�/) and for
the proof.

In this paper, we are only interested in the restriction L�

ˇ̌
�

of the 2-variablep-adic
L-function L� to characters of � . Starting from the one-variable p-adic L-function
L�

ˇ̌
�

, we define L}.s; �/ D L�

ˇ̌
�
.�1�s
� /.

For kn as in §1.1, write Ln D Lkn. For a prime q, let Un;q be the local units
inside .Ln/q, and let Un DQ

qj} Un;q be the group of semi-local units. Set U1 D
lim �n Un. As in §6.1.1, we consider Coleman’s map

col�1 W U�1˝OO �! OŒŒ�		;

see §I.3.5 of [dS87] for a definition of this map. The map col�1 here is the map “ i ”
of loc.cit. restricted to the �-parts and to the �-direction.

Let wn 2 L�
n be the elliptic unit denoted by �n by Bley [Ble04], §3. The collection

w
�1 WD fw�

ng 2 U
�1 is called the collection of wild elliptic units along � . As wild

cyclotomic units recovers the Kubota–Leopoldt p-adicL-function, wild elliptic units
along � may be used to obtain the one-variable p-adic L-function:

col�1.w�1/ D L�

ˇ̌
�
: (6.8)

This fact has been first proved by Coates and Wiles [CW78]. For the 2-variable
version of (6.8), see [Yag82] and [dS87], §IV.

6.2. Height computations for the base field Q: The case � is even. Let � be an
even Dirichlet character as before. Recall thatˆn D .Qn/p , and recall also the fixed
place v0 of L which is induced from the embedding �p W xQ ,! xQp . Write v0 for the
unique place of Ln which lies above v0 and define Ln D .Ln/v0

. In this section, we
construct a particular collection

ˆ D f�.n/gn 2 H 1.Qp; T
� ˝ƒ/ D lim �

n

H 1.ˆn; T
�/

starting from fcol
�1, which we use together with Corollary 5.7 to prove a formula for

the leading term of an imprimitive Kubota–Leopoldt p-adic L-function.
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As in (5.1), we have identifications

H 1.ˆn;O.�// D
� M
vjp

H 1..Ln/v;O/
���1 �

��1����! H 1.Ln;O/ D Hom.GLn
;O/

D Hom.cL�
n ;O/:

Here the direct sum is over the places of L which lie above p with the convention
that the unique place of Ln above a place vjp of L is also denoted by v. Also, ���1

is the projection to the v0-coordinate and the final equality is obtained by local class
field theory. Furthermore, as in (5.3), we have identifications

H 1.ˆn;O.1/˝ ��1/ D � L
vjpH 1..Ln/v;O.1//

�� ���!
��

H 1.Ln;O.1//

D cL�
n ˝Zp

O;

which, put together with the identification above gives isomorphisms

Hom
�
H 1.ˆn; T /;O

� ��!� Hom.cL�
n ;O/ ��!� H 1.ˆn; T

�/: (6.9)

Note that both isomorphisms in (6.9) depend on the choice of v0, yet the compositum
of them does not.

Let UH 1.ˆn; T / � H 1.ˆn; T / denote submodule of universal norms inside of
H 1.ˆn; T /, i.e., the image of the canonical ƒ-module homomorphism

H 1.Qp; T ˝ƒ/ D lim �
m

H 1.ˆm; T / �! H 1.ˆn; T /:

The Coleman map fcol
�1 W lim �mH

1.ˆm; T / D lim �m V
�
m �! ƒ induces (since it is

ƒ-linear) a OŒ�n	-module homomorphismfcol�n W UH 1.ˆn; T / �! OŒ�n	:

For a finitely generated OŒ�n	-module M , there is a canonical isomorphism

b W HomO.M;O/ ��!� HomOŒ�n
.M;OŒ�n	/; f 7�! �
m 7!P

g2�n
f .g�1m/ � g�

(cf. [Bro94], Proposition VI.3.4). Using the isomorphism b applied with M D
UH 1.ˆn; T /, we define �.n/ by requiring b.�.n// D fcol

�
n .

