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On the uniform perfectness of the groups of diffeomorphisms of
even-dimensional manifolds
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Abstract. We show that the identity component Diffr .M 2m/0 of the group of C r diffeo-
morphisms of a compact .2m/-dimensional manifold M 2m (1 � r � 1, r ¤ 2m C 1) is
uniformly perfect for 2m � 6, i.e., any element of Diffr .M 2m/0 can be written as a product
of a bounded number of commutators. It is also shown that for a compact connected manifold
M 2m (2m � 6), the identity component Diffr .M 2m/0 of the group of C r diffeomorphisms
of M 2m (1 � r � 1, r ¤ 2m C 1) is uniformly simple, i.e., for elements f and g of
Diffr .M 2m/0 n fidg, f can be written as a product of a bounded number of conjugates of g or
g�1.
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1. Introduction

For an n-dimensional manifold M n, let Diffr
c.M

n/ denote the group of C r diffeo-
morphisms of M n with compact support (1 � r � 1). Here, the support of a
diffeomorphism f ofM n is defined to be the closure of fx 2 M ˇ̌

f .x/ ¤ xg. For a
compact manifold M n, Diffr

c.M
n/ coincides with the group Diffr.M n/ of C r dif-

feomorphisms ofM n. Let Diffr
c.M

n/0 denote the identity component of Diffr
c.M

n/.
Here Diffr

c.M
n/ is equipped with theC r topology ([16], [23]). By the results of Her-

man, Mather and Thurston ([11], [14], [16], [23], [2]), for an n-dimensional manifold
M n, Diffr

c.M
n/0 is a perfect group if r D 0 or 1 � r � 1 and r ¤ nC 1. Here,

a group is said to be perfect if it coincides with its commutator subgroup. In other
words, a group is perfect if any element can be written as a product of commutators.
The perfectness of a group is equivalent to the vanishing of first homology group of
the group. The homological properties of the group Diffr

c.M
n/0 has been studied in

connection with the theory of foliations ([23]).
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Exploratory Research 21654009, Japan Society for Promotion of Science, and by the Global COE Program at
Graduate School of Mathematical Sciences, the University of Tokyo.
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In general, for an element g of the commutator subgroup ŒG;G� of a group G,
its commutator length is defined to be the minimum number of commutators whose
product is equal to g. It is natural to ask whether the commutator length function
cl W ŒG;G� ! Z is bounded. When the commutator length is not bounded, then it
is very interesting to know about the stable commutator length defined by scl.g/ D
limn!1cl.gn/=n in Bavard [3]. The stable commutator length function is related
with the bounded cohomology groups H�

b
.G/ of the group G defined by Gromov

([7]). Namely, the homomorphism H 2
b
.G/ ! H 2.G/ is injective if and only if

the stable commutator length function vanishes on ŒG;G�. This is formulated as the
Bavard duality theorem which describes the stable commutator length in terms of
homogeneous quasimorphisms ([3]). In recent years, the stable commutator length
and the quasimorphisms appear as an important key to study infinite groups (see for
example [5] and its references).

We say that a group is uniformly perfect if any element can be written as a product
of a bounded number of commutators. It is easy to see that the uniform perfectness
implies the vanishing of stable commutator length function, and hence the injectivity
of the map from the second bounded cohomology group to the usual one.

For the question of uniform perfectness of the group of diffeomorphisms, the
following results are shown in [4], [30] and [31].

Theorem 1.1 (Burago–Ivanov–Polterovich [4], Tsuboi [30], [31]).

(1) For the interiorM n of a compactn-dimensional manifold which admits a handle
decomposition only with handles of indices not greater than .n � 1/=2, any
element of Diffr

c.M
n/0 (1 � r � 1, r ¤ nC 1) can be written as a product

of two commutators.

(2) For a compact even-dimensional manifold M 2m which has a handle decom-
position without handles of the middle index m, any element of Diffr.M 2m/0
(1 � r � 1, r ¤ 2mC 1) can be written as a product of four commutators.

(3) For an arbitrary compact odd-dimensional manifold M 2mC1, any element of
Diffr.M 2mC1/0 (1 � r � 1, r ¤ 2mC 2) can be written as a product of five
commutators.

Now the result of this paper concerns the remaining cases.

Theorem 1.2. The identity component Diffr.M 2m/0 of the group of C r diffeomor-
phisms Diffr.M 2m/ of the compact .2m/-dimensional manifoldM 2m (1 � r � 1,
r ¤ 2mC 1) is uniformly perfect for 2m � 6, i.e., any element of Diffr.M 2m/0 can
be written as a product of a bounded number of commutators.

Here the bound for the number of commutators may depend on manifolds. For
the manifolds of dimensions 2 and 4, the problem of uniform perfectness of the
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identity component of the group of diffeomorphisms is still open. The vanishing of
the stable commutator length of these groups is not known either. It is interesting to
find some other approach to study the stable commutator length of diffeomorphism
groups which might solve the remaining cases (see [4], [12]).

The argument deducing the simplicity of Diffr.M n/0 from the proof of its per-
fectness ([8], [23], [2]) applies to showing the uniform simplicity from the proof of
its uniformly perfectness ([31]). We say that a group G is uniformly simple if, for
elements f and g of G n f1g, f can be written as a product of a bounded number of
conjugates of g or g�1.

Corollary 1.3. For a compact connected .2m/-dimensional manifold M 2m (2m �
6), the identity component Diffr.M 2m/0 of the group Diffr.M 2m/ of C r diffeomor-
phisms ofM 2m (1 � r � 1, r ¤ 2mC 1) is uniformly simple.

The main part of the proof of Theorem 1.2 is a decomposition of an isotopy into
a bounded number of isotopies with controlled support. Then the theorem follows
from Theorem 1.1 (1) in a way similar to the proof of Theorem 1.1 (2) and (3) in
[30] and in [31]. For the decomposition, we give a technique to find the Whitney
disks which guide to separate two stratified subsets of the middle dimension m. The
condition 2m � 6 on the dimension implies that the Whitney disks can be disjointly
embedded in the manifold and enables us to show Theorem 1.2.

We review the proof of Theorem 1.1 in Section 2 and there we give lemmas about
the general position of two stratified subsets which were not correctly stated in [31].
Then we give the proof of Theorem 1.2 in Section 3. The proof of lemmas used in
Section 3 is given in Sections 4 and 6. We show Corollary 1.3 in Section 5.

The author is grateful to the referee for patient and careful reading and for pointing
out several errors in the earlier versions, one of which is a misleading statement on
relationship between the decomposition by the stable manifolds of a gradient flow of
a Morse function and a cellular decomposition of the manifold (see Section 6).

2. Decomposition of isotopies

The proof of our Theorem 1.2 relies on the general position argument for differentiable
maps between manifolds with stratified subsets. In [30] and [31], we looked at the
general position of the differentiable mappings from a cellular complex to a manifold
with differentiable cellular decomposition.

The argument in [30] and [31] works for differentiable manifolds with stratified
subsets which are defined as follows: Let M n be an n-dimensional manifold. A
subset X of M n is an m-dimensional stratified subset if there is a filtration

X D X .m/ � X .m�1/ � � � � � X .1/ � X .0/;
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such that, for k D 0, …, m,

(1) X .k/ is a closed subset,

(2) X .k/ nX .k�1/ is a k-dimensional submanifold of M n,

(3) for the closure X .k/ nX .k�1/ of X .k/ nX .k�1/,

X .k/ nX .k�1/ n .X .k/ nX .k�1// � X .k�1/:

The subset X .k/ is called the k-dimensional skeleton of X . This definition of the
stratified subsets is a weak one ([36], [24]).

First we show the following lemma which is the necessary generalization of
Lemma 4.3 in [30] or Lemma 2.3 in [31].

Lemma 2.1. Let M n be an n-dimensional manifold with a compact k-dimensional
stratified subset Kk , and Nm be an m-dimensional manifold with a compact `-
dimensional stratified subset L`. Let f W Nm ! M n be a differentiable map. If
kC `C 1 � n, then there is an isotopy f˚t W M n ! M ngt2Œ0;1� (˚0 D id) such that
˚1.K

k/ \ f .L`/ D ;.

Proof. We construct the isotopy ˚t , skeleton by skeleton. Let K.u/ denote the u-
dimensional skeleton of Kk;

Kk D K.k/ � � � � � K.1/ � K.0/:

Assume that for u � 1 � k � 1, there is an isotopy f˚u�1
t gt2Œ0;1� (˚u�1

0 D id) such
that

˚u�1
1 .K.u�1// \ f .L`/ D ;:

Then there is a neighborhood Uu�1 of K.u�1/ such that ˚u�1
1 .Uu�1/\ f .L`/ D ;.

Now for u � k, we construct an isotopy f˚u
t gt2Œ0;1� (˚u

0 D id) such that
˚u

1 .K
.u// \ f .L`/ D ;. Since K.u/ is closed in Kk , K.u/ n Uu�1 is compact

and is covered by finitely many coordinate neighborhoods f.Du � Dn�u/igku

iD1 of
M n of the formDu �Dn�u, whereDu andDn�u are the closed balls of radius 1 in
Ru and Rn�u, respectively, and

.K.u/ n Uu�1/ \ .Du �Dn�u/i � .Du � f0g/i :
Moreover we can take such neighborhoods that the family

f.int.Du
1=2/ � int.Dn�u

1=2 //igku

iD1

still covers K.u/ n Uu�1, and

K.u/ n Uu�1 �
ku[

iD1

.int.Du
1=2/ � f0g/i ;
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where Du
1=2

and Dn�u
1=2

are the images of the closed balls of radius 1=2 in Ru and
Rn�u, respectively, and “int” denotes the interior.

Now assume that for i�1 � ku�1, we have an isotopy f˚u;i�1
t gt2Œ0;1� (˚u;i�1

0 D
id) with support in

Si�1
j D1.D

u �Dn�u/j such that

K.u/ \ .˚u�1
1 B ˚u;i�1

1 /�1.f .L`// �
ku[

j Di

.int.Du
1=2/ � int.Dn�u

1=2 //j :

On the neighborhood .Du �Dn�u/i , we have the projection

pi D proj2 W .Du �Dn�u/i �! Dn�u:

PutL`
i�1 D .˚u�1

1 B˚u;i�1
1 /�1.f .L`//. Since pi .L

`
i�1 \ .Du �Dn�u/i / is a finite

union of images of manifolds of dimension � ` � n � k � 1 � n � u � 1 under
differentiable maps of class C r (r � 1), it is a measure zero subset of Dn�u by
the Sard theorem. Moreover, since L` is compact, pi .L

`
i�1 \ .Du � Dn�u/i / is a

nowhere dense closed subset of Dn�u. Take a point qi close to 0 in the complement
of pi .L

`
i�1 \ .Du � Dn�u/i /. Let f˚ 0

t
u;i W M n ! M ngt2Œ0;1� (˚ 0

0
u;i D id) be an

isotopy with support in .int.Du/� int.Dn�u//i such that˚ 0
t
u;i .x; 0/ D .x; t�.x/qi /

on .Du � Dn�u/i , where � W int.Du/ ! Œ0; 1� is a C1 function with compact
support such that �.x/ D 1 for x 2 Du

1=2
. Since we took qi in the complement of

pi .L
`
i�1 \ .Du �Dn�u/i /,

L`
i�1 \ ˚ 0

1
u;i .K.u// \ .int.Du

1=2/ � int.Dn�u
1=2 //i D ;;

hence
.˚ 0

1
u;i /�1.L`

i�1/ \K.u/ \ .int.Du
1=2/ � int.Dn�u

1=2 //i D ;:
Since we took qi sufficiently close to 0 2 Dn�u,

.˚ 0
t
u;i /�1.L`

i�1/ \
�
K.u/ [

i�1[
j D1

.int.Du
1=2/ � int.Dn�u

1=2 //j

�
D ; .t 2 Œ0; 1�/:

Thus we found the isotopy f˚u;i
t D ˚

u;i�1
t B˚ 0

t
u;igt2Œ0;1� (˚0

u;i D id) with support
in

Si
j D1.D

u �Dn�u/j such that

K.u/ \ .˚u�1
1 B ˚u;i

1 /�1.f .L`// �
ku[

j DiC1

.int.Du
1=2/ � int.Dn�u

1=2 //j :

Let ˚u
t be the composition ˚u�1

t B ˚u;ku
t , then f˚u

t gt2Œ0;1� (˚u
0 D id) satisfies

that ˚u
1 .K

.u//\ f .L`/ D ;. Then ˚t D ˚k
t satisfies ˚1.K

k/\ f .L`/ D ;. �
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We use Lemma 2.1 to show the following theorem ([30], [31]).

Theorem 2.2. Let M n be a compact n-dimensional manifold. Let P p and Qq be
p-dimensional and q-dimensional stratified subsets in M n, respectively. Assume
that p C q C 2 � n and that P p \ Qq D ;. Then any element f 2 Diffr.M n/0
(1 � r � 1) canbewritten as a productf D gBh such thatg 2 Diffr

c.M
nnk.Qq//0

and h 2 Diffr
c.M

n n P p/0, where k 2 Diffr
c.M

n n P p/0 is a diffeomorphism of
M n with support in a small neighborhood of Qq , and Diffr

c.M
n n k.Qq//0 and

Diffr
c.M

n n P p/0 are considered as subgroups of Diffr.M n/0, respectively.

The statement of Theorem 2.2 means that, by movingQ by a small isotopy k, the
diffeomorphism g of M n obtained in Theorem 2.2 is isotopic to the identity by an
isotopy which is the identity on a neighborhood of k.Qq/, and h is isotopic to the
identity by an isotopy which is the identity on a neighborhood of P p .

For the completeness, we include the proof of Theorem 2.2.

Proof of Theorem 2.2. Let fftgt2Œ0;1� be the isotopy such that f0 D id and f1 D f .
Let F W Œ0; 1� � M n ! M n be the trace of the isotopy: F.t; x/ D ft .x/. Here,
Œ0; 1� �M n contains the .p C 1/-dimensional stratified subset Œ0; 1� � P p .

We look at the image F.Œ0; 1� � P p/ � M n. As p C 1C q � n � 1, by Lem-
ma 2.1, there is an isotopy fksgs2Œ0;1� (k0 D id, k1 D k) such that F.Œ0; 1� � P p/ \
k.Qq/ D ;.

Then the following lemma implies Theorem 2.2 by putting P0 D ; and replacing
Qq by k.Qq/. �

Lemma 2.3. Let M n be a compact n-dimensional manifold. Let P p and Qq be
p-dimensional and q-dimensional stratified subsets ofM n, respectively. Let P0 be a
subset of P p . Let fftg � Diffr.M n/0 (f0 D id) be an isotopy which is the identity
on a neighborhood of P0. Assume that ft .P

p n P0/ \ Qq D ; (t 2 Œ0; 1�). Then
f1 2 Diffr.M n/0 can be written as a product f1 D g1 B h1, where fgtgt2Œ0;1� �
Diffr

c.M
n nQq/0 (g0 D id) and fhtgt2Œ0;1� � Diffr

c.M
n n P p/0 (h0 D id).

Proof. Let F W Œ0; 1� �M n ! M n be the trace of the isotopy: F.t; x/ D ft .x/.
Let W be a neighborhood of P0 in M n where ft is the identity. Let U be a

neighborhood of F.Œ0; 1� � .P p nW \ P p// and V be a neighborhood of Qq such
that U \ V D ;.

