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Homotopy classes of total foliations
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Abstract. On every compact and orientable three-manifold we construct total foliations (three
codimension-one foliations that are transverse at every point). This construction can be per-
formed on any homotopy class of plane fields with vanishing Euler class.

As a corollary we obtain similar results on bi-contact structures.
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1. Introduction

1.1. Main results. Let M be an oriented closed three-dimensional manifold. We
call a triple .� i /3iD1 of smooth transversely oriented plane fields on M a total plane
field if

T3
iD1 � i .p/ D f0g for any p in M . If each � i is integrable, it is called a

total foliation. We say two total plane fields are homotopic if they are connected by
a continuous path in the space of smooth oriented total plane fields.

A celebrated theorem due to Wood [16] showed that any plane field on a closed
three-dimensional manifold can be continuously deformed into a foliation in its homo-
topy class. In other words, there is no homotopical obstruction to the integrability for
the three-dimensional case. The main subject of this paper is to solve the analogous
problem for total foliations. That is,

Theorem 1.1. Any total plane field on a closed three-dimensional manifold is homo-
topic to a total foliation.

In other words, there is no homotopical obstruction to the integrability for total
plane fields.

Let us remark that three-dimensional closed manifolds have their Euler char-
acteristic equal to zero, which implies the existence of transversely oriented plane
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fields. Similarly, three-dimensional closed manifolds have vanishing second Stiefel–
Whitney class, which implies the existence of total plane fields.

Hardorp [10], showed that any three-dimensional oriented closed manifold admits
a total foliation. However, his construction does not allow to keep track of the
homotopy class of the constructed object.

Tamura and Sato [15], gave examples of foliations on three-dimensional manifold
which admit a transverse plane field but no transverse foliation. It implies that there
exists an obstruction to deform a total plane field into a total foliation if we fix one of
the plane fields as a given foliation.

Mitsumatsu [13], Problem 5.2.7, asked which homotopy classes of plane fields
can be realized as a transverse pair of codimension-one foliations. His question is
important from the viewpoint of bi-contact structures, which we consider in the next
paragraph. The theory of characteristic classes tells that a plane field is contained
in a total plane field if and only if its Euler class vanishes. Theorem 1.1 answers
Mitsumatsu’s question immediately.

Corollary 1.2. An oriented plane field on an oriented closed three-dimensional mani-
fold is homotopic to a foliation which is contained in a total foliation if and only if
its Euler class vanishes.

We call a pair of mutually transverse positive and negative contact structures
a bi-contact structure. Mitsumatsu [12], and Eliashberg and Thurston [7] showed
that bi-contact structures naturally correspond to a projectively Anosov flow, which
exhibits partially-hyperbolic behavior on the whole manifold.

In relation with the question above, Mitsumatsu asked which homotopy class
of plane field can be realized by contact structures in a bi-contact structure. In
Theorem 2.4.1 of [7], Eliashberg and Thurston showed that any foliation except the
product foliation fS2 � fpggp2S1 on S2 � S1 can be C 0-approximated by positive
or negative contact structures. It is easy to see that any mutually transverse plane
fields are homotopic to each other and that the product foliation on S2 �S1 does not
admit a transverse foliation. Hence, the following is an immediate consequence of
Eliashberg–Thurston’s theorem and Corollary 1.2.

Corollary 1.3. On any oriented closed three-dimensional manifold, any oriented
plane field with Euler class zero is homotopic to positive and negative contact struc-
tures which form a bi-contact structure.

Among the realization problems of bi-contact structures, the following is quite
natural.

Question 1.4. Let � and � be positive and negative contact structures on an oriented
three-dimensional manifold M . Suppose that they are contained in the same homo-
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topy class of plane fields with vanishing Euler class. Can we isotope � and � so that
.�; �/ is a bi-contact structure?

We give an answer for overtwisted contact structures.

Theorem 1.5. Let � and � be positive and negative overtwisted contact structures
contained in the same homotopy class of plane fields and with Euler class zero. Then,
we can isotope � and � so that .�; �/ is a bi-contact structure.

