
Comment. Math. Helv. 87 (2012), 113–140
DOI 10.4171/CMH/250

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Pure states, nonnegative polynomials and sums of squares

Sabine Burgdorf, Claus Scheiderer and Markus Schweighofer

Professor Alexander Prestel gewidmet aus Anlass seiner Emeritierung

Abstract. In recent years, much work has been devoted to a systematic study of polynomial
identities certifying strict or non-strict positivity of a polynomial f on a basic closed set K �
Rn. The interest in such identities originates not least from their importance in polynomial
optimization. The majority of the important results requires the archimedean condition, which
implies that K has to be compact. This paper introduces the technique of pure states into
commutative algebra. We show that this technique allows an approach to most of the recent
archimedean Stellensätze that is considerably easier and more conceptual than the previous
proofs. In particular, we reprove and strengthen some of the most important results from the
last years. In addition, we establish several such results which are entirely new. They are the
first that allow f to have arbitrary, not necessarily discrete, zeros in K.
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Introduction

Consider a sequence g1; : : : ; gr 2 RŒx� D RŒx1; : : : ; xn� of real polynomials to-
gether with the basic closed semi-algebraic setK D fx W g1.x/ � 0, : : : ; gr.x/ � 0g
in Rn. Given a polynomial f 2 RŒx� which is nonnegative on K, it is an important
problem, both from a theoretical and from a practical point of view, to understand
whether there exist simple algebraic certificates that make the nonnegative character
of f evident. Traditionally, a result stating the existence of a particular type of such
certificates is called a Positivstellensatz, or a Nichtnegativstellensatz, depending on
whether f is supposed to be strictly or only non-strictly positive.

Krivine [Kr1] and Stengle [St] proved that such certificates always exist. However,
their results amount to rational representations of f , that is, representations with
denominators. Much harder to establish, but also much more powerful when they
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exist, are denominator-free representations of f , such as

f D s0 C
rX

iD1

sigi ; f D
1X

i1D0

� � �
1X

ir D0

si1;:::;ir � gi1
1 � � �gir

r

or
f D

X
i1;:::;ir �0

ai1;:::;ir � gi1
1 � � �gir

r ;

in which the si or si1;:::;ir are sums of squares of polynomials and the ai1;:::;ir are
nonnegative real numbers. The study of such identities comprises questions of exis-
tence and complexity as well as algorithmic aspects. Considerable research efforts
have been spent in recent years on these questions (see [PD], [Ma2], [Sch4]), not
least because of their central importance in polynomial optimization (see [La] for an
excellent survey).

A prototypical version of a denominator-free representation result is the so-called
archimedean representation theorem, due to Stone, Krivine, Kadison, Dubois and
others. See Section 5.6 of [PD] and also Theorem 6.1 below. It asserts that f
has a representation as desired, provided that f > 0 on K and the archimedean
condition holds. Many refinements of this result have been proved in the last decade,
notably extensions to cases where f is allowed to have zeros inK. Some of them are
recalled in Section 6 below. A common feature of all these results is the archimedean
hypothesis. See 1.2 for its technical definition. Note that in any case, this condition
implies that K is bounded, hence compact.

The purpose of this paper is to lay out a new approach to these results and to new
archimedean Stellensätze, which is based on pure states of the associated cones in
RŒx�. This new approach permits proofs which are considerably more transparent,
easier and more uniform than the existing ones. In a number of cases, we arrive at
substantially stronger results than known so far. In addition, using the new technique,
we prove several archimedean Nichtnegativstellensätze which are completely new.
Altogether, we believe that this paper gives ample support to our claim that the con-
sequent use of pure states is a powerful tool in the study of archimedean Stellensätze.
We remark that the results presented here do by far not exhaust the applications of
this technique. We plan to give further applications elsewhere.

The technique of pure states relies on an old separation theorem for convex sets in
a real vector space V , due to Eidelheit and Kakutani ([Ei], [Kk]). Combined with the
Krein–Milman theorem, it yields a sufficient condition for membership in a convex
cone C � V , provided that C has an order unit (also known as algebraic interior
point): If x 2 V and all nonzero states of C have strictly positive value in x, then
x 2 C . The first systematic use of this criterion was probably made by Goodearl and
Handelman [GH].

The starting point for this work was a remark of Handelman made to the third
author in 2004. Handelman pointed out that a slightly weaker version of Theorem 2
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in [Sw2] (corresponding to the special case M D S in Theorem 6.4 below) can be
proved easily by using pure states.

We now give a brief overview of the contents of this paper. Among its seven
sections, the first five are preparatory in character, while the last two contain the
main applications. After a few notational preliminaries in Section 1, we recall the
general Goodearl–Handelman criterion in Section 2. From Section 3 on we work
in a commutative ring A and consider (pseudo-) modules M over subsemirings S
of A. After studying order units in such M in general (Section 3), we prove an
important fact in Section 4, which applies in the situations which are most common
(S archimedean or S containing all squares): IfM contains an order unit with respect
to the ideal it generates, then the associated pure states satisfy a multiplicative law
of a very peculiar form. See Corollary 4.12 for a summarizing statement. This fact
lies at the basis of all later applications. Section 5 discusses the question whether
intersectingM with an ideal of A preserves the existence of an order unit. This is an
important technical point, as explained in 3.8.

In Section 6 we review some of the most important Positiv- and Nichtnegativ-
stellensätze in real algebra. Using pure states, we reprove them in an elegant and
uniform way. For some of them we arrive at statements that are considerably stronger
than previously known (Theorems 6.4, 6.5). Finally, in Section 7 we use pure states
to arrive at Nichtnegativstellensätze which are entirely new. The so far known results
of this type apply only (essentially) in the case where the zeros of the polynomial f
in K are discrete. The two main results presented here are Theorems 7.6 and 7.11.
In both, the zero set of f in K can have any dimension. While in Theorem 7.6,
this zero set necessarily lies in the boundary of K (relative to its Zariski closure),
Theorem 7.11 applies typically when the zeros lie in the (relative) interior of K. A
particularly concrete case of Theorem 7.6 is Theorem 7.8, dealing with polynomials
nonnegative on a polytope and vanishing on a face. It becomes visible in Theorems 7.6
and 7.11 how pure states on suitable ideals of the polynomial ring are closely related
to directional derivatives (of order one in 7.6, of order two in 7.11).

In most parts of this paper, our setup is more general than real polynomial rings and
semi-algebraic sets in Rn. We explain in 1.4 why we think such a greater generality
is necessary.

1. Notation and conventions

1.1. We start by recalling some terminology (mostly standard) from real algebra.
General references are [PD], [Ma2], [Sch4].

Let A be a commutative ring (always with unit), and let S � A be a semiring,
i. e., a subset containing f0; 1g and closed under addition and multiplication. A subset
M � A is called an S -pseudomodule if 0 2 M , M CM � M and SM � M . If in
addition 1 2 M thenM is said to be an S -module. The support ofM is the subgroup
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supp.M/ D M \.�M/ ofA; this is an ideal ofA if S�S D A. We sometimes write
a �M b to express that b�a 2 M , for a, b 2 A. The relation �M is anti-symmetric
modulo supp.M/, transitive, and compatible with addition and with multiplication
by elements of S .

Particularly important is the case where S D †A2, the semiring of all sums of
squares in A. The †A2- (pseudo-) modules are called quadratic (pseudo-) modules
inA. A semiring S � A is called a preordering inA if it contains†A2. When 1

2
2 A

we have †A2 �†A2 D A by the identity 4x D .x C 1/2 � .x � 1/2, and so, in this
case, supp.M/ is an ideal for every quadratic pseudomodule M .

Given finitely many elements a1; : : : ; ar 2 A, we write

QM.a1; : : : ; ar/ WD †A2 C†A2 � a1 C � � � C†A2 � ar

resp.
PO.a1; : : : ; ar/ WD QM

�
a

i1
1 � � � air

r W i1; : : : ; ir 2 f0; 1g�
for the quadratic module (resp. the preordering) generated by a1; : : : ; ar in A.

1.2. Let M � A be an additive semigroup containing 1. Then M is said to be
archimedean if for every a 2 A there is n 2 N with a �M n. In other words, M is
archimedean if and only if A D Z CM .

Note that whenM is archimedean, every semigroup containingM is archimedean
as well. See Remark 3.3 below for examples of archimedean semigroups.

