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On the uniform perfectness of the groups of diffeomorphisms of
even-dimensional manifolds

Takashi Tsuboi *

Abstract. We show that the identity component Diff” (M2"")q of the group of C” diffeo-
morphisms of a compact (2m)-dimensional manifold M 2m (] <r < oo, r # 2m+ 1) is
uniformly perfect for 2m > 6, i.e., any element of Diff” (M2™)q can be written as a product
of a bounded number of commutators. It is also shown that for a compact connected manifold
M?™ (2m > 6), the identity component Diff” (M) of the group of C” diffeomorphisms
of M2m (1 < r < oo, r # 2m 4+ 1) is uniformly simple, i.e., for elements f and g of
Diff” (M?")q \ {id}, f can be written as a product of a bounded number of conjugates of g or

g
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1. Introduction

For an n-dimensional manifold M", let Diff’.(M") denote the group of C” diffeo-
morphisms of M" with compact support (1 < r < oo). Here, the support of a
diffeomorphism f of M" is defined to be the closure of {x € M | f(x) # x}. Fora
compact manifold M", Diff(M") coincides with the group Dift" (M") of C" dif-
feomorphisms of M". Let Diff, (M")o denote the identity component of Dift’, (M").
Here Dift’, (M") is equipped with the C” topology ([16], [23]). By the results of Her-
man, Mather and Thurston ([11], [14], [16], [23], [2]), for an n-dimensional manifold
M", Diff[,(M™)y is a perfect groupif r = 0or 1 <r < ooandr # n + 1. Here,
a group is said to be perfect if it coincides with its commutator subgroup. In other
words, a group is perfect if any element can be written as a product of commutators.
The perfectness of a group is equivalent to the vanishing of first homology group of
the group. The homological properties of the group Dift”. (M™), has been studied in
connection with the theory of foliations ([23]).

*The author is partially supported by Grant-in-Aid for Scientific Research (A) 20244003, Grant-in-Aid for
Exploratory Research 21654009, Japan Society for Promotion of Science, and by the Global COE Program at
Graduate School of Mathematical Sciences, the University of Tokyo.
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In general, for an element g of the commutator subgroup [G, G] of a group G,
its commutator length is defined to be the minimum number of commutators whose
product is equal to g. It is natural to ask whether the commutator length function
cl: [G,G] — Z is bounded. When the commutator length is not bounded, then it
is very interesting to know about the stable commutator length defined by scl(g) =
lim,_o0cl(g”)/n in Bavard [3]. The stable commutator length function is related
with the bounded cohomology groups H;'(G) of the group G defined by Gromov
(7]). Namely, the homomorphism H7(G) — H?*(G) is injective if and only if
the stable commutator length function vanishes on [G, G]. This is formulated as the
Bavard duality theorem which describes the stable commutator length in terms of
homogeneous quasimorphisms ([3]). In recent years, the stable commutator length
and the quasimorphisms appear as an important key to study infinite groups (see for
example [5] and its references).

We say that a group is uniformly perfect if any element can be written as a product
of a bounded number of commutators. It is easy to see that the uniform perfectness
implies the vanishing of stable commutator length function, and hence the injectivity
of the map from the second bounded cohomology group to the usual one.

For the question of uniform perfectness of the group of diffeomorphisms, the
following results are shown in [4], [30] and [31].

Theorem 1.1 (Burago—Ivanov—Polterovich [4], Tsuboi [30], [31]).

(1) Fortheinterior M" of a compact n-dimensional manifold which admits a handle
decomposition only with handles of indices not greater than (n — 1)/2, any
element of Diff,(M")o (1 < r < oo, r # n + 1) can be written as a product
of two commutators.

(2) For a compact even-dimensional manifold M>™ which has a handle decom-
position without handles of the middle index m, any element of Diff” (M?™),
(1 <r <o00,r # 2m + 1) can be written as a product of four commutators.

(3) For an arbitrary compact odd-dimensional manifold M>™1, any element of

Diff" (M?™ 1)y (1 < r < oo, r # 2m + 2) can be written as a product of five
commutators.

Now the result of this paper concerns the remaining cases.

Theorem 1.2. The identity component Diff” (M?™)q of the group of C” diffeomor-
phisms Diff” (M?™) of the compact (2m)-dimensional manifold M*™ (1 < r < oo,
r # 2m + 1) is uniformly perfect for 2m > 6, i.e., any element of Diff” (M?™)q can
be written as a product of a bounded number of commutators.

Here the bound for the number of commutators may depend on manifolds. For
the manifolds of dimensions 2 and 4, the problem of uniform perfectness of the
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identity component of the group of diffeomorphisms is still open. The vanishing of
the stable commutator length of these groups is not known either. It is interesting to
find some other approach to study the stable commutator length of diffeomorphism
groups which might solve the remaining cases (see [4], [12]).

The argument deducing the simplicity of Diff” (M ") from the proof of its per-
fectness ([8], [23], [2]) applies to showing the uniform simplicity from the proof of
its uniformly perfectness ([31]). We say that a group G is uniformly simple if, for
elements f and g of G \ {1}, f can be written as a product of a bounded number of

conjugates of g or g~ 1.

Corollary 1.3. For a compact connected (2m)-dimensional manifold M*™ (2m >
6), the identity component Diff” (M?™) of the group Diff” (M?™) of C" diffeomor-
phisms of M?™ (1 < r < 00, r # 2m + 1) is uniformly simple.

The main part of the proof of Theorem 1.2 is a decomposition of an isotopy into
a bounded number of isotopies with controlled support. Then the theorem follows
from Theorem 1.1 (1) in a way similar to the proof of Theorem 1.1(2) and (3) in
[30] and in [31]. For the decomposition, we give a technique to find the Whitney
disks which guide to separate two stratified subsets of the middle dimension m. The
condition 2m > 6 on the dimension implies that the Whitney disks can be disjointly
embedded in the manifold and enables us to show Theorem 1.2.

We review the proof of Theorem 1.1 in Section 2 and there we give lemmas about
the general position of two stratified subsets which were not correctly stated in [31].
Then we give the proof of Theorem 1.2 in Section 3. The proof of lemmas used in
Section 3 is given in Sections 4 and 6. We show Corollary 1.3 in Section 5.

The author is grateful to the referee for patient and careful reading and for pointing
out several errors in the earlier versions, one of which is a misleading statement on
relationship between the decomposition by the stable manifolds of a gradient flow of
a Morse function and a cellular decomposition of the manifold (see Section 6).

2. Decomposition of isotopies

The proof of our Theorem 1.2 relies on the general position argument for differentiable
maps between manifolds with stratified subsets. In [30] and [31], we looked at the
general position of the differentiable mappings from a cellular complex to a manifold
with differentiable cellular decomposition.

The argument in [30] and [31] works for differentiable manifolds with stratified
subsets which are defined as follows: Let M”" be an n-dimensional manifold. A
subset X of M" is an m-dimensional stratified subset if there is a filtration

X=X xm 5.5 xW5 xO
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such that, fork =0, ..., m,

(1) X® is a closed subset,

2) X®\ x*=1 is a k-dimensional submanifold of M",
(3) for the closure X ®) \ X ®=1 of x®)\ x k=1

X®\ xED\ (x® \ xE=Dy c x k=D,

The subset X ®) is called the k-dimensional skeleton of X. This definition of the
stratified subsets is a weak one ([36], [24]).

First we show the following lemma which is the necessary generalization of
Lemma 4.3 in [30] or Lemma 2.3 in [31].

Lemma 2.1. Let M" be an n-dimensional manifold with a compact k-dimensional
stratified subset K*, and N™ be an m-dimensional manifold with a compact £-
dimensional stratified subset L. Let f: N™ — M" be a differentiable map. If
k + €41 < n, then there is an isotopy {@; : M" — M"},c0,1] (Po = id) such that
P(KF) N (LY = 0.

Proof. We construct the isotopy @;, skeleton by skeleton. Let K @) denote the u-
dimensional skeleton of K¥ ;

KF=K® 5...5 kM 5 g©,

Assume that for u — 1 < k — 1, there is an isotopy {@}‘_1},6[0,1] (@6‘_1 = id) such
that
VI K@Dy f(LY = 0.

Then there is a neighborhood U,,—; of K®~V such that ®¥~1(U,_;) N f(L*) = 0.

Now for u < k, we construct an isotopy {®@}};ec[0,1] (®§ = id) such that
(Di‘(K(")) N f(LY) = 0. Since K® is closed in K¥, K® \ U,_; is compact
and is covered by finitely many coordinate neighborhoods {(D¥ x D"_“),'}ZZ1 of
M?" of the form D% x D" % where D% and D" % are the closed balls of radius 1 in
RY* and R"™¥, respectively, and

(K\ Uy1) 0 (DY x D"™); € (DY x {0});.
Moreover we can take such neighborhoods that the family
. . — ku
{(1nt(D’1‘/2) X 1nt(D’1’/2“)),-}i=1
still covers K ®) \ Uy—1, and

ku
K@\ Uyey  (J(nt(DY)5) x {0},

i=1
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where DY 12 and D" 5 are the images of the closed balls of radius 1/2 in R* and
R™™* respectively, and ‘int” denotes the interior. ' '

Now assume that fori —1 < k,,—1, we have an isotopy {®"' ! }ee[0.1] (d5(')‘”_1 =
id) with support in U;;ll (D" x D"™*); such that

K@ N (@1l o i)~ (f(L‘))cU(mt(Dl/z)xint(D;’/—Z")),.
j=i

On the neighborhood (D* x D"™*);, we have the projection
pi = proj,: (D" x D"™"); — D"7¥.

Put LE | = (@1 1o @ "H)TI(£(LY). Since p; (LY, N (D* x D"7*);) is a finite
union of images of manifolds of dimension < £ <n —k —1 < n —u — 1 under
differentiable maps of class C" (r > 1), it is a measure zero subset of D" by
the Sard theorem. Moreover, since L is compact, p; (Lf_1 N (D* x D"%);)is a
nowhere dense closed subset of D", Take a point ¢; close to 0 in the complement
of p,-(Lf_1 N (DY x D"7*);). Let {@;*': M" — M"},c[0.1] (Py*" = id) be an
isotopy with support in (int(D¥) x int(D"~*)); such that &% (x,0) = (x, 1t (x)q;)
on (D* x D"™);, where w: int(D*) — [0,1] is a C* function with compact
support such that u(x) = 1 for x € DY /2 Since we took g; in the complement of
pi(L{_; N(D* x D"™*)),

Li_, N (K™) N (int(DY),) x int(D}7;4); = @,

hence )
(@) THLE_,) N K 0 (int(DY ) x int(DY73)); = 0.

Since we took ¢; sufficiently close to 0 € D",

(@*H (Lt )N (K(“) U U(mt(Dl/z) X int(Di'/_z”))j) =0 (t<[0.1).
j=1

Thus we found the isotopy {@*" = &'~ o @/4:i}, 10 11 (Po* = id) with support
. t t t [0,1]
in |J;_, (D" x D"™*); such that

ku

K@ n @yt o)y N (f(LY) c | (nt(DY),) x int(D};));.
j=i+1

Let @} be the composition 05}‘_1 o <D,"’k", then {®/ };¢[0,1] (PF = id) satisfies
that ®¥(K®) N f(L*) = @. Then @, = ®F satisfies @ (K¥) N f(LY) =0. O
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We use Lemma 2.1 to show the following theorem ([30], [31]).

Theorem 2.2. Let M™ be a compact n-dimensional manifold. Let PP and Q4 be
p-dimensional and q-dimensional stratified subsets in M", respectively. Assume
that p + q + 2 < n and that PP N Q9 = @. Then any element f € Diff" (M")q
(1 <r < oo)canbewrittenasaproduct f = goh suchthatg € Dift,(M"\k(Q?))o
and h € Diff,(M" \ PP?)o, where k € DiffL(M" \ P?), is a diffeomorphism of
M™ with support in a small neighborhood of Q4%, and Diff’.(M" \ k(Q%))o and
Dift](M" \ PP?)g are considered as subgroups of Diff” (M")o, respectively.

The statement of Theorem 2.2 means that, by moving Q by a small isotopy k, the
diffeomorphism g of M" obtained in Theorem 2.2 is isotopic to the identity by an
isotopy which is the identity on a neighborhood of k(Q%), and # is isotopic to the
identity by an isotopy which is the identity on a neighborhood of P 7.

For the completeness, we include the proof of Theorem 2.2.

Proof of Theorem 2.2. Let{ f}:e[0,1] be the isotopy such that fo = id and f; = f.
Let F:[0,1] x M"* — M" be the trace of the isotopy: F(¢,x) = f;(x). Here,
[0, 1] x M" contains the (p + 1)-dimensional stratified subset [0, 1] x P?.

We look at the image F([0,1] x P?) C M". Asp+1+4+¢g <n—1, by Lem-
ma 2.1, there is an isotopy {k;}sefo,1] (ko = id, k1 = k) such that F ([0, 1] x P?) N
k(Q?) = 9.

Then the following lemma implies Theorem 2.2 by putting Py = @ and replacing
Q7 by k(Q9). O

Lemma 2.3. Let M" be a compact n-dimensional manifold. Let PP and Q9 be
p-dimensional and q-dimensional stratified subsets of M", respectively. Let Py be a
subset of PP. Let { f;} C Diff"(M"™)o (fo = id) be an isotopy which is the identity
on a neighborhood of Py. Assume that f;(P? \ Po) N Q9 = 0 (¢t € [0,1]). Then
Jf1 € Dift"(M™)o can be written as a product fi = g1 o hi, where {g:}se0,1] C
Diffl,(M" \ Q%) (go = id) and {h;};e[0,1] C Diff.(M™ \ P?)q (ho = id).