The answer for tight contact structures is still unknown.

1.2. Outline of proofs. The proof of Theorem 1.1 is obtained after performing a
sequence of surgeries and gluings along so-called R-components, which are solid
tori equipped with a ‘simple’ total foliation.

Section 2 is devoted to the study of the effect of a surgery on the homotopy class of
a total foliation. In Subsection 2.1, we review two invariants of total plane fields that
determine its homotopy class completely – the spin structure and thedifferenceofHopf
degree. In Subsection 2.2, we define R-components of total foliations and gluing
of two total foliations along the boundaries of R-components. In Subsections 2.3
and 2.4, we define a surgery of a total foliation along an R-component and give a
surgery formula.

Section 3 is the main part of our construction of a total foliation in any given
homotopy class. It is done by a modification of Hardorp’s construction in [10]. The
main new feature in our construction is a control of the framing of R components
by insertion of ‘plugs’ (Lemma 3.22). Insertion of plugs of another type also enables
us to control the difference of Hopf degree (Lemma 3.24). In order to obtain such
plugs, we need to construct total foliations on the three-dimensional sphere S3 such
that the cores of R-components form special framed links. Hardorp’s construction
is insufficient to our purpose since the framing is a very large positive number and it
is difficult to control. In the first step of our construction, there are two differences
from his construction :

(1) our construction is performed on a non-trivial T2-bundle over the circle while
Hardorp’s was on T3;

(2) foliations in our R-components may rotate several times in some sense while
they did not in Hardorp’s.

These differences leads to a simpler construction in the succeeding steps: we can
avoid dealing with a finite covering of a total foliation on the Poincaré sphere and
with a branched double covering along the unknot. As a consequence, we can obtain
an explicit description of the framings of R-components in terms of diagrams of
braids, see Proposition 3.21.

In Subsection 3.2, we give a construction of total foliations on T2 � Œ0; 1�. In
Subsection 3.4, we describe the framings of R-components of a total foliation that



274 M. Asaoka, E. Dufraine and T. Noda CMH

is given by gluing two boundary components of T2 � Œ0; 1�. In Subsection 3.5, we
control the framings of R-components and show a generalized version of Hardorp’s
theorem, i.e., the existence of a total foliation with any given spin structure. The
control is done by successive replacements of an R-component with a totally foliated
solid torus which contains a twisted R-component (‘insertion of plugs’). In Subsec-
tion 3.6, we give a control of the Hopf degree. In fact, we construct a total foliation
on S3 that admits unknotted R-components with .C1/- and .�1/-framings and that
has the required difference of Hopf degree with the positive total Reeb foliation. By
gluing it with a total foliation that has the required spin structure, we obtain a total
foliation in any given homotopy class of total plane fields.

Section 4 is devoted to the proof of Corollary 1.3. We show that if a total foliation
admits an unknotted R-component with .C1/-framing then any positive contact struc-
ture that is sufficiently close to one of the foliations violates the Thurston–Bennequin
inequality and therefore is overtwisted. Once it is shown, the corollary is an easy
consequence of Eliashberg’s classification of overtwisted contact structures in [6].

1.3. Acknowledgements. This paper was prepared while the first and third authors
stayed at Unité de Mathématiques Pures et Appliquées, École Normale Supérieure de
Lyon and it started when the second author was at Institut Fourier, Grenoble. They
thank the members of those institutions, especially Professor Étienne Ghys for his
warm hospitality. The authors are also grateful to an anonymous referee for many
suggestions to improve the readability of the paper.

2. Gluing and surgery of total foliations

2.1. Homotopy classes of plane fields. In the rest of the paper, all manifolds and
foliations are of classC1 and all plane fields and foliations are transversely oriented.

Fix an n-dimensional manifoldX equipped with a Riemannian metric. Let Fr.X/
be the set of orthonormal frames of TX . It admits a natural topology as a subset of
the set of n-tuples of vector fields on X .