Warning. In the functional analytic literature,M like in 1.2 is called archimedean if
no a 2 A XM has the property that Na has a lower bound in A with respect to �M

(see, e. g., p. 20 in [Go]). Our definition is completely different and coincides with
the usual terminology in real algebra (see, e. g., 1.5.1 in [Sch4]).

1.3. Given any subset M � A, we write

X.M/ WD ˚
� 2 Hom.A;R/ W �jM � 0

�
(where Hom.A;R/ denotes the set of ring homomorphisms A ! R) and

Z.M/ WD X.M [ �M/ D ˚
� 2 Hom.A;R/ W �jM D 0g:

Considering Hom.A;R/ as a subset of RA D Q
A R, this set has a natural topology.

When M is an archimedean semigroup in A, the subset X.M/ of Hom.A;R/ is
compact.

Write X WD Hom.A;R/. Every a 2 A induces a continuous map Oa W X ! R
by evaluation. Thus we have the canonical ring homomorphism (not necessarily
injective)

A ! C.X;R/; a 7! Oa
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(hereC.X;R/ is the ring of continuous real-valued functions onX ). Thinking in this
way of the elements of A as R-valued functions, it is natural to write a.x/ instead of
x.a/, for a 2 A and x 2 X , an abuse of notation that we will often commit.

Scholium. Let A be a finitely generated R-algebra. To emphasize the geometric
point of view we will frequently identify Hom.A;R/ with V.R/, the set of R-points
of the affine algebraic R-scheme V D Spec.A/. Thus, if M � A is any subset, we
have

X.M/ D fx 2 V.R/ W 8 f 2 M f.x/ � 0g:
If M is finite, or a finitely generated quadratic module in A, X.M/ is a basic closed
semi-algebraic set in V.R/.

Any choice of finitely many R-algebra generators a1; : : : ; an of A gives an iden-
tification of Hom.A;R/ D V.R/ with a real algebraic subset of Rn, via the map

Hom.A;R/ ,! Rn; x 7! �
x.a1/; : : : ; x.an/

�
:

The image set is the zero set of the ideal of relations between a1; : : : ; an, and hence
is real algebraic. Generally it is preferable not to fix a set of generators in advance,
and only to introduce affine coordinates when it becomes necessary.

1.4. A word on the generality of our setup. Preorderings, and more generally quadratic
modules, in polynomial rings over R are the most traditional context for positivity
results (see [PD], [Ma2], [Sch4]). But there are also prominent examples which
do not fit this context, like theorems by Pólya and Handelman [H1], [H2], [Sw2].
These are cases where the required algebraic objects are semirings, or modules over
semirings. It is often preferable, or even necessary, to work with arbitrary finitely
generated R-algebras, instead of just polynomial rings over R. Finally, we feel that
applications to rings of arithmetic nature, like finitely generated algebras over Z or
Q, are interesting enough as to not exclude these cases a priori.

Given all this, our basic general setup will consist of a ring A and an additive
semigroup M � A (with 0 2 M ). We feel free to assume Q � A and QCM � M

when this helps to simplify technical details. Usually this does not mean much
loss of generality, since one can always pass from A and M to AQ D A ˝ Q and
MQ D fx˝ 1

n
W n 2 Ng. None of the methods discussed in this paper sees a difference

between f 2 M and 9 n 2 N nf 2 M .

1.5. By N D f1; 2; 3; : : : g we denote the set of natural numbers. The set of nonneg-
ative rational, resp. nonnegative real, numbers is written QC, resp. RC.

2. Convex cones and pure states

2.1. LetG be an abelian group, written additively, and letM � G be a subsemigroup
(always containing 0). The subgroup supp.M/ WD M \ .�M/ of G is called the
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support ofM . We neither assume supp.M/ D f0g norM �M D G in general. It is
often useful to work with the relation �M on G defined by x �M y W, y � x 2 M .

A group homomorphism ' W G ! R into the additive group of reals is called a
state of .G;M/ if 'jM � 0. We sometimes denote the convex cone of all states by
S.G;M/.

An element u 2 M is called an order unit of .G;M/ if G D M C Zu, or
equivalently, if for every x 2 G there is n 2 N with x �M nu. In general, there need
not exist any order unit, not even when G D M �M (which clearly is a necessary
condition).

Example 2.2. If A is a ring and M � A is an additive semigroup containing 1, then
M is archimedean (see 1.2) if and only if 1 is an order unit of .A;M/.

Example 2.3. A typical and frequently used example is when G D V is a vector
space over R (of any dimension) andM is a convex cone in V , i. e.,M is non-empty
and satisfiesM CM � M and RCM � M . The convex cone S.V;M/ of all states
of .V;M/ is equal to the dual cone

M � D ˚
' 2 V _ W 'jM � 0

�

of M (regarded as sitting in the dual linear space V _), provided that V D M �M .
(IfM does not span V , there exist additive maps V ! R vanishing onM which are
not R-linear.)

The order units of .V;M/ are also known under the name algebraic interior points
ofM (e. g. [Kö], p. 177, or [Ba], III.1.6). In particular, when dim.V / < 1, the order
units of .V;M/ are precisely the interior points of M with respect to the euclidean
topology on V . Hence, in this case, an order unit exists if and only if V D M �M .

2.4. Assume that .G;M/ has an order unit u. Then every nonzero state ' of .G;M/

satisfies '.u/ > 0. We say that ' is a monic state of .G;M; u/, or for brevity,
simply a state of .G;M; u/, if '.u/ D 1. The set of all monic states will be denoted
S.G;M; u/.

The set S.G;M; u/ can be regarded as a subset of the product vector space RG DQ
G R. As such it is compact and convex. A state ' 2 S.G;M; u/ is called a pure

state of .G;M; u/ if it is an extremal point of the compact convex set S.G;M; u/, or
equivalently, if 2' D '1 C '2 with '1, '2 2 S.G;M; u/ implies ' D '1 D '2.

By the Krein–Milman theorem, the convex hull of the set of pure states of
.G;M; u/ is dense in S.G;M; u/. Using this fact together with the Eidelheit–
Kakutani separation theorem ([Ei], [Kk], see also [Ba], III.1.7), one can prove the
following fundamental result. Originally it is due to Effros, Handelman and Shen
[EHS] (see also Lemma 4.1 in [GH] and Theorem 4.12 in [Go]).
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Theorem 2.5. Let G be an abelian group andM � G a semigroup in G with order
unit u. Let x 2 G. If '.x/ > 0 for every pure state ' of .G;M; u/, there is an integer
n � 1 with nx 2 M . �

Remarks 2.6. Let G be an abelian group and M � G a semigroup.
1. Let GQ D G ˝ Q and MQ D fx ˝ q W x 2 M , q 2 QCg. Then S.G;M/ D

S.GQ;MQ/ holds canonically. If u 2 M is an order unit of .G;M/ then u ˝ 1

is an order unit of .GQ; MQ/ (the converse being false in general), and we have
S.G;M; u/ D S.GQ;MQ; u˝1/. In this way one reduces the proof of Theorem 2.5
to the case where G is a Q-vector space and QCM D M .

2. In the situation of Theorem 2.5, '.x/ > 0 holds for every pure state of .G;M; u/
if and only if '.x/ > 0 holds for every 0 ¤ ' 2 S.G;M/.

Indeed, note that the map S.G;M; u/ ! R, ' 7! '.x/ assumes its minimum
since S.G;M; u/ is compact. The set of minimizers is compact and convex, and
hence has an extremal point '. One verifies that any such ' is also an extremal point
of S.G;M; u/, i. e., a pure state of .G;M; u/.

As a consequence, the condition on x in 2.5 is independent of the choice of a
particular order unit.

Corollary 2.7. Assume that .G;M/ has an order unit u, and thatM satisfies (na 2
M ) a 2 M ) for every a 2 G and n 2 N. Let x 2 G with '.x/ > 0 for every pure
state ' of .G;M; u/. Then x is an order unit of .G;M/.

Proof. x 2 M by a direct application of Theorem 2.5, using the assumption on M .
Given y 2 G, the map ' 7! '.y/

'.x/
from the (compact convex) set S.G;M; u/ to R is

continuous. Hence there is n 2 N with
ˇ̌

'.y/
'.x/

ˇ̌
< n, i. e., '.nx ˙ y/ > 0, for every

' 2 S.G;M; u/. Again from 2.5 and the assumption we get nx ˙ y 2 M . �

3. Order units in rings and ideals

Definition 3.1. Let A be a ring and M � A an additive semigroup (with 0 2 M , as
always). For u 2 M we put

O.M; u/ WD OA.M; u/ WD ˚
a 2 A W 9 n 2 N nu˙ a 2 M �

;

or equivalently, O.M; u/ D supp.M C Zu/.