Proof. Let F:[0,1] x M™ — M™" be the trace of the isotopy: F(t,x) = f;(x).
Let W be a neighborhood of Py in M" where f; is the identity. Let U be a
neighborhood of F ([0, 1] x (PP \ W N P?)) and V be a neighborhood of Q¢ such
that U NV = 0.
Let £ be the vector field on [0, 1] x M" given by a% + (W)S=O at (¢, f;(x)).
This & generates the isotopy f;. Let n be a vector field on [0, 1] x M" with support

in [0, 1] x U such that n = £ on a neighborhood of

{(1, fi(x0)) | xo € PP\ W N PP 1 e[0,1]}.
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Thenn = 9/9¢ on [0, 1] x (V UW) which is a neighborhood of [0, 1] x (Q7 U Py).
Then 7 generates an isotopy {g; };¢[0,1] such that g, is the identity on the neighborhood
VUW of Q97U Py and g;(x) = f;(x) for x in a neighborhood of P? = (PP\ W N
PPYU(W N PP). Here,forx € W, g;(x) = x = f;(x). Puth = g;~! f,then h is
the identity on a neighborhood of P 7, and it is isotopic to the identity as an element
of Diff” (M™). For, put h; = g,~!' o f,. Then h, is the identity on a neighborhood
of PP,

Thus we can write f = goh, where g € Diff,.(M"\ Q9)o,h € Dift,(M"\ P?),.

d

To use Theorem 2.2, we looked at the stratifications of a compact manifold M"
given by the stable manifolds or by the unstable manifolds of the gradient flow of a
Morse function associated with a handle decomposition.

A function f: M"™ — R on a compact n-dimensional manifold M”" without
boundary is called a Morse function if the critical points are nondegenerate, that is,
the Hessian matrices of f at the critical points are nondegenerate. For such a function
£, the set of critical points is a finite set. The index of the Hessian matrix of f at a
critical point is called the index of the critical point.

Any compact n-dimensional manifold M" without boundary admits a Morse
function f: M"™ — R suchthat f(M") = [0, n], the set of critical points of index k
is contained in £ ~!(k) (k = 0, ..., n). Such a Morse function is called self-indexing.
If M" is a compact connected n-dimensional manifold M" without boundary, there
is a self-indexing Morse function f: M™ — R such that £~'(0) and f~!(n) are
one point sets ([19]).

For a € [0,n], put M, = f~'(a). Then M, is a codimension 1 submanifold of
M™" if a is not an integer. Put Wy, = f~1([0, k +1/2]), and then this W, is a compact
manifold with boundary dWy = My41/2 = f~'(k + 1/2). Let ¢, be the number
of critical points of index k. Then the manifold W}, is diffeomorphic to the manifold
obtained from Wj,_; by attaching c; handles of index k (k = 0, ..., n). This means
the following.

Let DX x D"7* be the product of the k-dimensional disk D¥ and the (n — k)-
dimensional disk D" 7. Let ¢;: (0D¥) x D** — OWi_1 (i = 1, ..., c) be
diffeomorphisms with disjoint images. Let

Ck

W = Wi Uk o | J(D* x D"%),;

i=1
be the space obtained from the disjoint union Wj,_; Ul |_|f’; 1 (D* x D"7*); by identify-
ing x € (0D¥) x D" % < (D¥ x D"7%); with ¢; (x) € dWj_; C Wi_;. The image
of D¥ x D" * in W/ is called a handle of index k. We will simply write the handle
of index k as (D¥ x D"7*);. Then W, is a manifold with boundary and the corner
which is the image |_|fi | Qi ((aD¥) x (dD™*)). By smoothing along the corner, we
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obtain W, from W, and W;” has a differentiable structure which is diffeomorphic to
Wy, and we say Wy is obtained from the manifold Wj_; by attaching c; handles of
indexk (k =0, ..., n).

In fact, we can consider Wk/ as a submanifold with corner of Wy, Wk” is obtained
by taking the union of W) and a neighborhood of corner of W, and W \ W is
diffeomorphic to (—oo, k + 1/2] x dW).. We have the sequence of submanifolds

WoC Wy CW/'CWyC---C Wy CW, CWCW
CCWyprr CW, =W =W, =M".

Then, when we identify W, with Wy, M" is decomposed into the union of the handles
(Dk X D"_k)i i=1,...,ck; k =0, ..., n) and this decomposition into handles is
called a handle decomposition of M. However, hereafter we do not identify Wk/ or
W, with Wy.. We call the image of D¥ x {0} the core disk of the handle (D* x D"~F);
of index k. The boundary of the core disk of the handle of index k is an embedded
(k —1)-dimensional sphere in )Wy _; = Mj_;/, and itis called the attaching sphere.

For the above self-indexing Morse function f: M” — R and the constant func-
tion n, the function n — f is a Morse function, and the critical points of index k of
the Morse function f are nothing but the critical points of index n — k of the Morse
function n — f. Hence this gives rise to a handle decomposition of M”" called the
dual handle decomposition. That is for

Wy == )7H0,n —k +1/2]) = (k- 1/2,n]),

M" =W =W} =Wy >Wi_,

D DWW DWrle DWRle D W),
DD Wl* D) Wl*” D) Wl*/ D) WO*.

Then W, is obtained from Wn*_k_1 by attaching ¢ handles of index n — k. The
core disk of the handle of index n — k for this handle decomposition is called the
cocore disk of the handle decomposition for f. The boundary of the cocore disk of
the handle of index k is an embedded (n — k — 1)-dimensional sphere in 0W* , | =
0Wi = M1/, and it is called the belt sphere.

By choosing a Riemannian metric on the manifold M”, the Morse function f
defines the gradient vector field and the gradient flow ¥;. The singular points of the
gradient vector field are precisely the critical points of f. The local stable manifold
and the local unstable manifold of the singular point p of the gradient flow ¥; cor-
respond to the core disk and the cocore disk of the handle containing p of a handle
decomposition of M", respectively ([18], [19]). Let ell‘ and e n—k denote the global
stable manifold and the global unstable manifold, respectively, for the singular point

plk which is a critical point of index k of f (i =1, ..., cx). Then elk and el.*”_k are
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diffeomorphic to R¥ and R” ¥, respectively. Let

x® = UUe{ k=0, ..., n).

Jj<ki=1
Then
MP=x® 5 x0=D 5. 5 xO 5 x©
is a stratification of M" ([18]) That is, X® is a closed subset, Ul_l ;

dimensional submanifold, and Ul LeR N UK ek ¢ X &1 We call this the strati-
fication by the stable manifolds (for the gradlent ﬂow of the Morse function). We also
have the stratification by the unstable manifolds (for the gradient flow of the Morse
function):

isak-

Mn — X*(n) D X*(ﬂ—l) D e D X*(l) D X*(O),
where X *(—%) — U, —k U ey (k =0, ..., n). This is the stratification by the

i=1¢i
stable manifolds for the gradient flow of the Morse function n — f.

We look at the k-dimensional skeleton X ®) of the stratification by the stable
manifolds and the (n — k — 1)-dimensional skeleton X **~%=1) of the stratification
by the unstable manifolds. The boundary Wy = M}/, of Wy is transverse to the
gradient flow ¥;, and hence M \ (X ® U X *(*=*=D) is diffeomorphic to dW; x R

by the map
W xR 2 (x, 1)) — ¥, (x) e M\ (X(k) U X*(n—k—l)).

Moreover ¥, (dWy) converges to X ®) as t — —oco and to X*@=k=1D a5t — oo,
Hence, M \ X *~=%=1) i5 diffeomorphic to the interior int(Wj ) of Wy, and any small
neighborhood of X ®) contains a deformation retract of both W and M \ X *®*=*—1);

X® cint(Wy) € We ¢ M\ X*0k=D,

Using the gradient flow ¥, for any neighborhood V of X ®) in int(W;) and for
any compact subset A in int(W;), we can construct an isotopy {G;: int(W) —
int(Wx)}se0,1] With compact support such that Gy = idiyw,), G (X ®y c x®©
(t €[0,1]) and G;(A) C V. A similar statement is true for X ®) ¢ M \ x*—*=1,

Remark 2.4. For our Morse function there is a Riemannian metric on M” such that
the stable manifolds e and the unstable manifolds e*k intersect transversely ([21]).
As we shall see in Sectlon 6 (Proposition 6.2), for a carefully chosen Riemannian
metric, there is a cellular complex structure compatible with the stratification by
stable manifolds.

Now for the interior M™ of a compact manifold with boundary M™ which admits
a Morse function such that W,,, = M" for 2m < n, we have the following lemma
(see [30], Lemma 4.5).
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Lemma 2.5. Let M" be the interior of a compact n-dimensional manifold which
admits a handle decomposition only with handles of indices not greater than (n—1) /2.
Let X ™ be the m-dimensional skeleton of the stratification by the stable manifolds for
the gradient flow of the Morse function on M" adapted to the handle decomposition
(2m < n). Then there are an isotopy {F;: M"™ — M" };c[0,1] with compact support
(Fo = id) and an open neighborhood U of X ™ such that (F1)*(U) (£ € Z) are
disjoint.

Proof. Let V, be a small neighborhood of X < M”". We apply Lemma 2.1 to
the identity map M" — M™ of M" with stratified subset X . Then there is an
isotopy {4 }:e[0,1] such that 1y = id and hi(X™) N X = @ We may assume
that the support of the isotopy {/; };c[0,1] is contained in V. Take a neighborhood V;
of X and V, of hy(X ™) such that V;, N Vo = @. Then V3 = Vi N (1)~ (Va)
is a neighborhood of X m) such that V5 N hy (V3) = @. Here we can take V; and 1,
such that their closures V; and V, are compact, and then 173 is compact.

For V3 and /1 (V3), by using the flow lines of the gradient flow ¥;, we have an
isotopy {G;: M" — M"};c[0,1] With support in V such that Go = id, G| X =
idyony and Gy (h1(V3)) C V3.

Let F; be the composition of G; and h;: F; = G; o h;. Then F;(V3) C V3. For
U=Vs\ Fi(Va), (F)Y(U) (¢ € Z) are disjoint. O

We give the proof of Theorem 1.1 (1).

Proof of Theorem 1.1 (1). Forthe manifold M", we take the m-dimensional stratified
set X (2m < n) given in Lemma 2.5. Let f € Diff’.(M")o (r # n + 1). By the
result of Herman, Mather and Thurston ([11], [14], [16], [23], [2]), f can be written
as a product of commutators.

f =lai.b1]---lax.br], a1, b1, ..., ay, by € DiffL(M™),,

where [a;,b;] = a;b;a;~'h;~!. Let C be a compact subset of M” such that the
supports of a;, b; as well as the supports of the isotopies {a;; };¢[0,1] (@io = id and
a1 = a;), {bit}1efo,1] (bio = id and b;; = b;) are contained in C.

By using the flow lines of the gradient flow ¥;, we have an isotopy {G} };[0,1] With
compact support such that G7(C) C U, where U is the open neighborhood taken in
Lemma 2.5. Then by Lemma 2.5, for F; in Lemma 2.5 and g = (G})™! o F; o G,
g“(G)™1(U)) (L € Z) are disjoint.

Put

k
H=[]&""(ar.br]-[ar.biDg"™*.

i=1
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Then H is an element of Dift’, (M")y. Now the conjugate of H by g is as follows:

k

gHg—1= ¢ (ar, b1] -+ [ai, b g !
=1
—1

1"[ “(ar.b1] - laiyr bipa))g'E.

Hence
k—1
H'gHg™" = (lar. br] -+ [ag. b)) 7" [ | ¢ lainr. bivalg'™
i=0
= /7 [ ] & laivr, biale'™
i=0
k—1 k-1
_1[ [T airg ™ ] g"“bi+1g’_k]-
i=0 i=0
Put
k—1 k—1
A = Hgk—zai_ng—k and B = l_[gk_lbi-i-lgl_k,
i=0 i=0

then A and B are elements of Dift’. (R")o. Thus f can be written as a product of two
commutators: f = [A, B][g, H™!]. O

Proof of Theorem 1.1 (2). For an even-dimensional compact manifold M 2™ which
has a handle decomposition without handles of the middle index m, Theorem 2.2
together with Theorem 1.1 (1) implies Theorem 1.1 (2) (see [30]). O

For the decomposition of an isotopy on an odd dimensional manifold, we used
the following lemma (see [30], Remark 4.4).

Lemma 2.6. In Lemma 2.1, let K¥ = K® > K&=D 5 ... 5 g0 5 gOgpg
Lt = LO o5 LED 5 .00 5 LO 5 LO) pe the stratifications. Then there
is an isotopy {®@;: M" — M"}c0,1] (Po = id) with support in a neighborhood
of K* such that &1(K@) N f(L b)) = @ fora+ b+ 1 = n, and the intersec-
tion ®1(K@D) N f(L®) consists of finitely many transverse intersection points for
a+b=n.