Let � be the vector field on Œ0; 1��M n given by @
@t

C � dftCs.x/

ds

�
sD0

at .t; ft .x//.
This � generates the isotopy ft . Let � be a vector field on Œ0; 1� �M n with support
in Œ0; 1� � U such that � D � on a neighborhood of

f.t; ft .x0//
ˇ̌
x0 2 P p nW \ P p; t 2 Œ0; 1�g:
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Then � D @=@t on Œ0; 1��.V [W /which is a neighborhood of Œ0; 1��.Qq [P0/.
Then� generates an isotopy fgtgt2Œ0;1� such thatgt is the identity on the neighborhood
V [W ofQq [P0 and gt .x/ D ft .x/ for x in a neighborhood of P p D .P p nW \
P p/[ .W \P p/. Here, for x 2 W , gt .x/ D x D ft .x/. Put h D g1

�1f1, then h is
the identity on a neighborhood of P p , and it is isotopic to the identity as an element
of Diffr.M n/. For, put ht D gt

�1 B ft . Then ht is the identity on a neighborhood
of P p .

Thus we can writef D gBh, whereg 2 Diffr
c.M

nnQq/0, h 2 Diffr
c.M

nnP p/0.
�

To use Theorem 2.2, we looked at the stratifications of a compact manifold M n

given by the stable manifolds or by the unstable manifolds of the gradient flow of a
Morse function associated with a handle decomposition.

A function f W M n ! R on a compact n-dimensional manifold M n without
boundary is called a Morse function if the critical points are nondegenerate, that is,
the Hessian matrices of f at the critical points are nondegenerate. For such a function
f , the set of critical points is a finite set. The index of the Hessian matrix of f at a
critical point is called the index of the critical point.

Any compact n-dimensional manifold M n without boundary admits a Morse
function f W M n ! R such that f .M n/ D Œ0; n�, the set of critical points of index k
is contained in f �1.k/ (k D 0, …, n). Such a Morse function is called self-indexing.
If M n is a compact connected n-dimensional manifold M n without boundary, there
is a self-indexing Morse function f W M n ! R such that f �1.0/ and f �1.n/ are
one point sets ([19]).

For a 2 Œ0; n�, put Ma D f �1.a/. Then Ma is a codimension 1 submanifold of
M n if a is not an integer. PutWk D f �1.Œ0; kC1=2�/, and then thisWk is a compact
manifold with boundary @Wk D MkC1=2 D f �1.k C 1=2/. Let ck be the number
of critical points of index k. Then the manifoldWk is diffeomorphic to the manifold
obtained from Wk�1 by attaching ck handles of index k (k D 0, …, n). This means
the following.

Let Dk � Dn�k be the product of the k-dimensional disk Dk and the .n � k/-
dimensional disk Dn�k . Let 'i W .@Dk/ � Dn�k ! @Wk�1 (i D 1, …, ck) be
diffeomorphisms with disjoint images. Let

W 0
k D Wk�1 [Fck

iD1
'i

ckG
iD1

.Dk �Dn�k/i

be the space obtained from the disjoint unionWk�1tFck

iD1.D
k �Dn�k/i by identify-

ing x 2 .@Dk/�Dn�k � .Dk �Dn�k/i with 'i .x/ 2 @Wk�1 � Wk�1. The image
of Dk �Dn�k in W 0

k
is called a handle of index k. We will simply write the handle

of index k as .Dk �Dn�k/i . Then W 0
k

is a manifold with boundary and the corner
which is the image

Fck

iD1 'i ..@D
k/� .@Dn�k//. By smoothing along the corner, we
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obtainW 00
k

fromW 0
k

andW 00
k

has a differentiable structure which is diffeomorphic to
Wk , and we say Wk is obtained from the manifold Wk�1 by attaching ck handles of
index k (k D 0, …, n).

In fact, we can consider W 0
k

as a submanifold with corner of Wk , W 00
k

is obtained
by taking the union of W 0

k
and a neighborhood of corner of W 0

k
, and Wk n W 00

k
is

diffeomorphic to .�1; k C 1=2� � @Wk . We have the sequence of submanifolds

W0 � W 0
1 � W 00

1 � W1 � � � � � Wk�1 � W 0
k � W 00

k � Wk

� � � � � Wn�1 � W 0
n D W 00

n D Wn D M n:

Then, when we identifyW 0
k

withWk ,M n is decomposed into the union of the handles
.Dk �Dn�k/i (i D 1, …, ck; k D 0, …, n) and this decomposition into handles is
called a handle decomposition of M . However, hereafter we do not identify W 0

k
or

W 00
k

withWk . We call the image ofDk �f0g the core disk of the handle .Dk �Dn�k/i
of index k. The boundary of the core disk of the handle of index k is an embedded
.k�1/-dimensional sphere in @Wk�1 D Mk�1=2 and it is called the attaching sphere.

For the above self-indexing Morse function f W M n ! R and the constant func-
tion n, the function n � f is a Morse function, and the critical points of index k of
the Morse function f are nothing but the critical points of index n � k of the Morse
function n � f . Hence this gives rise to a handle decomposition of M n called the
dual handle decomposition. That is for

W �
n�k D .n � f /�1.Œ0; n � k C 1=2�/ D f �1.Œk � 1=2; n�/;

M n D W �
n D W �

n
00 D W �

n
0 � W �

n�1

� � � � � W �
n�k � W �00

n�k � W �0
n�k � W �

n�k�1

� � � � � W �
1 � W �

1
00 � W �

1
0 � W �

0 :

Then W �0
n�k is obtained from W �

n�k�1
by attaching ck handles of index n � k. The

core disk of the handle of index n � k for this handle decomposition is called the
cocore disk of the handle decomposition for f . The boundary of the cocore disk of
the handle of index k is an embedded .n�k� 1/-dimensional sphere in @W �

n�k�1
D

@Wk D MkC1=2 and it is called the belt sphere.
By choosing a Riemannian metric on the manifold M n, the Morse function f

defines the gradient vector field and the gradient flow �t . The singular points of the
gradient vector field are precisely the critical points of f . The local stable manifold
and the local unstable manifold of the singular point p of the gradient flow �t cor-
respond to the core disk and the cocore disk of the handle containing p of a handle
decomposition of M n, respectively ([18], [19]). Let ek

i and e�n�k
i denote the global

stable manifold and the global unstable manifold, respectively, for the singular point
pk

i which is a critical point of index k of f (i D 1, …, ck). Then ek
i and e�n�k

i are
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diffeomorphic to Rk and Rn�k , respectively. Let

X .k/ D
[
j �k

cj[
iD1

e
j
i .k D 0; : : : ; n/:

Then
M n D X .n/ � X .n�1/ � � � � � X .1/ � X .0/

is a stratification of M n ([18]). That is, X .k/ is a closed subset,
Sck

iD1 e
k
i is a k-

dimensional submanifold, and
Sck

iD1 e
k
i n Sck

iD1 e
k
i � X .k�1/. We call this the strati-

fication by the stable manifolds (for the gradient flow of the Morse function). We also
have the stratification by the unstable manifolds (for the gradient flow of the Morse
function):

M n D X�.n/ � X�.n�1/ � � � � � X�.1/ � X�.0/;

where X�.n�k/ D S
j �k

Scj

iD1 e
�n�j
i (k D 0, …, n). This is the stratification by the

stable manifolds for the gradient flow of the Morse function n � f .
We look at the k-dimensional skeleton X .k/ of the stratification by the stable

manifolds and the .n � k � 1/-dimensional skeleton X�.n�k�1/ of the stratification
by the unstable manifolds. The boundary @Wk D MkC1=2 of Wk is transverse to the
gradient flow �t , and hence M n .X .k/ [X�.n�k�1// is diffeomorphic to @Wk � R
by the map

@Wk � R 3 .x; t/ 7�! �t .x/ 2 M n .X .k/ [X�.n�k�1//:

Moreover �t .@Wk/ converges to X .k/ as t ! �1 and to X�.n�k�1/ as t ! 1.
Hence,M nX�.n�k�1/ is diffeomorphic to the interior int.Wk/ ofWk , and any small
neighborhood ofX .k/ contains a deformation retract of bothWk andM nX�.n�k�1/:

X .k/ � int.Wk/ � Wk � M nX�.n�k�1/:

Using the gradient flow �t , for any neighborhood V of X .k/ in int.Wk/ and for
any compact subset A in int.Wk/, we can construct an isotopy fGt W int.Wk/ !
int.Wk/gt2Œ0;1� with compact support such that G0 D idint.Wk/, Gt .X

.k// � X .k/

(t 2 Œ0; 1�) and G1.A/ � V . A similar statement is true for X .k/ � M nX�.n�k�1/.

Remark 2.4. For our Morse function there is a Riemannian metric onM n such that
the stable manifolds ek

i and the unstable manifolds e�k0

i 0 intersect transversely ([21]).
As we shall see in Section 6 (Proposition 6.2), for a carefully chosen Riemannian
metric, there is a cellular complex structure compatible with the stratification by
stable manifolds.

Now for the interiorM n of a compact manifold with boundary xM n which admits
a Morse function such that Wm D xM n for 2m < n, we have the following lemma
(see [30], Lemma 4.5).



150 T. Tsuboi CMH

Lemma 2.5. Let M n be the interior of a compact n-dimensional manifold which
admits a handle decomposition onlywith handles of indices not greater than .n�1/=2.
LetX .m/ be them-dimensional skeleton of the stratification by the stablemanifolds for
the gradient flow of the Morse function onM n adapted to the handle decomposition
(2m < n). Then there are an isotopy fFt W M n ! M ngt2Œ0;1� with compact support
(F0 D id) and an open neighborhood U of X .m/ such that .F1/

`.U / (` 2 Z) are
disjoint.

Proof. Let V0 be a small neighborhood of X .m/ � M n. We apply Lemma 2.1 to
the identity map M n ! M n of M n with stratified subset X .m/. Then there is an
isotopy fhtgt2Œ0;1� such that h0 D id and h1.X

.m// \ X .m/ D ;. We may assume
that the support of the isotopy fhtgt2Œ0;1� is contained in V0. Take a neighborhood V1

of X .m/ and V2 of h1.X
.m// such that V1 \ V2 D ;. Then V3 D V1 \ .h1/

�1.V2/

is a neighborhood of X .m/ such that V3 \ h1.V3/ D ;. Here we can take V1 and V2

such that their closures V1 and V2 are compact, and then V3 is compact.
For V3 and h1.V3/, by using the flow lines of the gradient flow �t , we have an

isotopy fGt W M n ! M ngt2Œ0;1� with support in V such that G0 D id, Gt jX .m/ D
idX.m/ and G1.h1.V3// � V3.

Let Ft be the composition of Gt and ht : Ft D Gt B ht . Then F1.V3/ � V3. For
U D V3 n F1.V3/, .F1/

`.U / (` 2 Z) are disjoint. �

We give the proof of Theorem 1.1 (1).

Proof of Theorem 1.1 (1). For the manifoldM n, we take them-dimensional stratified
set X .m/ (2m < n) given in Lemma 2.5. Let f 2 Diffr

c.M
n/0 (r ¤ nC 1). By the

result of Herman, Mather and Thurston ([11], [14], [16], [23], [2]), f can be written
as a product of commutators.

f D Œa1; b1� � � � Œak; bk�; a1; b1; : : : ; ak; bk 2 Diffr
c.M

n/0;

where Œai ; bi � D aibiai
�1bi

�1. Let C be a compact subset of M n such that the
supports of ai , bi as well as the supports of the isotopies faitgt2Œ0;1� (ai0 D id and
ai1 D ai ), fbitgt2Œ0;1� (bi0 D id and bi1 D bi ) are contained in C .

By using the flow lines of the gradient flow�t , we have an isotopy fG0
tgt2Œ0;1� with

compact support such that G0
1.C / � U , where U is the open neighborhood taken in

Lemma 2.5. Then by Lemma 2.5, for Ft in Lemma 2.5 and g D .G0
1/

�1 B F1 B G0
1,

g`..G0
1/

�1.U // (` 2 Z) are disjoint.
Put

H D
kY

iD1

gk�i .Œa1; b1� � � � Œai ; bi �/g
i�k :
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Then H is an element of Diffr
c.M

n/0. Now the conjugate of H by g is as follows:

gHg�1 D
kY

iD1

gk�iC1.Œa1; b1� � � � Œai ; bi �/g
i�k�1

D
k�1Y
iD0

gk�i .Œa1; b1� � � � ŒaiC1; biC1�/g
i�k :

Hence

H�1gHg�1 D .Œa1; b1� � � � Œak; bk�/
�1

k�1Y
iD0

gk�i ŒaiC1; biC1�g
i�k

D f �1

k�1Y
iD0

gk�i ŒaiC1; biC1�g
i�k

D f �1
h k�1Y

iD0

gk�iaiC1g
i�k;

k�1Y
iD0

gk�ibiC1g
i�k

i
:

Put

A D
k�1Y
iD0

gk�iaiC1g
i�k and B D

k�1Y
iD0

gk�ibiC1g
i�k;

thenA and B are elements of Diffr
c.R

n/0. Thus f can be written as a product of two
commutators: f D ŒA; B�Œg;H�1�. �

Proof of Theorem 1.1 (2). For an even-dimensional compact manifold M 2m which
has a handle decomposition without handles of the middle index m, Theorem 2.2
together with Theorem 1.1 (1) implies Theorem 1.1 (2) (see [30]). �

For the decomposition of an isotopy on an odd dimensional manifold, we used
the following lemma (see [30], Remark 4.4).

Lemma 2.6. In Lemma 2.1, let Kk D K.k/ � K.k�1/ � � � � � K.1/ � K.0/and
L` D L.`/ � L.`�1/ � � � � � L.1/ � L.0/ be the stratifications. Then there
is an isotopy f˚t W M n ! M ngt2Œ0;1� (˚0 D id) with support in a neighborhood
of Kk such that ˚1.K

.a// \ f .L.b// D ; for a C b C 1 D n, and the intersec-
tion ˚1.K

.a// \ f .L.b// consists of finitely many transverse intersection points for
aC b D n.

Proof. We proceed as in the proof of Lemma 2.1. Assume that for u � 1 � k � 1,
there is an isotopy f ẙu�1

t gt2Œ0;1� ( ẙu�1
0 D id) such that ẙu�1

1 .K.a//\f .L.b// D ;
for aCbC1 D n and a � u�1, and the intersection ẙu�1

1 .K.a//\f .L.b// consists
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of finitely many transverse points for a C b D n and a � u � 1. Then there is a
neighborhood Uu�1 of K.u�1/ such that ẙu�1

1 .Uu�1/ \ f .L.n�u// D ;. We cover
K.u/ n Uu�1 by finitely many coordinate neighborhoods f.Du � Dn�u/igku

iD1 such
that

.K.u/ n Uu�1/ \ .Du �Dn�u/i � .Du � f0g/i
and f.int.Du

1=2
/ � int.Dn�u

1=2
//igku

iD1 still covers K.u/ n Uu�1.

By the proof of Lemma 2.1, we have isotopies f˚u;i
t gt2Œ0;1� (˚u;i

0 D id, i D 1,
…, ku) with support in

Si
j D1.D

u �Dn�u/j such that

K.u/ \ . ẙu�1
1 B ˚u;i

1 /�1.f .L.n�u�1/// �
ku[

j DiC1

.int.Du
1=2/ � int.Dn�u

1=2 //j ;

and for ˚u
t D ẙu�1

t B ˚u;ku
t , ˚u

1 .K
.u// \ f .L.n�u�1// D ;.

We modify ˚u
t to obtain ẙu

t such that ẙu
1.K

.u//\ f .L.n�u// consists of finitely
many transverse intersection points.

Since˚u
1 .K

.u//\f .L.n�u�1// D ;, .f jL.n�u//�1.˚u
1 .K

.u/// is a closed subset
hence is a compact subset inL.n�u/. Thus it is compact subset inL.n�u/ nL.n�u�1/.