When M is a three-dimensional manifold, by taking the unit normal vectors of a
total plane field, and by applying the Gram–Schmidt orthogonalization to it, we can
define a continuous map from the set of total plane fields to Fr.M/. It is easy to see
that it induces a bijection between homotopy classes. So, we consider Fr.M/ instead
of the set of total plane fields in this subsection.

First, we review some basic facts on spin structures. We denote by SO.n/ the
group of special orthogonal matrices of size n. Let X be an n-dimensional manifold
with n � 3. We fix a triangulation of X and let Xi be the i -skeleton of X for
0 � i � n. By Fr.Xi /, we denote the set of orthonormal frames of TX jXi

. A spin
structure is a homotopy class of Fr.X1/ of which each representative can be extended
to an element of Fr.X2/. In particular, a frame Le in Fr.X/ induces a spin structure on
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X in a natural way. We call it the spin structure given by the frame Le. Our definition
is different from the standard one that is given by a double covering of a natural
principal SO.n/-bundle, but it is known they are equivalent if n � 3, see [11].

A manifold X equipped with spin structure s is called a spin manifold. If X has
a boundary @X , then s induces a spin structure s0 on @X . We call the spin manifold
.@X; s0/ the spin boundary of .X; s/.

Now, we focus our attention on spin structures on three or four-dimensional man-
ifolds. We call a four-dimensional manifold X a 2-handlebody if it is obtained
by attaching four-dimensional 2-handles to the 4-ball B4 along a framed link L in
S3 D @B4. We say a 2-handlebody X is even if the framing of each component of
L is even. See the first paragraph of Subsection 2.3 for the definition of framing of
knots.

Proposition 2.1. Any even 2-handlebody admits a unique spin structure. Any closed
spin three-dimensional manifold is a spin boundary of a spin 2-handlebody.

Proof. See Section 5.6 and 5.7 of [8]. �

Let M be a three-dimensional closed manifold. We denote by C.M;SO.3// the
set of continuous maps fromM to SO.3/. The space Fr.M/ of frames admits a natural
action of C.M;SO.3// given by . Le � F /.p/ D .ei .p/ � F.p//3iD1 for Le D .ei /3iD1
and F 2 C.M;SO.3//. We define a map ˆ W Fr.M/ � Fr.M/ ! C.M;SO.3// by
Le D Le0 �ˆ. Le; Le0/ for . Le; Le0/ 2 Fr.M/2. It is easy to check that ˆ.�; Le0/ is a bijective
map between Fr.M/ and C.M;SO.3//.

We denote the field Z=2Z by Z2. Recall the fundamental group �1.SO.n// of
SO.n/ is isomorphic to Z2 if n � 3. Let Spin.n/ be the universal covering group of
SO.n/.

Definition 2.2. For Le; Le0 2 Fr.M/, we define s. Le; Le0/ 2 H 1.M;Z2/ by

s. Le; Le0/.Œ��H1
/ D Œˆ. Le; Le0/ B ���1

2 �1.SO.3// ' Z2

for any continuous loop � in M . We call the above cohomology class the difference
of spin structures of Le and Le0.

It is easy to see that s. Le; Le0/ is well-defined and is determined by the homotopy
classes of Le and Le0. We can see that s. Le; Le0/ D 0 if and only if the restrictions of Le
and Le0 to a fixed 1-skeleton are homotopic. In particular, s. Le; Le0/ D 0 if and only if
two frames Le and Le0 give the same spin structure.

Lemma 2.3. If two given frames Le; Le0 2 Fr.M/ satisfy s. Le; Le0/ D 0, then the map
ˆ. Le; Le0/ admits a lift ẑ . Le; Le0/ W M ! Spin.3/.
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Proof. The map ˆ. Le; Le0/ induces a trivial map between the fundamental groups.
Hence, it admits a lift to Spin.3/. �

Definition 2.4. When two frames Le and Le0 of M give the same spin structure, we
define the difference of Hopf degreeH. Le; Le0/ by the mapping degree of ẑ . Le; Le0/.