Proof. We proceed as in the proof of Lemma 2.1. Assume that foru — 1 < k — 1,
there is an isotopy {@%},¢[0,1] (P4~! = id) such that QYU KDY f(LD) =9
fora+b+1=nanda < u—1, and the intersection %! (K@)n f(L®) consists



152 T. Tsuboi CMH

of finitely many transverse points fora +b = n and a < u — 1. Then there is a
neighborhood Uy, _; of K®~1 such that QS'I‘_I(Uu_l) N (L") = @. We cover
K® \ U,_; by finitely many coordinate neighborhoods {(D* x D"™*); }1—1 such
that

(K™ \ Uy—1) N (DY x D"™); C (D" x {0});

and {(int(D /2) X 1nt(D1/2 )i } , still covers KW\ U,_,

By the proof of Lemma 2.1, we have isotopies {@;"i},e[o,l] (d)(’,"i =id, i =1,
. ky) with support in | J;_; (D¥ x D"™*); such that

K@ N (@t o ) L(F(LY) ¢ U (int(DY ;) x int(D}3));
j=i+1

and for ¥ = d¥~1 o Xk pu(KW) N f(LEu-D) =g,

We modify @ to obtain Qs’t‘ such that 03’1‘(1((“)) N (L") consists of finitely
many transverse intersection points.

Since @} (KN f(LO4=D) = g, (f|LO—0)~! (o (K®)))is aclosed subset
hence is a compact subset in L™~ Thus it is compact subset in LO—w\ L(”_“_l).

Now assume that, for i < ky, we have an isotopy {®%"~"};c[0.1] (@4 " = id)
with support in U]_l (D* x D"™*); such that

i—1

KW@ (@} o dPHTH(AL)) 0 (int(DY),) x int(D};54)); .
j=1

consists of transverse intersection points. Then for
L7 = (@ o 67 TH IO,
we look at p; (L'"=}* N (D* x D"7*);) in D"~*. More precisely, we look at the map

pio (@ o dP T o 1
(LN LO=D)n £ (@) 0@ ((int(D) xint(D™Y)),)) —> D"V

Then by the Sard theorem for C” mappings between the manifolds of the same
dimension (r > 1), the critical value of p; o (¥ o ®@*'~")~1 o f is measure zero in
D", We choose a regular value g; close to 0.

Let {Qg/tu’i }t[0,1] be the isotopy with support in (int(D*) xint(D"~*)); such that
D" (x,0) = (x,1u(x)q}) (P = id). Then since g/ is a regular value,

L7 0 @41 (K™) 0 (int(DY),) x int(D}7;4));
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or
(@llu’i)_lLl?—_{l NK® N (int(D'i‘/z) X int(D’ll/_zu))i

consists of transverse intersection points. Since ¢/ is close to zero, the transversal-
ity in U;-_:ll (int(DY),) x int(D},;")) is preserved. Hence for (¥ = ¢ o
d’/zu’l}ze[o,l],

K®n @ o @)y 1(f(L D)) =g

and

i
K@@y~ o @)y 1 (L)) N (int(DY),) x int(D]}34));
j=1

consists of transverse intersection points.
-~ _ -~ k
Then for % = ¥~ 1 o @Y™,

K@ (@) (L) =0

and
K@ n (@)~ (/@)

consists of transverse intersection points. Since K® N (<13’;)_1 (f(L®)) is com-
pact, this is a finite set.
Put &, = qb’t‘. Then @; is the desired isotopy. O

In the rest of this section, we sketch the proof of Theorem 1.1 (3). We need three
more lemmas whose proofs are omitted because they are either straightforward or
given by rewriting those in [30].

By using Lemma 2.6 and the argument of the proof of Theorem 2.2, we obtain
the following lemma.

Lemma 2.7 ([30], Lemma 6.3). Let M" be a compact n-dimensional manifold. Let
P? and Q9 be p-dimensional and q-dimensional stratified subsets of M", respec-
tively. Assume that p +q + 1 = n and that PP N Q9 = @. Let P? = PP >
PPV 5.5 PO gnd 041 = 0@ 5 0=V 5... 5 QO pe the stratifications.
Then any element f € Diff" (M™)q can be written as a product f = g o h such that
g € DiffL(M"\k(Q9))oandh € DiffL(M"\ PP~V wherek € Diff(M"\ PP?),
is a diffeomorphism of M™ with support in a small neighborhood of Q4. Moreover
there is an isotopy {h; };e[o0,1] such that hg = id, hy = h, h; is the identity on a neigh-
borhood of PP~V and for H(t,x) = h,(x), H([0,1] x PP) Nk(QU™V) = @ and
H([0,1] x (P?\ PP VY)) N k(Q7\ QWD) consists of finitely many transverse
intersection points.
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For an odd dimensional compact manifold M2™*1, we considered a handle de-
composition of M2™+1 in [30]. Let M2+l = p@m+D) 5 ... 5 p(O) pe the strat-
ification by the stable manifolds for the gradient flow for the corresponding Morse
function, and M2+ = Q@m+D 5 ... 5 QO pe the stratification by the unstable
manifolds for the gradient flow. We look at the stratified subsets P = P and
0™ = Q0 and we have the following lemma.

Lemma 2.8 ([30], Lemma 6.4). Let {h;}e[o,1] (ho = id) be a C” isotopy which is
the identity on a neighborhood of P~V and H([0,1] x P™) N k(Q™ V) = ¢
for H(t,x) = hy(x). Let V™ C P™ be the complement of a neighborhood of
P~V ywhere h, = id. Then there is a C* _isotopy {ht}efo,1] (ho = id) fixing a
neighborhood of P~V such that its trace H: [0,1] x M?"+1 — M2m+1 s CT
close to H: [0,1] x M?™+1 — M?™+1 qnd H|[0, 1] x V™ is an immersion outside
of a finite subset. Moreover the image

I‘_I([O, ]] X Vm) C pM2mtl \ (P(m—l) U k(Q(m_l)))

has finitely many double point curves which is in general position with respect to the
curves H([0, 1] x {v}) (v € V™). If m > 2 these double point curves are disjoint,
and if m = 1, there are at most finitely many triple points and cusps.

Then, using the idea of Burago, Ivanov and Polterovich ([4]), we constructed an
isotopy {a; }se[0,1] (@0 = id) with support in a union of disjointly embedded (2m +1)-
dimensional open balls embedded in M2+ such that (a; o ;) (P™) Nk(Q™) = @
(t €0, 1]), and we showed the following lemma.

Lemma 2.9 ([30], Lemma 6.5). For the generic diffeomorphism

h = hy € Diff*(M?"+1\ pim=D),

givenby Lemma?2.8, h_canbedecamposedash_ = aogOh_’, wherea € Diff°(|_|; U)o,
Ll; Ui is a union of 2m + 1)-dimensional open balls U; disjointly embedded in
M?"+1 g e Diffe (M2 1\ k(Q™))o and b’ € Diff*(M2™m+1\ pm),.

Proof of Theorem 1.1 (3). Note that the element 1~ o i € Diff” (M2™+1), is close
to the identity and it can be decomposed as A~ o h = ho g with i € Diff’ (M2m+1\
P™)g and ¢ € Diff,(M?™*1 \ k(Q™))o (Remark 5.4 in [30], see Remark 2.10).
Then by Lemmas 2.7 and 2.9,

f:goh:gOh_O(]’_l_IOh)
:goaogof;/of’l\og
= (goacg )o(gogog)o(@ ol chog)
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and g oa o g € DiffZ(g(Ll; U)o g © & o & € DiffL(M>"*+1\ k(Q™))o and
g7V ol ohog e Difff(M?>"F1\ §71(P™)). Noticing that a can be taken as
a commutator with support in |_|; U;, Theorem 1.1 (1) implies Theorem 1.1 (3) (see
[30]). O

It is worth noticing again that, for any compact manifold M", there is a neigh-
borhood of the identity of Diff" (M™)o (1 < r < oo, r # n + 1) whose element can
be written as a product of four or six commutators([30], Remark 5.4).

Remark 2.10. For a compact manifold M, we have a self-indexing Morse func-
tion F: M" — [0,n]. By choosing a Riemannian metric on M", we have the
stratification {X (k)}Z=o by the stable manifolds for the gradient flow of the Morse
function F, and the stratification {X *("_k)}zzo by the unstable manifolds. For a
compact odd-dimensional manifold M?™*1 M?™*1 i covered by two open sets
Uy = F7Y([0,m +2/3)) and Uy = F~'((m + 1/3,2m + 1]), where any neigh-
borhood of X < U contains a deformation retract of U; and any neighborhood
of X*™) < U, contains a deformation retract of U,. Then by the fragmentation
lemma ([2]), there is a neighborhood N of the identity in Diff” (M 2™* 1), such that
any element f of N can be written as a product f = g o h, where g € Dift.(U;)o
and i € Dift](U,)o. Hence by Theorem 1.1 (1), any element f of N can be written
as a product of four commutators of elements of Diff” (M2 +1)y (1 < r < oo,
r # 2m + 2). For a compact even-dimensional manifold M 2™, M?™ is covered by
three open sets U;, U, and Us. Here, U; is a union of disjointly embedded open balls
which is a neighborhood of the set of critical points of index m. Let V3 be a smaller
neighborhood of the critical points of index m such that V3 C Us. Then we can put
U= (M?»\V3)N FY[0,m + ¢)) and Uy = (M?>™\ V3) N F~1((m — &,2m])
for a small positive real number ¢. Here, we can choose V3 so that any neighbor-
hood of X ™~ < U contains a deformation retract of U; and any neighborhood
of X'"=1) < U, contains a deformation retract of U,. Then by the fragmentation
lemma, there is a neighborhood N of the identity in Diff” (M2™), such that any
element f of N can be written as a product f = a o g o h, where g € Diff.. (U)o,
h € Diff’.(U,)o and a € Dift,(Us)9. Hence by Theorem 1.1 (1), any element f
of N can be written as a product of six commutators of elements of Diff” (M 2™),
1<r<oo,r+#2m+1).

3. Proof of the main theorem

For an even dimensional compact manifold M 2™, we proceed as follows to prove
Theorem 1.2. (The proofs of lemmas are given in the next section.)

For the manifold M 2™, we consider any smooth triangulation P of it (for the
existence of smooth triangulations, see [33], [37], [20], [6]). Let P®) denote the
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k-dimensional skeleton of P. Then the (m — 1)-dimensional skeleton P =1 of the
triangulation P has the following property:

For each m-dimensional simplex 6™ of P let (P ™~Y Ug™) /o™ denote the
(m—1)-dimensional cell complex obtained from P ™~V Ug™ by identifying o™
toa point. Then there is an embedding ¢ of (P ™~V Ug™) /0™ in M ?™ such that,
for any neighborhood U of «((P ™~V U ¢™)/c™), there is a diffeomorphism
of M?™ isotopic to the identity which maps P~V U ¢™ into U.

For any smooth triangulation P of M 2™, there are a Morse function on M 2™ and
aRiemannian metric on M 2™ such that the stratification by the stable manifolds of the
gradient flow is homeomorphic to P. Here, in aneighborhood of the barycenter b« of
the simplex 0¥, we can take a coordinate neighborhood (U, (x1., . . ., x,)) such that o*
is locally given as x;4; = --- = x, = 0, and the Morse function in a neighborhood
of by« is givenby k —x12 —+++—x;% + Xg 412 + - - + X, 2. The homeomorphism can
be constructed so that it sends the stable manifold of the barycenter b« differentiably
to the interior of the simplex 0. Moreover the homeomorphism can be constructed
so that it sends the stratification Q by the unstable manifolds of the gradient flow to the
cell decomposition P* dual to P. We show this fact in Section 6 (Proposition 6.1). In
this section, we identify the stratification by the stable manifolds with the triangulation
P by the homeomorphism and it is denoted by P, and then, we call the stratification
Q by the unstable manifolds the cell stratification dual to P. We call the stable
manifolds of P simplices and the unstable manifold of Q dual cells.

Remark 3.1. We may use a cellular complex associated with a handle decomposition
of M?™ if it has the above property for each m-dimensional cell 0. The number
N of the m-dimensional cells of such a cellular decomposition of M?™ appears in
the estimate of the bound for the number of commutators at the end of the proof of
Theorem 1.2. We discuss the relationship between the handle decomposition and the
cellular decomposition in Section 6 (Proposition 6.2).

Now we look at the m-dimensional skeletons P and Q™ of the triangulation
P and its dual cell stratification Q. These P and Q™ intersect transversely at the
barycenters of m-dimensional simplices of P. Then by an isotopy f; (¢ € [0, 1]), the
intersection f;(P™) N Q™ becomes very complicated. However, we can treat it as
follows.

For the manifold M %™, the statement of Lemma 2.7 is written as follows.

Lemma 3.2. Let P™ denote the m-dimensional skeleton of a triangulation of a (2m)-
dimensional manifold M*™, and Q™, the m-dimensional skeleton of the dual cell
stratification. Let P® and Q(i) denote the i-dimensional skeletons (i = m — 2,
m — 1) of P™ and Q™, respectively. Then any element f € Dift” (M?™)y can
be written as a product f = g o h such that g € Diff’,(M>™ \ k(Q™))o and
h € Diffr(M?™ \ P=2),, where k € DiffL(M?™ \ P™)q is a diffeomorphism
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of M with support in a small neighborhood of Q™. Moreover there is an isotopy
{h+t}ie[0,1] which has the following properties:

(1) ho = id, hy = h, and h, is the identity on a neighborhood of P2,

(2) For H(t,x) = hs(x),
H([0,1] x PD)yNk(Q" V) = @ and H([0,1] x P™) Nk(Q" ) = g.

(3) Foreach (m—1)-dimensional simplex a™~' of P~V and each m-dimensional
cell T™ of Q™, the intersection H([0, 1] x o™~ Y) N k(z™) is transverse. Thus
H([0,1] x P=D) N\ k(Q™) is a finite set.