Lemma 6.4. The O-module

H 1.ˆn; T /=UH
1.ˆn; T / Š coker

�
H 1.Qp; T ˝ƒ/! H 1.ˆn; T /

�
is free of rank one.
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Proof. By the long exact sequence of GQp
-cohomology we have

coker
�
H 1.Qp; T ˝ƒ/! H 1.ˆn; T /

� D H 2.Qp; T ˝ƒ/Œ�pn � 1	:

By Proposition II.1.1 in [Col98] and by local duality, we have

H 2.Qp; T ˝ƒ/ D lim �
n

H 2.ˆn; T / D lim �
n

Hom
�
H 0.ˆn;F=O.�//;F=O/

�
D Hom

�
lim�!
n

H 0.ˆn;F=O.�//;F=O/
�
Š O;

which is free of rank one as an O-module. �

Remark 6.5. In this remark, we give a further study of the universal norms
UH 1.ˆn; T / inside H 1.ˆn; T /. For notational simplicity, we assume O D Zp;
the general case may be treated tensoring all our conclusions in this remark by O.
Furthermore, since we assume �.p/ D 1 (i.e., �jGQp

D 1), it suffices to study the

universal norms UH 1.ˆn;Zp.1// inside H 1.ˆn;Zp.1//.

(i) Let $n 2 ˆ�
n be a uniformizer which is chosen in a way that Nˆn=ˆm

.$n/ D
$m for every n � m. Let Un the units of ˆn. Kummer theory gives an
identification

H 1.ˆn;Zp.1// D ĉ�
n D $Zp

n �cUn:
Since p 2 H 1.Qp;Zp.1// D pZp � cZ�

p is a universal norm, it follows from

Lemma 6.4 that no local unit (i.e., an element of cZ�
p � bQ�

p ) besides 1 is a
universal norm, and we have UH 1.Qp;Zp.1// D pZp under the identification

above. Set Y0 D cZ�
p , so that we have a decomposition H 1.Qp;Zp.1// D

UH 1.ˆ0;Zp.1// � Y0 into rank-one Zp-modules. Note that we adopt here the
multiplicative notation for these abelian groups.

(ii) For every n � m, the restriction map

resˆm=ˆn
W H 1.ˆm;Zp.1// �! H 1.ˆn;Zp.1//

Gal.ˆn=ˆm/ ,! H 1.ˆn;Zp.1//

is simply the natural injectionbˆ�
m ,! ĉ�

n . Whenm D 0, write resn for resˆn=Qp
.

(iii) If 1 ¤ u 2 cZ�
p � H 1.Qp;Zp.1//, then resn.u/ is not a universal norm. Indeed,

if otherwise, Nˆn=Qp
.resn.u// D up

n 2 cZ�
p would then be a universal norm

and hence up
n D 1 by (i). Since cZ�

p is torsion-free, it follows that u D 1. Let

Yn D im
�
Y0

resn�! H 1.ˆn;Zp.1//
�
:
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(iv) The quotient H 1.ˆn;Zp.1//=Yn D ĉ�
n

ı
im.cZ�

p ,! ĉ�
n / is torsion-free. In-

deed, if an element of the quotient ĉ�
n

ı
im.cZ�

p ,! ĉ�
n / represented by x 2ĉ�

n � cZ�
p is p-torsion, so that xp 2 cZ�

p , then we would have 
p � ˆ�
n , which

is not true. Hence, Yn is a free rank-one direct summand of H 1.ˆn;Zp.1//.
(v) By Lemma 6.4, we have

rankZp
UH 1.ˆn;Zp.1// D rankZp

H 1.ˆn;Zp.1// � 1: (6.10)

Using (iii), (iv) and (6.10), we conclude that

H 1.ˆn;Zp.1// D UH 1.ˆn;Zp.1// � Yn
as Zp-modules.

Remark 6.5 (v) ensures that one may extend �.n/ W UH 1.ˆn; T /! O to a homo-
morphismH 1.ˆn; T /! O, by declaring �.n/.c/ D 0 for c 2 Yn. Note in particular
for n D 0 that the map �.0/ D fcol

�
0 W H 1.Qp; T / �!� bL�

v0
˝Zp

O ! O (which is
extended from UH 1.Qp; T / as described above) is unramified since it is identically

zero on the units 1O�
Lv0
˝Zp

O by construction (as explained in Remark 6.5(i)).