So O.M; u/ consists of all elements which are bounded “in absolute value” by
some positive multiple of u, with respect to �M .
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Proposition 3.2. LetM ,M1,M2 be additive semigroups in A.

(a) Let u 2 M . Then O.M; u/ is an additive subgroup ofM �M � A containing
supp.M/C Zu.

(b) O.M1; u1/ �O.M2; u2/ � O.M1M2; u1u2/ for all u1 2 M1, u2 2 M2, where
M1M2 denotes the semigroup inA generated by all products x1x2 with xi 2 Mi

(i D 1; 2).

(c) Let S be a semiring in A. Then O.S; 1/ is a subring of A, and O.S; u/ is an
O.S; 1/-submodule of A for every u 2 S .

(d) Assume that 1
2

2 A andM is a quadratic module. ThenO.M; 1/ is a subring of
A, andO.M; u/ is anO.M; 1/-submodule ofA for everyu 2 M withuM � M .

Proof. (a) is obvious. For the proof of (b) let ai 2 O.Mi ; ui /, say niui ˙ ai 2 Mi

with ni 2 N (i D 1; 2). From

3n1n2 u1u2 C "a1a2 D .n1u1 C a1/.n2u2 C "a2/

C n1u1.n2u2 � "a2/C n2u2.n1u1 � a1/

for " D ˙1 we see a1a2 2 O.M1M2; u1u2/.
(c) is an immediate consequence of (b). To prove (d) let a 2 O.M; 1/, say

m˙ a 2 M . If r > m
2

is an integer, the identity

.r � a/2.mC a/C .r C a/2.m � a/ D 2r2m � 2.2r �m/a2

shows a2 2 O.M; 1/. Given another element b 2 O.M; 1/, we get ab 2 O.M; 1/

from 4ab D .aC b/2 � .a � b/2. So O.M; 1/ is a subring of A.
Now let u 2 M with uM � M , let x 2 O.M; u/ and let a 2 O.M; 1/ be as

before. We have nu˙ x 2 M for some n 2 N, i. e., ˙x �M nu. Multiplying with
a2 gives ˙a2x �M na2u. By what was said before there is k 2 N with a2 �M k.
Using uM � M we conclude a2u �M ku, and therefore ˙a2x �M nku. This
shows a2 �O.M; u/ � O.M; u/ for every a 2 O.M; 1/, andO.M; u/ is anO.M; 1/-
submodule of A, using the identity 4a D .aC 1/2 � .a � 1/2. �

Remarks 3.3. 1. If M � A is a semigroup containing 1, then M is archimedean
(1.2) if and only if O.M; 1/ D A.

2. More generally, let M � A be any semigroup and u 2 M . Then O.M; u/ is
the largest subgroup B of A containing u with the property that u is an order unit of
.B;M \ B/.

3. The rings O.M; 1/ were introduced in [Sw1], in the case where M is a pre-
ordering. The fundamental result proved in [Sw1] is that when A is an R-algebra of
finite transcendence degree d and T � A is a preordering, then O.T; 1/ coincides
with Hd .A; T /, the d times iterated ring of geometrically bounded elements. (See
loc. cit. for precise details.)
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4. A special case of the just mentioned result is the celebrated theorem of Schmüd-
gen [Sm]: If A is a finitely generated R-algebra and T � A is a finitely generated
preordering, then T is archimedean if (and only if) the basic closed set X.T / is
compact.

5. The article [JP] (see also [PD] and [Ma2]) is concerned with the question when
quadratic modules are archimedean. In general, this is much more subtle than for
preorderings.

6. Let K � Rn be a nonempty compact convex polyhedron, described by linear
inequalities g1 � 0; : : : ; gs � 0. Let S be the semiring generated in the polyno-
mial ring RŒx� WD RŒx1; : : : ; xn� by RC and g1; : : : ; gs . By a classical theorem
of Minkowski (Theorem 5.4.5 in [PD]), the cone RC C RCg1 C � � � C RCgs � S

contains every linear polynomial which is nonnegative on K. Using compactness of
K it follows thatO.S; 1/ contains all linear polynomials. SinceO.S; 1/ is a subring
of RŒx� (3.2 (c)), it follows that S is archimedean.

Corollary 3.4. Let S � A be a semiring and M � A an S -module. Let I , J be
ideals of A such that .I; S \ I / has an order unit u and .J;M \ J / has an order
unit v. Then uv is an order unit of .IJ; M \ IJ /.

Proof. The hypotheses say I � O.S; u/ and J � O.M; v/. By 3.2 (b) we have
IJ � O.M; uv/, which is precisely what was claimed. �

Proposition 3.5. Assume that M is a pseudomodule over an archimedean semiring
S in A. Then

O.M; f / D supp.M C Af /

for every f 2 M , and this is an ideal of A.

Proof. supp.M C Af / is an ideal since it is stable under multiplication with S and
since S C Z D A. The inclusion O.M; f / D supp.M C Zf / � supp.M C Af /

is clear. Conversely let g 2 supp.M C Af /, say g D x C af D �y C bf with
x; y 2 M and a, b 2 A. Since S is archimedean, there is n 2 N with n˙ a 2 S and
n˙ b 2 S . Therefore nf � g D .n� b/f C y and nf C g D .nC a/f C x lie in
M , which shows g 2 O.M; f /. �

Here is an equivalent formulation:

Corollary 3.6. Let M be a pseudomodule over an archimedean semiring in A, and
let f 2 M . Then f is an order unit of .I;M \ I / where I WD supp.M C Af / (an
ideal of A).

Proof. The inclusion I � O.M; f /, which holds by 3.5, means that f is an order
unit of .I;M \ I / (see 3.3). �
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Using the Goodearl–Handelman criterion, we can give still another formulation:

Corollary 3.7. Assume Q � A. Let S be an archimedean semiring in A with
QC � S , let M be a pseudomodule over S , and let f 2 A be fixed. Then f 2 M

if and only if there exists an ideal I � A with f 2 I having the following two
properties:

(1) .I;M \ I / has an order unit u;

(2) '.f / > 0 for every pure state ' of .I;M \ I; u/.
Moreover, when f 2 M , the ideals I with the above properties are precisely the
ideals satisfying Af � I � supp.M C Af /.

Proof. If I is an ideal containing f with (1) and (2), then we get f 2 M directly
using 2.5. Conversely assume f 2 M . Then I WD supp.M C Af / has the desired
properties. Indeed, f itself is an order unit of .I;M \ I / (3.6). The last assertion in
3.7 follows from 3.5 and 3.6, cf. the second of the Remarks 3.3. �

Remark 3.8. Suppose we have A, S and M as before, and are given an element
f 2 A that we want to prove lies in M . Corollary 3.7 shows a possible way to
proceed. In fact, most of the main results of this paper will be concretizations of this
corollary in one or the other way. At this point, we would like to point out the need
of understanding the following two questions:

(Q1) Given an archimedeanS -moduleM and an ideal I ofA, when does .I;M\I /
have an order unit u?

(Q2) If u is such an order unit, what are the pure states of .I;M \ I; u/?
We will address (Q1) in Section 4 and (Q2) in Section 5.

Remark 3.9. Without the archimedean condition on S , a result like Corollary 3.6
is usually far from being true. This is demonstrated by the following example: Let
M D QM.x; y; 1 � x � y/ in A D RŒx; y�, an archimedean quadratic module by
Proposition 3.2 (d), and consider the element f D x of M . Then supp.M CAx/ D
Ax DW I , but x is not an order unit of .I;M \I / (or equivalently,O.M; x/ is strictly
smaller than I ). For example, cx ˙ xy … M for any c 2 R, as one can show. In
fact, we will show in 5.7 below that .I;M \ I / does not have any order unit at all.

4. Pure states on rings and ideals

In 3.8 we have seen why it is important to have a good understanding of the pure
states of .I;M; u/, where I is an ideal ofA andM � I is an S -pseudomodule over S
with order unit u. We shall now give a satisfactory characterization in two important
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cases, namely when S is archimedean, or when M is archimedean and S D †A2.
These results are variations of a theorem by Handelman ([H1], Proposition 1.2). The
main idea appears to some extent already in earlier work, see Theorem 10 in [BLP]
or Theorem 15 in [Kr1].