Then, if 2m > 4, we can separate the image H ([0, 1] x P™~D) from k(Q™) by
an argument similar to the proof of Lemmas 2.8 and 2.9. _
First, we approximate the isotopy H by a generic one, say H. Let

{he}ieo1) C DIff (M \ P2)  (hg = id)

be a C> approximation of {4, },e[0,1] C Diff’.(M?™ \ P"=2) generic with respect
to P™ and k(Q™) such that /, is the identity on a neighborhood of P2 Then
H (¢, x) = h;(x) has the following properties:

(0) H:[0,1] x M?>" — M?" isclose to H: [0, 1] x M?™ — M?™ and h;, is the
identity on a neighborhood of P2

(1) The restriction
H|([0,1]x V™[0, 1] x vt — pm2m
is an immersion, where Vm_l_(C P (m_l)) is the complement of a neighborhood
of P=2) < P=1 where h;, is the identity.
(2) H([0,1] x P Dy nk(Q™V) = @gand H([0,1] x P™) Nk(Q"?) = 0.
(3) H([0,1] x P=D) N k(Q™) is a finite set:

H([0,1] x P D)y nk(Q™) = {H(s;,vi) | i =1, ....r}

@) H((0.1] x {v;}) Nk(Q™) = H(si,vi) (i = 1,...,7).

(5) H([0, 1] x {v;}) does not contain double points of H ([0, 1] x P"~D) ( =1,
e F).

(6) H|[0, 1] x P~ restricted to a neighborhood of [0, 1] x {v; } in [0, 1] x P~
is an embedding (i = 1, ..., r), and

(7) H([si, 1] x{v;}) G =1, ..., r) are disjoint.
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Here, the statements (1)—(7) hold for generic H (or the properties (1)—(7) are generic
in the space of isotopies). In particular, the statement (5) holds because the inverse
image of the double point set of H ([0, 1] x P ~1) is a finite set which is in general
position with respect to [0, 1] x {v;} (i =1, ...,r)and 2m > 4.

Note that for the proof of uniform perfectness, we can approximate the diffeo-
morphism for a bounded number of times. In fact in this case, fi = g1 0h; =
g1 ohyo(hy™' ohy)and hy™! o hy € Diff"(M>™) is close to the identity. By
Remark 2.10, ;1 o h; can be written as a product of six commutators.

For the above disjoint curves H ([s;, 1] x {v;}), we can construct isotopies as in

Lemma 2.9 which was used to prove Theorem 1.1 (3).

Lemma 3.3. For the above generic isotopy {ﬁz}ze[o,l], there is a neighborhood
Ui (i =1,...,1) of the curve H([s;, 1] x {v;}) € M?™ diffeomorphic to a (2m)-
dimensional ball such that U; are disjoint and there is an isotopy {a; }se[o,1] (@0 = id)
with support in |_|;_, U; such that, for h}, = a, o hs,

R(P™DNNk(Q™) =0 (1 <[0,1)).

Note that a; € Diff7, (|_|;=1 U;)o can be taken as one commutator with support in
LIi—, Ui (see [31]).

Since i} (P™=D) N k(Q™) = @ (¢t € [0, 1]), by Lemma 2.3, there are isotopies
{g}}ef0,1] C DIffL(M?™ \ k(Q™)) and {h//};e[0,1] C DiffZ(M?™ \ P"=D) such
that i = g} o hY. In other words, g, and i}/ (¢ € [0, 1]) are the identity on neigh-
borhoods of k(Q™) and P ™~1 respectively. Note that, by taking h’} generically on
P™ 1/(P™) Nk(QM2) = @.

Put h§°) = h)/. Then h§°) is the identity on a neighborhood of P~1 and
KO(P™) N k(Q™2) =0 (¢t € [0, 1))

We look at the intersection h§°)(Pm) N k(Q™). At time 0, the intersection
h(()o)(Pm) N k(Q™) is the set of the points near the barycenters of m-dimensional

simplices. The image under the isotopy h§°’ of an m-dimensional simplex o™ inter-
sects k(Q D) and k(Q™). We assume 2m > 6 and we are going to construct an
isotopy with support in the union of disjointly embedded balls which removes the
intersection of 0™ and k(Q™) except on the dual m-dimensional cell.

This is the main part of the proof of our Theorem 1.2.

In fact, for an m-dimensional simplex ¢, we can remove the intersection of the
image of the isotopy of ™ and k(Q "~V in a way similar to Lemma 3.3, and then
we can remove the intersection of the resultant isotopy of 6™ and k(Q™ \ ¢"*), where
o™* is the m-dimensional cell of Q™ dual to ¢™. For the latter process, we will find
the Whitney disks which guide the construction of isotopy to reduce the order of the
intersection point set. After removing the intersection of an m-dimensional simplex
o™ and k(Q™ \ 6™*), we continue the process for other m-dimensional simplices.

More precisely, we construct the isotopies inductively, in Lemmas 3.4-3.7.
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Leto/” (i =1, ..., N) be the m-dimensional simplices of P™. For0 < j < N,
assume that we have an isotopy

(h}epo.1) C Ditf" (M) (h§ = id)

such that hgj) is the identity on a neighborhood of P~ U U{=1 o/". Let };Ej) be a
C *° approximation of hﬁf ) generic with respect to P™ and k(Q™) such that 155] ) is
the identity on a neighborhood of P~V U Uij=1 o/". Then HD (¢, x) = ﬁgj)(x)
has the following properties:
0) HD:[0,1] x M?>™ — M?™ isclose to H): [0, 1] x M?>™ — M?™ defined
by HO (¢, x) = h¥’(x) and 7\ is the identity on a neighborhood of P"~D U
=107

(1) The restriction
HD[0.1] x V7 [0.1] x V) — M>™

is an immersion outside of a 1-dimensional subset (a codimension m subset)
m

of [0, 1] x V('J'.’), where V(].)(C P™) is the complement of a neighborhood of
P in Pm where h'Y) is the identity.

2) HD ([0, 1]x P nk(Q™ D) = gand HY ([0, 1] x P")Nk(Q"?) =
2.

(3) HY([0,1] x P™) N k(Q™ V) is a finite set:

HD((0,1] x P™) N k(@™ V) = (HD D vy |i =1, ..., rV}.

@) HO(0,1] x ) Nk(QmD) = HD (P D) (i =1, ..., rD),

(5) HD ([0, 1]x {vi(j)}) does not contain double points of H ) ([0, 1]x P™) (i = 1,
)
e, P,

(6) HD|[0,1] x P™ restricted to a neighborhood of [0, 1] x {vi(j)} in [0, 1] x P™
is an embedding (i =1, ..., r(j)), and

7 I-_I(j)([si(j), 1] x {vi(j)}) are disjoint.

Here, the statements (1)—(7) hold for generic HY), In particular, for the statement
(1), we notice that the set of rank m matrices in the space of (m + 1) x (2m) matrices
is codimension m ([22]). The statement (6) holds because the inverse image of the
double point set of HY)([0,1] x P™) is 2-dimensional in [0, 1] x P™ which is in
general position with respect to [0, 1] x {vl.(])} (i=1,..rY)and2m > 6.
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Lemma 3.4. Forthe above generic isotopy {ﬁ A },E[O 1) thereis aneighborhood U, )
(i =1,...,rD)ofthe curve HY) ([s(]) 1] x{v(J)}) c M2 dlﬁeomarphlc toa(2m)-
dimensional ball such that U, ) are disjoint and there is an isotopy {a )},e[o 1]
(ag U+ — id) with support in |_|l-=1 Ui(]) such that, for h’ﬁ’) = SJH) o hﬁ”,

KWDP™)Y A kQ™ D) =0 (€ [0.1]).

Note again that aE’ 1 ¢ Diff? (|_|,_1 U; v ))0 can be taken as one commutator
with support in |_|i=1 Ui(J) (see [31]).
The isotopy /4’ 5’ ) given by Lemma 3.4 has the following properties.

o) n ﬁf ) is the identity on a neighborhood of P =1 U Ulj _, o
(1) H'D([0,1] x P™) Nk(Qm=D) = g.
2) n Ej ) is generic with respect to P™ and k(Q™).

Now we look at the intersection /4’ §f )(Pm) N k(Q™). Since i’ ﬁf ) is the identity
on a neighborhood of P~V u \U/_, o, the intersection h/ 5’ )(al-m) N k(Q™) for
i < j is always the one point set 07" N k(c/"*), where 0/"* is the m-dimensional
cell of 0™ dual to 0;" (i < j). For the simplex 07", ,, the intersection h'; Y )( N
k(Q™) is a finite set which vary with respect to the parameter ¢. If 2m > 6 we
can find the Whitney disks which guide to reduce the order of intersection point set
h/(”( +1) Nk(Q™\ o ;+1) where o ]+1 is the m-dimensional cell of Q™ dual to
oj "1 as we explain now.

For the m-dimensional simplex o 7y of pm™, the intersection of 0}"“ and k(Q™)
is just one point which is the 1ntersect10n of 0/, and k(o] 07%",), Then the behavior

of the intersection /’; Y )( o/ 1) N k(o] %)) it rather complicated. Hence we look at
H'U)([0,1] x o ) NE(Q™\ oY) or h’(])( o) Nk(Q™ \ o"Y)). First, note
that h’(])(o 1) Nk(Q™ \ oY) is the empty set for small 7, and since h’(])( o/ )N

k(Qm—1) = ﬂ(andh’gj)(P(’" DYNk(Q™) = @), the algebraic intersection number

of the two m-dimensional cells 4’ Ej )(G;"H) and k(z™) (¢t € [0,1]) is always 0 for

each m-dimensional cell ¢ of the dual cell complex Q™ other than oj e

If we look at the movement of the intersection 4’; Y )( ; 07" 1) N k(z™) with respect
to the parameter ¢, there happen a finite number of generations of pairs of intersection
points and cancellations of pairs of intersection points. For generic H'Y) or h’ §f ),
the values of the parameters ¢ of generations and cancellations are different. This
genericity argument follows from the following well known lemma.

Lemma 3.5. Consider the space of C*° maps F : R xR™ — R™. Then, for generic
F, the inverse image of a generic point y € R™ consists of regular points and fold
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points for Fy = F(t,*). At a fold point x for Fy, by changing the coordinates of R™
(both of the second factor of R x R™ and the target R™), Fy is locally written as

Fr(x1,oo0xm) = (X150 Xm—1, Y X1, .00 X)),

where gi;: =0, 8ym # 0and 5 22 21 £ 0at x. The fold points are discrete in F~ L(y)
and correspond to the genemtlons or cancellations of pairs of intersection points.

We use this Lemma 3.5 in the following way. We take a tubular neighborhood
of k(™) and the projection pg(,my to the fiber which is an m-dimensional disk, and
look at the map py(my o (H')|[0, 1] x 0" ;). Then for generic H'U), by using
Lemma 3.5, there are only finitely many generations and cancellations of pairs of
intersections in the family {A’, Y )( 1) NE(E™) b refo,1]-

We are going to construct the dlSkS associated with the intersection H'(/) ([0, 1] x
o/ 1) Nk(z™) for an m-dimensional cell z™ of Q™ other than 0]+1
For a generation of a pair of intersection points, the intersection points near the
generation point are written as A’, () (x¢) and 7'; G )(yt) (t € [to,to + €0)), wWhere

WY )(x o) =N Y )(yto) is the generation point. Here, x; and y, are continuous func-
tlons written as x; = (¢1,...,Cm—1, /T — o) and y; = (¢1,...,Cm—1,—/T — o),
respectively, for a suitable choice of coordinate around (to, xs,) = (fo.ys) €
[0, 1] x 0]'."+1, where c1,..., C;y—1 are constants.

We take a flat metric on the m-dimensional simplex G;”H and we draw the geodesic
segment X;y; in 0}”“ joining the intersection points x; and y; (¢ € [to, to + €0)).

Once we choose the pair of intersection points to be joined by the geodesic seg-
ment, we continue joining them as the parameter ¢ increases unless one of these
intersection points meets a cancellation point.

For a cancellation of a pair of intersections, the intersection points near the cancel-
lation point are written as i’ (x;) and " (y,) (1 € (to—¢o, 1o]), where h’gé) (x1) =

n %) (¥1,) is the cancellation point. Here, x; and y; are continuous functions written
as x; = (C1,...,Cm—1,~/—t +to) and y; = (C1,...,Cm—1,—~/—I + to), respec-
tively, for a suitable choice of coordinate around (¢, x;,) = (to, yz,) € [0. 1] x o/
where c1,..., c;y—1 are constants.

Assume that we have chosen geodesic segments for the intersection points such
that 7 < #9. Let x} (t € (to — €9, t9)) be the other endpoint of the geodesic segment
containing x,, and y; (t € (to — &9, o)) be the other endpoint of the geodesic segment
containing y;. There are two cases. In the case where xQO #* y;O, that is, if it is

a cancellation of intersection points belonging to different geodesic segments x,x}

and y; y/ yyin{t} xo 1 (t € (to — &0,1%)), we draw the geodesic triangle joining the

3 points Xeg = y,o, xtO and y; in {to} x o J 1> and continue to draw the geodesic

segment xtyt joining x; and y; in {t} x & +1 (t € (to, 1o + €0)). In the case where
X1, = Vi, thatis, if it is a cancellation of intersection points of the same geodesic
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segment X;y; in {t} X o +1 (t € (to — €0.10), x; = y; and y; = x;), we add the
auxiliary band

U ixtxdu J [10x (e,

t€[to—eto] te[to—esto]

which contains the curve [tg, 1] X {x;,} = [to, 1] X {ys,}, where & (< o) is a small
positive real number. Note that the image of the auxiliary band does not contain
double points of H'U)([0, 1] x o) for generic H '), and hence H'Y) restricted
to the auxiliary band is an embedding into M 2™ \ k( Q('”_l))

Now we have a family of geodesic segments in o +1 moving with respect to the
parameter ¢ and there are only finitely many times ¢; (i = 1, ..., 7)) when there
appear geodesic triangles.