Let $v0
2 L�

v0
be a uniformizer and set ˛.v0/ D fcol

�
0 .$v0

/ 2 O. Note that the

value fcol
�
0 .$v0

/ is well defined thanks to the discussion in the preceding paragraph.
Let col

�
0 2 zH 1

f
.Q; T �/ be the element which maps to ˛.v0/ under the compositum

of the isomorphisms (4.2). Furthermore, one may verify without difficulty that the
collectionˆ D f�.n/g chosen as in this section is norm-coherent and the Rubin-style
formula we proved (Corollary 5.7) applies with the particularˆwe have constructed.
Before stating the theorem we prove using these facts, we first define what we call
the “imprimitive p-adic L-function”.

Definition 6.6. For L� 2 ƒ as above and for any topological generator � 2 � , write	L� WD ��1
1
p logp �cyc.�/

�L� 2 ƒ; and define the imprimitive p-adic L-function to be

zLp.s; �/ D �1�s
cyc .

	L�/:

Note that,

� zLp.s; �/ is an Iwasawa function,

� d
ds
zLp.s; �/

ˇ̌̌
sD1 does not depend on the choice of � .

Theorem 6.7. Suppose �.p/ D 1 and let zLp.s; �/ be the imprimitive p-adic L-
function defined as above. Then

zL0
p.1; �/ D hc�1 ; col

�
0iNek:
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Proof. As in §5, let 
�;ˆ be the measure on � attached to � D �
�1 and ˆ we chose

as above, let P�;ˆ 2 ƒ be the associated power series and let L�;ˆ.�/ denote the
‘p-adic L-function’ on the characters � W � ! Z�

p . We then have

P�;ˆ D fcol�1.��1/ D
� � 1

1
p

logp �cyc.�/
� col�1.��1/

D � � 1
1
p

logp �cyc.�/
�L�:

We therefore see that

d

ds
�scyc.P�;ˆ/

ˇ̌̌
sD0 D p � 1.L�/ D p � Lp.1; �/ D d

ds
zLp.s; �/

ˇ̌̌
sD1; (6.11)

where we have the first equality because d
ds
�scyc D logp �cyc � �scyc, the second thanks

to our definition of Lp.s; �/ (see Remark 6.2).

On the other hand, we have d
ds
�scyc.P�;ˆ/

ˇ̌
sD0 D L0

�;ˆ
.1/ by Remark 5.4, and the

theorem follows combining (6.11) and Corollary 5.7. �

Remark 6.8. When � is an even character with �.p/ D 1, the exceptionality that
Nekovář’s extended Selmer groups detect are not due to an honest exceptional zero
of the associated Kubota–Leopoldt p-adic L-function, but rather due to the fact that
the extended Selmer groups correspond to an imprimitive p-adic L-function.

6.3. Height computations for the base field Q: The case � is odd. We suppose
now that � W GQ ! O� is an odd Dirichlet character whose order is prime to p and
which has the property that �.p/ D 1. Keeping the notation of §2.1 and §2.2, we
have the following identifications as in Proposition 2.10 and Corollary 2.11:

zH 1
f .Q; T / D H 1

Fcan
.Q; T / D �

OL Œ1=p	
���

; (6.12)

H 0.Qp;O.�// ��!� zH 1
f .Q; T

�/: (6.13)

In particular, zH 1
f
.Q; T �/ is a free O-module of rank one. Also, since � is odd and

�.p/ D 1, the O-module zH 1
f
.Q; T / is also free of rank one.

The assumption that �.p/ D 1 implies that the prime p splits completely in
L=Q. Let } � L be any prime above p and let �} W L ,! L} D Qp be the induced
embedding. Let h denote the class number of L, and let x 2 OLŒ1=p	

� be such that
OL � x D }h: Define

z D e� � x 2 .OLŒ1=p	�/� D zH 1
f .Q; T / and z0 D 1

h
� z 2 zH 1

f .Q; T /˝Qp:
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It is not hard to see that the L-invariant (cf. [Gre94], §1)

L WD logp.�}.z//

ord}.z/
D logp.�}.z0// 2 F D Frac.O/

is independent of the choice of the place } and the choice of x.