Remark that H..ei /3iD1; .ei0/3iD1/ coincides with the difference of Hopf degree of
non-singular vector fields ei and ei0 for any i D 1; 2; 3, which is defined in [5]. It is
easy to see that the formulae

H. Le2; Le1/ D H.�Le1;�Le2/ D �H. Le1; Le2/; (1)

H. Le1; Le3/ D H. Le1; Le2/CH. Le2; Le3/ (2)

hold if Le1; Le2; Le3 2 Fr.M/ give the same spin structure, where �Le D .�ei /3iD1 for
Le D .ei /3iD1.

Proposition 2.5. Two frames Le; Le0 2 Fr.M/ are homotopic to each other if and only
if they give the same spin structure and satisfyH. Le; Le0/ D 0.

Proof. It is trivial that the former implies the latter.
Suppose the latter holds for Le; Le0 2 Fr.M/. Then, we have s. Le; Le0/ D 0 and

H. Le; Le0/ D 0. Fix a structure of a CW complex on M with a unique 3-cell. Let
M2 be the 2-skeleton of M . Since Spin.3/ is homeomorphic to S3, the lift ẑ . Le; Le0/
of ˆ. Le; Le0/ is homotopic to a map F such that F jM2

is a constant map. Since the
quotient space M=M2 also is homeomorphic to S3, the assumption H. Le; Le0/ D 0

implies thatF is homotopic to a constant map. Therefore, Le is homotopic to Le0. �

2.2. R-components and gluing of total foliations. In the rest of the paper, we
identify the circle S1 with R=Z, and the two-dimensional torus T2 with .R=Z/2.
The sum a C b is well-defined for a 2 S1 and b 2 S1 or R. For a 2 S1 and
�1; �2 2 R, we denote the subset fa C t 2 S1 j t 2 Œ�1; �2�g by Œa C �1; a C �2�.
We will abuse the identification of the number t 2 Œ0; 1� and t C Z 2 S1 when the
meaning is clear.

Put D2.r/ D f.x; y/ 2 R2 j x2 C y2 � r2g for r � 0 and D2 D D2.1/. We
denote Œ0; 1�� T2 byW , S1 �D2 by Z, and the origin of R2 byO . We also denote
by �a; bŒ the open interval fx 2 R j a < x < bg.

For a foliation F on a manifold X and a point p of X , let F .p/ denote the leaf
containing p. For a diffeomorphism F from X to another manifold X 0, let F.F /
denote a foliation on X 0 such that the leaf containing F.p/ is F.F .p//. For a pair
.F 1;F 2/ of mutually transverse codimension-one foliations on a three-dimensional
manifoldM , let F 1 \ F 2 be the one-dimensional foliation fF 1.p/\ F 2.p/gp2M .
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Definition 2.6. Let M be a three-dimensional manifold. We say a subset R of M
is a thick Reeb component of a foliation F if R contains a Reeb component R0 and
F jRnR0 is diffeomorphic to a product foliation ft � T2gt2Œ0;1� on W .

Let .t; x; y/ be the standard coordinate system of S1 � R2. Take a smooth odd
function �R on R so that 0 < �R.x/ < 1 if x 2�1=2; 3=2Œ and �R.x/ D 0 otherwise.
Let yR1 and yR2 be the foliations on S1 � R2 that are generated by the kernel of
dy � �R.y/dt and dx � �R.x/dt , respectively.

We denote by Ri the restriction of yRi on Z for i D 1; 2. We can take a foliation
R3 on Z so that it is a thick Reeb component and .Ri /3iD1 is a total foliation. See
Figure 1.

R1, R2

R1
T

, R2
T

Figure 1. Foliations R1, R2, R1
T

, and R2
T

.

Definition 2.7. Let .Fi /3iD1 be a total foliation on a three-dimensional manifold M .
We call a subsetR ofM an R-component of .F i /3iD1 if there exists a diffeomorphism
 W Z ! R such that  .Ri / D F i jR for i D 1; 2; 3 and the restriction of F 3 on a
neighborhood of @R is diffeomorphic to ft � T2gt2Œ0;1� on W . The diffeomorphism
 is called a canonical coordinate of R. The curve C.R/ D  .S1 � 0/ admits a
natural orientation induced from  and we call it the core of R.