We are assuming that 2m > 6, and for generic 4’ §f ), the family of geodesic
segments satisfies the following properties because the preimage of the double points
of h’ﬁf)(Pm) is 1-dimensional in [0, 1] X ¢

m
j+1
(1) The geodesic segments in U;”H joining the pairs of intersection points in
(h, ()= (k(t™)) never contain the preimage of double points of (h’t(j N (P™).
(2) The geodesic triangles never contain the preimage of double points of
(h;O)(P™).
Fort; i = 1, ..., 7Y)), let Y be the union of the geodesic triangle with the
three vertices x;;, = yy,, xt and yt in{ti} xo the geodesic segments X¢x, and

]+1’
y,y, in{r} x o, (t € (i — &;,1;)) and the geodesic segments Xpypin {t} x o/
(t € (ti, t; + &)):

v=( U wxxm)u( U =)

tE(ti—e,',l,') tE(l‘l'—Ei,t,')
U ({ti} x Dxgxp, ;) U ( U {t} x xtyt)
te(t; ti+e;)

C(ti—e&i,ti +¢&) X O']’-n+1.
We deform it to obtain a 2-dimensional manifold Y’ embedded in (t; —&;,1; + &;) X

m
o/’ such that

Y’ =9y = {(t’x;)}te(t,-—ei,t,--f-e,-) U {(t’ y;)}te(t,-—ei,ti-f-ei)
U {(t7xt)}t€(ti—8i,ti] U {(Z’ yt)}te(t,-—a,»,ti]
C(ti —&i.ti +&)x O_;n_‘rl’

and Y’ coincides with Y for |t —¢;| > ¢; /2 and the intersection of Y’ and {¢} X o o/
is a union of two disjoint differentiable curves near the original geodesic segments
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fort € [t; — &;/2,t;) and is one differentiable curve near the geodesic triangle for
telt,ti+¢/2]

Now we look at the union Z of geodesic segments which are not modified by the
above operation and the manifolds Y’ forallt; (. = 1,...,F (). If there are auxiliary
bands we add them to Z and modify it to make Z an embedded 2-dimensional

manifold with boundary in [0, 1] x 07" ;.

For a generic choice of the isotopy H’¢) and manifolds Y’ if 2m > 8, Z is a
union of disjointly embedded 2-dimensional disks in [0, 1] x g M- If2m = 6, the 2-
dimensional disks may intersect in [0, 1] x 01-3 1 creating finitely many double points.

For 2m > 8§, the fact that a connected component of the union Z is diffeomorphic
to a 2-dimensional disk can be seen as follows: Consider the space obtained from Z
by identifying the points in each connected component of Z N ({z} x 0}"+1)' Then itis
a graph with vertices corresponding to the generation points and cancellation points.
The generation points correspond to the vertices of valency 1 and the cancellation
points correspond to the vertices of valency 3 except the cancellation points with
auxiliary bands. For the cancellation points with auxiliary bands, the auxiliary bands
become edges ending at {1} X o o " 1- Thus each connected component of the graph
is a tree rooted at time ¢ = 1 which grows in the negative direction in #. Hence each
connected component of Z is a 2-dimensional disk.

In the case where 2m = 6, we see in a similar way that Z C [0, 1] x 0].3 1 isanim-
mersed image of 2-dimensional disks which has generically a finite number of double
points. That is, the curves joining the pairs of intersection points in (h’gj ))_1 (k(z3))
may intersect at finitely many points (7g, %,) (¢ = 1, ..., #)). Then for generic
H'D £, are not the time of generations or cancellations. When two geodesic curves

yl(t) and y(t) intersect at the time 7y, we modify one of the family {y, ® } of geodesic

curves near 7y by a family {yz(t )} of curves which does not intersect 2 )} near ;.

More concretely, for a small positive real number £¢, we can find a neighborhood

of )/l(f‘f) U )/2(?[) C [0, 1] x 6™ which is diffeomorphic to (f; — &g, fy + &¢) x X, where

X is a neighborhood of [—1, 1] x {0} x {0} U {0} x [—1, 1] x {0} in R3,

y O = (i x [~1,1] x {0} x {0}
and
YO = (i} x {0y x [—1, 1] x {0},

We can choose the parametrization in this neighborhood so that

yE 1y = (i + 5,1.0, 5)
and

yétg-i-s)(u) = (f¢ + 5, V18, U + V25, v35)
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for a vector (vi,v2,v3) € R3 (v3 # 1). By using a smooth bump function
w: [—1,1] = [0, 1] such that u(x) = wu(—x), «|[0,1/3] = 1 and «|[2/3,1] = 0,
we modify yét). Put

Y50 ) = (B + 5. (1 + cop(s /B0 R/80) + vis,u + v28,v35),

where ¢; and §; are small positive real numbers such that the image of y, (@ets) jg

contained in our nelghborhood X . Then the curves y ) and Vs 'O (1 e (fo—8¢. T +89))
do not intersect in 07, ;.

Thus for 2m > 6 using the above family of curves if necessary, we have the union
Z' of a finite number of disjointly embedded 2-dimensional disks in [0, 1] x
such that

]+1
(H'D[0. 1] x o7 ) (k(z™) C Z'.

Since 2m > 6, the images under generic H'"/) of these 2-dimensional disks are
disjointly embedded in M 2" \ k(Q V). The images of these disks are called the
Whitney disks.

We have been looklng at the intersection point set /', Y )( o/ 1) Nk(z™) for one
m-dimensional cell z of Q™ other than 6™*. These cons1derat10ns can be applied to
the intersection point sets /’; Y )( o/t N k(™) for all (finitely many) m-dimensional
cells 7" of Q™ other than 0’”* simultaneously. This is because, if 2m > 8, the
embedded 2-dimensional disks Z are disjoint for different z” for generic H'/), and
if 2m = 6, we can remove the intersection of the embedded 2-dimensional disks
Z' for different t in a way similar to what we did for the intersection of Z for the
same t”". Thus we obtained the union Z' of a finite number of disjointly embedded
2-dimensional disks in [0, 1] x 67", ; such that

(H/(j)|[0, 1] x g]mH)—l(k(Q’" \U]+1)) cZz,

and H')|Z’ is an embedding.

If 2m > 8, then the Whitney disks H’)(Z’) do not contain double points of
H'U)([0, 1] x P™) for generic H'(/). This is because the inverse image of the double
point set of H'()([0, 1] x P™) is 2-dimensional in [0, 1] x P™ and m + 1 > 5.

If 2m = 6, then the Whitney disks H'U)(Z’) may intersect the double point set
of H'U)([0, 1] x P3). Then, for generic H'(/), the intersection is a finite set and we
pick up the points of Whitney disks which are in the image of 4’ 5’ ) (P3) with larger ¢;

H/(j)([i(j)’wi(j)) _ H/(j)(t/l(j),w’g‘i)) Gi=1,..r,
where (l(’) (’) is a point Z' C [0, 1 , t/(’) w) € 10,1] x P3 and
]+1 i

l(j) < t’gj). Then, for generic H'/), the curve H'(/) ([t’gj), 1]x {w’l(j)}) is embedded
in M 2™\ k(Q™) and does not contain double points of H'/)([0, 1] x P?3) other than
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H’(f)(t’l(j), w’l(j)). Hence if 2m = 6, we have the Whitney disks H’(/)(Z’) together
with the curves H/(j)([t’l(j), 1] x {w’l(j)}) i=1,..ru).

Using the Whitney disks H'Y)(Z’) and curves H/(j)([z’l(j), 1] x {u/l(j)}) i=1,
..., '), we prove the following lemmas in the next section.

Lemma 3.6. For h’ﬁf), there is an isotopy {b;jﬂ)},e[(),l] (b(()jH) = id) with support
in a union of disjointly embedded open balls such that for h!/) = b§f R h’ﬁ’ ),
WD) is the identity on a neighborhood of P~ U Ui, o and h’t’(j)(ajf'jrl) N

k(Q™\ o) = 0.
Lemma 3.7. For /) given by Lemma 3.6, there are isotopies

{g§f+1)}te[0,1] C Diffl(M?™ \ k(Q™ \ o) (g(()j+1) —id)
and
/ j+1 |
" teon € DHLMP"\ (PO DU J o) (T = i)
i=1
such that h/t/(j) — g§j+1) . hgjﬂ)‘

Now we complete the proof of our main Theorem 1.2.

Proof of Theorem 1.2. Let f be an element of Diff” (M ?™),. By Lemma 3.2, there
are g € Diff7.(M?™\ k(Q™))o and h € Diff’,(M?™\ P™=2)), suchthat f = goh.
Then by using the approximation 4 of &,

f=goho(h™ oh).

By Lemmas 3.3 and 2.3, there are a diffeomorphism a with support in a union of
disjointly embedded open balls, g’ € Diff”,(M2™ \ k(Q™))o and h” € Diff,(M>" \
P =1 such that B )
h=a'lo(@oh)y=alog oh”.
Put /@ = 4" e Diff,(M?™ \ P=D)g, and for h) e Diff7,(M?™ \ (P™"~D y
i]=1 0/"))o (j =0, ..., N —1), we use its approximation 1) and by Lemmas 3.4,
3.6 and 3.7, there are diffeomorphisms a¥*D and hUFY with support in unions
of disjointly embedded open balls, g+ e Diff(M2™ \ k(Q™ \ 0/"*))o and
hUFD e Diff,(M2™ \ (P U (/1] 67))g such that
h) = G, ((B(j))—l o h(j))
- (a(j-H))—l ° (a(j-H) ° h_(j)) o ((h_(j))—l ° h(j))
— (a(j-H))—l ° (b(j-H))—l o g(j-‘rl) o hUTD 4 ((ﬁ(j))—l o h(j))_
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Hence,

f=goho(htoh)
:goa_l og' oh@o (™t oh)
=goa og o @) o b V) o g oh“) o () o K)o (A" o h)
—goalogo (a(1)) 1 (b(l)) 1 Og .o (a(N)) L (b(N))— N)
o hM o (KN=D)" o hV D) 0.0 ((h<°))—1 o h@)o (h" o h).

Here, note that

N
RN € Diff, (M>™ \ (P D U _o/")o = DiffL(M>™ \ P™),.
i=1

Since

(RN =D)L o pJNV=Dy oo (K)o B @) o (7' 0 ) € Diff" (M?™)

is close to the identity, by Remark 2.10, it can be written as hoao g, where he
Diffl.(M?™ \ P™)o, & € Diff’.(M?™ \ k(Q™))o and a is with support in a union of
disjointly embedded open balls which is a neighborhood of the union of m handles.
Thus

f=go alo g/ o (Cl(l))_l o (b(l))_l © g(l)
o (@) o M) o gM o i o froao .

Now by the construction, each of a™1, ()™, ..., (@@=, (bW)=1, .., (bN))~!
can be written as one commutator with support in a union of disjointly embedded
open balls. The diffeomorphism @ can be written as a product of two commutators by
Theorem 1.1 (1). The diffeomorphism 7 ®) oh € Diff "(M?™\ P™), canbe written as
a product of two commutators in Diff”. (M 2™\ P™), by Theorem 1.1 (1). Each of the
diffeomorphisms g, ¢’ and & € Diff”,(M>™\k(Q™))o can also be written as a product
of two commutators in Diff”, (M 2™ \ k(Q™))o by Theorem 1.1 (1). By the property
of the triangulation, the diffeomorphism g e Diff7(M2™ \ k(Q™ \ o/"*))o is
supported on an open set which can be deformed in a neighborhood of the embedded
(m — 1)-dimensional complex ¢ ((P ™~V U om) / O'm) and hence g/ can be written

as a product of two commutators in Diff”, (Mz’" \k(Q’" \o I 07%*1))o by Theorem 1.1 (1).
Thus f can be written as a product of 4N + 11 commutators. |
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4. Proofs of the lemmas

We now give the proofs of the lemmas we used in the previous section to show
Theorem 1.2.

Proof of Lemma 3.2. This follows from Lemma 2.7. O

Proof of Lemma 3.3. The construction of a; is essentially due to Burago, Ivanov and
Polterovich ([4]) and we wrote it in the proof of Lemma 2.9 which is Lemma 6.5 in
[30]. However, we write it again here, for, we use this argument later again.

For H (s;, v;), we take a small neighborhood U; of H ([s;, 1] x{v;}) diffeomorphic
to the (2m)-dimensional ball. We can take these U; to be disjoint.

The intersection of U; and H ([0, 1] x P~V or k(Q™) is described as follows.
We put a coordinate

(X012 X2, + s Xy X 1o« - s Xom) € (=2,2)%™
on U; such that, for g; > 0,
k(Q™) N U; = {0} x {0}~ x (=2,2)™,
H((si —26;(1—s;), 1] x{v; ) NU; = (=2,1] x {0}*™~ ', and
By 41—sp (P D) N U = {1} x (=2,2)" 71 x {0 (¢ € [—&;.1]).

Take an isotopy {a }se[0,1] With supportin|_|/_, U; such that, on each U;, ag = id
and, for (x1, X2, ..., Xom) € [—&i, 1] x [=1, 11771 C (=2,2)?>™,

ar(X1, X2, ..., Xm) = (x1 — (L +&)t, x2,..., Xom).