Proposition 4.1. LetA be a ring and I � A an ideal. Let S � A be an archimedean
semiring and M � I an S -pseudomodule, and assume that .I;M/ has an order
unit u. Then every pure state ' of .I;M; u/ satisfies the following multiplicative law:

8 a 2 A 8 b 2 I '.ab/ D '.au/ � '.b/: (1)

4.2. Before we start the proof of 4.1, here are some preparations. Let u be an order
unit of .I;M/. Given an additive map ' W I ! R, and given any a 2 A with
'.au/ ¤ 0, let 'a W I ! R be the localization of ' by a, defined by

'a.b/ WD '.ab/

'.au/
.b 2 I /:

Clearly, 'a is an additive map with 'a.u/ D 1. If ' is a state of .I;M/ and aM � M ,
then 'a is a state of .I;M; u/. If a1, a2 2 A satisfy '.aiu/ > 0 (i D 1; 2) then

'.a1u/ � 'a1
C '.a2u/ � 'a2

D '..a1 C a2/u/ � 'a1Ca2
;

so 'a1Ca2
is a proper convex combination of 'a1

and 'a2
in this case.

4.3. Proof of Proposition 4.1. In proving (1) we can assume a 2 S sinceA D SCZ.
Fixing a 2 S there are two cases:

If '.au/ D 0, we have to show '.aI / D 0. Now aI D aM C Zau, and so it is
enough to prove '.aM/ D 0. For any x 2 M there is n 2 N with 0 �M x �M nu,
whence 0 �M ax �M nau, from which we get '.ax/ D 0.

There remains the case where '.au/ > 0. Since S is archimedean there is n 2 Z
with a �S n. Choosing n so large that '.au/ < n D '.nu/, we can consider
the localized (monic) states 'a and 'n�a. As remarked before, 'n D ' is a proper
convex combination of the two. Since ' is a pure state we must have 'a D ', which
is identity (1). �

The case I D A and u D 1 deserves special attention:

Corollary 4.4. LetM be a module over an archimedean semiring in A. Then every
pure state of .A;M; 1/ is a ring homomorphism A ! R. �

A result similar to 4.1 is also true for quadratic pseudomodules:

Theorem 4.5. Let I be an ideal of A and M � I a quadratic pseudomodule with
order unit u of .I;M/. Every pure state ' of .I;M; u/ satisfies (1) of 4.1.
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The proof of 4.5 is somewhat more tricky. We need two auxiliary lemmas:

Lemma 4.6. For n 2 N let

tn.x/ D
nX

kD0

�
1=2

k

�
.�x/k;

the n-th Taylor polynomial of
p
1 � x. Then the polynomial tn.x/2 � .1 � x/ has

nonnegative coefficients in Z
�

1
2

�
.

Proof. Fix n, and write pn.x/ WD tn.x/
2 � .1 � x/ DW P

k�0 ckx
k . Then ck D 0

for k � n or k > 2n, while

ck D .�1/k
nX

iDk�n

�
1=2

i

� �
1=2

k � i
�

for n < k � 2n. The term with index i in the sum has sign .�1/i�1 � .�1/k�i�1 D
.�1/k . This implies the lemma. �

Lemma 4.7. Keep the assumptions of 4.5, assume moreover 1
2

2 A, and let a 2 A

satisfy aM � M and .1 � 2a/u 2 M . Then every state ' of .I;M/ satisfies
'..1 � a/M/ � 0.

Proof. Normalizing ' we can assume that ' is monic, i. e., '.u/ D 1. By hypothesis
we have au �M

u
2

, and inductively we get aku �M 2�ku for all k � 0. Let b 2 M .
There is r � 0 with 2ru� b 2 M . In order to show '..1�a/b/ � 0 we may replace
b by 2�rb, and may therefore assume u � b 2 M . We will show '..1 � a/b/ > �"
for every real number " > 0.

Let tn.x/ be the Taylor polynomial from Lemma 4.6, and write pn.x/ D tn.x/
2 �

.1�x/. Due to the convergence of the binomial series, there isn 2 N withpn.
1
2
/ < ".

Fix n and write p WD pn. According to 4.6 we have

p.x/ D
X

k

ckx
k

with nonnegative numbers ck 2 Z
�

1
2

�
. So aM � M implies p.a/M � M , and

from b �M u we conclude p.a/b �M p.a/u. In particular, '.p.a/b/ � '.p.a/u/.
On the other hand,

'
�
p.a/u

� D
X

k

ck '.a
ku/ �

X
k

ck2
�k D p

	1
2



< ":

We conclude

'
�
tn.a/

2b
� � '�

.1 � a/b� D '.p.a/b/ � '.p.a/u/ < ";
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and so
'

�
.1 � a/b�

> '.tn.a/
2b/ � " � �"

since M is a quadratic pseudomodule. �

4.8. Proof of Theorem 4.5. We may pass from A, I and M to A ˝ Q, I ˝ Q and
MQ D fx ˝ 1

n
W x 2 M , n 2 Ng, respectively (see the remark in 2.6). In particular,

we may assume 1
2

2 A, and thus have †A2 � †A2 D A. Therefore it is enough to
prove identity (1) for a 2 †A2 and b 2 I .

If '.au/ D 0, one shows '.aI / D 0 as in 4.3. If '.au/ > 0, choose k 2 N with
au �M 2ku. For the proof of (1) we may replace a with 2�.kC1/a, and can thus
assume .1 � 2a/u 2 M . Lemma 4.7 now shows '..1 � a/M/ � 0. As in the proof
of 4.1, this makes ' a proper convex combination of the monic states 'a and '1�a.
Since ' is a pure state we conclude ' D 'a, which is the assertion of 4.5. �

The algebraic meaning of identity 4.1 (1) is explained in the following easy lemma:

Lemma 4.9. Let A be a ring, I � A an ideal and u 2 I . Let k be a field and
' W I ! k an additive map satisfying '.u/ D 1. The following conditions are
equivalent:

(i) 8 a 2 A 8 b 2 I '.ab/ D '.au/ � '.b/;
(ii) there is a ring homomorphism � W A ! k such that '.ab/ D �.a/ � '.b/ for

a 2 A, b 2 I .

Moreover, the homomorphism � in (ii) is uniquely determined and satisfies �.a/ D
'.au/ for a 2 A. Exactly one of the following two alternatives holds:

(1) �.u/ ¤ 0 and '.b/ D �.b/
�.u/

for every b 2 I ;

(2) �.I / D 0.

Note that the alternatives (1), resp. (2), are equivalent to '.u2/ ¤ 0, resp.
'.u2/ D 0.

Proof. (i) ) (ii) One sees immediately that � must satisfy �.a/ D '.au/ (a 2 A).
It is readily checked that the so-defined � satisfies (ii). The converse is clear as well.
Assuming that � satisfies (ii), we have �.b/ D �.u/ � '.b/ for every b 2 I . If
�.u/ ¤ 0 then (1) holds. Otherwise �.u/ D 0, and so �.I / D 0. �

Definition 4.10. In the situation of 4.9 we call � the ring homomorphism associated
with '. We refer to the identity '.ab/ D �.a/'.b/ (for a 2 A, b 2 I ) by saying that
' is �-linear.

The setting described in 4.9 is relevant to us since it arises from pure states in ideals,
see 4.1 and 4.5. In this situation the following additional observation is important:
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Lemma 4.11. Let A be a ring, I � A an ideal and M � I an additive semigroup.
Let u 2 M , and let ' W I ! R be a state of .I;M; u/ fulfilling (1) of Lemma 4.9.
Then the associated ring homomorphism � W A ! R satisfies � 2 X.T / where

T WD ft 2 A W tu 2 M g:
In particular, if uM � M then � 2 X.M/.

Proof. If t 2 A is such that tu 2 M , then �.t/ D '.tu/ � 0. �

Corollary 4.12 (Dichotomy). Let S be a semiring and I an ideal in A, and let
M � I be an S -pseudomodule such that .I;M/ has an order unit u. Assume that S
is either archimedean or a preordering. Given any pure state ' W I ! R of .I;M; u/,
precisely one of the following two statements is true:

(I) ' is a scaled ring homomorphism: There exists � 2 X.S/ with �.u/ ¤ 0 such
that ' D 1

�.u/
� �jI .