Remark that the isotopy class of C.R/ is uniquely determined as an oriented knot
in M .

Let 'R W T2 ! S1 � @D2 be the map given by

'R.x; y/ D .x; cos.2�y/; sin.2�y//:

We define foliations R1
T and R2

T on T2 so that 'R.R
i
T / is the restriction of Ri on

@Z for each i D 1; 2. We use the following lemma in Section 4.
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Lemma 2.8. If a smooth line field � on T2 is sufficiently C 0-close to TR1
T , then

there exists a closed curve which is tangent to � and homotopic to the curve S1 � y0,
where y0 be the point of S1 represented by 0.

Proof. PutA D S1�Œy0�1=4; y0C1=4�. If a smooth line field � on T2 is sufficiently
C 0-close to TR1

T , then it is isotopic to @A and admits an orientation which directs
inward at @A. By the Poincaré–Bendixon theorem, there exists a closed curve in A
which is tangent to � and isotopic to S1 � y0. �

Let aR be the integral homology class in H1.T2;Z/ represented by a map
x 7! .x; 0/. Remark that each closed leaf of R1

T is the image of a curve which
represents aR.

Definition 2.9. Let .F i /3iD1 be a total foliation on a manifoldM . We call a boundary
component T of M an R-boundary if there exists a diffeomorphism  T W T2 ! T

such that T .Ri
T / is the restriction of F i to T for i D 1; 2, and F 3 is diffeomorphic

to the product foliation ft � T2gt2Œ0;1� on a neighborhood of T . For an R-boundary
component T , we define aR.T / 2 H1.T;Z/ by aR.T / D . T /�.aR/.

Remark that if R is an R-component of a total foliation on a manifold M , then
@R is an R-boundary of both R and M nR.

We define cut and paste operations of total foliations with R-boundary by follow-
ing the idea described in [10]. First, we show that the pair .F 1jT ;F 2jT / of foliations
of an R-boundary of a total foliation .F i /3iD1 is determined by aR.T / up to isotopy.

Lemma2.10. LetF be a diffeomorphism of T2 such thatF�.aR/ D aR. Then, there
exists a diffeomorphism G which is isotopic to the identity and satisfies G.Ri

T / D
F.Ri

T / for i D 1; 2.

Proof. Let 	y be the diffeomorphism of T2 such that 	y.x; y/ D .x;�y/. Then,
	y.R

i
T / D Ri

T for i D 1; 2 and .	y/�.aR/ D aR. Hence, we may assume that F is
orientation-preserving by replacing F with F B 	y if it is necessary.

Fix an integer k. Let Qh be a smooth function on R� Œ0; 1� such that Qh.yCn; t/ D
Qh.y; t/C kn for any .y; t/ 2 R � Œ0; 1� and n 2 Z, and

Qh.y; t/ D

8̂<
:̂
kn if y 2 Œn; nC .1=32/�;

k.nC t / if y 2 ŒnC .1=16/; nC .1=4/�;

k.nC 1/ if y 2 ŒnC .9=32/; nC 1�

for any n 2 Z and t 2 Œ0; 1�. See Figure 2. The function Qh induces a map h W S1 �
Œ0; 1� ! S1. Remark that h.�; t / W S1 ! S1 is a map of degree k.

For t 2 Œ0; 1�, we define a diffeomorphism Fk;t of T2 by

Fk;t .x; y/ D .x C h.y; t/; y/ :
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Since F is orientation-preserving and F�.aR/ D aR, F is isotopic to Fk;1 for some
k 2 Z. Hence, it is sufficient to show that there exists a diffeomorphism G of T2

which is isotopic to the identity and satisfies G.Ri
T / D Fk;1.R

i
T / for i D 1; 2.

0 1/41/32 1/16 9/32

h.�; 1/

h.�; t /

h.�; 0/

k

kt

Figure 2. The map h.�; t / and the foliation Fk;1.R
1/ for k D 1.