Now (a1 0h;)(P™ V)N k(Q™) = 0. Moreover, by changing the time parameter
of the above a,, we obtain an isotopy a, (a9 = id) with supportin | _|;_, U; such that
for ', = a; o hy,

Ry (P D)y nk(Q™) =@ (t €0,1]).
In fact, if we put
t=s;i+ui(l—s;)elsi—e(l—s),1], ie,u; €[—e;,1],
and look at a(y; +5,)/(1+s;) © };Si+ui(1_si)’ then on Uj,
(@ ter) /(1 e) © Mg (1—sp) (=i} X [=1, 1771 % {03™)
= Qe /(e (i} X [=1,1]771 x {03™)

={u; — (i +&)} x [-1, 1] x {0}
= {—&} x [-1,1]"" x {0}
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Hence by using the above a; with appropriate time change, we obtain the desired
isotopy a;.

Note that a; € Diff], (|_|:=1 U;)o can be taken as one commutator with support in
LI7—, Ui (131D O

Proof of Lemma 3.4. The proof is similar to that of Lemma 3.3.
For I-_I(j)(sl(j), vl(j)), we take a small neighborhood Ul(j) of I-_I([sl(j), 1] x {vl(j)})
diffeomorphic to the (2m)-dimensional ball. We can take these U Ej ) to be disjoint.
The intersection of Ul(j) and HD([0,1] x P™) or k(Q™ V) is described as
follows. We put a coordinate

(X12 X2, + oy Xop 1y X2 -+ - s X2m) € (—2,2)2™
on U l(j ) such that, for sl(j ) s 0,
KQM D) NUP = {0} x (0" x (2.2,
H((sY =291 —s) 1] x ) nUP = (=2,1] x {0}, and

KOs PO UY =ty x (22,27 x40y (1 e e, 1],

Take anisotopy {a ™}, co.1) with supportin| [~} U such that, on each U,
af ™V =idand, for (x1.x2..... Xom) € [—&{” 1] x [-1, 1271 C (=2,2)",

af V(1 xa, . xom) = (61— (L4 eV X Xom).

Now (agjﬂ) o /Zﬁf))(Pm) N k(Q~V) = @. Moreover, by changing the time
parameter, we obtain an isotopy /™" (a(()’ D = id) with support in LI, Ui(" )
such that, for h’ﬁ” = aﬁjﬂ) o ﬁﬁ”,

WP k™) =8 (€ 0.1).
In fact, if we put
t = sl(j) + ul(j)(l —sfj)) € [sl(j) - 8§j)(1 — sl('j)), 1], ie., ul(j) € [—el(j), 1],

(G+1 p ()

and look ata ™’ . A L o hY) A A
(ul(../)+£l(.l))/(1+8§./)) sg‘/)+u:»")(1—sl(-'/))’

then on U l(’ ),

G+1) x0) ) -1
(@, e/ erer) O 10 o) G X =T AR0F)

_ (U+D) () _ m m—1
= a(ul‘.f>+,s§f))/(1+sf.f))({ui P =117 x {03 7)

— {ul(f) o (ul(j) + 85”)} % [_1’ l]m > {O}m—l
= (=D x [-1, 1] x {0y L.
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Hence by using the above aﬁj D with appropriate time change, we obtain the desired

isotopy agjﬂ).

. ; : G
Note again that agj T ¢ Diff?, (|_|;=J1 Ui(" ))0 can be taken as one commutator

with support in |_|lr(=jl) Ui(j ) ([31]). O
Proof of Lemma 3.5. For

F(t,x1,....,xm) = (f1t, X1, ..., Xm)s ..o\ fm(E, X1, ... Xm)),

put
af1 ...
IF o )l I D
il IR and o= o
o\ SR IR
Jat 0x1 0xm

On the 2-jet bundle J2(R x R™ R™), we consider the subbundle E; defined by
rank (a—F OF ) = m — 1 and the subbundle E, defined by the two equations,

ot Ox
oF
rank(%—i) = m — 1 and rank (ai dx %_F) = m — 1, where
X X
0 oF 0 oF 0 oF
Lt = Lt det 2 ).
ox - ax (axl o Bn 8x)

Then E; and E, are codimension 2 subbundles. The closures of these subbundles
are the sets determined by the inequalities expressing the ranks are not greater than
m— 1.

By the jet transversality theorem, the jet of a generic map F' intersects these
subbundles transversely. Hence the set

{(t.%) | J§ ) F € E1 U Ea}

is an (m — 1)-dimensional subset and its image in R™ is nowhere dense. We take a
point y in R in the complement of this image and consider its inverse image F~1(y).

Then for a point x € F~!(y), either rank (%—5) =m h;)}lds or the three equations
rank (%—i) =m — 1, rank (%—f %—I;) = m and rank (ai(g%l) = m hold.
P X
If rank (4£) = m at x, then x is a regular point of F; = F(z,*) and the inverse
image is locally a 1-dimensional manifold transverse to {¢t} x R™.
Assume that the three equations hold. Since rank (%—I;) = m — 1, by the implicit

function theorem, we can change the local coordinate (xp, ..., X;) of the second
factor of the source to (x], ..., x;,) and that (y1, ..., y,) of the target to (y1, ..., y;,)
so that

F(t,x7, .., X0) = (X7, ooy X gy Yo (X0, 000 X))
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oF
4 —_—
Then det (a—F) = 2% and the matrix 5 9% o | with respect to these coordinates
ax 0x7, —det—F
. . ox ax
is written as
1 0o .- 0 0
0
: I 0 0
0 - 0 1 0
y., 9y, Y
iF i T
OO /A 19
dx7, 0x] XXy, dxp?
and the matrix (%—1: gF ) with respect to these coordinates is written as
0 1 0o .- 0 0
0 0
. 0 0
0 0 0 1 0
W om0 D g
ot ax) x,,_,  0xpy
Hence, 22 = ay’";arEOand ym;éOatx
> ax - ’

Thus at x € F~1(y), either det (%—I;) = 0 or F is locally written as
F(t,x],....,x0) = (X7, oo s X gy Yo (6, X5 oo X)),

8y’”—08y’”7é0and ym;éo O

The proof of Lemma 3.6 is divided into two cases.

Proof of Lemma 3.6 in the case where 2m > 8. If 2m > 8, the Whitney disks guide

the way to construct the isotopy b,fj +1)
b EJ' +1)

with support in a union of disjoint open balls.

is in a neighborhood of the union of the Whitney disks.
b l(j +1)

In fact, the support of
The construction of the isotopy is possible because the neighborhood of one
of the Whitney disks can be considered as a neighborhood of a tree growing in the
negative direction in ¢ in [0, 1] x
J+D .

01

The construction of b( is as follows. Take a vector field of the form 5 HE¢(,v)
on the union of disks Z’ C [0, 1] x oj "1 Which is tangent to Z " and transverse to the
boundary 0Z" C Z’, where {(t, v) is a vector field in the direction of 0/’ ,. Sucha

vector field % +¢(t, v) exists because Z’ deforms to a tree which grows in the negative
direction in ¢ by shrinking the connected components of Z' N ({¢} x o/ ;) toapoint.
We extend £ (¢, ) on 677, ; so that the support is contained in a small neighborhood
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of Z’ . Let b’ §f 1 denote the isotopy generated by a% + ¢(¢,v). Then the support
of b’g’ *1 s contained in a neighborhood U’ of the union of the Whitney disks
H'U)(Z"). Since H'/)(Z') does not contain double points of H'/)([0, 1] x P™),
the support of b'Y ™V intersects H'¢)([0, 1] x P™) only in U’¢). Here, U'V) is a
union of disjointly embedded open balls in M 2™, Moreover, (h’ §f )) «C(2,*) is tangent
to the union of the Whitney disks H’U+1D(Z’) in M?™ and

BN (07 )) k(O™ \ o) =0 (1 € [0, 1)),
Put bV = ('Y D)1 then
BT o D)ol )N K@M\ o) =0 (¢ [0, 1]).

Note that bij T ¢ Diffl (U’ G ))o can be taken as one commutator with support
in U'V) ([31]). O

Proof of Lemma 3.6 in the case where 2m = 6. If 2m = 6, then we also consider
the curves H’(j)([t’gj), 1] x {w’l(j)}) (i=1,..ru).

First take a small neighborhood U’() of the union of the Whitney disks which is
a union of disjointly embedded open balls in M6, and construct b ,(j +1)
where 2m > 8. Then we modify it by using an isotopy.

We take a small neighborhood Ui'(j) of the curve H'() ([t’l(j), 1]x {w’gj)}) i=1,

, '), We put a coordinate

as in the case

(X1, X2, X3, X4, X5, X6) € (=2,3) X (-2,2)°
on U’l(j) such that, for 8’§j) > 0,

H/(j)((l/l(j) _ 28/§j)(1 _ t/gj))’ 1] {w/(J)}) N U/(J) ( 2, 1] {0}5’
and

h/t,(j)_ZS,(j)(l_t,(j))(P3) NU'Y = {1} x (=2,2° x {0 (t € [=&/", 1)),

1+ 1(G+1),i =1id

We take an isotopy {a’; }te[o 1] with supportin U’; ) such that a's
and, For (x1, 52,33, 4, %5, %6) € [0, 1] x [1, 19 C (-2.3) x (-2.2)%,

1 )
a'V T (1, %2, x3, x4, X5, X6) = (X1 + 1(1 + &9, x2, X3, x4, X5, X6).

"G G410 ;

Puta =[]/} @’ Thena o bY ™ o a1 is isotopic to the identity by the
isotopy with support in the union of disjoint 6-dimensional open balls a (U’ G )). By
the construction,

(@obY*Voa o) (03, Nk(Q*\o3)) = 0.
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Moreover, by an appropriate change of time parameter on each U’ l(j ), we obtain an
isotopy a, (¢ € [0, 1]) such that

(@ ob?*V oayhy o hy)(o2 ) Nk(Q3\ ot =0

_ - - 1)
and the support of the isotopy a; o b,(]H) oay!is contained in U’ U | |_] ’ U’(])

which is a union of disjointly embedded open balls in M2™. Thus we obtamed the
desired isotopy.

Note thata o bg’ D651 can be taken as one commutator with support in a union
of disjointly embedded open balls. O

Proof of Lemma 3.7. This follows from Lemmas 3.6 and 2.3. O

5. Uniform simplicity
We prove Corollary 1.3. In Theorem 2.2 of [31], we showed the following theorem.

Theorem 5.1 ([31]). Let M™ be the interior of a compact n-dimensional manifold
with handle decomposition with handles of indices not greater than (n — 1) /2. Let ¢
be the order of the set of indices appearing in the handle decomposition. Then any
element of DiffL(M")o (1 < r < oo, r # n + 1) can be written as a product of
two commutators. Moreover, if M™ is connected, any element of Diff..(M™ ) can be
written as a product of 4c 4+ 1 commutators with support in embedded open balls.

In Section 3, we showed that any element f € Diff” (M ?™), can be written as

f=go alo g/ o (a(1))—1 o (b(l))—l o g(l)
o @) o M) o gM o i o frod e .

Since a compact subset of a union of disjointly embedded open balls is contained in
a larger embedded open ball, each of diffeomorphisms a’l, (a(l))_l, e (a(N ))_1,
(BMY=1, L, (b))~ can be written as one commutator with support in an embedded
open ball and the diffeomorphism @ can be written as a product of two commutators
with support in an embedded open ball. Now by Theorem 5.1, each of the diffeo-
morphisms hN) o iy € Diff,(M2™ \ P™)o, g, ¢’ and § € Diff’(M2™ \ k(Q™))o,
g e DiffZ(M?™ \ k(Q™ \ o 1+1))0 is written as a product of 4m + 1 commu-
tators with support in embedded open balls. Hence f is written as a product of
4(N + 4)m 4+ 3N + 7 commutators with support in embedded open balls.
Now Corollary 1.3 follows from the following lemma ([31], Lemma 3.1).

Lemma 5.2 ([31]). Let M"™ be a connected n-dimensional manifold. Let g be a
nontrivial element of Dift(M")o. Assume that f € Diff_(M")q is written as a
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product of commutators [a;,b;] (i =1, ..., k); f = [a1,b1]---[ak,bx], where a;
and b; are with support in an embedded open ball U; C U; C M™. Then f can be
written as a product of 4k conjugates of g or g~ L.

Proof of Corollary 1.3. Let g be a nontrivial element of Diff” (M?™) (1 < r < oo,
r # 2m + 1). Since any element f of Diff” (M?™)y can be written as a product
of 4(N 4+ 4)ym + 3N + 7 commutators with support in embedded open balls, by
Lemma 5.2, f can be written as a product of 16(N + 4)m + 12N + 28 conjugates
of gor gL O

Remark 5.3. We showed in [31] that, for a compact connected n-dimensional man-
ifold M"™ with handle decomposition without handles of the middle index n/2, for
any elements f and g of Diff” (M™)o \ {id}, f can be written as a product of at most
161 + 28 conjugates of g or g~ . For such manifolds, the bound for the number of
conjugates depends only on the dimension n. In Corollary 1.3, however, the bound
for the number of conjugates may depend on the topology of M 2™,

6. Appendix

In this section, we show two propositions. The first proposition constructs the Morse
function adapted to a smooth triangulation of a compact manifold. The second propo-
sition constructs a cellular decomposition adapted to a Morse function.