Now assume that, for i � ku, we have an isotopy f ẙu;i�1
t gt2Œ0;1� ( ẙu;i�1

0 D id)
with support in

Si�1
j D1.D

u �Dn�u/j such that

K.u/ \ .˚u
1 B ẙu;i�1

1 /�1.f .L.n�u/// \
i�1[
j D1

.int.Du
1=2/ � int.Dn�u

1=2 //j :

consists of transverse intersection points. Then for

L0n�u
i�1 D .˚u

1 B ẙu;i�1
1 /�1.f .L.n�u///;

we look at pi .L
0n�u
i�1 \ .Du �Dn�u/i / inDn�u. More precisely, we look at the map

pi B .˚u
1 B ẙu;i�1

1 /�1 B f W
.L.n�u/ n L.n�u�1//\f �1

�
.˚u

1 B ẙu;i�1
1 /.

�
int.Du/�int.Dn�u/

�
i
/
� �! Dn�u:

Then by the Sard theorem for C r mappings between the manifolds of the same
dimension (r � 1), the critical value of pi B .˚u

1 B ẙu;i�1
1 /�1 B f is measure zero in

Dn�u. We choose a regular value q0
i close to 0.

Let f ẙ 0
t
u;igt2Œ0;1� be the isotopy with support in .int.Du/� int.Dn�u//i such that

ẙ 0
t
u;i .x; 0/ D .x; t�.x/q0

i / ( ẙ 0
0

u;i D id). Then since q0
i is a regular value,

L0n�u
i�1 \ ẙ 0

1
u;i .K.u// \ .int.Du

1=2/ � int.Dn�u
1=2 //i
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or
. ẙ 0

1
u;i /�1L0n�u

i�1 \K.u/ \ .int.Du
1=2/ � int.Dn�u

1=2 //i

consists of transverse intersection points. Since q0
i is close to zero, the transversal-

ity in
Si�1

j D1.int.Du
1=2
/ � int.Dn�u

1=2
// is preserved. Hence for f ẙu;i

t D ẙu;i�1
t B

ẙ 0
t
u;igt2Œ0;1�,

K.u/ \ .˚u�1
1 B ẙu;i

t /�1.f .L.n�u�1/// D ;
and

K.u/ \ .˚u�1
1 B ẙu;i

t /�1.f .L.n�u/// \
i[

j D1

.int.Du
1=2/ � int.Dn�u

1=2 //j

consists of transverse intersection points.
Then for ẙu

t D ˚u�1
1 B ẙu;ku

t ,

K.u/ \ . ẙu
t /

�1.f .L.n�u�1/// D ;
and

K.u/ \ . ẙu
t /

�1.f .L.n�u///

consists of transverse intersection points. Since K.u/ \ . ẙu
t /

�1.f .L.n�u/// is com-
pact, this is a finite set.

Put ˚t D ẙk
t . Then ˚t is the desired isotopy. �

In the rest of this section, we sketch the proof of Theorem 1.1 (3). We need three
more lemmas whose proofs are omitted because they are either straightforward or
given by rewriting those in [30].

By using Lemma 2.6 and the argument of the proof of Theorem 2.2, we obtain
the following lemma.

Lemma 2.7 ([30], Lemma 6.3). LetM n be a compact n-dimensional manifold. Let
P p and Qq be p-dimensional and q-dimensional stratified subsets of M n, respec-
tively. Assume that p C q C 1 D n and that P p \ Qq D ;. Let P p D P .p/ �
P .p�1/ � � � � � P .0/ andQq D Q.q/ � Q.q�1/ � � � � � Q.0/ be the stratifications.
Then any element f 2 Diffr.M n/0 can be written as a product f D g B h such that
g 2 Diffr

c.M
nnk.Qq//0 andh 2 Diffr

c.M
nnP .p�1//0, wherek 2 Diffr

c.M
nnP p/0

is a diffeomorphism of M n with support in a small neighborhood of Qq . Moreover
there is an isotopy fhtgt2Œ0;1� such that h0 D id, h1 D h, ht is the identity on a neigh-
borhood of P .p�1/, and forH.t; x/ D ht .x/,H.Œ0; 1��P p/\ k.Q.q�1// D ; and
H.Œ0; 1� � .P p n P .p�1/// \ k.Qq n Q.q�1// consists of finitely many transverse
intersection points.
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For an odd dimensional compact manifold M 2mC1, we considered a handle de-
composition of M 2mC1 in [30]. Let M 2mC1 D P .2mC1/ � � � � � P .0/ be the strat-
ification by the stable manifolds for the gradient flow for the corresponding Morse
function, andM 2mC1 D Q.2mC1/ � � � � � Q.0/ be the stratification by the unstable
manifolds for the gradient flow. We look at the stratified subsets Pm D P .m/ and
Qm D Q.m/, and we have the following lemma.

Lemma 2.8 ([30], Lemma 6.4). Let fhtgt2Œ0;1� (h0 D id) be a C r isotopy which is
the identity on a neighborhood of P .m�1/ and H.Œ0; 1� � Pm/ \ k.Q.m�1// D ;
for H.t; x/ D ht .x/. Let V m � Pm be the complement of a neighborhood of
P .m�1/ where ht D id. Then there is a C1 isotopy f Nhtgt2Œ0;1� ( Nh0 D id) fixing a
neighborhood of P .m�1/ such that its trace xH W Œ0; 1� � M 2mC1 ! M 2mC1 is C r

close toH W Œ0; 1��M 2mC1 ! M 2mC1 and xH jŒ0; 1��V m is an immersion outside
of a finite subset. Moreover the image

xH.Œ0; 1� � V m/ � M 2mC1 n .P .m�1/ [ k.Q.m�1///

has finitely many double point curves which is in general position with respect to the
curves xH.Œ0; 1� � fvg/ (v 2 V m). If m � 2 these double point curves are disjoint,
and if m D 1, there are at most finitely many triple points and cusps.

Then, using the idea of Burago, Ivanov and Polterovich ([4]), we constructed an
isotopy fatgt2Œ0;1� (a0 D id) with support in a union of disjointly embedded .2mC1/-
dimensional open balls embedded inM 2mC1 such that .at B Nht /.P

m/\ k.Qm/ D ;
(t 2 Œ0; 1�), and we showed the following lemma.

Lemma 2.9 ([30], Lemma 6.5). For the generic diffeomorphism

Nh D Nh1 2 Diff1
c .M

2mC1 n P .m�1//0

givenbyLemma2.8, Nh canbedecomposedas Nh D aB NgB Nh0, wherea 2 Diff1
c .

F
i Ui /0,F

i Ui is a union of .2m C 1/-dimensional open balls Ui disjointly embedded in
M 2mC1, Ng 2 Diff1

c .M
2mC1 n k.Qm//0 and Nh0 2 Diff1

c .M
2mC1 n Pm/0.

Proof of Theorem 1.1 (3). Note that the element Nh�1 B h 2 Diffr.M 2mC1/0 is close
to the identity and it can be decomposed as Nh�1 Bh D OhB Og with Oh 2 Diffr

c.M
2mC1 n

Pm/0 and Og 2 Diffr
c.M

2mC1 n k.Qm//0 (Remark 5.4 in [30], see Remark 2.10).
Then by Lemmas 2.7 and 2.9,

f D g B h D g B Nh B . Nh�1 B h/
D g B a B Ng B Nh0 B Oh B Og
D .g B a B g�1/ B .g B Ng B Og/ B . Og�1 B Nh0 B Oh B Og/
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and g B a B g�1 2 Diffr
c.g.

F
i Ui //0, g B Ng B Og 2 Diffr

c.M
2mC1 n k.Qm//0 and

Og�1 B Nh0 B Oh B Og 2 Diffr
c.M

2mC1 n Og�1.Pm//0. Noticing that a can be taken as
a commutator with support in

F
i Ui , Theorem 1.1 (1) implies Theorem 1.1 (3) (see

[30]). �

It is worth noticing again that, for any compact manifold M n, there is a neigh-
borhood of the identity of Diffr.M n/0 (1 � r � 1, r ¤ nC 1) whose element can
be written as a product of four or six commutators([30], Remark 5.4).

Remark 2.10. For a compact manifold M , we have a self-indexing Morse func-
tion F W M n ! Œ0; n�. By choosing a Riemannian metric on M n, we have the
stratification fX .k/gn

kD0
by the stable manifolds for the gradient flow of the Morse

function F , and the stratification fX�.n�k/gn
kD0

by the unstable manifolds. For a
compact odd-dimensional manifold M 2mC1, M 2mC1 is covered by two open sets
U1 D F �1.Œ0;m C 2=3// and U2 D F �1..m C 1=3; 2m C 1�/, where any neigh-
borhood of X .m/ � U1 contains a deformation retract of U1 and any neighborhood
of X�.m/ � U2 contains a deformation retract of U2. Then by the fragmentation
lemma ([2]), there is a neighborhood N of the identity in Diffr.M 2mC1/0 such that
any element f of N can be written as a product f D g B h, where g 2 Diffr

c.U1/0
and h 2 Diffr

c.U2/0. Hence by Theorem 1.1 (1), any element f of N can be written
as a product of four commutators of elements of Diffr.M 2mC1/0 (1 � r � 1,
r ¤ 2mC 2). For a compact even-dimensional manifold M 2m, M 2m is covered by
three open setsU1, U2 andU3. Here, U3 is a union of disjointly embedded open balls
which is a neighborhood of the set of critical points of index m. Let V3 be a smaller
neighborhood of the critical points of index m such that xV3 � U3. Then we can put
U1 D .M 2m n xV3/ \ F �1.Œ0;mC "// and U2 D .M 2m n xV3/ \ F �1..m � "; 2m�/

for a small positive real number ". Here, we can choose V3 so that any neighbor-
hood of X .m�1/ � U1 contains a deformation retract of U1 and any neighborhood
of X 0.m�1/ � U2 contains a deformation retract of U2. Then by the fragmentation
lemma, there is a neighborhood N of the identity in Diffr.M 2m/0 such that any
element f of N can be written as a product f D a B g B h, where g 2 Diffr

c.U1/0,
h 2 Diffr

c.U2/0 and a 2 Diffr
c.U3/0. Hence by Theorem 1.1 (1), any element f

of N can be written as a product of six commutators of elements of Diffr.M 2m/0
(1 � r � 1, r ¤ 2mC 1).

3. Proof of the main theorem

For an even dimensional compact manifold M 2m, we proceed as follows to prove
Theorem 1.2. (The proofs of lemmas are given in the next section.)

For the manifold M 2m, we consider any smooth triangulation P of it (for the
existence of smooth triangulations, see [33], [37], [20], [6]). Let P .k/ denote the
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k-dimensional skeleton of P . Then the .m� 1/-dimensional skeleton P .m�1/ of the
triangulation P has the following property:

For eachm-dimensional simplex �m ofP .m/, let .P .m�1/ [�m/=�m denote the
.m�1/-dimensional cell complex obtained fromP .m�1/[�m by identifying�m

to a point. Then there is an embedding � of .P .m�1/[�m/=�m inM 2m such that,
for any neighborhood U of �..P .m�1/ [ �m/=�m/, there is a diffeomorphism
of M 2m isotopic to the identity which maps P .m�1/ [ �m into U .

For any smooth triangulation P ofM 2m, there are a Morse function onM 2m and
a Riemannian metric onM 2m such that the stratification by the stable manifolds of the
gradient flow is homeomorphic toP . Here, in a neighborhood of the barycenter b�k of
the simplex �k , we can take a coordinate neighborhood .U; .x1; : : : ; xn// such that �k

is locally given as xkC1 D � � � D xn D 0, and the Morse function in a neighborhood
of b�k is given by k�x1

2 �� � ��xk
2 CxkC1

2 C� � �Cxn
2. The homeomorphism can

be constructed so that it sends the stable manifold of the barycenter b�k differentiably
to the interior of the simplex �k . Moreover the homeomorphism can be constructed
so that it sends the stratificationQ by the unstable manifolds of the gradient flow to the
cell decompositionP � dual toP . We show this fact in Section 6 (Proposition 6.1). In
this section, we identify the stratification by the stable manifolds with the triangulation
P by the homeomorphism and it is denoted by P , and then, we call the stratification
Q by the unstable manifolds the cell stratification dual to P . We call the stable
manifolds of P simplices and the unstable manifold of Q dual cells.

Remark 3.1. We may use a cellular complex associated with a handle decomposition
of M 2m if it has the above property for each m-dimensional cell �m. The number
N of the m-dimensional cells of such a cellular decomposition of M 2m appears in
the estimate of the bound for the number of commutators at the end of the proof of
Theorem 1.2. We discuss the relationship between the handle decomposition and the
cellular decomposition in Section 6 (Proposition 6.2).

Now we look at the m-dimensional skeletons Pm and Qm of the triangulation
P and its dual cell stratification Q. These Pm and Qm intersect transversely at the
barycenters ofm-dimensional simplices of P . Then by an isotopy ft (t 2 Œ0; 1�), the
intersection ft .P

m/ \Qm becomes very complicated. However, we can treat it as
follows.

For the manifold M 2m, the statement of Lemma 2.7 is written as follows.

Lemma 3.2. LetPm denote them-dimensional skeleton of a triangulation of a .2m/-
dimensional manifold M 2m, and Qm, the m-dimensional skeleton of the dual cell
stratification. Let P .i/ and Q.i/ denote the i -dimensional skeletons (i D m � 2,
m � 1) of Pm and Qm, respectively. Then any element f 2 Diffr.M 2m/0 can
be written as a product f D g B h such that g 2 Diffr

c.M
2m n k.Qm//0 and

h 2 Diffr
c.M

2m n P .m�2//0, where k 2 Diffr
c.M

2m n Pm/0 is a diffeomorphism
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of M n with support in a small neighborhood of Qm. Moreover there is an isotopy
fhtgt2Œ0;1� which has the following properties:

(1) h0 D id, h1 D h, and ht is the identity on a neighborhood of P .m�2/.

(2) ForH.t; x/ D ht .x/,
H.Œ0; 1� � P .m�1//\ k.Q.m�1// D ; andH.Œ0; 1� � Pm/\ k.Q.m�2// D ;.

(3) For each .m�1/-dimensional simplex �m�1 ofP .m�1/ and eachm-dimensional
cell 	m of Qm, the intersection H.Œ0; 1� � �m�1/ \ k.	m/ is transverse. Thus
H.Œ0; 1� � P .m�1// \ k.Qm/ is a finite set.

Then, if 2m � 4, we can separate the image H.Œ0; 1� � P .m�1// from k.Qm/ by
an argument similar to the proof of Lemmas 2.8 and 2.9.

First, we approximate the isotopy H by a generic one, say xH . Let

f Nhtgt2Œ0;1� � Diff1
c .M

2m n P .m�2// ( Nh0 D id)

be a C1 approximation of fhtgt2Œ0;1� � Diffr
c.M

2m nP .m�2// generic with respect
to Pm and k.Qm/ such that Nht is the identity on a neighborhood of P .m�2/. Then
xH.t; x/ D Nht .x/ has the following properties:

(0) xH W Œ0; 1� �M 2m ! M 2m is close to H W Œ0; 1� �M 2m ! M 2m and Nht is the
identity on a neighborhood of P .m�2/.

(1) The restriction

xH j.Œ0; 1� � V m�1/ W Œ0; 1� � V m�1 �! M 2m

is an immersion, where V m�1.� P .m�1// is the complement of a neighborhood
of P .m�2/ � P .m�1/ where Nht is the identity.

(2) xH.Œ0; 1� � P .m�1//\ k.Q.m�1// D ; and xH.Œ0; 1� � Pm/\ k.Q.m�2// D ;.