Since R1
T .x; y1/ D S1 � y1 for y1 2 Œ0; 1=16� and R2

T .x; y2/ D S1 � y2 for
y2 2 Œ1=4; 5=16�, we have Fk;0.R2

T / D R2
T and Fk;1.R1

T / D R1
T . The foliations

R1
T and R2

T are invariant under the translation .x; y/ 7! .x C t; y/. It implies that
Fk;t .R

2
T / is transverse to R1

T for any t 2 Œ0; 1�. We define an isotopy fGtgt2Œ0;1�
by Gt .x; y/ 2 R1

T .x; y/ \ Fk;t .R
2
T .x; y//. Then, the map G0 is the identity,

G1.R
1
T / D R1

T D Fk;1.R
1
T /, and G1.R2

T / D Fk;1.R
2
T /. �

Proposition 2.11. For k D 1; 2, letMk be a three-dimensional manifold with a toral
boundary Tk and .F i

k
/3iD1 a total foliation of Mk such that Tk is an R-boundary.

Suppose that a diffeomorphism  W T1 ! T2 satisfies  �.aR.T1// D aR.T2/. Then,
there exists a total foliation .F i /3iD1 on M1 [ M2 D M1 [M2=Œp �  .p/� and
diffeomorphisms F1 W M1 ! M1 and F2 W M2 ! M2 such that Fk is isotopic to the
identity and Fk.F i

k
/ D F i jMk

for any i D 1; 2; 3 and k D 1; 2.

Proof. By Lemma 2.10, we can isotope .F i
2 /
3
iD1 so that it is compatible with .F i

1 /
3
iD1

on a neighborhood of T1 D T2 in M1 [ M2. �

2.3. KnottedR-components and surgery. LetM be an oriented three-dimensional
manifold. For a smooth link L in M , let Fr.LIM/ be the set of vector fields
v W L ! TM on L satisfying v.p/ 62 TpL for any p 2 L. A framing of L is
a connected component of Fr.LIM/. An oriented knot K is null-homologous if
and only if it admits a Seifert surface S , that is, an oriented embedded surface with
@S D K.
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Definition 2.12. Suppose an oriented knot K admits a Seifert surface S . We call an
orientation preserving embedding W S1�D2 ! M an n-framed tubular coordinate
ofK if the restriction of toS1�f.0; 0/g is an orientation preserving diffeomorphism
onto K and the algebraic intersection number of S and  .S1 � f.1; 0/g/ is n. The
framing represented by a vector field v 2 Fr.KIM/ tangent to .S1� Œ�1; 1��f0g/
is called an n-framing of K.

It is known that the n-framing of K does not depend on the choices of S and  .
If a link L is tangent to leaves of a foliation F , then a vector field vL on L with

vL.p/ 2 TpF n TpL gives a framing of L. We call it the framing given by F . We
say an R-component R of a total foliation .F i /3iD1 on M is null-homotopic if the
core C.R/ is null-homotopic. In addition, if F 1 gives the n-framing of C.R/, we
say that R is an n-framed null-homotopic R-component. A knot is called unknotted
if it bounds an embedded disk. We say an R-component of a total foliation on M is
unknotted if the core is unknotted.

Suppose that a total foliation .F i /3iD1 on M admits an R-component R. Let

.R/ 2 H1.@R;Z/ be the homology class represented by a meridian ofR. Up to iso-
topy, there exists a unique diffeomorphismF on @R such thatF�.aR.@R// D aR.@R/

andF�.
.R//D
.R/CaR.@R/. We callMR D .M nR [R/=F.p/ � p the man-
ifold obtained by the standard surgery along R. By Proposition 2.11, total foliations
.F i jMnR/

3
iD1 and .F i jR/3iD1 induce a total foliation .F i

F /
3
iD1. We call .F i

F /
3
iD1 the

total foliation obtained by the standard surgery along R. In [10], p. 22–24, one can
see another surgery along an R-component, which essentially yields the same total
foliation.

Lemma 2.13. IfR is null-homotopic and k-framed, then the aboveMR is a manifold
obtained by a Dehn surgery along C.R/ with framing coefficient k C 1.