Proposition 6.1. Let P be a smooth triangulation of a compact n-dimensional man-
ifold M™. Let bsd(P) denote the barycentric subdivision of P and P* be the cell
decomposition dual to P of M". Then there is a Morse function f on M" and a
Riemannian metric on M™ such that, for the gradient flow ¢; of f, there is a homeo-
morphism of M™ which sends the stratification by the stable manifolds of the critical
points of [ and that by the unstable manifolds of the critical points of f to P and
P*, respectively.

First we prepare a Morse type function on each simplex of bsd(P).
Lete; (i =1, ..., n) be the basis of R”. Let

A" ={(t1.....ta) = Y} tie; €R" [ 121y = -+ =1, 2 0}
be the standard simplex. Let f: R” — R be the function defined by
n
[t ty) =n—=)"cos(ty/7).
i=1

The function f is a Morse function such that the vertex (1,...,1,0,...,0) =
>-/_, ei of A" is the critical pointofindex j (j =0, 1,...,n)and f(}/_,e;) = j.
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Let Xgrr = grad( f) denote the gradient vector field of f* with respect to the Euclidean
metric. The standard simplex is invariant under the flow generated by Xg».

Let bsd(P) be the barycentric subdivision of P. An n-dimensional simplex of
bsd(P) is the simplex with vertices b,o0, ..., bon, where6® < ol < ... < 0"~ < o™,
b, is the barycenter of the j-dimensional simplex o/ and “o’ < o/ ”means that “o’
is a face of 0/

Let g: M" — A" be the map which sends each n-dimensional simplex with
vertices b,o, ..., bgn of bsd(P) linearly to A" so that g(b,,;) = Zi]=0 e;. Then
f o g is a piecewise smooth function on M”" which looks like a Morse function on
M" and X = g, ! Xgn is a Lipschitz continuous piecewise smooth vector field on
M".

We show that there are a Morse function f : M" — R and a Riemannian metric
on M" such that there is a homeomorphism of M”" sending the stratification by the
stable manifolds for the gradient flow of the critical points of f to the triangulation
P and the stratification by the unstable manifolds of the critical points of f to the
dual cell decomposition P *.

Since the function f og is transverse to the triangulation outside a neighborhood of
the set of vertices of bsd(P), (f o g)~ ' (k + 1/2) is a piecewise smooth codimension
1 submanifold of M “transverse” to each simplex of bsd(P) and is transverse to the
vector field X.

We are going to modify (f o g)~'(k + 1/2) to a smooth manifold My.;1/2
transverse to each simplex of bsd(P) and to the vector field X .

Let bsd(P)™ denote the i -dimensional skeleton of bsd(P). First, we modify ( f o
2)~ ' (k 4 1/2) in a neighborhood of the intersection ( f o g)~ ! (k +1/2) Nbsd(P )M

and obtain M ]&)1 /2 C M™ approximating ( f og)~!(k+1/2) whichis smooth near the

1-dimensional skeleton bsd(P)(") and transverse to bsd(P)‘") and to the vector field

X . After obtaining M/?J:uz

bsd(P)® and transverse to bsd(P)® and to the vector field X, we obtain M @+1)

_ _ k+1/2
approximating M 1&21 /2 in a neighborhood of the intersection M 1&21 /20 bsd(P)U+D

which is smooth near the (i + 1)-dimensional skeleton bsd(P)“+" and transverse
bsd(P)¥*D and to the vector field X. Finally, put My = MIEZ-_I})Z Then
M 41/2 is a smooth codimension 1 submanifold transverse to bsd(P) and X .

The codimension 1 submanifold My, divides M" into two compact manifolds
Wy and W,*_, which are obtained from (f o 2) 1[0,k +1/2])and (f o g)~ ' ([k +
1/2, n]) by smoothing, respectively.

We are going to show that W is diffeomorphic to the manifold obtained from Wy, _;
by attaching handles of index k for k-dimensional simplices of P and by smoothing
along the corner. That is, for each k-dimensional simplex 0%, we can define a handle
D g‘ « XD g;k of index k such that Wy is diffeomorphic to the manifold obtained from

C M™ which is smooth near the i -dimensional skeleton

Wi~ by attaching Dg © X DZ;" for all k-dimensional simplices o* of P and by
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smoothing along the corner. The reason is as follows. First, for each k-dimensional
simplex o of P, since the intersection S (’;k_l = ok N My, /2 approximates ok n
(f og)~'(k—1/2), itis diffeomorphic to the (k — 1)-dimensional sphere S¥~! which
bounds a k-dimensional disk D’; © 1IN o*. Then by choosing a Riemannian metric in

a neighborhood of o* and using the exponential map, we obtain a diffeomorphism
from a neighborhood of the zero section of the normal bundle of the k-dimensional
disk Di‘r « to a neighborhood of Dé‘ «- By an appropriate choice of the metric, this

defines an embedding ng X Dc';,:k C M" such that 8D§k X DZ;" C Mj_1/>. Then
we obtain
Wy = Wi U J(Dgi x DIF) (€ Wi)
ok
We can add a neighborhood of the corner of W, and obtain W,” such that the orbits

of ¥; on Wy — int(W)’) are transverse to My, = 0Wj and dW,". Here each
orbit of ¥, intersects both 8Wk” and dW;. Since this transversality is preserved when

we approximate X by a smooth vector field X , Wi — int(Wk” ) is diffeomorphic to
Mjc11/2 x [0, 1]. Thus this gives the (n — k — 1)-dimensional sphere S(’;k_k_l on
M 11/2 = Wy corresponding to {0} x BDZ,:" which will be used as the belt sphere.

Now we define a smooth vector field X on M" which generates the flow &,
satisfying the following conditions.

(D) X restricted to a neighborhood of b« is of the form

and the stable manifold L*

b(o¥) of b« of the flow 1}, contains D{“k x {0} C o.

(2) The orbits of \% are transverse to My 12 (k =0, ...,n —1).
(3) An orbit of 1}, in Wy \ int(Wy_1) is one of the following types.

- An orbit crossing through both My_/, and My /5.
— An orbit contained in the stable manifold of b« and crossing through
Mj_1/» at a point of S(’;k_l.

— An orbit contained in the unstable manifold of b« and crossing through
M1/ at a point of S;’;k_l.

(4) For two simplices 0% and o**! of P, if 6% < ok*1, then Sc’:k_k_l and S(’r‘kJrl
(C Mj.41/2) intersect transversely at a point. Conversely, if S (’:k_k_l and S (’T‘k 41

(C My.41/2) intersect, they intersect transversely, and 0% < o 1.
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The statement (4) implies that there is a unique orbit of @t connecting b« and b x+1
if and only if ok < ok +1,

By [21], for this 1/f,, we can define a Morse function f and a Riemannian metric
such that grad( f ) = X. These are the desired Morse function and Riemannian
metric for our Proposition 6.1.

Proof of Proposition 6.1. We show that the configuration of stable manifolds and
unstable manifolds of 1/}, is homeomorphic to the configuration of the triangulation
P and its dual cell decomposition P*.

We explain how we take W, and W) such that Wy, C W/ C W C Wj related
to the flow 1},.

First, each connected component of Wy is in the unstable manifold of a 0-
dimensional simplex 0% On M, /2 = 0Wp we have anumber of Sg , for 1-dimensional

simplices o!. Hence the stable manifold LS of b1 consists of b,1 and the two

b(a!)
orbits of Wt connecting b1 and Ui (i =1, 2) such that oio <ol
For a 1-dimensional simplex ¢!, in a neighborhood of b1, the unstable manifold

L of b1 divides the neighborhood into two parts which are the subsets of the

bo!)
unstable manifolds of 0¥ < ¢! and 0 < o!. We can take the union of WO and

appropriate closed neighborhoods of L$ b1 for 1-dimensional simplices o'! of P
as W{ = Wo U U, DL, x D7, where the flow ¥, on D!, x DI is of the
form Y (x1,...,xn) = (¢7'x1,€'x2,...,e"'x,). Then we can take W/" which is
obtained from W] by smoothing along the corner and there is an isotopy sending
W/ to W1 along the orbits of 1@, There is a homeomorphism % sending W; to
(f 0 g)71([0,1 + 1/2]) such that /21 sends the stable manifold Lb( h of b1 too!
and the unstable manifold LZ( h of by1 too™* N (fog) ([0, 141/2]), respectively.

Now we look at a 2-dimensional simplex o2. On M 141/2, we have S;z for each
2-dimensional simplex ¢ of P and S”{* for each 1-dimensional simplex ' of P.
A 2-dimensional simplex 062 of P has three faces al.l (i = 1,2, 3), hence we have
three orbits of 1; which pass through So2 LN S™ "2 and connect b, 1 andb,2 (i = 1,2,

3). Each component of S 5\ Ul -1 S LN S n2; is sent by the flow % in the negative

l
time direction to one of the components of Wy. The component of W} is necessarily
the one which contains one of the three vertices of 0 and the stable manifold Ly >

of b2 is bounded by the union of stable manifolds of b 1 (i = 1, 2, 3) and the

vertices of 0. Thus the stable manifold L is homeomorphic to a 2-dimensional

b(o?)
simplex and the union [ J;

i<a Ly ©) is homeomorphic to the 2-dimensional skeleton
P @ _ Then the stable manifold L¢

bo2) 3 well as a neighborhood of L; (©2) is divided
by the union of the unstable manifolds of b1 (i = 1, 2, 3) and b2 into three parts,
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each of which is contained in the stable manifold of one of the vertices of 2. We can
take the union of W, and closed neighborhoods of Ls b(o?) for 2-dimensional simplices
o? of P as Wy = Wy UlJ,2(D2, x D"3?), where the flow ¥, on D2, x D52 is of
the form ¥, (x1,...,xp) = (e7'x1,e "Xz, €' x5, ..., €' x,). We can take W," which
is obtained from W, by smoothing along the corner and there is an isotopy sending
W, to W, along the orbits of 1@,. Then there is a homeomorphism %, sending W, to
(fo g)_l ([0,2 4 1/2]) extending % such that s, sends the stable manifold LZ o2 of

by2 to 62 and the unstable manifold LY , of b,2 toa?* N (f o g)~1([0,2 + 1/2]),

b(c?)
respectively.
Inductively, assume that we showed that
(1) fora (j — 1)-dimensional simplex o/ ~! of P, the stable manifold of b, ;1 is

bounded by the union of the stable manifolds L boi) of b,i such that ol <o/,

2) LS boi—1) is homeomorphic to a (j — 1)-dimensional simplex,

(3) theunion J,;_; L
pPU-D,

@ Lygi-n b(o/=1)
unstable manifolds L*, .. of b,: such thato? < o/~ !into j parts each of which

b(o?) ‘
is contained in the unstable manifold of one of the vertices of /!, and

. (o)) is homeomorphic to the (j — 1)-dimensional skeleton

as well as a neighborhood of L; is divided by the union of the

(5) there is a homeomorphism 4;_; sending W;_; to (f o g)~'([0, j — 1/2]) such
thath;_; sends the stable manifold Ly (o) of b,i to o' and the unstable manifold

LZ( i) of b,i to o'* N (f o g)~ ([0, j — 1/2]), respectively.

Consider a j-dimensional simplex o/. On M;_;/,, we have S J j_l for each j-
. o .
dimensional simplex o/ of P and Sn/_fl for each (j — 1)-simplex o/~! of P. A
[ .
j -dimensional simplex o/ of P has j + 1 (j — 1)-dimensional faces o/ =1,
..., j 4+ 1), hence we have j + 1 orbits of y; which pass through S;j_l N S:;_Jl

and connect b o/ andb,; (i =1, ..., j + 1). Any point on S({j_l is in an unstable
manifold Ly ) of b, « for a k-dimensional simplex, where k < j —1. Ifk = j —1,

it is one of the points S] 'n Sn/ ]1 The flow 1, transverse to M;_/> sends a

neighborhood of W;_; U P ) to a neighborhood of W;. Hence a neighborhood of

S J 'n S " J € Mj_,, is divided by the union of the unstable manifolds L? boi)

of bal such that o' < o/~ !into j parts, each of which is contained in the un stable
manifold of one of the vertices of 6/ ~1. This means that the closure of the stable
manifold of b, contains the union of the stable manifolds L% b(ol) of b, such that

o' < o/, Since Ugi<gi LS is homeomorphic to dA/, by looking at the flow 1},,

b(ot)
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we see that the stable manifold of b, ; is bounded by the union of the stable manifolds
L; @) of byi such that o' < o/. We see then that Ly /) is homeomorphic to a j -
dimensional simplex and L (/) 3 well as a neighborhood of L} /) is divided by
the union of the unstable manifolds of b, such that ' < ¢/ into j + 1 parts each of
which is contained in the unstable manifold of one of the vertices of o/ . We can take

the union of W;_; and closed neighborhoods of LZ (/) for j-dimensional simplices

o/ of Pas W/ = W;_1 U,/ (D;A/. X DZ;'i), where the flow ¥; on D'éj X DZ;j
is of the form

Yi(X1,...,Xxp) = (e_txl,...,e_tx‘,-,etxjﬂ,...,etx,,).

We can take Wj’ " which is obtained from Wj’ by smoothing along the corner and there is
an isotopy sending Wj’ " to W; along the orbits of 1/},. Then there is a homeomorphism

hj sending Wj to (fog)~! ([0, j +1/2]) extending /1jy such that /2; sends the stable

manifold LZ(oi) of b, to o' and the unstable manifold LZ(U,-) of byi toa™* N (f o

2)7 1[0, j + 1/2]), respectively.