(II) There exists � 2 X.S C I / such that ' is �-linear.

More precisely, .I/ , '.u2/ ¤ 0, and .II/ , '.u2/ D 0. In both cases, � is
uniquely determined. In (I) (resp. (II)), one even has � 2 X.T / (resp. � 2 X.T CI /)
with T defined as in Lemma 4.11. Case (II) can occur only when I ¤ A.

Proof. This is Proposition 4.1 (forS archimedean) resp. Theorem 4.5 (for†A2 � S ),
combined with 4.9. In both cases (I) and (II), note that � is necessarily the ring
homomorphism associated with' (Definition 4.10), and hence is uniquely determined
by '. So the additional information � 2 X.T / follows from Lemma 4.11. �

Depending on u, the semiring T can be larger than S . This is sometimes useful,
for example, in the proof of Theorem 6.4 below.

Remark 4.13. In general, both �.u/ > 0 and �.u/ < 0 are possible in case (I),
and accordingly, both � 2 X.M/ and � 2 X.�M/. In many standard situations,
however, the second cannot occur. For example, whenM D N\I for some quadratic
module N of A, then necessarily � 2 X.M/ since u2 2 M . The same reasoning
applies when M is a semiring.

Corollary 4.14. Assume Q � A, and let M be a quadratic module in A. If .A;M/

has an order unit thenM is archimedean.

In other words, if .A;M/ has an order unit, then 1 is such an order unit as well.

Proof. Let u be an order unit of .A;M/. By 2.7 it suffices to show '.1/ > 0 for
every pure state ' of .A;M; u/. By 4.12, such ' satisfies '.b/ D �.b/

�.u/
(b 2 A) for

some ring homomorphism � W A ! R with �.u/ ¤ 0. So '.1/ D 1
�.u/

¤ 0, and
1 2 M implies '.1/ > 0. �
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Remark 4.15. It is natural to wonder where there is a converse to Corollary 4.12, in
the following sense. In the situation given there, assume that ' is a state of .I;M; u/
that satisfies the multiplicativity law (1) (and hence satisfies (I) or (II) of 4.12, by
Lemma 4.9). Does it follow that ' is a pure state, i. e., is extremal in S.I;M; u/?

It is easy to see that the answer must be no in general, at least when ' is of type
(II): Fixing �, the �-linear states of .I;M; u/ usually form a convex (compact) set
of positive dimension, so most of its elements are not extremal. For example, when
M D PO.x; y; 1 � x � y/ in A D RŒx; y� and I D .x; y/ is the maximal ideal of
the origin in A, then u D x C y is an order unit of .I;M \ I / (this is shown in 5.1
below). The states of type (II) are the partial derivatives whose direction lies in the
closed first quadrant (up to normalization). Hence only two of them are pure states.

However, when ' is of type (I), then under suitable additional side conditions on
M it is indeed true that' is necessarily pure. For example, this is so whenM D N\I
for some quadratic module N in A:

Proposition 4.16. Suppose R � A. Let I be an ideal of A andM � I a quadratic
pseudomodule with I D M �M . We assume a2 2 M for every a 2 I . Then every
multiplicative state ' 2 S.I;M/ is extremal in the cone S.I;M/, i. e., ' D '1 C '2

with 'i 2 S.I;M/ implies 'i D ci' with ci � 0.

By saying that ' is multiplicative, we mean here that '.xy/ D '.x/'.y/ holds
for all x; y 2 M .

WhenA is a ring (possibly without unit) of R-valued functions on a set, the analo-
gous result for multiplicative states of .A;AC/was proved by Bonsall, Lindenstrauss
and Phelps in 1966 ([BLP], Theorem 13). The same proof applies, essentially liter-
ally, in our situation as well. Since Proposition 4.16 and Corollary 4.17 will not be
used elsewhere in this paper, we skip over the details. �

Combining Proposition 4.16 with Theorem 4.5 we conclude:

Corollary 4.17. Suppose R � A. Assume that M is an archimedean quadratic
module in A. Then the pure states of .A;M; 1/ are precisely the elements of X.M/.

�

5. Existence of order units in ideals

Given an archimedean S -module M in A, and given an ideal I of A, we are going
to study when the cutted-down pseudomoduleM \ I has an order unit in I . See 3.8
for why this is an important question.

Proposition 5.1. Let S � A be a semiring andM � A an S -pseudomodule, and let
I � A be an ideal generated by x1; : : : ; xn. Assume that one of the following two
conditions holds:
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(1) .A; S/ has an order unit u, and x1; : : : ; xn 2 M ;

(2) .A;M/ has an order unit u, and x1; : : : ; xn 2 S .

Then v WD u.x1 C � � � C xn/ is an order unit of .I;M \ I /.

Proof. Any b 2 I can be written b D Pn
iD1 aixi with ai 2 A (i D 1; : : : ; n). By

assumption there is k 2 N with ku ˙ ai 2 S (1), resp. ku ˙ ai 2 M (2), for
i D 1; : : : ; n. Hence kv ˙ b D Pn

iD1.ku˙ ai /xi lies in M . �

For .I;M \ I / to have an order unit, it is obviously necessary that I is generated
by elements of M . We see that this condition is already sufficient in many cases:

Corollary 5.2. LetM be a pseudomodule over some archimedean semiring S in A.
If I is any ideal in A generated by finitely many elements ofM , then .I;M \ I / has
an order unit.

Proof. Indeed, this is 5.1 (1). �

On the contrary, whenM is merely an archimedean quadratic module in A, there
do in general exist ideals I , generated by finitely many elements of M , such that
.I;M \I / does not have an order unit. We shall now construct such examples within
a somewhat more general framework.

Proposition 5.3. Assume 1
2

2 A. LetM be an archimedean quadratic module in A,
and let I be a finitely generated ideal in A.

(a) .I 2; M \ I 2/ always has an order unit.

(b) .I;M \ I / has an order unit if and only if .I=I 2; M \ I / has an order unit.

For the proof we need the following easy observation:

Lemma 5.4. Let G be an abelian group, H � G a subgroup and M � G a
semigroup. If .G=H; xM/ and .H;M \H/ both have order units, then .G;M/ has
an order unit.

Proof. By assumption there exists v 2 M \ H with H � Zv C M , and there
exists u 2 M with G=H D Z Nu C xM , i. e., G D Zu C M C H . Hence G D
Zu C Zv C M . From �v D �.u C v/ C u we get Zv � Z.u C v/ C M , and
similarly Zu � Z.uC v/CM . Therefore G D Z.uC v/CM , which means that
uC v is an order unit of .G;M/. �

Proof of 5.3. The ideal I 2 is generated by squares since 4ab D .aCb/2 � .a�b/2.
Hence (a) is a particular case of 5.1 (2). Assertion (b) follows from (a) together with
Lemma 5.4. �
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Remarks 5.5. 1. In the situation of 5.3, assume that I D .b1; : : : ; bm/. Then u WD
b2

1 C � � � C b2
m is an order unit of .I 2; M \ I 2/. Indeed, u˙ bibj is a sum of squares

for all i , j , and so the bibj lie inO.M; u/. SinceO.M; u/ is an ideal in A (3.2), and
since the bibj generate I 2, we have I 2 � O.M; u/.

2. In 5.3 (b), the quotient I=I 2 can be replaced by I=J for any ideal J � I which
is generated by finitely many sums of squares.

Here is a sample application.

Proposition 5.6. Assume 1
2

2 A. LetM D QM.g1; : : : ; gr ; h1; : : : ; hm/ be archime-

dean in A, and let I D .g1; : : : ; gr/. Assume that I isM -convex, I D p
I , and that

h1; : : : ; hm are not zero divisors modulo I . Then .I;M \ I / has an order unit if and
only if �

I=I 2; †A2 � Ng1 C � � � C†A2 � Ngr

�
has an order unit.

Recall here that I is said to be M -convex if I D supp.M C I /, or equivalently,
if a, b 2 M and aCb 2 I imply a, b 2 I . Yet another equivalent formulation is that
a, c 2 I , b 2 A and a �M b �M c together imply b 2 I . This last version explains
why this property is called M -convexity.