(3) xH.Œ0; 1� � P .m�1// \ k.Qm/ is a finite set:

xH.Œ0; 1� � P .m�1// \ k.Qm/ D f xH.si ; vi /
ˇ̌
i D 1; : : : ; rg:

(4) xH.Œ0; 1� � fvig/ \ k.Qm/ D xH.si ; vi / (i D 1, …, r).

(5) xH.Œ0; 1� � fvig/ does not contain double points of xH.Œ0; 1� � P .m�1// (i D 1,
…, r).

(6) xH jŒ0; 1��P .m�1/ restricted to a neighborhood of Œ0; 1��fvig in Œ0; 1��P .m�1/

is an embedding (i D 1, …, r), and

(7) xH.Œsi ; 1� � fvig/ (i D 1, …, r) are disjoint.
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Here, the statements (1)–(7) hold for generic xH (or the properties (1)–(7) are generic
in the space of isotopies). In particular, the statement (5) holds because the inverse
image of the double point set of xH.Œ0; 1��P .m�1// is a finite set which is in general
position with respect to Œ0; 1� � fvig (i D 1, …, r) and 2m � 4.

Note that for the proof of uniform perfectness, we can approximate the diffeo-
morphism for a bounded number of times. In fact in this case, f1 D g1 B h1 D
g1 B Nh1 B . Nh1

�1 B h1/ and Nh1
�1 B h1 2 Diffr.M 2m/ is close to the identity. By

Remark 2.10, Nh1
�1 B h1 can be written as a product of six commutators.

For the above disjoint curves xH.Œsi ; 1� � fvig/, we can construct isotopies as in
Lemma 2.9 which was used to prove Theorem 1.1 (3).

Lemma 3.3. For the above generic isotopy f Nhtgt2Œ0;1�, there is a neighborhood
Ui (i D 1, …, r) of the curve xH.Œsi ; 1� � fvig/ � M 2m diffeomorphic to a .2m/-
dimensional ball such thatUi are disjoint and there is an isotopy fatgt2Œ0;1� (a0 D id)
with support in

Fr
iD1 Ui such that, for h0

t D at B Nht ,

h0
t .P

.m�1// \ k.Qm/ D ; (t 2 Œ0; 1�):
Note that at 2 Diffr

c.
Fr

iD1 Ui /0 can be taken as one commutator with support inFr
iD1 Ui (see [31]).
Since h0

t .P
.m�1// \ k.Qm/ D ; (t 2 Œ0; 1�), by Lemma 2.3, there are isotopies

fg0
tgt2Œ0;1� � Diffr

c.M
2m n k.Qm// and fh00

t gt2Œ0;1� � Diffr
c.M

2m n P .m�1// such
that h0

1 D g0
1 B h00

1. In other words, g0
t and h00

t (t 2 Œ0; 1�) are the identity on neigh-
borhoods of k.Qm/ and P .m�1/, respectively. Note that, by taking h00

t generically on
Pm, h00

t .P
m/ \ k.Q.m�2// D ;.

Put h.0/
t D h00

t . Then h.0/
t is the identity on a neighborhood of P .m�1/ and

h
.0/
t .Pm/ \ k.Q.m�2// D ; (t 2 Œ0; 1�).

We look at the intersection h.0/
t .Pm/ \ k.Qm/. At time 0, the intersection

h
.0/
0 .Pm/ \ k.Qm/ is the set of the points near the barycenters of m-dimensional

simplices. The image under the isotopy h.0/
t of an m-dimensional simplex �m inter-

sects k.Q.m�1// and k.Qm/. We assume 2m � 6 and we are going to construct an
isotopy with support in the union of disjointly embedded balls which removes the
intersection of �m and k.Qm/ except on the dual m-dimensional cell.

This is the main part of the proof of our Theorem 1.2.
In fact, for an m-dimensional simplex �m, we can remove the intersection of the

image of the isotopy of �m and k.Q.m�1// in a way similar to Lemma 3.3, and then
we can remove the intersection of the resultant isotopy of �m and k.Qmn�m�/, where
�m� is them-dimensional cell ofQm dual to �m. For the latter process, we will find
the Whitney disks which guide the construction of isotopy to reduce the order of the
intersection point set. After removing the intersection of an m-dimensional simplex
�m and k.Qm n �m�/, we continue the process for other m-dimensional simplices.

More precisely, we construct the isotopies inductively, in Lemmas 3.4–3.7.
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Let �m
i (i D 1, …, N ) be the m-dimensional simplices of Pm. For 0 � j � N ,

assume that we have an isotopy

fh.j /
t gt2Œ0;1� � Diffr.M 2m/0 (h.j /

0 D id)

such that h.j /
t is the identity on a neighborhood of P .m�1/ [ Sj

iD1 �
m
i . Let Nh.j /

t be a

C1 approximation of h.j /
t generic with respect to Pm and k.Qm/ such that Nh.j /

t is
the identity on a neighborhood of P .m�1/ [ Sj

iD1 �
m
i . Then xH .j /.t; x/ D Nh.j /

t .x/

has the following properties:

(0) xH .j / W Œ0; 1� �M 2m ! M 2m is close to H .j / W Œ0; 1� �M 2m ! M 2m defined
byH .j /.t; x/ D h

.j /
t .x/ and Nh.j /

t is the identity on a neighborhood ofP .m�1/ [Sj
iD1 �

m
i .

(1) The restriction

xH .j /jŒ0; 1� � V m
.j / W Œ0; 1� � V m

.j / �! M 2m

is an immersion outside of a 1-dimensional subset (a codimension m subset)
of Œ0; 1� � V m

.j /
, where V m

.j /
.� Pm/ is the complement of a neighborhood of

P .m�1/ in Pm where Nh.j /
t is the identity.

(2) xH .j /.Œ0; 1��P .m�1//\k.Q.m�1// D ; and xH .j /.Œ0; 1��Pm/\k.Q.m�2// D
;.

(3) xH .j /.Œ0; 1� � Pm/ \ k.Q.m�1// is a finite set:

xH .j /.Œ0; 1� � Pm/ \ k.Q.m�1// D f xH .j /.s
.j /
i ; v

.j /
i /

ˇ̌
i D 1; : : : ; r .j /g:

(4) xH .j /.Œ0; 1� � fv.j /
i g/ \ k.Q.m�1// D xH .j /.s

.j /
i ; v

.j /
i / (i D 1, …, r .j /).

(5) xH .j /.Œ0; 1��fv.j /
i g/ does not contain double points of xH .j /.Œ0; 1��Pm/ (i D 1,

…, r .j /).

(6) xH .j /jŒ0; 1� � Pm restricted to a neighborhood of Œ0; 1� � fv.j /
i g in Œ0; 1� � Pm

is an embedding (i D 1, …, r .j /), and

(7) xH .j /.Œs
.j /
i ; 1� � fv.j /

i g/ are disjoint.

Here, the statements (1)–(7) hold for generic xH .j /. In particular, for the statement
(1), we notice that the set of rankmmatrices in the space of .mC1/� .2m/matrices
is codimension m ([22]). The statement (6) holds because the inverse image of the
double point set of xH .j /.Œ0; 1� � Pm/ is 2-dimensional in Œ0; 1� � Pm which is in
general position with respect to Œ0; 1� � fv.j /

i g (i D 1, …, r .j /) and 2m � 6.
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Lemma 3.4. For the above generic isotopy f Nh.j /
t gt2Œ0;1�, there is a neighborhoodU .j /

i

(i D 1, …, r .j /) of the curve xH .j /.Œs
.j /
i ; 1��fv.j /

i g/ � M 2m diffeomorphic to a .2m/-

dimensional ball such that U .j /
i are disjoint and there is an isotopy fa.j C1/

t gt2Œ0;1�

(a.j C1/
0 D id) with support in

Fr.j /

iD1 U
.j /
i such that, for h0.j /

t D a
.j C1/
t B Nh.j /

t ,

h0.j /
t .Pm/ \ k.Q.m�1// D ; (t 2 Œ0; 1�):

Note again that a.j C1/
t 2 Diffr

c.
Fr.j /

iD1 U
.j /
i /0 can be taken as one commutator

with support in
Fr.j /

iD1 U
.j /
i (see [31]).

The isotopy h0.j /
t given by Lemma 3.4 has the following properties.

(0) h0.j /
t is the identity on a neighborhood of P .m�1/ [ Sj

iD1 �
m
i .

(1) H 0.j /.Œ0; 1� � Pm/ \ k.Q.m�1// D ;.

(2) h0.j /
t is generic with respect to Pm and k.Qm/.

Now we look at the intersection h0.j /
t .Pm/ \ k.Qm/. Since h0.j /

t is the identity
on a neighborhood of P .m�1/ [ Sj

iD1 �
m
i , the intersection h0.j /

t .�m
i / \ k.Qm/ for

i � j is always the one point set �m
i \ k.�m�

i /, where �m�
i is the m-dimensional

cell ofQm dual to �m
i (i � j ). For the simplex �m

j C1, the intersection h0.j /
t .�m

j C1/\
k.Qm/ is a finite set which vary with respect to the parameter t . If 2m � 6, we
can find the Whitney disks which guide to reduce the order of intersection point set
h0.j /

t .�m
j C1/ \ k.Qm n �m�

j C1/, where �m�
j C1 is the m-dimensional cell of Qm dual to

�m
j C1 as we explain now.

For them-dimensional simplex �m
j C1 of Pm, the intersection of �m

j C1 and k.Qm/

is just one point which is the intersection of �m
j C1 and k.�m�

j C1/, Then the behavior

of the intersection h0.j /
t .�m

j C1/ \ k.�m�
j C1/ it rather complicated. Hence we look at

H 0.j /.Œ0; 1� � �m
j C1/ \ k.Qm n �m�

j C1/ or h0.j /
t .�m

j C1/ \ k.Qm n �m�
j C1/. First, note

that h0.j /
t .�m

j C1/\k.Qm n�m�
j C1/ is the empty set for small t , and since h0.j /

t .�m
j C1/\

k.Q.m�1// D ; (andh0.j /
t .P .m�1//\k.Qm/ D ;), the algebraic intersection number

of the two m-dimensional cells h0.j /
t .�m

j C1/ and k.	m/ (t 2 Œ0; 1�) is always 0 for
each m-dimensional cell 	m of the dual cell complex Qm other than �m�

j C1.

If we look at the movement of the intersection h0.j /
t .�m

j C1/ \ k.	m/ with respect
to the parameter t , there happen a finite number of generations of pairs of intersection
points and cancellations of pairs of intersection points. For generic H 0.j / or h0.j /

t ,
the values of the parameters t of generations and cancellations are different. This
genericity argument follows from the following well known lemma.

Lemma 3.5. Consider the space of C1 maps F W R�Rm ! Rm. Then, for generic
F , the inverse image of a generic point y 2 Rm consists of regular points and fold
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points for Ft D F.t; •/. At a fold point x for Ft , by changing the coordinates of Rm

(both of the second factor of R � Rm and the target Rm), Ft is locally written as

Ft .x1; : : : ; xm/ D .x1; : : : ; xm�1; ym.t; x1; : : : ; xm//;

where @ym

@xm
D 0, @ym

@t
¤ 0 and @2ym

@xm
2 ¤ 0 at x. The fold points are discrete in F �1.y/

and correspond to the generations or cancellations of pairs of intersection points.

We use this Lemma 3.5 in the following way. We take a tubular neighborhood
of k.	m/ and the projection pk.�m/ to the fiber which is an m-dimensional disk, and
look at the map pk.�m/ B .H 0.j /jŒ0; 1� � �m

j C1/. Then for generic H 0.j /, by using
Lemma 3.5, there are only finitely many generations and cancellations of pairs of
intersections in the family fh0.j /

t .�m
j C1/ \ k.	m/gt2Œ0;1�.

We are going to construct the disks associated with the intersectionH 0.j /.Œ0; 1��
�m

j C1/ \ k.	m/ for an m-dimensional cell 	m of Qm other than �m�
j C1.

For a generation of a pair of intersection points, the intersection points near the
generation point are written as h0.j /

t .xt / and h0.j /
t .yt / (t 2 Œt0; t0 C "0/), where

h0.j /
t0
.xt0/ D h0

t0
.j /.yt0/ is the generation point. Here, xt andyt are continuous func-

tions written as xt D .c1; : : : ; cm�1;
p
t � t0/ and yt D .c1; : : : ; cm�1;�p

t � t0/,
respectively, for a suitable choice of coordinate around .t0; xt0/ D .t0; yt0/ 2
Œ0; 1� � �m

j C1, where c1,…, cm�1 are constants.
We take a flat metric on them-dimensional simplex�m

j C1 and we draw the geodesic
segment xtyt in �m

j C1 joining the intersection points xt and yt (t 2 Œt0; t0 C "0/).
Once we choose the pair of intersection points to be joined by the geodesic seg-

ment, we continue joining them as the parameter t increases unless one of these
intersection points meets a cancellation point.

For a cancellation of a pair of intersections, the intersection points near the cancel-
lation point are written ash0.j /

t .xt / andh0.j /
t .yt / (t 2 .t0�"0; t0�), whereh0.j /

t0
.xt0/ D

h0.j /
t0
.yt0/ is the cancellation point. Here, xt and yt are continuous functions written

as xt D .c1; : : : ; cm�1;
p�t C t0/ and yt D .c1; : : : ; cm�1;�p�t C t0/, respec-

tively, for a suitable choice of coordinate around .t0; xt0/ D .t0; yt0/ 2 Œ0; 1���m
j C1,

where c1,…, cm�1 are constants.
Assume that we have chosen geodesic segments for the intersection points such

that t < t0. Let x0
t (t 2 .t0 � "0; t0/) be the other endpoint of the geodesic segment

containing xt , and y0
t (t 2 .t0 �"0; t0/) be the other endpoint of the geodesic segment

containing yt . There are two cases. In the case where x0
t0

¤ y0
t0

, that is, if it is

a cancellation of intersection points belonging to different geodesic segments xtx
0
t

and yty
0
t in ftg � �m

j C1 (t 2 .t0 � "0; t0/), we draw the geodesic triangle joining the
3 points xt0 D yt0 , x0

t0
and y0

t0
in ft0g � �m

j C1, and continue to draw the geodesic

segment x0
ty

0
t joining x0

t and y0
t in ftg � �m

j C1 (t 2 .t0; t0 C "0/). In the case where
x0

t0
D y0

t0
, that is, if it is a cancellation of intersection points of the same geodesic
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segment xtyt in ftg � �m
j C1 (t 2 .t0 � "0; t0/, x0

t D yt and y0
t D xt ), we add the

auxiliary band
[

t2Œt0�";t0�

Œt; 1� � fxtg [
[

t2Œt0�";t0�

Œt; 1� � fytg;

which contains the curve Œt0; 1� � fxt0g D Œt0; 1� � fyt0g, where " (< "0) is a small
positive real number. Note that the image of the auxiliary band does not contain
double points of H 0.j /.Œ0; 1� � �m

j C1/ for generic H 0.j /, and hence H 0.j / restricted

to the auxiliary band is an embedding into M 2m n k.Q.m�1//.
Now we have a family of geodesic segments in �m

j C1 moving with respect to the

parameter t and there are only finitely many times ti (i D 1, …, Nr .j /) when there
appear geodesic triangles.

We are assuming that 2m � 6, and for generic h0.j /
t , the family of geodesic

segments satisfies the following properties because the preimage of the double points
of h0.j /

t .Pm/ is 1-dimensional in Œ0; 1� � �m
j C1.

(1) The geodesic segments in �m
j C1 joining the pairs of intersection points in

.h0
t
.j //�1.k.	m// never contain the preimage of double points of .h0

t
.j //.Pm/.

(2) The geodesic triangles never contain the preimage of double points of
.h0

t
.j //.Pm/.