Thus we see that the configuration of stable manifolds and unstable manifolds
of 1% is homeomorphic to the configuration of the triangulation P and its dual cell
decomposition P*. O

Now we construct a cellular decomposition adapted to a Morse function.

Let M" be a compact n-dimensional manifold. Let F: M" — [0, n] be a self-
indexing Morse function. Then there is a Riemannian metric such that the gradient
flow ¢; at a critical point of F of index k is of the form

Qr(x1,. . xp) = (e7'x1, ..., e I xp e Xp ... . et xy)

in a coordinate neighborhood and the stable manifolds and unstable manifolds of
critical points of F are transverse.
For such a gradient flow we have the following proposition.

Proposition 6.2. For a k-dimensional stable manifold L of a critical point (of index k)
of F, there is a continuous map h: D¥ — M™ such that h|Int(D¥) is a diffeomor-
phism to L and h(dD*) ¢ P*=V where P*=Y s the (k — 1)-dimensional skeleton
of the stratification by the stable manifolds of ¢;.

This proposition is shown by Laudenbach in [13]. The author is grateful to the
referee for indicating him this reference. We include the proof of Proposition 6.2 for
completeness.

To show Proposition 6.2, we need to use the fact that the stratification by the
stable manifolds of such ¢; satisfy a much stronger condition, namely, the closure of
a stable manifold is a submanifold with conical singularities (smcs) which is defined
in [13].
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An m-dimensional stratified subset X = X > ... 5 X© of M" defined in
Section 2 is called a submanifold with conical singularities (smcs) if, for | <k <m
and any x € X% \ X*=D_ there are a neighborhood V of x diffeomorphic to
D¥* x D" and an (m — k)-dimensional smes T = T"%) 5 ... 5 7O jy pn—*k
such that V' N X is diffeomorphic to D¥ x T, and for x € X© | there is a C!
embedded n-dimensional ball B centered at x such that X’ = X N dB isan (m — 1)-
dimensional smcs in the (n — 1)-dimensional sphere and (B, B N X m ... BN
X M) js diffeomorphic to (B, CX'™ D ... CX'®), where C denotes the cone
with respect to the linear structure of the C ! parametrization for B.

Roughly speaking Proposition 6.2 is shown in the following way. Let p{ s eens péj
be the critical points of F of index j. Let S’ ,-_1 denote the attaching sphere which
)

is the intersection of the stable manifold L* -! and M;_;/,, and is the boundary of
]

thecoredlskDJ —LS NFY[j—1/2,j +1/2)). LetS" /=1 denote the belt

sphere which is the 1ntersect10n of the unstable manifold L¥, and M; 11/, and is the
24

1

boundary of the cocore disk D:j’ = sz NFYj—1/2,j + 1/2)).

We look at L N M; ) for j =k —1,...,0. and we show that LN M; 17 1s
a (k — I)-dimensional smcs of M /,. In fact, on M;_ />, there are belt spheres

Sn_,_]_1 (i = 1,...cj) which intersect transversely to LN M; /2. Onthe cocore disk

D"j_j which is bounded by S "71’ LN D"-_j is homeomorphic to the cone over
i pl z

LNS n<_] . L restricted to aneighborhood of the cocore disk D", 7is homeomorphic

I l

to a product of LN D" 7 and an open ball of D/. Using the flow ¢, on F~1([j —

1/2,7+1/2)\ Ul_l D"/, weseethat L N M;_y, is a (k — 1)-dimensional smcs
1’:
of Mj—1/2 .
By using this structure we define the homeomorphism # in the proposition.
Now the first step of the proof of Proposition 6.2 is the following lemmas, which

show that the closure of a stable manifold of such ¢; is a submanifold with conical
singularities (smcs) ([13], Proposition 2).

Lemma 6.3. Let ¢, be the flow on D7 x D"/ such that ¢;(x,y) = (e "x,e'y),
where x = (x1,...,x;)andy = (Xj41,....Xp). Let N = N® 5...5 NOpeg
k-dimensional stratified subset of D/ x D"~/ invariant under the flow ¢, such that
N N (D7 x3dD" /) is a (k — 1)-dimensional smcs of D7 x D"~/ near {0} x dD"~J
and N is transverse to {0} x D"~/ . Then there is a neighborhood U of 0 € D/ such
that N N (U x D"/ is homeomorphic to U x C(N N ({0} x dD"~7)), where C
denotes the cone.
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Proof. Since N N (D7 x dD"77) is a (k — 1)-dimensional smcs and transverse
to {0} x dD" 7, N' = N n ({0} x dD" /) is a (k — 1 — j)-dimensional smcs
in {0} x dD"~/ and there is a positive real number & such that the e-neighborhood

= int(D{) of 0 € D/ has the following property. There is amappingv: UxN’ —
dD"~/ such that v(0, y) = y,

NN U x3D" /)y ={(x,v(x.y)) | (x,y) e Ux N},

and v is smooth on each product U x S, where S is a stratum of N’. By the invariance
under the flow ¢;, the set {(x,v(x, y)) | (x,y) € U x S}is contained in the stratum
in N N (U x D"/ which is written as

{(x,s5v(sx,y)) | (x,y)eUxS, se[0,1]}.

In particular, N N ({0} x D"7/) = C(N’). Hence the map (x,sv(sx,y)) —>
(x,sv(0, y)) is a homeomorphism sending N N (U x D""7)to U x C(N’). O

Lemma 6.4. L N M; )5 is a (k — 1)-dimensional smcs of M; 1> for j =k — 1,
oy 0.

Proof. The above lemma implies that if L N M i+1/2 1s a (k — 1)-dimensional smcs
of Mj1/, then on

Cj ¢j

2 =M1\ | JU x D] 'uUaUxD” /

D;
i=1 ¢ i=1

smoothened appropriately, L N M/ is a (k — 1)-dimensional smcs of M’

Jj+1/2 Jj+1/2
Since F7Y([j —1/2,j +1/2]) \ (U x Dn 7Y after smoothing along the corner is

diffeomorphic to [O 1] x M;_y />, where the flow ¢; corresponds to the flow in the
direction of [0, 1], L N M’_H/2 is diffeomorphic to L N M;_y,,. Hence LN M;_i/
is a (k — 1)-dimensional smcs of M;_1/>. 3

Since LNMj,_ 1/2 isaunion ofattachlng spheres Sk Yi=1,..,c), LNOM; 1)

is a (k — 1)-dimensional smcs of M; 1/, fori = k — 1 ., 0. O

Let L = L;, be the stable manifold of the critical point p of index k. The stable

manifold L is diffeomorphic to R¥ and the restriction ¢; | L of the flow ¢; is conjugate
to the radial contraction ¥; on R¥ defined by v, (x1,...,xx) = e *(x1,...,Xk).
First we embed R¥ in DX such that the ray from the origin corresponds to the radial
ray in int(D¥). Leti : L — D¥ denote the embedding. Then we see that the identity
map i (L) — L does not extend to a continuous map Dk - Lin general.

In order to define the map /: D¥ — L, we use the construction in the above
lemmas. For a subset A of D¥, we write R(A) the radial saturation of A, that is the
union of the radial segments of length 1 from the origin 0 passing through the points
of A.
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Proof of Proposition 6.2. We are going to construct the k-dimensional compact sub-
manifold B; of D¥ with boundary such that

By C Bx_y C---C By C By = DF
and the homeomorphisms
hj: Bj — LNF Y [j—1/2,k+1/2) ( =k,...,0),

such that /; |(B; Nint(D¥)) is a diffeomorphism onto L N F~1([j —1/2,k + 1/2)).
First, for L = L3, L N Mk_1/2 is a (k — 1)-dimensional sphere which is the
attaching sphere S},‘_l bounding the core disk D;f. Put By =i (D;f ) C D¥, and we
define hy: By — Ltobei 1.
Secondly, we look at the finite set SII,‘_1 N S;’l;_kl . The cone Cpl{c—l (S[],‘_1 N ng__kl
is contained in L and we take the closed disk neighborhood U; of SI',‘_1 ns I’;k_ *in

Cp;gfl (S[’f_1 N S;’lg(_,kl) in L. Then we take the radial saturation R(i (U;)) in D¥. The

part R(i (U;)) \int (i (D;f)) is diffeomorphic to i (U;) %[0, 1], where i (U;) x {0} C dD*
and i (U;) x {1} = i (U;). Then we define

Sk=1 given by Lemma 6.3 such that U; x C i1 (Sk1n S;‘k_kl) is a neighborhood of
J ;

By i(U;) x [0,1] — U; x Cpit (Sk1n S;l;fl

by hy(x,t) = (i~!(x),t), where t is the parameter of the cone such that t = 0
corresponds the vertex. Then we take the union i(D§ )u Uf’;‘ll R(i(U;)) and add a

neighborhood of | JX" i (3U;) to obtain a smooth manifold B; in D¥. On the other
hand, we take the union

Ck—1
Dy U Ui x G (8571 Sk
i=1
and add a neighborhood of | J;%7! 3U; to obtain the subset Ay C L. There is a
continuous map hj : B; — Ay C L extending hy such that 2}|(B; N Int(D¥)) is a
diffeomorphism onto L N Ay. Since L N F~1([k —3/2,k +1/2]) \ Ay is invariant
under the flow ¢, and the flow ¢; on

Crk—1
F7'(k=3/2.k +1/2D\ | Ui x D" K
i=1 i
is conjugate to the flow on [0, 1] x Mj_3/5 in the direction of [0, 1], we can perform
the following construction. We take a collar neighborhood 0B, x [0, 1] of 9B, in
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Dk \ int(B}) and let B_; be the union of B; and its collar neighborhood. Using
the flow ¢;, we can construct a continuous map

hig_y: Bx_y — LN F Yk —3/2,k +1/2])

such that /ix_;|(Bx—; N int(DX)) is a diffeomorphism onto L N F~([k —3/2,k +
1/2]). We may arrange that Bj_, is star-shaped with respect to 0 € DX in such a
way that 0By _ and radial segments from 0 to points of dD¥ are transverse.

Thirdly, assume that we have constructed the k-dimensional compact submanifold
Bjyqof D¥ with boundary and the homeomorphism

hjt1: Biy1 — LN F7N([j +1/2.k +1/2))

such that /1 11|(Bj+1 Nint(D¥)) is a diffeomorphism onto L N F7Y([j +1/2,k+
1/2]) and Bj; is star-shaped with respect to 0. Then L N Mj41/2 is a (k — 1)-
dimensional smcs of M 11/, and the belt spheres S;,J'_J -1 (C Mj y1/,) are transverse

to LN M; 12 (G =1,...cj). Hence LN S;;j_l isa (k — j — 1)-dimensional smcs
of S "j_j ~!. The cone Cp ALNS "j_j _1) is contained in L and we take the closed
; i Py

disk néighborhood Ui C D; J of plk_l given by Lemma 6.3 such that U; x Cp J (LN
$"777" is a neighborhood of C,; (LN S"j_j_l) in L. We look at (hj4+1)"'(L N
Py i P}

i 1 i
n—j—

S

l

) and its closed neighborhood
VIt = ()TN0 x (L0 8777H)

in dBj 1. Then we take the radial saturation R(V{H) in DX, This time, the part
R(V{+1) \ int(Bj+1) and V{H x [0, 1] are not diffeomorphic, but homeomorphic.
The reason is that R(V{H) \ int(Bj+1) near I7ij+1 N 8D is a manifold with corner
along I7l.j+1 N 3D, and there is a homeomorphism Vin x [0,1] — R(V{+1) \
int(B;41) such that Vij+1 x {0} C 9D and Vl.j+1 x {0} = Vij+1, which straighten
the corner along (I7ij 1 napk ) x {0} and is no longer send the radial segments to the
direction of [0, 1] near (I7l.j tnapk ) x{0}. This homeomorphism can be taken to be
a diffeomorphism on Vin x [0, 1). Then we take the union B; 1 U U,CJ=1 R(V{H)
and add a neighborhood of Uf’z 1 817{ *1 to obtain a smooth manifold B]( 4 in DF.
On the other hand, we take the union

Cj
(LOFN([j+1/2.k+1/2)) U | Ui x C,s (LN S;j_]—l)
i=1 !
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i=1

and add a neighborhood of | J{%' U; x (L N S"j_j_l) to obtain the subset A; 1 C L.
P;

There is a continuous map h}’H : B]’.+1 — Aj41 C L extending hj4, such that
R (B N Int(D¥)) is a diffeomorphism onto L N A; 4. Since L N F~1([j —

1/2,j 4+ 1/2]) \ Aj+1 is invariant under the flow ¢, and the flow ¢; on

¢
FH (=172, + 172D\ | J Ui x D777
i=1 !
is conjugate to the flow on [0, 1] X M;_;/, in the direction of [0, 1], we can perform
the following construction. We take a collar neighborhood aB]’. +1 %[0, 1] of 8B} 4110

Dk \int(B ]’ 4 1) andlet B; be the union of B ]’ 1 and ts collar neighborhood. Using the

flow ¢;, we can construct a continuous map & : B; — LN F~Y([j —1/2,k +1/2])
such that & |(Bj N int(D¥)) is a diffeomorphism onto L N F~Y([j —1/2, k 4+ 1/2]).
We may arrange that B; is star-shaped with respect to 0 € D¥ in such a way that 9B i
and radial segments from 0 to points of dD* are transverse.

Finall;i, for j = 0 in the above construction, we notice that Bi = B U
U2, R(V}) is DF itself and the map h}: B} — A; extending /1; is the desired
map. O
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