Proof. This follows from Proposition 5.3 (b) once we have shown

M \ I � †A2 � g1 C � � � C†A2 � gr C I 2:

To this end let f 2 M \ I , say

f D
rX

iD1

sigi C
mX

j D0

tjhj

with si , tj 2 †A2 and h0 WD 1. Then
Pm

j D0 tjhj lies in I . This element is a sum of
products a2hj with a 2 A and j 2 f0; : : : ; mg. Since I is M -convex, all these a2hj

lie in I . Moreover a 2 I in each case since I D p
I and the hj are not zero divisors

mod I . Therefore
P

j tjhj 2 I 2, which proves the proposition. �

Example 5.7. 1. In a geometric situation, e. g. for A D RŒx1; : : : ; xn�, the condition
that I is M -convex is satisfied, for example, when I is the full vanishing ideal of a
real algebraic set V � Rn for which X.M/ \ V is Zariski-dense in V .

2. Let A D RŒx; y� and M D QM.x; y; 1 � x � y/, an archimedean quadratic
module inA. The ideal I D .x/ inA is generated by an element ofM , but .I;M \I /
has no order unit.

Indeed, this is a particular case of Proposition 5.6: Via the identification RŒy� �!�
I=I 2, g.y/ 7! xg.y/C I 2, the coneM \ I D † Nx in I=I 2 corresponds to the cone
of sums of squares in RŒy�. Clearly, this cone does not have an order unit.
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6. First applications

In this section we demonstrate how the approach via pure states gives a uniform and
elegant approach to many (if not most) of the important known archimedean Stellen-
sätze. Our proofs via pure states are shorter and more conceptual than the previously
known proofs. In several cases we shall obtain versions that are considerably stronger
than previously known.

The selection of applications presented here is not exhaustive. We plan to explain
other applications elsewhere in a similar spirit.

Theorem 6.1 (Representation Theorem). Let M be a module over an archimedean
semiring in A, and let f 2 A with f > 0 on X.M/. Then nf 2 M for some n 2 N.

This fundamental theorem has been proved and re-discovered in many versions
over the time, by Stone, Krivine, Kadison, Dubois and others (see, e. g., [Kr1], [Kr2]).
See [PD], Section 5.6, for detailed historical remarks.

Proof. This is immediate from the criterion 2.5, since every pure state of .A;M; 1/
is an element of X.M/ by Corollary 4.4. �

The version for archimedean quadratic modules was proved by Putinar [Pu] in the
geometric case, and by Jacobi [Ja] in an abstract setting. Again we get it easily using
the approach via pure states:

Theorem 6.2. LetM be an archimedean quadratic module inA, and let f 2 A with
f > 0 on X.M/. Then nf 2 M for some n 2 N.

Proof. The proof is the same as for Theorem 6.1, up to replacing the reference to
Corollary 4.4 by a reference to Theorem 4.5. �

Remark 6.3. We just remind the reader that Theorems 6.1 and 6.2 have many cel-
ebrated applications. Among the best known ones are the Positivstellensätze by
Schmüdgen [Sm] and by Putinar [Pu].

The following membership criterion, though more technical, played an important
role in the proofs of various Nichtnegativstellensätze from the last years (see, e. g.,
[Sch4], Section 3, in particular 3.1.9):

Theorem 6.4. LetM be an archimedean module over a semiring S inA, and assume
that S is either archimedean or S is a preordering. Let f 2 A with f � 0 onX.M/.
Suppose there is an identity f D b1s1 C � � � C brsr with bi 2 A and si 2 S such that
bi > 0 on Z.f / \X.M/ (i D 1; : : : ; r). Then nf 2 M for some n 2 N.
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The first version of Theorem 6.4 was given in [Sch1], Proposition 2.5. Later it
was generalized substantially in [Sw2], Theorem 2. The statement of Theorem 6.4
above is still stronger than the version in [Sw2], at least essentially so, since the latter
covered only the case M D S . (The slightly stronger conclusion f 2 S , instead of
nf 2 S for some n 2 N, was achieved in [Sw2] under the assumption 1

q
2 S for

some integer q > 1. It seems that this cannot be proved with the pure states method
alone. Of course there is no difference when we assume Q � A and QC � S .)

Here is an easy proof of Theorem 6.4 using pure states:

Proof. Consider the ideal I WD .s1; : : : ; sr/ inA. Then u WD s1 C� � �C sr is an order
unit of .I;M \ I / by Proposition 5.1 (2). Let ' be any pure state of .I;M \ I; u/,
and let � W A ! R be the associated ring homomorphism (4.12). Clearly uM � M ,
which implies � 2 X.M/ (Corollary 4.12). We have '.si / � 0 for i D 1; : : : ; r and
'.si / > 0 for at least one i since

P
i '.si / D 1. By 2.5 it suffices to show '.f / > 0.

First assume that ' is of type (I) (see 4.12), so '.f / D �.f /
�.u/

with �.u/ ¤ 0.
Note that � 2 X.M/ implies �.u/ > 0. Also, since f � 0 on X.M/, it implies
�.f / � 0, whence '.f / � 0. Assuming '.f / D 0 would give � 2 Z.f /\X.M/,
hence �.bi / > 0 (i D 1; : : : ; r) by hypothesis. This would lead to a contradiction
since '.f / D P

i �.bi /'.si /. So '.f / > 0 holds in case (I).
When ' is of type (II) then � 2 X.M C I / � X.M C Af / D Z.f / \ X.M/.

So again �.bi / > 0 for i D 1; : : : ; r , and '.f / D P
i �.bi /'.si / implies '.f / > 0.

�

In Theorem 2.8 of [Sch3], a local-global criterion was stated for membership in a
module M over an archimedean preordering, in which the local conditions referred
to the “localizations” of M with respect to the maximal ideals of A. This criterion
has turned out to be quite powerful, cf. the applications mentioned in loc. cit.

Using pure states it is easy to reprove this criterion, and in fact to strengthen it
further:

Theorem 6.5. Let S be an archimedean semiring and M an S -module in A. Let
f 2 A. For every maximal ideal m of A, assume that there exists s 2 S with s … m
and sf 2 M . Then nf 2 M for some n 2 N.

Proof. Let I WD supp.M C Af /, and let J 0 be the ideal generated by M \ I . For
every maximal ideal m of A there exists s 2 S , s … m, with sf 2 M , and hence
sf 2 J 0. This shows f 2 J 0. (The argument is classical, we repeat it for the readers’s
convenience: Choose finitely many si 2 S with .s1; : : : ; sr/ D .1/ and with sif 2 J 0
(i D 1; : : : ; r), then multiply an equation

P
i aisi D 1with f to see f 2 J 0.) Hence

there are finitely many elements x1; : : : ; xm 2 M \ I with f 2 .x1; : : : ; xm/. Since
I D supp.M C Af /, there are yi 2 M \ I with xi C yi 2 Af (i D 1; : : : ; r). Let
J WD .x1; : : : ; xr ; y1; : : : ; yr/. Then f 2 J , and u WD P

i .xi C yi / is an order unit
of .J;M \ J / by 5.1 (1). Note that u D af for some a 2 A.
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Let ' be a pure state of .J;M \ J; u/, we are going to show '.f / > 0. Let
� be the associated ring homomorphism, so � 2 X.S/ (Corollary 4.12). From
1 D '.af / D �.a/'.f / we get '.f / ¤ 0. On the other hand, there exists s 2 S

with �.s/ ¤ 0 (hence �.s/ > 0) and sf 2 M . So 0 � '.sf / D �.s/'.f / shows
'.f / � 0. Altogether we get '.f / > 0, and the proof is once more completed by
an application of Theorem 2.5. �

Remark 6.6. WhenM is a quadratic module (so we can assume that S is a preorder-
ing), the local condition is needed only for the maximal ideals m � supp.M/. (If
there is a 2 supp.M/ with a … m, then af 2 supp.M/ � M .) For such m, the
condition simply says f 2 Mm, whereMm is the quadratic module generated byM
in Am.

When 1
2

2 A andM D S is a preordering, and if we assume f � 0 onX.S/, the
local condition is only needed for m � I D supp.S C Af /. (The brief argument is
given in the proof of [Sch3], Corollary 2.10.)

7. More applications

We demonstrate now that the technique of pure states allows to establish archimedean
Stellensätze that are completely new. Given a compact basic closed set K � Rn

and a polynomial f 2 RŒx� with f jK � 0, all known results on denominator-free
representations of f require (essentially) that the zero set of f in K is discrete, i. e.,
finite. In contrast, this zero set can be of arbitrary dimension in the two main results
of this section, Theorems 7.6 and 7.11 (see also Theorem 7.8).