For ti (i D 1, …, Nr .j /), let Y be the union of the geodesic triangle with the
three vertices xti D yti , x0

ti
and y0

ti
in ftig � �m

j C1, the geodesic segments xtx
0
t and

yty
0
t in ftg � �m

j C1, (t 2 .ti � "i ; ti /) and the geodesic segments x0
ty

0
t in ftg � �m

j C1

(t 2 .ti ; ti C "i /):

Y D
� [

t2.ti �"i ;ti /

ftg � xtx
0
t

�
[

� [
t2.ti �"i ;ti /

ftg � yty
0
t

�

[ �ftig � 4xtix
0
ti
y0

ti

� [
� [

t2.ti ;ti C"i /

ftg � x0
ty

0
t

�

� .ti � "i ; ti C "i / � �m
j C1:

We deform it to obtain a 2-dimensional manifold Y 0 embedded in .ti � "i ; ti C "i /�
�m

j C1 such that

@Y 0 D @Y D f.t; x0
t /gt2.ti �"i ;ti C"i / [ f.t; y0

t /gt2.ti �"i ;ti C"i /

[ f.t; xt /gt2.ti �"i ;ti � [ f.t; yt /gt2.ti �"i ;ti �

� .ti � "i ; ti C "i / � �m
j C1;

and Y 0 coincides with Y for jt � ti j � "i=2 and the intersection of Y 0 and ftg � �m
j C1

is a union of two disjoint differentiable curves near the original geodesic segments



Vol. 87 (2012) On the uniform perfectness of diffeomorphism groups 163

for t 2 Œti � "i=2; ti / and is one differentiable curve near the geodesic triangle for
t 2 Œti ; ti C "i=2�.

Now we look at the union Z of geodesic segments which are not modified by the
above operation and the manifolds Y 0 for all ti (i D 1, …, Nr .j /). If there are auxiliary
bands we add them to Z and modify it to make Z an embedded 2-dimensional
manifold with boundary in Œ0; 1� � �m

j C1.

For a generic choice of the isotopy H 0.j / and manifolds Y 0, if 2m � 8, Z is a
union of disjointly embedded 2-dimensional disks in Œ0; 1���m

j C1. If 2m D 6, the 2-
dimensional disks may intersect in Œ0; 1���3

j C1 creating finitely many double points.
For 2m � 8, the fact that a connected component of the unionZ is diffeomorphic

to a 2-dimensional disk can be seen as follows: Consider the space obtained from Z

by identifying the points in each connected component ofZ\.ftg��m
j C1/. Then it is

a graph with vertices corresponding to the generation points and cancellation points.
The generation points correspond to the vertices of valency 1 and the cancellation
points correspond to the vertices of valency 3 except the cancellation points with
auxiliary bands. For the cancellation points with auxiliary bands, the auxiliary bands
become edges ending at f1g � �m

j C1. Thus each connected component of the graph
is a tree rooted at time t D 1 which grows in the negative direction in t . Hence each
connected component of Z is a 2-dimensional disk.

In the case where 2m D 6, we see in a similar way thatZ � Œ0; 1���3
j C1 is an im-

mersed image of 2-dimensional disks which has generically a finite number of double
points. That is, the curves joining the pairs of intersection points in .h0.j /

t /�1.k.	3//

may intersect at finitely many points .Ot`; Ox`/ (` D 1, …, Or .j /). Then for generic
H 0.j /, Ot` are not the time of generations or cancellations. When two geodesic curves



.t/
1 and 
 .t/

2 intersect at the time Ot`, we modify one of the family f
 .t/
2 g of geodesic

curves near Ot` by a family f
 0
2

.t/g of curves which does not intersect f
 .t/
1 g near Ot`.

More concretely, for a small positive real number O"`, we can find a neighborhood

of 
 .Ot`/
1 [ 
 .Ot`/

2 � Œ0; 1�� �m which is diffeomorphic to .Ot` � O"`; Ot` C O"`/�X , where
X is a neighborhood of Œ�1; 1� � f0g � f0g [ f0g � Œ�1; 1� � f0g in R3,



.Ot`/
1 D fOt`g � Œ�1; 1� � f0g � f0g

and



.Ot`/
2 D fOt`g � f0g � Œ�1; 1� � f0g:

We can choose the parametrization in this neighborhood so that



.Ot`Cs/
1 .u/ D .Ot` C s; u; 0; s/

and



.Ot`Cs/
2 .u/ D .Ot` C s; v1s; uC v2s; v3s/
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for a vector .v1; v2; v3/ 2 R3 (v3 ¤ 1). By using a smooth bump function
� W Œ�1; 1� ! Œ0; 1� such that �.x/ D �.�x/, �jŒ0; 1=3� D 1 and �jŒ2=3; 1� D 0,
we modify 
 .t/

2 . Put


 0
2

.Ot`Cs/.u/ D .Ot` C s; .1C c`/�.s=O"`/�.u=ı`/C v1s; uC v2s; v3s/;

where c` and ı` are small positive real numbers such that the image of 
 0
2

.Ot`Cs/ is

contained in our neighborhoodX . Then the curves 
 .t/
1 and 
 0

2
.t/ (t 2 .Ot`�O"`; Ot`CO"`//

do not intersect in �m
j C1.

Thus for 2m � 6, using the above family of curves if necessary, we have the union
Z0 of a finite number of disjointly embedded 2-dimensional disks in Œ0; 1� � �m

j C1

such that
.H 0.j /jŒ0; 1� � �m

j C1/
�1.k.	m// � Z0:

Since 2m � 6, the images under generic H 0.j / of these 2-dimensional disks are
disjointly embedded in M 2m n k.Q.m�1//. The images of these disks are called the
Whitney disks.

We have been looking at the intersection point set h0.j /
t .�m

j C1/ \ k.	m/ for one
m-dimensional cell 	m ofQm other than �m�. These considerations can be applied to
the intersection point sets h0.j /

t .�m
j C1/\ k.	m/ for all (finitely many)m-dimensional

cells 	m of Qm other than �m� simultaneously. This is because, if 2m � 8, the
embedded 2-dimensional disksZ0 are disjoint for different 	m for genericH 0.j /, and
if 2m D 6, we can remove the intersection of the embedded 2-dimensional disks
Z0 for different 	m in a way similar to what we did for the intersection of Z for the
same 	m. Thus we obtained the union Z0 of a finite number of disjointly embedded
2-dimensional disks in Œ0; 1� � �m

j C1 such that

.H 0.j /jŒ0; 1� � �m
j C1/

�1.k.Qm n �m�
j C1// � Z0;

and H 0.j /jZ0 is an embedding.
If 2m � 8, then the Whitney disks H 0.j /.Z0/ do not contain double points of

H 0.j /.Œ0; 1��Pm/ for genericH 0.j /. This is because the inverse image of the double
point set of H 0.j /.Œ0; 1� � Pm/ is 2-dimensional in Œ0; 1� � Pm and mC 1 � 5.

If 2m D 6, then the Whitney disks H 0.j /.Z0/ may intersect the double point set
of H 0.j /.Œ0; 1�� P 3/. Then, for generic H 0.j /, the intersection is a finite set and we
pick up the points of Whitney disks which are in the image of h0.j /

t .P 3/with larger t ;

H 0.j /.t
.j /
i ; w

.j /
i / D H 0.j /.t 0.j /

i ; w0.j /
i / (i D 1, …, r 0.j /);

where .t .j /
i ; w

.j /
i / is a point Z0 � Œ0; 1� � �m

j C1, .t 0.j /
i ; w0.j /

i / 2 Œ0; 1� � P 3 and

t
.j /
i < t 0.j /

i . Then, for genericH 0.j /, the curveH 0.j /.Œt 0.j /
i ; 1��fw0.j /

i g/ is embedded
inM 2m nk.Qm/ and does not contain double points ofH 0.j /.Œ0; 1��P 3/ other than
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H 0.j /.t 0.j /
i ; w0.j /

i /. Hence if 2m D 6, we have the Whitney disksH 0.j /.Z0/ together

with the curves H 0.j /.Œt 0.j /
i ; 1� � fw0.j /

i g/ (i D 1, …, r 0.j /).

Using the Whitney disksH 0.j /.Z0/ and curvesH 0.j /.Œt 0.j /
i ; 1�� fw0.j /

i g/ (i D 1,
…, r 0.j /), we prove the following lemmas in the next section.

Lemma 3.6. For h0.j /
t , there is an isotopy fb.j C1/

t gt2Œ0;1� (b.j C1/
0 D id) with support

in a union of disjointly embedded open balls such that for h00
t

.j / D b
.j C1/
t B h0.j /

t ,
h00

t
.j / is the identity on a neighborhood of P .m�1/ [ Sj

iD1 �
m
i and h00

t
.j /.�m

j C1/ \
k.Qm n �m�

j C1/ D ;.

Lemma 3.7. For h00
t

.j / given by Lemma 3.6, there are isotopies

fg.j C1/
t gt2Œ0;1� � Diffr

c.M
2m n k.Qm n �m�

j C1// (g.j C1/
0 D id)

and

fh.j C1/
t gt2Œ0;1� � Diffr

c.M
2m n .P .m�1/ [

j C1[
iD1

�m
i // (h.j C1/

0 D id)

such that h00
t

.j / D g
.j C1/
t B h.j C1/

t .

Now we complete the proof of our main Theorem 1.2.

Proof of Theorem 1.2. Let f be an element of Diffr.M 2m/0. By Lemma 3.2, there
are g 2 Diffr

c.M
2m nk.Qm//0 and h 2 Diffr

c.M
2m nP .m�2//0 such that f D g Bh.

Then by using the approximation Nh of h,

f D g B Nh B . Nh�1 B h/:
By Lemmas 3.3 and 2.3, there are a diffeomorphism a with support in a union of
disjointly embedded open balls, g0 2 Diffr

c.M
2m nk.Qm//0 and h00 2 Diffr

c.M
2m n

P .m�1//0 such that
Nh D a�1 B .a B Nh/ D a�1 B g0 B h00:

Put h.0/ D h00 2 Diffr
c.M

2m n P .m�1//0, and for h.j / 2 Diffr
c.M

2m n .P .m�1/ [Sj
iD1 �

m
i //0 (j D 0, …, N � 1), we use its approximation Nh.j / and by Lemmas 3.4,

3.6 and 3.7, there are diffeomorphisms a.j C1/ and b.j C1/ with support in unions
of disjointly embedded open balls, g.j C1/ 2 Diffr

c.M
2m n k.Qm n �m�

j C1//0 and

h.j C1/ 2 Diffr
c.M

2m n .P .m�1/ [ Sj C1
iD1 �

m
i //0 such that

h.j / D Nh.j / B .. Nh.j //�1 B h.j //

D .a.j C1//�1 B .a.j C1/ B Nh.j // B .. Nh.j //�1 B h.j //

D .a.j C1//�1 B .b.j C1//�1 B g.j C1/ B h.j C1/ B .. Nh.j //�1 B h.j //:
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Hence,

f D g B Nh B . Nh�1 B h/
D g B a�1 B g0 B h.0/ B . Nh�1 B h/
D g B a�1 B g0 B .a.1//�1 B .b.1//�1 B g.1/ B h.1/ B .. Nh.0//�1 B h.0// B . Nh�1 B h/
D g B a�1 B g0 B .a.1//�1 B .b.1//�1 B g.1/ B � � � B .a.N //�1 B .b.N //�1 B g.N /

B h.N / B .. Nh.N �1//�1 B h.N �1// B � � � B .. Nh.0//�1 B h.0// B . Nh�1 B h/:

Here, note that

h.N / 2 Diffr
c.M

2m n .P .m�1/ [
N[

iD1

�m
i //0 D Diffr

c.M
2m n Pm/0:

Since

.. Nh.N �1//�1 B h.N �1// B � � � B .. Nh.0//�1 B h.0// B . Nh�1 B h/ 2 Diffr.M 2m/

is close to the identity, by Remark 2.10, it can be written as Oh B Oa B Og, where Oh 2
Diffr

c.M
2m nPm/0, Og 2 Diffr

c.M
2m n k.Qm//0 and Oa is with support in a union of

disjointly embedded open balls which is a neighborhood of the union of m handles.
Thus

f D g B a�1 B g0 B .a.1//�1 B .b.1//�1 B g.1/ B � � �
� � � B .a.N //�1 B .b.N //�1 B g.N / B h.N / B Oh B Oa B Og:

Now by the construction, each of a�1, .a.1//�1, …, .a.N //�1, .b.1//�1, …, .b.N //�1

can be written as one commutator with support in a union of disjointly embedded
open balls. The diffeomorphism Oa can be written as a product of two commutators by
Theorem 1.1 (1). The diffeomorphismh.N /B Oh 2 Diffr

c.M
2mnPm/0 can be written as

a product of two commutators in Diffr
c.M

2m nPm/0 by Theorem 1.1 (1). Each of the
diffeomorphismsg, g0 and Og 2 Diffr

c.M
2mnk.Qm//0 can also be written as a product

of two commutators in Diffr
c.M

2m n k.Qm//0 by Theorem 1.1 (1). By the property
of the triangulation, the diffeomorphism g.j / 2 Diffr

c.M
2m n k.Qm n �m�

j C1//0 is
supported on an open set which can be deformed in a neighborhood of the embedded
.m� 1/-dimensional complex �..P .m�1/ [ �m

j /=�
m
j /, and hence g.j / can be written

as a product of two commutators in Diffr
c.M

2mnk.Qmn�m�
j C1//0 by Theorem 1.1 (1).

Thus f can be written as a product of 4N C 11 commutators. �
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4. Proofs of the lemmas

We now give the proofs of the lemmas we used in the previous section to show
Theorem 1.2.

Proof of Lemma 3.2. This follows from Lemma 2.7. �

Proof of Lemma 3.3. The construction of at is essentially due to Burago, Ivanov and
Polterovich ([4]) and we wrote it in the proof of Lemma 2.9 which is Lemma 6.5 in
[30]. However, we write it again here, for, we use this argument later again.

For xH.si ; vi /, we take a small neighborhoodUi of xH.Œsi ; 1��fvig/ diffeomorphic
to the .2m/-dimensional ball. We can take these Ui to be disjoint.

The intersection of Ui and xH.Œ0; 1��P .m�1// or k.Qm/ is described as follows.
We put a coordinate

.x1; x2; : : : ; xm; xmC1; : : : ; x2m/ 2 .�2; 2/2m

on Ui such that, for "i > 0,

k.Qm/ \ Ui D f0g � f0gm�1 � .�2; 2/m;
xH..si � 2"i .1 � si /; 1� � fvig/ \ Ui D .�2; 1� � f0g2m�1; and

Nhsi Ct.1�si /.P
.m�1// \ Ui D ftg � .�2; 2/m�1 � f0gm .t 2 Œ�"i ; 1�/:

Take an isotopy fatgt2Œ0;1� with support in
Fr

iD1 Ui such that, on eachUi , a0 D id
and, for .x1; x2; : : : ; x2m/ 2 Œ�"i ; 1� � Œ�1; 1�2m�1 � .�2; 2/2m,

at .x1; x2; : : : ; x2m/ D .x1 � .1C "i /t; x2; : : : ; x2m/:

Now .a1B Nh1/.P
.m�1//\k.Qm/ D ;. Moreover, by changing the time parameter

of the above at , we obtain an isotopy at (a0 D id) with support in
Fr

iD1 Ui such that
for h0

t D at B Nht ,

h0
t .P

.m�1// \ k.Qm/ D ; (t 2 Œ0; 1�).
In fact, if we put

t D si C ui .1 � si / 2 Œsi � "i .1 � si /; 1�; i.e., ui 2 Œ�"i ; 1�,

and look at a.ui C"i /=.1C"i / B Nhsi Cui .1�si /, then on Ui ,

.a.ui C"i /=.1C"i / B Nhsi Cui .1�si //.f�"ig � Œ�1; 1�m�1 � f0gm/

D a.ui C"i /=.1C"i /.fuig � Œ�1; 1�m�1 � f0gm/

D fui � .ui C "i /g � Œ�1; 1�m�1 � f0gm

D f�"ig � Œ�1; 1�m�1 � f0gm:
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Hence by using the above at with appropriate time change, we obtain the desired
isotopy at .