Let f D fL be the conductor of the abelian field L. We regard the character � as
a character of the group �f WD Gal.Q.
f /=Q/ via

� W �f �� Gal.L=Q/! O�

and define the tame Stickelberger element

�f D
X

a2.Z=fZ/�Š�f

�hai
f
� 1
2

�
ı�1
a 2 OŒ�f 	;

so that
�.�f / D B1;��1 D �L.0; ��1/;

where B1;��1 is the generalized Bernoulli number.

Fixing generators g� of O.�/ and g��1 of O.��1/, and using the fact that �.p/ D
1, we obtain isomorphisms

g� W H i .Qp; T / ��!� H i .Qp;O.1// and g��1 W H i .Qp; T
�/ ��!� H i .Qp;O/

for every i � 0. We chooseg� andg��1 so that the following diagram is commutative:

H i .Qp; T /

g�

��

˝ H 2�i .Qp; T
�/

g
��1

��

h ; iTate �� O

H i .Qp;O.1// ˝ H 2�i .Qp;O/
h ; iTate �� O.

Via the identifications above, we view �.�f / as an element of zH 1
f
.Q; T �/.

Let h ; iNek be Nekovář’s height pairing as in §2.1.3 above. We write h ; iNek also
for the induced pairing� zH 1

f .Q; T /˝F
�˝ � zH 1

f .Q; T
�/˝F

� h ; iNek�����! F:

Theorem 6.9. hz0; �.�f /iNek D �L � L.0; ��1/.

Proof. The statement of this theorem is equivalent to the assertion that

hz; �.�f /iNek D logp.�}.z// � �.�f /: (6.14)
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As we have recalled in §2.1.3, we have hz0; �.�f /iNek D hˇ1.z0/; �.�f /iPT, where

ˇ1 W zH 1
f .Q; T / �! zH 2

f .Q; T /˝ �
is the Bockstein map which is defined as follows:

For s 2 zH 1
f
.Q; T /, we defineˇ1.s/ D s[c 2 zH 2

f
.Q; T˝�/ D zH 2

f
.Q; T /˝� ,

where c 2 H 1.Q; �/ D Hom.GQ; �/ is the tautological homomorphism c W GQ !
� . One similarly defines

ˇ1p W H 1.Qp; T / �! H 2.Qp; T /˝ �
by taking cup product with the element cp 2 H 1.Qp; �/ D Hom.GQp

; �/, which is
the restriction of c to GQp

. We then have the following commutative diagram:

zH 1
f
.Q; T /

��

ˇ1

�� zH 2
f
.Q; T /˝ �

��

˝ zH 1
f
.Q; T �/ h ; iPT �� �

logp B�cyc�� O

H 1.Qp; T /
ˇ1

p

�� H 2.Qp; T /˝ � ˝ H 0.Qp; T
�/

Š
��

h ; iTate

�� �
logp B�cyc�� O.

Here, the square on the left is commutative thanks to the description of ˇ1 and ˇ1p
above, and the square on the right is commutative by the definition of the Poitou–Tate
global pairing as the sum of local invariants, and thanks to the fact thatH 2.Q`; T / D 0
for `jf�. The proof of the theorem follows from the following lemma, whose first part
is a restatement of [Nek06], 11.3.5.3, and second part is Lemma II.1.4.5 in [Kat93]:

Lemma 6.10. Suppose ˛ 2 H 1.Qp;O.1// DbQ�
p , and suppose ap WbQ�

p ! Gab
Qp

is
the local reciprocity map as before.

(i) invp.ˇ1p.˛// D invp.˛ [ cp/ D cp.ap.˛//.

(ii) logp B �cyc B cp
�
ap.˛/

� D logp.˛/. �

Remark 6.11. The interpolation property that the p-adic L-function Lp.s; ��1!/
satisfies (see Definition 6.1), along with our assumption that �.p/ D 1 forces the
Kubota–Leopoldt p-adic L-function Lp.0; ��1!/ to vanish at s D 0. The theorem
of Ferrero–Greenberg [FG78] combined with a result of Gross and Koblitz [GK79]
shows that

d

ds
Lp.s; �

�1!/
ˇ̌
sD0 D �L � L.0; ��1/:

Thus, Theorem 6.9 implies that

d

ds
Lp.s; �

�1!/
ˇ̌
sD0 D hz0; �.�f /iNek: (6.15)
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This provides us with a new interpretation of the Ferrero–Greenberg theorem. Of
course, it would be desirable to prove first a Rubin-style formula (as we did in §5)
in this setting and from that deduce (6.15) and the Ferrero–Greenberg theorem (as
we prove a p-adic Kronecker formula from a Rubin-style formula in §6.2 above and
§6.4 below).