Proposition 7.1. Assume Q � A. Let M be a module over an archimedean pre-
ordering S in A, let f 2 A with f � 0 on X.M/, and put I WD supp.M CAf / (an
ideal of A). Consider the following conditions:

(i) f 2 M ;

(ii) f lies in the ideal of A generated byM \ I , and for every � 2 X.S C I / and
every �-linear map ' W I ! R with 'jM\I � 0 one has '.f / � 0.

Then (ii) implies (i) if the ideal I is finitely generated. The converse (i) ) (ii) holds
unconditionally.

Remark. “'.f / � 0” at the end of condition (ii) is not a misprint. However, (i)
implies in fact '.f / > 0 whenever ' is nonzero.

Proof. I is an ideal of A since SI � I and S C Z D A. The implication (i) ) (ii)
is trivial. We remark that '.f / > 0 holds in (ii) whenever ' ¤ 0. Indeed, f is an
order unit of .I;M \ I / according to Corollary 3.6.
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Conversely assume that (ii) holds and I is finitely generated. Let J be the ideal
generated by M \ I . Since I D .M \ I /C Af , it is clear that I D J C Af . So
f 2 J implies J D I . Choose generators x1; : : : ; xr 2 M of I . There are elements
yi 2 M \ I with xi C yi 2 Af (i D 1; : : : ; r). The element u WD P

i .xi C yi /

lies in Af , and is an order unit of .I;M \ I / by 5.1. Applying 2.5, we have to show
'.f / > 0 for every pure state ' of .I;M \ I; u/.

Given such ', let � 2 X.S/ be the associated ring homomorphism (Corol-
lary 4.12). From u 2 Af we see that '.f / ¤ 0. If ' is of type (II) then '.f / � 0

by the hypothesis. Assume that ' is of type (I), i. e., �.u/ ¤ 0. From u2 2 M \ I

and '.u2/ D �.u/ we see �.u/ > 0. For any x 2 M we have u2x 2 M \ I ,
therefore 0 � '.u2x/ D �.u/�.x/, which implies �.x/ � 0. Hence � 2 X.M/,
and so �.f / � 0 follows from the hypothesis. �

Remark 7.2. At first sight it is surprising that '.f / � 0 in (ii) should suffice (instead
of '.f / > 0). The subtlety, however, lies in the ideal I and in the condition that f
should lie in the ideal generated by M \ I . In concrete situations it is often hard to
decide whether this is true. Even when S is a preordering in RŒx1; : : : ; xn� given by
finitely many explicit generators, there seems no general procedure known to produce
generators for the support ideal supp.S/. For these reasons, Proposition 7.1 seems to
be mainly of theoretical interest.

Proposition 7.3. Let A be an R-algebra, let S � A be a semiring and M � A

an archimedean S -module. Assume that S is either archimedean or a preordering.
Let f 2 A with f � 0 on X.M/. Assume there are g1; : : : ; gr 2 S that vanish
identically on Z.f / \X.M/, such that the following two conditions are satisfied:

(1) f 2 I WD .g1; : : : ; gr/;

(2) for every � 2 Z.f /\X.M/, the residue class Nf lies in the interior of the cone
RC Ng1 C � � � C RC Ngr � I=m�I , where m� WD ker.�/.

Then f 2 M .

Note that I=m�I is an R-vector space of finite dimension, which explains the
meaning of interior in (2). It is clear how to give a dual formulation of (2) using
states.

Proof. By Proposition 5.1 (2), u WD g1 C� � �Cgr is an order unit of .I;M \I /. Note
u 2 S . Let ' W I ! R be a pure state of .I;M \ I; u/. We shall show '.f / > 0,
which implies f 2 M by Theorem 2.5. Let � 2 X.S/ be the ring homomorphism
associated to '. For every x 2 M we have xu 2 M \ I , and so 0 � '.xu/ D �.x/.
This shows � 2 X.M/, and so �.f / � 0 by hypothesis. Moreover, there are two
possibilities (Corollary 4.12):
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1. If ' is of type (I) then �.u/ ¤ 0, and hence �.u/ > 0 since u 2 S . Assuming
�.f / D 0 would mean � 2 Z.f / \ X.M/. This would imply �.gi / D 0 for all i ,
contradicting �.u/ > 0. So �.f / > 0, and hence '.f / D �.f /

�.u/
> 0.

2. If ' is of type (II) then � 2 Z.f /\X.M/. The map ' is induced by a �-linear
map N' W I=m�I ! R satisfying N'.M \ I / � 0. In particular, N' � 0 on the cone
RCg1 C � � � C RCgr . Since Nf lies in the interior of this cone by assumption (2), we
again get '.f / D N'. Nf / > 0. �

Remarks 7.4. 1. Given g1; : : : ; gr 2 S that vanish on Z.f / \ X.M/, conditions
(1) and (2) in Proposition 7.3 can be effectively checked, for example when A is a
polynomial ring over R.

2. In Proposition 7.3, assume that S is an archimedean semiring and M D S .
Then the sufficient conditions of 7.3 are also necessary for f 2 S , in the sense that
f 2 S implies the existence of g1; : : : ; gr 2 S satisfying (1) and (2). (One can
simply take r D 1 and g1 D f .)

3. Assume we are given S ,M and f as in 7.3, with f � 0 onX.M/, and we want
to prove f 2 M using this theorem. In general, it is a subtle task to find a suitable
ideal I as in this theorem (together with its generators), since conditions (1) and (2)
tend to work against each other: (1) asks for I being large, (2) asks for I being small.

Using the abstract criteria established so far, we shall now obtain applications in
geometric situations that are more concrete. In doing so, the question arises how
to interpret conditions like 7.3 (2) in a geometric way. Under suitable regularity
assumptions, this turns out to be possible.

First, we need the following lemma:

Lemma 7.5. Let .A;m/ be a regular local ring, and let I ¤ .1/ be an ideal. If A=I
is regular then for any n � 1 the map

I n=mI n ! mn=mnC1

induced by I n � mn is injective. Conversely, if this map is injective for n D 1, then
A=I is regular.

Proof. Injectivity of this map for n D 1 means that I can be generated by a sub-
sequence .x1; : : : ; xd / of a regular parameter system of .A;m/. It is well known
that this is equivalent to A=I being regular (e. g., [Mt], Theorem 14.2). Assuming
that this is the case, the ideal I n is generated by the monomials x˛ D x

˛1

1 � � � x˛d

d
of

degree j˛j D n. These are linearly independent in mn=mnC1 over A=m (loc. cit.,
Theorem 14.4), and so the map I n=mI n ! mn=mnC1 is injective as well. �

Here is an application of Proposition 7.3 to a geometric situation. We write
RŒx� WD RŒx1; : : : ; xn�.
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Theorem 7.6. Let S � RŒx� be a semiring and M an archimedean S -module.
Assume that S is either archimedean or a preordering. Let f 2 RŒx� with f � 0 on
X.M/, and let V be the (reduced) Zariski closure of Z.f / \ X.M/ � Rn in An.
Assume there are g1; : : : ; gr 2 S vanishing on Z.f / \X.M/ with

(1) f 2 .g1; : : : ; gr/;

(2) for every z 2 Z.f /\X.M/ and every v 2 Rn withDvgi .z/ � 0 (i D 1; : : : ; r)
and v … Tz.V / we haveDvf .z/ > 0.

If moreover every point z 2 Z.f /\X.M/ is a nonsingular point of V , then f 2 M .

Here we have written Dvf .z/ for the directional derivative of f at z in the
direction v, i. e.,

Dvf .z/ D lim
t!0

f .z C tv/ � f .z/
t

:

Proof. Write A WD RŒx� and I WD .g1; : : : ; gr/, and let J be the vanishing ideal of
V in A. We are going to apply Proposition 7.3. To verify hypothesis (2) there, fix
z 2 Z.f /\X.M/, and let m WD mz be the corresponding maximal ideal ofA. Note
that I � J � m.

We first show I C m2 D J C m2. Assume to the contrary that the inclusion
I C m2 � J C m2 is strict. Then there exists a linear form 2 .m=m2/_ vanishing
on all residue classes of elements of I , but not on all residue classes of elements of J .
This means that there is a vector v 2 Rn with v … Tz.V / and with Dvg.z/ D 0 for
all g 2 I . But this contradicts assumption (2), since we cannot have D˙vf .z/ > 0

for both signs ˙.
Next we show that the elements of .I=mI /_ are directional derivatives at z. It is

enough to prove that the map I=mI ! m=m2 induced by the inclusion I � m is
injective. Since Am=JAm is a regular local ring by hypothesis, the map J=mJ !
m=m2 is injective (Lemma 7.5), which means J \ m2 D mJ . On the other hand,
IC.J \m2/ D J by what has just been proven. So ICmJ D J . By the Nakayama
lemma this implies IAm D JAm, and so I=mI ! m=m2 is injective as desired.