Note that a1 2 Diffr
c.

Fr
iD1 Ui /0 can be taken as one commutator with support inFr

iD1 Ui ([31]). �

Proof of Lemma 3.4. The proof is similar to that of Lemma 3.3.
For xH .j /.s

.j /
i ; v

.j /
i /, we take a small neighborhood U .j /

i of xH.Œs.j /
i ; 1�� fv.j /

i g/
diffeomorphic to the .2m/-dimensional ball. We can take these U .j /

i to be disjoint.

The intersection of U .j /
i and xH .j /.Œ0; 1� � Pm/ or k.Q.m�1// is described as

follows. We put a coordinate

.x1; x2; : : : ; xmC1; xmC2; : : : ; x2m/ 2 .�2; 2/2m

on U .j /
i such that, for ".j /

i > 0,

k.Q.m�1// \ U .j /
i D f0g � f0gm � .�2; 2/m�1;

xH..s.j /
i � 2".j /

i .1 � s.j /
i /; 1� � fv.j /

i g/ \ U .j /
i D .�2; 1� � f0g2m�1; and

Nh.j /

s
.j /

i
Ct.1�s

.j /

i
/
.Pm/ \ U .j /

i D ftg � .�2; 2/m � f0gm�1 .t 2 Œ�".j /
i ; 1�/:

Take an isotopy fa.j C1/
t gt2Œ0;1� with support in

Fr.j /

iD1 U
.j /
i such that, on eachU .j /

i ,

a
.j C1/
0 D id and, for .x1; x2; : : : ; x2m/ 2 Œ�".j /

i ; 1� � Œ�1; 1�2m�1 � .�2; 2/2m,

a
.j C1/
t .x1; x2; : : : ; x2m/ D .x1 � .1C "

.j /
i /t; x2; : : : ; x2m/:

Now .a
.j C1/
1 B Nh.j /

1 /.Pm/ \ k.Q.m�1// D ;. Moreover, by changing the time

parameter, we obtain an isotopy a.j C1/
t (a.j C1/

0 D id) with support in
Fr

iD1 U
.j /
i

such that, for h0.j /
t D a

.j C1/
t B Nh.j /

t ,

h0.j /
t .Pm/ \ k.Q.m�1// D ; (t 2 Œ0; 1�).

In fact, if we put

t D s
.j /
i C u

.j /
i .1 � s.j /

i / 2 Œs.j /
i � ".j /

i .1 � s.j /
i /; 1�; i.e., u.j /

i 2 Œ�".j /
i ; 1�,

and look at a.j C1/

.u
.j /

i
C"

.j /

i
/=.1C"

.j /

i
/
B Nh.j /

s
.j /

i
Cu

.j /

i
.1�s

.j /

i
/
, then on U .j /

i ,

.a
.j C1/

.ui C"i /=.1C"i /
B Nh.j /

s
.j /

i
Cu

.j /

i
.1�s

.j /

i
/
/.f�".j /

i g � Œ�1; 1�m � f0gm�1/

D a
.j C1/

.u
.j /

i
C"

.j /

i
/=.1C"

.j /

i
/
.fu.j /

i g � Œ�1; 1�m � f0gm�1/

D fu.j /
i � .u.j /

i C "
.j /
i /g � Œ�1; 1�m � f0gm�1

D f�".j /
i g � Œ�1; 1�m � f0gm�1:
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Hence by using the above a.j C1/
t with appropriate time change, we obtain the desired

isotopy a.j C1/
t .

Note again that a.j C1/
1 2 Diffr

c.
Fr.j /

iD1 U
.j /
i /0 can be taken as one commutator

with support in
Fr.j /

iD1 U
.j /
i ([31]). �

Proof of Lemma 3.5. For

F.t; x1; : : : ; xm/ D .f1.t; x1; : : : ; xm/; : : : ; fm.t; x1; : : : ; xm//;

put

@F

@t
D

0
B@

@f1

@t
:::

@fm

@t

1
CA and

@F

@x
D

0
BB@

@f1

@x1
� � � @f1

@xm

:::
: : :

:::
@fm

@x1
� � � @fm

@xm

1
CCA :

On the 2-jet bundle J 2.R � Rm;Rm/, we consider the subbundle E1 defined by
rank

�
@F
@t

@F
@x

� D m � 1 and the subbundle E2 defined by the two equations,

rank
�

@F
@x

� D m � 1 and rank

�
@F
@x

@
@x

det @F
@x

�
D m � 1, where

@

@x
det
@F

@x
D

�
@

@x1

det
@F

@x
� � � @

@xn

det
@F

@x

�
:

Then E1 and E2 are codimension 2 subbundles. The closures of these subbundles
are the sets determined by the inequalities expressing the ranks are not greater than
m � 1.

By the jet transversality theorem, the jet of a generic map F intersects these
subbundles transversely. Hence the set

f.t; x/ ˇ̌
J 2

.t;x/F 2 E1 [E2g
is an .m � 1/-dimensional subset and its image in Rm is nowhere dense. We take a
pointy in Rm in the complement of this image and consider its inverse imageF �1.y/.
Then for a point x 2 F �1.y/, either rank

�
@F
@x

� D m holds or the three equations

rank
�

@F
@x

� D m � 1, rank
�

@F
@t

@F
@x

� D m and rank

�
@F
@x

@
@x

det @F
@x

�
D m hold.

If rank
�

@F
@x

� D m at x, then x is a regular point of Ft D F.t; •/ and the inverse
image is locally a 1-dimensional manifold transverse to ftg � Rm.

Assume that the three equations hold. Since rank
�

@F
@x

� D m � 1, by the implicit
function theorem, we can change the local coordinate .x1; : : : ; xm/ of the second
factor of the source to .x0

1; : : : ; x
0
m/ and that .y1; : : : ; ym/ of the target to .y0

1; : : : ; y
0
m/

so that
F.t; x0

1; : : : ; x
0
m/ D .x0

1; : : : ; x
0
m�1; y

0
m.t; x

0
1; : : : ; x

0
m//:
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Then det
�

@F
@x

� D @y0
m

@x0
m

and the matrix

�
@F
@x

@
@x

det @F
@x

�
with respect to these coordinates

is written as 0
BBBBBBBBBB@

1 0 � � � 0 0

0
: : :

: : :
:::

:::
:::

: : :
: : : 0 0

0 � � � 0 1 0
@y0

m

@x0
1

� � � � � � @y0
m

@x0
m�1

@y0
m

@x0
m

@2y0
m

@x0
m@x0

1

� � � � � � @2y0
m

@x0
m@x0

m�1

@2y0
m

@x0
m

2

1
CCCCCCCCCCA

and the matrix
�

@F
@t

@F
@x

�
with respect to these coordinates is written as

0
BBBBBBB@

0 1 0 � � � 0 0

0 0
: : :

: : :
:::

:::
:::

:::
: : :

: : : 0 0

0 0 � � � 0 1 0
@y0

m

@t

@y0
m

@x0
1

� � � � � � @y0
m

@x0
m�1

@y0
m

@x0
m

1
CCCCCCCA
:

Hence, @y0
m

@x0
m

D 0, @y0
m

@t
¤ 0 and @2y0

m

@x0
m

2 ¤ 0 at x.

Thus at x 2 F �1.y/, either det
�

@F
@x

� ¤ 0 or F is locally written as

F.t; x0
1; : : : ; x

0
m/ D .x0

1; : : : ; x
0
m�1; y

0
m.t; x

0
1; : : : ; x

0
m//;

where @y0
m

@x0
m

D 0, @y0
m

@t
¤ 0 and @2y0

m

@x0
m

2 ¤ 0. �

The proof of Lemma 3.6 is divided into two cases.

Proof of Lemma 3.6 in the case where 2m � 8. If 2m � 8, the Whitney disks guide
the way to construct the isotopy b.j C1/

t with support in a union of disjoint open balls.
In fact, the support of b.j C1/

t is in a neighborhood of the union of the Whitney disks.
The construction of the isotopy b.j C1/

t is possible because the neighborhood of one
of the Whitney disks can be considered as a neighborhood of a tree growing in the
negative direction in t in Œ0; 1� � �m

j C1.

The construction of b.j C1/
t is as follows. Take a vector field of the form @

@t
C�.t; v/

on the union of disks Z0 � Œ0; 1�� �m
j C1 which is tangent to Z0 and transverse to the

boundary @Z0 � Z0, where �.t; v/ is a vector field in the direction of �m
j C1. Such a

vector field @
@t

C�.t; v/ exists becauseZ0 deforms to a tree which grows in the negative
direction in t by shrinking the connected components ofZ0 \ .ftg ��m

j C1/ to a point.
We extend �.t; •/ on �m

j C1 so that the support is contained in a small neighborhood
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of Z0. Let b0.j C1/
t denote the isotopy generated by @

@t
C �.t; v/. Then the support

of b0.j C1/
t is contained in a neighborhood U 0.j / of the union of the Whitney disks

H 0.j /.Z0/. Since H 0.j /.Z0/ does not contain double points of H 0.j /.Œ0; 1� � Pm/,
the support of b0.j C1/

t intersects H 0.j /.Œ0; 1� � Pm/ only in U 0.j /. Here, U 0.j / is a
union of disjointly embedded open balls inM 2m. Moreover, .h0.j /

t /��.t; •/ is tangent
to the union of the Whitney disks H 0.j C1/.Z0/ in M 2m and

.b0.j C1/
t /�1.h0.j /

t .�m
j C1// \ k.Qm n �m�

j C1/ D ; (t 2 Œ0; 1�):

Put b.j C1/
t D .b0.j C1/

t /�1, then

.b
.j C1/
t B h0.j /

t /.�m
j C1/ \ k.Qm n �m�

j C1/ D ; (t 2 Œ0; 1�):

Note that b.j C1/
1 2 Diffr

c.U
0.j //0 can be taken as one commutator with support

in U 0.j / ([31]). �

Proof of Lemma 3.6 in the case where 2m D 6. If 2m D 6, then we also consider
the curves H 0.j /.Œt 0.j /

i ; 1� � fw0.j /
i g/ (i D 1, …, r 0.j /).

First take a small neighborhood U 0.j / of the union of the Whitney disks which is
a union of disjointly embedded open balls inM 6, and construct b.j C1/

t as in the case
where 2m � 8. Then we modify it by using an isotopy.

We take a small neighborhoodU 0.j /
i of the curveH 0.j /.Œt 0.j /

i ; 1��fw0.j /
i g/ (i D 1,

…, r 0.j /). We put a coordinate

.x1; x2; x3; x4; x5; x6/ 2 .�2; 3/ � .�2; 2/5

on U 0.j /
i such that, for "0.j /

i > 0,

H 0.j /..t 0.j /
i � 2"0.j /

i .1 � t 0.j /
i /; 1� � fw0.j /

i g/ \ U 0.j /
i D .�2; 1� � f0g5;

and

h0
t 0.j /

i
�2"0.j /

i
.1�t 0.j /

i
/
.P 3/ \ U 0.j /

i D ftg � .�2; 2/3 � f0g2 .t 2 Œ�"0.j /
i ; 1�/:

We take an isotopy fa0.j C1/;i
t gt2Œ0;1� with support inU 0.j /

i such that a0.j C1/;i
0 D id

and, for .x1; x2; x3; x4; x5; x6/ 2 Œ�"0.j /
i ; 1� � Œ�1; 1�5 � .�2; 3/ � .�2; 2/5,

a0.j C1/;i
t .x1; x2; x3; x4; x5; x6/ D .x1 C t .1C "0.j /

i /; x2; x3; x4; x5; x6/:

Put Na D Qr 0.j /

iD1 a
0.j C1/;i
1 . Then Na B b.j C1/

1 B Na�1 is isotopic to the identity by the
isotopy with support in the union of disjoint 6-dimensional open balls Na.U 0.j //. By
the construction,

.. Na B b.j C1/
1 B Na�1/ B Nh1/.�

3
j C1/ \ k.Q3 n �3�

j C1/ D ;:
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Moreover, by an appropriate change of time parameter on each U 0.j /
i , we obtain an

isotopy Nat (t 2 Œ0; 1�) such that

.. Nat B b.j C1/
t B Na�1

t / B Nht /.�
3
j C1/ \ k.Q3 n �3�

j C1/ D ;

and the support of the isotopy Nat B b.j C1/
t B Na�1

t is contained in U 0.j / [ Fr 0.j /

iD1 U
0.j /
i

which is a union of disjointly embedded open balls in M 2m. Thus we obtained the
desired isotopy.

Note that Na Bb.j C1/
1 B Na�1 can be taken as one commutator with support in a union

of disjointly embedded open balls. �

Proof of Lemma 3.7. This follows from Lemmas 3.6 and 2.3. �

5. Uniform simplicity

We prove Corollary 1.3. In Theorem 2.2 of [31], we showed the following theorem.

Theorem 5.1 ([31]). Let M n be the interior of a compact n-dimensional manifold
with handle decomposition with handles of indices not greater than .n� 1/=2. Let c
be the order of the set of indices appearing in the handle decomposition. Then any
element of Diffr

c.M
n/0 (1 � r � 1, r ¤ n C 1) can be written as a product of

two commutators. Moreover, ifM n is connected, any element of Diffr
c.M

n/0 can be
written as a product of 4c C 1 commutators with support in embedded open balls.

In Section 3, we showed that any element f 2 Diffr.M 2m/0 can be written as

f D g B a�1 B g0 B .a.1//�1 B .b.1//�1 B g.1/ B � � �
� � � B .a.N //�1 B .b.N //�1 B g.N / B h.N / B Oh B Oa B Og:

Since a compact subset of a union of disjointly embedded open balls is contained in
a larger embedded open ball, each of diffeomorphisms a�1, .a.1//�1, …, .a.N //�1,
.b.1//�1, …, .b.N //�1 can be written as one commutator with support in an embedded
open ball and the diffeomorphism Oa can be written as a product of two commutators
with support in an embedded open ball. Now by Theorem 5.1, each of the diffeo-
morphisms h.N / B Oh 2 Diffr

c.M
2m n Pm/0, g, g0 and Og 2 Diffr

c.M
2m n k.Qm//0,

g.j / 2 Diffr
c.M

2m n k.Qm n �m�
j C1//0 is written as a product of 4m C 1 commu-

tators with support in embedded open balls. Hence f is written as a product of
4.N C 4/mC 3N C 7 commutators with support in embedded open balls.

Now Corollary 1.3 follows from the following lemma ([31], Lemma 3.1).

Lemma 5.2 ([31]). Let M n be a connected n-dimensional manifold. Let g be a
nontrivial element of Diffr

c.M
n/0. Assume that f 2 Diffr

c.M
n/0 is written as a
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product of commutators Œai ; bi � (i D 1, …, k); f D Œa1; b1� � � � Œak; bk�, where ai

and bi are with support in an embedded open ball Ui � Ui � M n. Then f can be
written as a product of 4k conjugates of g or g�1.