Remark 6.12. Suppose in this remark that our base field K is an arbitrary totally
real number field and � W GK ! O� is a totally odd character which has finite
prime-to-p order. Assume further that �.}/ D 1 for exactly one prime } � K

above p. In this setting, Gross conjectured in [Gro81] a formula for the leading
coefficient L0

p.0; �
�1!/ of the Deligne–Ribet p-adic L-function Lp.s; ��1!/ at

s D 0, and Darmon, Dasgupta and Pollack recently announced a proof of a portion of
this conjecture. Using their result, we may expressL0

p.0; �
�1!/ in terms of Nekovář’s

heights exactly as we did above for the Kubota–Leopoldt p-adic L-function when
K D Q.

On the other hand, if one succeeds in proving a Rubin-style formula in this setting4,
then one in turn would obtain an alternative proof of Gross’ conjecture.

6.4. Height computations for a totally imaginary base field k. We keep the no-
tation from §6.1.2. Every Dirichlet character � of Gk behaves like an even character
and the results we presented in §5 and §6.2 extend to this case without an extra effort.
Replacing the cyclotomic units by elliptic units, and the results of [BG03] by that
of [Ble06]; the results of [Sol92] by that of [Ble04], one may prove the following
formula:

Theorem 6.13. Suppose �.}/ D 1. Then

zL0
p.1; �/ D he�1 ; col

�
0iNek:

Here we follow the notation from §6.1.2. Namely,

� e1 is the (tame) elliptic unit which is denoted by Nk.f/=L .1; f; a/ in [Ble04]
and e

�
1 2 zH 1

f
.k; T / D H 1

Fcan
.k; T / D L�;� is the � part of e1,

� col
�
0 2 zH 1

f
.k; T �/ is the element which is obtained from the Coleman map (as

in §6.2),

� zLp.s; �/ D �1�s
cyc .�/�1

1
p logp �cyc.�/

� Lp.s; �/ is the imprimitive (one-variable) Katz p-

adic L-function, where Lp.s; �/ is the restriction of the two-variable p-adic
L-function to � .

4It is expected that obtaining a Rubin-style formula for a general totally realk (and for a totally odd character�)
should not be any harder than proving such a formula for k D Q.
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Remark6.14. SupposeE=Q is an elliptic curve and only in this remark, letT D Tp.E/
be the p-adic Tate-module of E. Let Lp.E; s/ denote the Mazur–Tate–Teitelbaum
p-adic L-function attached to E. Assume that E has split multiplicative reduction
at p. In this case, Lp.E; s/ has an exceptional zero at s D 1 which is forced by the
interpolation property. The Mazur–Tate–Teitelbaum conjecture (now a theorem of
Greenberg and Stevens [GS93]) asserts that

d

ds
Lp.E; s/

ˇ̌
sD1 D LE � L.E; 1/

�C
E

(6.16)

where LE is the L-invariant, L.E; 1/ is the value of the Hasse–Weil L-function at
s D 1 and �C

E is the real period of E. Let

h ; iTate W H 1.Qp; T /˝H 1.Qp; T
�/ �! Zp

denote Tate’s local cup-product pairing. M. Kurihara has kindly explained us how one
may interpret the quantity on the right in (6.16) as the local Tate pairing calculated on
Kato’s zeta-element Z0 2 H 1.Qp; T / and another special element ˛ 2 H 1.Qp; T

�/
(which we do not define here). Using this observation, Kurihara was able to give
another proof of the Mazur–Tate–Teitelbaum conjecture (6.16).

If one succeeds in proving a Rubin-style formula in this setting, one could globalize
Kurihara’s calculation with Kato’s zeta-element Z0 and the element ˛, so as to obtain
a p-adic Gross–Zagier formula in the presence of an exceptional zero, i.e., relate
Nekovář’s height pairing to the Mazur–Tate–Teitelbaum p-adic L-function via

(1) a Rubin-style formula to relate heights to local Tate pairing,

(2) then using Kurihara’s local calculation,

much in the spirit of [BD96], [BD97].
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