Therefore, when v runs through the vectors in Rn as in (2), then 'v W Ng 7! Dvg.z/

( Ng 2 I=mI ) runs through the nonzero elements in the dual of the cone RC Ng1 C� � �C
RC Ngr � I=mI . So we see that condition (2) in 7.6 corresponds precisely to (2) in
Proposition 7.3. The proof is therefore complete. �

Remarks 7.7. 1. For Theorem 7.6, it is not necessary to work in a polynomial ring
RŒx�, resp. in affine space An. One could replace An by any nonsingular affine
R-variety, if one is willing to reformulate condition (2) properly in this setting. We
restricted to the case of the polynomial ring only to allow a less technical formulation.

2. Let W be the Zariski closure of X.M/. Then the hypotheses of Theorem 7.6
imply that every point z 2 Z.f / \ X.M/ is a boundary point of X.M/ relative to
W.R/, except when f vanishes identically on a neighborhood of z inX.M/. Indeed,
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otherwise Tz.V / ¤ Tz.W /, and there would be a neighborhood of z in W.R/ on
which g1; : : : ; gr are nonnegative. Choose any v 2 Tz.W / with v … Tz.V / and
apply (2) to ˙v to get a contradiction. (By Tz.W / we denote the tangent space of
W at z in Rn.)

Here is a particularly concrete case of Theorem 7.6. Again we denote RŒx� D
RŒx1; : : : ; xn�.

Theorem 7.8. Let K � Rn be a nonempty compact convex polyhedron, described
by linear inequalities g1 � 0; : : : ; gs � 0. Let S be the semiring in RŒx� generated
by RC and g1; : : : ; gs . Let F be a face of K, and let f 2 RŒx� satisfy f jF D 0 and
f jKXF > 0. For every z 2 F and every y 2 K X F assume Dy�zf .z/ > 0. Then
f 2 S .

Speaking informally, the last hypothesis says that every directional derivative of
f at a point of F pointing into K and not tangential to F should be strictly positive.

Proof. By Remark 3.3, S is archimedean. After relabelling the gi we can assume
that g1; : : : ; gr vanish identically on F while grC1; : : : ; gs do not, where 1 � r � s.
Then I WD .g1; : : : ; gr/ is the full vanishing ideal of the affine subspace V spanned
by F , and so f 2 I .

We are going to apply Theorem 7.6 with M D S . Condition (1) has just been
established. In view of (2) fix z 2 F , and let v 2 Rn with v … Tz.V / andDvgi .z/ �
0 for i D 1; : : : ; r . We need to show Dvf .z/ > 0.

For this we would like to assure that z C bv 2 K for small b > 0. A priori,
this need not be the case. However, we still have some freedom to adjust v. Choose
w 2 Rn such that z C "w lies in the relative interior of F for small " > 0. Then for
every index j 2 fr C 1; : : : ; sg we have either gj .z/ > 0 or Dwgj .z/ > 0. Replace
v by vC tw for large t > 0. This does not changeDva.z/ for a 2 I , but in this way
we can achieve Dvgj .z/ > 0 for every j 2 f1; : : : ; sg with gj .z/ D 0. Therefore,
zC bv 2 K XF for small b > 0, which means v D c.y � z/ for suitable c > 0 and
y 2 K X F . From the hypothesis made on f we therefore conclude Dvf .z/ > 0.

�

Remark 7.9. In the situation of Theorem 7.8, it was so far not even known whether f
would lie in the preordering PO.g1; : : : ; gr/ except when F is a face of codimension
one. (In this case, after extracting from f the linear equation for F with the maximal
possible power, one is left with a polynomial which is strictly positive on K.)

Example 7.10. Consider the simplex

K D ˚
x 2 Rn W x1 � 0; : : : ; xn � 0;

Pn
iD1 xi � 1

�
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in Rn, and let S � RŒx1; : : : ; xn� be the semiring generated by RC and x1; : : : ; xn,
1�Pn

iD1 xi . Consider the faceF D K\fx1 D � � � D xr D 0g ofK (with 1 � r � n

being fixed). Given a polynomial f with f > 0 on K X F and f D 0 on F , we
have f 2 S provided that @x1

f; : : : ; @xr
f are strictly positive on F .

While Theorem 7.6 applies only in cases where the zeros of f inX.M/ lie on the
boundary of X.M/ (see Remark 7.7), we will now mention a result which applies
when f vanishes in interior points of X.M/.

Theorem 7.11. Let M D QM.g1; : : : ; gm/ be an archimedean quadratic module
in RŒx�. Let f 2 RŒx� with f � 0 on X.M/. Assume that the (reduced) Zariski
closure V of Z.f / \ X.M/ in An is a local complete intersection. For every point
z 2 Z.f / \X.M/, assume moreover:

(1) z is a nonsingular point of V ,

(2) rf .z/ D 0,

(3) D2f .z/Œv; v� > 0 for all v 2 Rn with v … Tz.V /.

Then f 2 M .

Here D2f .z/Œv; w� denotes the evaluation of the Hessian D2f .z/ at the pair of
vectors .v; w/.

Proof. Let J be the vanishing ideal of V in RŒx�. We have f 2 J and are going
to show f 2 J 2. First fix z 2 Z.f / \ X.M/, let m D mz be the corresponding
maximal ideal of RŒx�. Then f 2 m2 since rf .z/ D 0. Since V is a local
complete intersection, J=J 2 is locally free as a module over RŒV � D RŒx�=J (e. g.
[H], pp. 184–185). Since Nf 2 mzJ=J

2 for every z 2 Z.f /\X.M/, and since this
set is Zariski dense in V , it follows that f 2 J 2.

By Proposition 5.3 (a), .J 2;M \ J 2/ has an order unit u. Let ' be a pure state
of .J 2;M \ J 2; u/, we shall show '.f / > 0. If ' is of type (I) then, up to positive
scaling, ' is evaluation in some point ofX.M/ outsideZ.f /, and so '.f / > 0. If '
is of type (II), there is a point z 2 Z.f /\X.M/ such that ' is induced by a linear map
N' W J 2=mJ 2 ! R, where m WD mz . Since z is a nonsingular point of V , the map
J 2=mJ 2 ! m2=m3 induced by the inclusion J 2 � m2 is injective (Lemma 7.5).
The inclusionJ=mJ ,! m=m2 induces an inclusion of the second symmetric powers
of these vector spaces, which isJ 2=mJ 2 ,! m2=m3. The linear map N' can therefore
be seen as a positive semidefinite symmetric bilinear form on J=mJ . As such it can
be extended to m=m2. This yields a linear extension Q' 2 .m2=m3/_ of N' such
that Q'. Ng2/ � 0 for all g 2 m. Since the elements of .m2=m3/_ are the symmetric
second order differential operators at z, it follows that there is a positive semidefinite
symmetric matrix .sij / such that '.g/ D P

i;j sij @xi
@xj
g.z/ for all g 2 J 2. In
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particular, there are vectors v1; : : : ; vk in Rn with

'.g/ D
kX

iD1

D2g.z/Œvi ; vi �

for every g 2 J 2. Since ' does not vanish identically on J 2 we have vi … Tp.V / for
at least one index i . Therefore '.f / > 0 follows from the hypothesis. �

Remark 7.12. The condition in Theorem 7.11 that V is a local complete intersection
means that the ideal J of V in RŒx� can locally be generated by n � dim.V / many
elements. It is satisfied if V is nonsingular, but the condition is much more general.

Example 7.13. We illustrate the use of Theorem 7.11 by an example. Let M be
an archimedean quadratic module in RŒx; y; z�, let K D X.M/, and let Z D
f.0; 0; t/ W t 2 Rg be the z-axis in R3. Assume that p, q, r 2 RŒx; y; z� are such that

f D x2 � p C y2 � q C 2xy � r
satisfies f > 0 on K X Z and f D 0 on Z. Then f 2 M , provided that p and
pq � r2 are strictly positive on Z \K. This follows by a direct application of 7.11.
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