Proof of Corollary 1.3. Let g be a nontrivial element of Diffr.M 2m/0 (1 � r � 1,
r ¤ 2m C 1). Since any element f of Diffr.M 2m/0 can be written as a product
of 4.N C 4/m C 3N C 7 commutators with support in embedded open balls, by
Lemma 5.2, f can be written as a product of 16.N C 4/mC 12N C 28 conjugates
of g or g�1. �

Remark 5.3. We showed in [31] that, for a compact connected n-dimensional man-
ifold M n with handle decomposition without handles of the middle index n=2, for
any elements f and g of Diffr.M n/0 n fidg, f can be written as a product of at most
16nC 28 conjugates of g or g�1. For such manifolds, the bound for the number of
conjugates depends only on the dimension n. In Corollary 1.3, however, the bound
for the number of conjugates may depend on the topology of M 2m.

6. Appendix

In this section, we show two propositions. The first proposition constructs the Morse
function adapted to a smooth triangulation of a compact manifold. The second propo-
sition constructs a cellular decomposition adapted to a Morse function.

Proposition 6.1. Let P be a smooth triangulation of a compact n-dimensional man-
ifold M n. Let bsd.P / denote the barycentric subdivision of P and P � be the cell
decomposition dual to P of M n. Then there is a Morse function f on M n and a
Riemannian metric onM n such that, for the gradient flow 't of f , there is a homeo-
morphism ofM n which sends the stratification by the stable manifolds of the critical
points of f and that by the unstable manifolds of the critical points of f to P and
P �, respectively.

First we prepare a Morse type function on each simplex of bsd.P /.
Let ei (i D 1, …, n) be the basis of Rn. Let

�n D ˚
.t1; : : : ; tn/ D Pn

iD1 tiei 2 Rn
ˇ̌
1 � t1 � � � � � tn � 0

�
be the standard simplex. Let f W Rn ! R be the function defined by

f .t1; : : : ; tn/ D n �
nX

iD1

cos.tn=
/:

The function f is a Morse function such that the vertex .1; : : : ; 1; 0; : : : ; 0/ DPj
iD1 ei of�n is the critical point of index j (j D 0, 1, …, n) and f .

Pj
iD1 ei / D j .
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LetXRn D grad.f / denote the gradient vector field off with respect to the Euclidean
metric. The standard simplex is invariant under the flow generated by XRn .

Let bsd.P / be the barycentric subdivision of P . An n-dimensional simplex of
bsd.P / is the simplex with vertices b�0 , …, b�n , where�0 	 �1 	 � � � 	 �n�1 	 �n,
b�j is the barycenter of the j -dimensional simplex �j and “� i 	 �j ”means that “� i

is a face of �j ”.
Let g W M n ! �n be the map which sends each n-dimensional simplex with

vertices b�0 , …, b�n of bsd.P / linearly to �n so that g.b�j / D Pj
iD0 ei . Then

f B g is a piecewise smooth function on M n which looks like a Morse function on
M n and X D g�1� XRn is a Lipschitz continuous piecewise smooth vector field on
M n.

We show that there are a Morse function Of W M n ! R and a Riemannian metric
on M n such that there is a homeomorphism of M n sending the stratification by the
stable manifolds for the gradient flow of the critical points of Of to the triangulation
P and the stratification by the unstable manifolds of the critical points of Of to the
dual cell decomposition P �.

Since the functionf Bg is transverse to the triangulation outside a neighborhood of
the set of vertices of bsd.P /, .f Bg/�1.kC1=2/ is a piecewise smooth codimension
1 submanifold of M “transverse” to each simplex of bsd.P / and is transverse to the
vector field X .

We are going to modify .f B g/�1.k C 1=2/ to a smooth manifold MkC1=2

transverse to each simplex of bsd.P / and to the vector field X .
Let bsd.P /.i/ denote the i -dimensional skeleton of bsd.P /. First, we modify .f B

g/�1.kC1=2/ in a neighborhood of the intersection .f Bg/�1.kC1=2/\bsd.P /.1/

and obtainM .1/

kC1=2
� M n approximating .f Bg/�1.kC1=2/which is smooth near the

1-dimensional skeleton bsd.P /.1/ and transverse to bsd.P /.1/ and to the vector field
X . After obtainingM .i/

kC1=2
� M n which is smooth near the i -dimensional skeleton

bsd.P /.i/ and transverse to bsd.P /.i/ and to the vector field X , we obtain M .iC1/

kC1=2

approximatingM .i/

kC1=2
in a neighborhood of the intersectionM .i/

kC1=2
\ bsd.P /.iC1/

which is smooth near the .i C 1/-dimensional skeleton bsd.P /.iC1/ and transverse
bsd.P /.iC1/ and to the vector field X . Finally, put MkC1=2 D M

.n�1/

kC1=2
. Then

MkC1=2 is a smooth codimension 1 submanifold transverse to bsd.P / and X .
The codimension 1 submanifoldMkC1=2 dividesM n into two compact manifolds

Wk andW �
n�k

which are obtained from .f B g/�1.Œ0; kC 1=2�/ and .f B g/�1.ŒkC
1=2; n�/ by smoothing, respectively.

We are going to show thatWk is diffeomorphic to the manifold obtained fromWk�1

by attaching handles of index k for k-dimensional simplices of P and by smoothing
along the corner. That is, for each k-dimensional simplex �k , we can define a handle
Dk

�k �Dn�k
�k of index k such thatWk is diffeomorphic to the manifold obtained from

Wk�1 by attaching Dk
�k � Dn�k

�k for all k-dimensional simplices �k of P and by
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smoothing along the corner. The reason is as follows. First, for each k-dimensional
simplex �k of P , since the intersection Sk�1

�k D �k \ Mk�1=2 approximates �k \
.f Bg/�1.k�1=2/, it is diffeomorphic to the .k�1/-dimensional sphere Sk�1 which
bounds a k-dimensional disk Dk

�k in �k . Then by choosing a Riemannian metric in

a neighborhood of �k and using the exponential map, we obtain a diffeomorphism
from a neighborhood of the zero section of the normal bundle of the k-dimensional
disk Dk

�k to a neighborhood of Dk
�k . By an appropriate choice of the metric, this

defines an embeddingDk
�k �Dn�k

�k � M n such that @Dk
�k �Dn�k

�k � Mk�1=2. Then
we obtain

W 0
k D Wk�1 [

[
�k

.Dk
�k �Dn�k

�k / .� Wk/

We can add a neighborhood of the corner of W 0
k

and obtain W 00
k

such that the orbits
of  t on Wk � int.W 00

k
/ are transverse to MkC1=2 D @Wk and @W 00

k
. Here each

orbit of  t intersects both @W 00
k

and @Wk . Since this transversality is preserved when

we approximate X by a smooth vector field yX , Wk � int.W 00
k
/ is diffeomorphic to

MkC1=2 � Œ0; 1�. Thus this gives the .n � k � 1/-dimensional sphere Sn�k�1
�k on

MkC1=2 D @Wk corresponding to f0g�@Dn�k
�k which will be used as the belt sphere.

Now we define a smooth vector field yX on M n which generates the flow O t

satisfying the following conditions.

(1) yX restricted to a neighborhood of b�k is of the form

�
kX

iD1

xi

@

@xi

C
nX

iDkC1

xi

@

@xi

and the stable manifold Ls
b.�k/

of b�k of the flow O t containsDk
�k � f0g � �k .

(2) The orbits of O t are transverse to MkC1=2 (k D 0, …, n � 1).

(3) An orbit of O t in Wk n int.Wk�1/ is one of the following types.

– An orbit crossing through both Mk�1=2 and MkC1=2.

– An orbit contained in the stable manifold of b�k and crossing through
Mk�1=2 at a point of Sk�1

�k .

– An orbit contained in the unstable manifold of b�k and crossing through
MkC1=2 at a point of Sn�k�1

�k .

(4) For two simplices �k and �kC1 of P , if �k 	 �kC1, then Sn�k�1
�k and Sk

�kC1

(� MkC1=2) intersect transversely at a point. Conversely, if Sn�k�1
�k and Sk

�kC1

(� MkC1=2) intersect, they intersect transversely, and �k 	 �kC1.
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The statement (4) implies that there is a unique orbit of O t connecting b�k and b�kC1

if and only if �k 	 �kC1.

By [21], for this O t , we can define a Morse function Of and a Riemannian metric
such that grad. Of / D yX . These are the desired Morse function and Riemannian
metric for our Proposition 6.1.

Proof of Proposition 6.1. We show that the configuration of stable manifolds and
unstable manifolds of O t is homeomorphic to the configuration of the triangulation
P and its dual cell decomposition P �.

We explain how we takeW 0
k

andW 00
k

such thatWk�1 � W 0
k

� W 00
k

� Wk related

to the flow O t .
First, each connected component of W0 is in the unstable manifold of a 0-

dimensional simplex�0. OnM1=2 D @W0 we have a number ofS0
�1 for1-dimensional

simplices �1. Hence the stable manifold Ls
b.�1/

of b�1 consists of b�1 and the two

orbits of O t connecting b�1 and �0
i (i D 1, 2) such that �0

i 	 �1.
For a 1-dimensional simplex �1, in a neighborhood of b�1 , the unstable manifold

Lu
b.�1/

of b�1 divides the neighborhood into two parts which are the subsets of the

unstable manifolds of �0
1 	 �1 and �0

2 	 �1. We can take the union of W0 and
appropriate closed neighborhoods of Ls

b.�1/
for 1-dimensional simplices �1 of P

as W 0
1 D W0 [ S

�1 D1
�1 � Dn�1

�1 , where the flow O t on D1
�1 � Dn�1

�1 is of the

form O t .x1; : : : ; xn/ D .e�tx1; e
tx2; : : : ; e

txn/. Then we can take W 00
1 which is

obtained from W 0
1 by smoothing along the corner and there is an isotopy sending

W 00
1 to W1 along the orbits of O t . There is a homeomorphism h1 sending W1 to

.f B g/�1.Œ0; 1C 1=2�/ such that h1 sends the stable manifold Ls
b.�1/

of b�1 to �1

and the unstable manifoldLu
b.�1/

of b�1 to �1�\.f Bg/�1.Œ0; 1C1=2�/, respectively.

Now we look at a 2-dimensional simplex �2. On M1C1=2, we have S1
�2 for each

2-dimensional simplex �2 of P and Sn�2
�1 for each 1-dimensional simplex �1 of P .

A 2-dimensional simplex �2 of P has three faces �1
i (i D 1, 2, 3), hence we have

three orbits of O t which pass through S1
�2 \Sn�2

�1
i

and connect b�1
i

and b�2 (i D 1, 2,

3). Each component of S1
�2 n S3

iD1 S
1
�2 \Sn�2

�1
i

is sent by the flow O t in the negative

time direction to one of the components of W0. The component of W0 is necessarily
the one which contains one of the three vertices of �2 and the stable manifold Ls

b.�2/

of b�2 is bounded by the union of stable manifolds of b�1
i

(i D 1, 2, 3) and the

vertices of �2. Thus the stable manifold Ls
b.�2/

is homeomorphic to a 2-dimensional

simplex and the union
S

i�2L
s
b.� i /

is homeomorphic to the 2-dimensional skeleton

P .2/. Then the stable manifoldLs
b.�2/

as well as a neighborhood ofLs
b.�2/

is divided
by the union of the unstable manifolds of b�1

i
(i D 1, 2, 3) and b�2 into three parts,
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each of which is contained in the stable manifold of one of the vertices of �2. We can
take the union ofW1 and closed neighborhoods ofLs

b.�2/
for 2-dimensional simplices

�2 of P asW 0
2 D W1 [ S

�2.D2
�2 �Dn�2

�2 /, where the flow O t onD2
�2 �Dn�2

�2 is of

the form O t .x1; : : : ; xn/ D .e�tx1; e
�tx2; e

tx3; : : : ; e
txn/. We can take W 00

2 which
is obtained from W 0

2 by smoothing along the corner and there is an isotopy sending
W 00

2 to W2 along the orbits of O t . Then there is a homeomorphism h2 sending W2 to
.f Bg/�1.Œ0; 2C1=2�/ extending h1 such that h2 sends the stable manifoldLs

b.�2/
of

b�2 to �2 and the unstable manifold Lu
b.�2/

of b�2 to �2� \ .f B g/�1.Œ0; 2C 1=2�/,
respectively.

Inductively, assume that we showed that

(1) for a .j � 1/-dimensional simplex �j �1 of P , the stable manifold of b�j �1 is
bounded by the union of the stable manifoldsLs

b.� i /
of b� i such that � i 	 �j �1,

(2) Ls
b.�j �1/

is homeomorphic to a .j � 1/-dimensional simplex,

(3) the union
S

i�j �1L
s
b.� i /

is homeomorphic to the .j � 1/-dimensional skeleton

P .j �1/,

(4) Ls
b.�j �1/

as well as a neighborhood of Ls
b.�j �1/

is divided by the union of the

unstable manifoldsLu
b.� i /

of b� i such that � i 	 �j �1 into j parts each of which

is contained in the unstable manifold of one of the vertices of �j �1, and

(5) there is a homeomorphism hj �1 sending Wj �1 to .f B g/�1.Œ0; j � 1=2�/ such
that hj �1 sends the stable manifoldLs

b.� i /
of b� i to � i and the unstable manifold

Lu
b.� i /

of b� i to � i� \ .f B g/�1.Œ0; j � 1=2�/, respectively.

Consider a j -dimensional simplex �j . On Mj �1=2, we have Sj �1

�j for each j -

dimensional simplex �j of P and Sn�j

�j �1 for each .j � 1/-simplex �j �1 of P . A

j -dimensional simplex �j of P has j C 1 .j � 1/-dimensional faces �j �1
i (i D 1,

…, j C 1), hence we have j C 1 orbits of O t which pass through Sj �1

�j \ S
n�j

�
j �1

i

and connect b
�

j �1

i

and b�j (i D 1, …, j C 1). Any point on Sj �1

�j is in an unstable

manifoldLu
b.�k/

of b�k for a k-dimensional simplex, where k � j �1. If k D j �1,

it is one of the points Sj �1

�j \ S
n�j

�
j �1

i

. The flow O t transverse to Mj �1=2 sends a

neighborhood of Wj �1 [ P .j / to a neighborhood of Wj . Hence a neighborhood of
S

j �1

�j \ S
n�j

�
j �1

i

2 Mj �1=2 is divided by the union of the unstable manifolds Lu
b.� i /

of b� i such that � i 	 �j �1 into j parts, each of which is contained in the un stable
manifold of one of the vertices of �j �1. This means that the closure of the stable
manifold of b�j contains the union of the stable manifolds Ls

b.� i /
of b� i such that

� i 	 �j . Since
S

� i ��j Ls
b.� i /

is homeomorphic to @�j , by looking at the flow O t ,
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we see that the stable manifold of b�j is bounded by the union of the stable manifolds
Ls

b.� i /
of b� i such that � i 	 �j . We see then that Ls

b.�j /
is homeomorphic to a j -

dimensional simplex and Ls
b.�j /

as well as a neighborhood of Ls
b.�j /

is divided by

the union of the unstable manifolds of b� i such that � i 	 �j into j C 1 parts each of
which is contained in the unstable manifold of one of the vertices of �j . We can take
the union of Wj �1 and closed neighborhoods of Ls

b.�j /
for j -dimensional simplices

�j of P as W 0
j D Wj �1 [ S

�j .D
j

�j �Dn�j

�j /, where the flow O t on Dj

�j �Dn�j

�j

is of the form

O t .x1; : : : ; xn/ D .e�tx1; : : : ; e
�txj ; e

txj C1; : : : ; e
txn/:

We can takeW 00
j which is obtained fromW 0

j by smoothing along the corner and there is

an isotopy sendingW 00
j toWj along the orbits of O t . Then there is a homeomorphism

hj sendingWj to .f Bg/�1.Œ0; jC1=2�/ extending hj �1 such that hj sends the stable
manifold Ls

b.� i /
of b� i to � i and the unstable manifold Lu

b.� i /
of b� i to � i� \ .f B

g/�1.Œ0; j C 1=2�/, respectively.
Thus we see that the configuration of stable manifolds and unstable manifolds

of O t is homeomorphic to the configuration of the triangulation P and its dual cell
decomposition P �. �

Now we construct a cellular decomposition adapted to a Morse function.
Let M n be a compact n-dimensional manifold. Let F W M n ! Œ0; n� be a self-

indexing Morse function. Then there is a Riemannian metric such that the gradient
flow 't at a critical point of F of index k is of the form

't .x1; : : : ; xn/ D .e�tx1; : : : ; e
�txk; e

txkC1; : : : ; e
txn/

in a coordinate neighborhood and the stable manifolds and unstable manifolds of
critical points of F are transverse.

For such a gradient flow we have the following proposition.

Proposition 6.2. For ak-dimensional stablemanifoldL of a critical point (of indexk)
of F , there is a continuous map h W Dk ! M n such that hjInt.Dk/ is a diffeomor-
phism toL and h.@Dk/ � P .k�1/, where P .k�1/ is the .k�1/-dimensional skeleton
of the stratification by the stable manifolds of 't .

This proposition is shown by Laudenbach in [13]. The author is grateful to the
referee for indicating him this reference. We include the proof of Proposition 6.2 for
completeness.

To show Proposition 6.2, we need to use the fact that the stratification by the
stable manifolds of such 't satisfy a much stronger condition, namely, the closure of
a stable manifold is a submanifold with conical singularities (smcs) which is defined
in [13].
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An m-dimensional stratified subset X D X .m/ � � � � � X .0/ of M n defined in
Section 2 is called a submanifold with conical singularities (smcs) if, for 1 � k � m

and any x 2 X .k/ n X .k�1/, there are a neighborhood V of x diffeomorphic to
Dk �Dn�k and an .m � k/-dimensional smcs T D T .m�k/ � � � � � T .0/ in Dn�k

such that V \ X is diffeomorphic to Dk � T , and for x 2 X .0/, there is a C 1

embedded n-dimensional ball B centered at x such thatX 0 D X \ @B is an .m� 1/-
dimensional smcs in the .n � 1/-dimensional sphere and .B;B \ X .m/; � � � ; B \
X .1// is diffeomorphic to .B; CX 0.m�1/; � � � ; CX 0.0//, where C denotes the cone
with respect to the linear structure of the C 1 parametrization for B .

Roughly speaking Proposition 6.2 is shown in the following way. Let pj
1 , …, pj

cj

be the critical points of F of index j . Let Sj �1

p
j

i

denote the attaching sphere which

is the intersection of the stable manifold Ls

p
j

i

and Mj �1=2, and is the boundary of

the core disk Dj

p
j

i

D Ls

p
j

i

\ F �1.Œj � 1=2; j C 1=2�/. Let Sn�j �1

p
j

i

denote the belt

sphere which is the intersection of the unstable manifoldLu

p
j

i

andMj C1=2, and is the

boundary of the cocore disk Dn�j

p
j

i

D Lu

p
j

i

\ F �1.Œj � 1=2; j C 1=2�/.

We look at xL \Mj C1=2 for j D k � 1, …, 0. and we show that xL \Mj C1=2 is
a .k � 1/-dimensional smcs of Mj C1=2. In fact, on Mj C1=2, there are belt spheres
S

n�j �1

p
j

i

(i D 1, …cj ) which intersect transversely to xL\Mj C1=2. On the cocore disk

D
n�j

p
j

i

which is bounded by Sn�j �1

p
j

i

, xL \ D
n�j

p
j

i

is homeomorphic to the cone over

xL\Sn�j �1

p
j

i

. xL restricted to a neighborhood of the cocore diskDn�j

p
j

i

is homeomorphic

to a product of xL \D
n�j

p
j

i

and an open ball of Dj . Using the flow 't on F �1.Œj �
1=2; j C1=2�/n Scj

iD1D
n�j

p
j

i

, we see that xL\Mj �1=2 is a .k�1/-dimensional smcs

of Mj �1=2.

By using this structure we define the homeomorphism h in the proposition.

Now the first step of the proof of Proposition 6.2 is the following lemmas, which
show that the closure of a stable manifold of such 't is a submanifold with conical
singularities (smcs) ([13], Proposition 2).

Lemma 6.3. Let 't be the flow on Dj �Dn�j such that 't .x;y/ D .e�tx; ety/,
where x D .x1; : : : ; xj / and y D .xj C1; : : : ; xn/. LetN D N .k/ � � � � � N .0/ be a
k-dimensional stratified subset of Dj �Dn�j invariant under the flow 't such that
N \ .Dj �@Dn�j / is a .k�1/-dimensional smcs ofDj �@Dn�j near f0g�@Dn�j

andN is transverse to f0g �Dn�j . Then there is a neighborhood U of 0 2 Dj such
that N \ .U � Dn�j / is homeomorphic to U � C.N \ .f0g � @Dn�j //, where C
denotes the cone.
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Proof. Since N \ .Dj � @Dn�j / is a .k � 1/-dimensional smcs and transverse
to f0g � @Dn�j , N 0 D N \ .f0g � @Dn�j / is a .k � 1 � j /-dimensional smcs
in f0g � @Dn�j and there is a positive real number " such that the "-neighborhood
U D int.Dj

" / of 0 2 Dj has the following property. There is a mapping v W U�N 0 !
@Dn�j such that v.0;y/ D y ,

N \ .U � @Dn�j / D f.x; v.x;y// ˇ̌
.x;y/ 2 U �N 0g;

and v is smooth on each productU �S , where S is a stratum ofN 0. By the invariance
under the flow 't , the set f.x; v.x;y// ˇ̌

.x;y/ 2 U �Sg is contained in the stratum
in N \ .U �Dn�j / which is written as

f.x; sv.sx;y// ˇ̌
.x;y/ 2 U � S; s 2 Œ0; 1�g:

In particular, N \ .f0g � Dn�j / D C.N 0/. Hence the map .x; sv.sx;y// 7�!
.x; sv.0;y// is a homeomorphism sending N \ .U �Dn�j / to U � C.N 0/. �

Lemma 6.4. xL \Mj C1=2 is a .k � 1/-dimensional smcs ofMj C1=2 for j D k � 1,
…, 0.

Proof. The above lemma implies that if xL \Mj C1=2 is a .k � 1/-dimensional smcs
of Mj C1=2, then on

M 0
j C1=2 D Mj C1=2 n

cj[
iD1

U � @Dn�j

p
j

i

[
cj[

iD1

@U �Dn�j

p
j

i

smoothened appropriately, xL \ M 0
j C1=2

is a .k � 1/-dimensional smcs of M 0
j C1=2

.

Since F �1.Œj � 1=2; j C 1=2�/ n .U �Dn�j

p
j

i

/ after smoothing along the corner is

diffeomorphic to Œ0; 1� � Mj �1=2, where the flow 't corresponds to the flow in the
direction of Œ0; 1�, xL\M 0

j C1=2
is diffeomorphic to xL\Mj �1=2. Hence xL\Mj �1=2

is a .k � 1/-dimensional smcs of Mj �1=2.
Since xL\Mk�1=2 is a union of attaching spheresSk�1

pk
i

(i D 1, …, ck), xL\Mj C1=2

is a .k � 1/-dimensional smcs of Mj C1=2 for i D k � 1, …, 0. �

Let L D Ls
p be the stable manifold of the critical point p of index k. The stable

manifoldL is diffeomorphic to Rk and the restriction 't jL of the flow 't is conjugate
to the radial contraction  t on Rk defined by  t .x1; : : : ; xk/ D e�t .x1; : : : ; xk/.
First we embed Rk in Dk such that the ray from the origin corresponds to the radial
ray in int.Dk/. Let i W L ! Dk denote the embedding. Then we see that the identity
map i.L/ ! L does not extend to a continuous map Dk ! xL in general.

In order to define the map h W Dk ! xL, we use the construction in the above
lemmas. For a subset A of Dk , we write R.A/ the radial saturation of A, that is the
union of the radial segments of length 1 from the origin 0 passing through the points
of A.
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Proof of Proposition 6.2. We are going to construct the k-dimensional compact sub-
manifold Bj of Dk with boundary such that

Bk � Bk�1 � � � � � B1 � B0 D Dk

and the homeomorphisms

hj W Bj �! xL \ F �1.Œj � 1=2; k C 1=2�/ (j D k, …, 0);

such that hj j.Bj \ int.Dk// is a diffeomorphism ontoL\F �1.Œj �1=2; kC1=2�/.
First, for L D Ls

p , L \ Mk�1=2 is a .k � 1/-dimensional sphere which is the
attaching sphere Sk�1

p bounding the core disk Dk
p . Put Bk D i.Dk

p / � Dk , and we
define hk W Bk ! xL to be i�1.

Secondly, we look at the finite set Sk�1
p \Sn�k

pk�1
i

. The coneCpk�1
i

.Sk�1
p \Sn�k

pk�1
i

/

is contained in xL and we take the closed disk neighborhood xUi of Sk�1
p \ Sn�k

pk�1
i

in

Sk�1
p given by Lemma 6.3 such thatUi �Cpk�1

j
.Sk�1

p \Sn�k

pk�1
i

/ is a neighborhood of

Cpk�1
j

.Sk�1
p \Sn�k

pk�1
i

/ in xL. Then we take the radial saturationR.i. xUi // inDk . The

partR.i. xUi //nint.i.Dk
p // is diffeomorphic to i. xUi /�Œ0; 1�, where i. xUi /�f0g � @Dk

and i. xUi / � f1g D i. xUi /. Then we define

h0
k W i. xUi / � Œ0; 1� �! xUi � Cpk�1

j
.Sk�1

p \ Sn�k

pk�1
i

/

by h0
k
.x; t/ D .i�1.x/; t/, where t is the parameter of the cone such that t D 0

corresponds the vertex. Then we take the union i.Dk
p / [ Sck�1

iD1 R.i. xUi // and add a
neighborhood of

Sck�1

iD1 i.@ xUi / to obtain a smooth manifold B 0
k

inDk . On the other
hand, we take the union

Dk
p [

ck�1[
iD1

xUi � Cpk�1
j

.Sk�1
p \ Sn�k

pk�1
i

/

and add a neighborhood of
Sck�1

iD1 @ xUi to obtain the subset Ak � xL. There is a
continuous map h00

k
W B 0

k
! Ak � xL extending hk such that h00

k
j.B 0

k
\ Int.Dk// is a

diffeomorphism onto L\Ak . Since xL\F �1.Œk � 3=2; kC 1=2�/ nAk is invariant
under the flow 't and the flow 't on

F �1.Œk � 3=2; k C 1=2�/ n
ck�1[
iD1

Ui �Dn�kC1

pk�1
i

is conjugate to the flow on Œ0; 1� �Mk�3=2 in the direction of Œ0; 1�, we can perform
the following construction. We take a collar neighborhood @B 0

k
� Œ0; 1� of @B 0

k
in
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Dk n int.B 0
k
/ and let Bk�1 be the union of B 0

k
and its collar neighborhood. Using

the flow 't , we can construct a continuous map

hk�1 W Bk�1 �! xL \ F �1.Œk � 3=2; k C 1=2�/

such that hk�1j.Bk�1 \ int.Dk// is a diffeomorphism onto L\ F �1.Œk � 3=2; kC
1=2�/. We may arrange that Bk�1 is star-shaped with respect to 0 2 Dk in such a
way that @Bk�1 and radial segments from 0 to points of @Dk are transverse.

Thirdly, assume that we have constructed the k-dimensional compact submanifold
Bj C1 of Dk with boundary and the homeomorphism

hj C1 W Bj C1 �! xL \ F �1.Œj C 1=2; k C 1=2�/

such that hj C1j.Bj C1 \ int.Dk// is a diffeomorphism onto L\F �1.Œj C 1=2; kC
1=2�/ and Bj C1 is star-shaped with respect to 0. Then xL \ Mj C1=2 is a .k � 1/-
dimensional smcs ofMj C1=2 and the belt spheres Sn�j �1

p
j

i

(� Mj C1=2) are transverse

to xL\Mj C1=2 (i D 1, …cj ). Hence xL\Sn�j �1

p
j

i

is a .k� j � 1/-dimensional smcs

of Sn�j �1

p
j

i

. The cone C
p

j

i

.xL \ S
n�j �1

p
j

i

/ is contained in xL and we take the closed

disk neighborhood xUi � D
j

p
j

i

of pk�1
i given by Lemma 6.3 such that Ui �C

p
j

i

.xL\
S

n�j �1

p
j

i

/ is a neighborhood of C
p

j

i

.xL \ S
n�j �1

p
j

i

/ in xL. We look at .hj C1/
�1.xL \

S
n�j �1

p
j

i

/ and its closed neighborhood

xV j C1
i D .hj C1/

�1. xUi � .xL \ Sn�j �1

p
j

i

//

in @Bj C1. Then we take the radial saturation R. xV j C1
i / in Dk . This time, the part

R. xV j C1
i / n int.Bj C1/ and xV j C1

i � Œ0; 1� are not diffeomorphic, but homeomorphic.

The reason is that R. xV j C1
i / n int.Bj C1/ near xV j C1

i \ @Dk is a manifold with corner

along xV j C1
i \ @Dk , and there is a homeomorphism V

j C1
i � Œ0; 1� ! R. xV j C1

i / n
int.Bj C1/ such that V j C1

i � f0g � @Dk and V j C1
i � f0g D V

j C1
i , which straighten

the corner along . xV j C1
i \@Dk/�f0g and is no longer send the radial segments to the

direction of Œ0; 1� near . xV j C1
i \@Dk/�f0g. This homeomorphism can be taken to be

a diffeomorphism on V j C1
i � Œ0; 1/. Then we take the unionBj C1 [ Scj

iD1R.
xV j C1

i /

and add a neighborhood of
Scj

iD1 @
xV j C1

i to obtain a smooth manifold B 0
j C1 in Dk .

On the other hand, we take the union

�xL \ F �1.Œj C 1=2; k C 1=2�/
� [

cj[
iD1

xUi � C
p

j

i

.xL \ Sn�j �1

p
j

i

/
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and add a neighborhood of
Sck�1

iD1
xUi � .xL\Sn�j �1

p
j

i

/ to obtain the subsetAj C1 � xL.

There is a continuous map h00
j C1 W B 0

j C1 ! Aj C1 � xL extending hj C1 such that

h00
j C1j.B 0

j C1 \ Int.Dk// is a diffeomorphism onto L \ Aj C1. Since xL \ F �1.Œj �
1=2; j C 1=2�/ n Aj C1 is invariant under the flow 't and the flow 't on

F �1.Œj � 1=2; j C 1=2�/ n
cj[

iD1

Ui �Dn�j

p
j

i

is conjugate to the flow on Œ0; 1� �Mj �1=2 in the direction of Œ0; 1�, we can perform
the following construction. We take a collar neighborhood @B 0

j C1 � Œ0; 1� of @B 0
j C1 in

Dk nint.B 0
j C1/ and letBj be the union ofB 0

j C1 and its collar neighborhood. Using the

flow 't , we can construct a continuous map hj W Bj ! xL\F �1.Œj �1=2; kC1=2�/

such that hj j.Bj \ int.Dk// is a diffeomorphism ontoL\F �1.Œj �1=2; kC1=2�/.
We may arrange that Bj is star-shaped with respect to 0 2 Dk in such a way that @Bj

and radial segments from 0 to points of @Dk are transverse.
Finally, for j D 0 in the above construction, we notice that B 0

1 D B1 [Sc0

iD1R.
xV 1

i / is Dk itself and the map h00
1 W B 0

1 ! A1 extending h1 is the desired
map. �
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