Proof. Since R is k-framed, �.R/ D aR.@R/ � k
.R/ is represented by the longi-
tude of C.R/ corresponding to the 0-framing. The condition F�.
.R// D �.R/C
.k C 1/
.R/ implies that the coefficient of the Dehn surgery is k C 1. �

Let .F i /3iD1 be a total foliation on S3 and R1; : : : ; Rk be its R-components
with the n1; : : : ; nk-framings. Lemma 2.13 implies that the manifold obtained by
the standard surgery along R-components R1; : : : ; Rk is the boundary of the four-
dimensional 2-handlebody X whose Kirby diagram is

Sk
jD1 C.R/ with the

.nj C 1/-framing on each C.Rj /.
As we saw in Subsection 2.1, each total plane field on M defines a spin structure

onM . For a total foliation .F i /3iD1, we say a spin structure onM is given by .F i /3iD1
if it is given by the total plane field .TF i /3iD1.

Let .F i
0 /
3
iD1 be a total foliation onS3with odd-framed R-componentsR1; : : : ;Rk .

LetM and .F i /3iD1 denote the three-dimensional manifold and the total foliation ob-
tained by the standard surgeries on allRi ’s, andX the four-dimensional 2-handlebody



Vol. 87 (2012) Homotopy classes of total foliations 281

corresponding to the surgery as above. By Proposition 2.1, X admits a unique spin
structure sX .

Proposition 2.14. The restriction of sX toM D @X coincides with the one given by
.F i /3iD1.

Proof. Let hj � X be the 2-handles corresponding to C.Rj / for j D 1; : : : ; k.
Total foliations .F i

0 /
3
iD1 and .F i /3iD1 define a spin structure s� on a neighborhood of

S3[M D @D4[@X inX D D4[Sk
jD1 hj , whereD4 is the four-dimensional ball.

SinceH1.S3;Z2/ D 0, the sphere S3 admits a unique spin structure. It is known that
it extends to D4. The closure of a connected component of X n .S3 [M/ is either
the ball D4 or a 2-handle hj . Since they are homeomorphic to the four dimensional
ball, the spin structure on S3[M can be extended toX . By the uniqueness of a spin
structure on a 2-handlebody, it completes the proof. �

2.4. Gluing formula of the difference of Hopf invariant. For two total foliations
.F i /3iD1 and .G i /3iD1 which give the same spin structure, we denote the difference
of Hopf invariant of the corresponding orthonormal frames (see Definition 2.4) by
H..F i /3iD1; .G i /3iD1/.

Definition 2.15. The positive total Reeb foliation .RiC/3iD1 is a total foliation on S3

which is the union of two .�1/-framed unknotted R-components.

Remark that each RiC is a thick Reeb foliation and the cores of two R-components
form a positive1 Hopf link under the transverse orientation of R3C.

Let 	S3 be an orientation reversing diffeomorphism on S3. It is known that
H..RiC/3iD1; 	S3.RiC/3iD1/ D 1 (see e.g. Lemma 24 in [4]). By formulae (1) and
(2) on page 276, we have

H..	S3.F i //3iD1; .RiC/3iD1/ D �1 �H..F i /3iD1; .RiC/3iD1/; (3)

for any total foliation .F i /3iD1 on S3.
Let .F i /3iD1 and .G i /3iD1 be total foliations on M and S3, respectively. Sup-

pose that .F i /3iD1 admits a null-homotopic R-component R and .G i /3iD1 admits

a .�1/-framed unknotted R-component R0. Since both R and S3 n R0 are dif-
feomorphic to S1 � D2, there exists a diffeomorphism  W S3 n R0 ! R such
that  �.aR.@R

0// D aR.@R/ and  �.
R0/ D 
R. Remark that the isotopy class
of  is uniquely determined. By Proposition 2.11, there exists a total foliation
.F i [R;R0 G i /3iD1 on M such that it coincides with .F i /3iD1 on M n R and with
. .G i //3iD1 on R up to isotopy.

1Such a Reeb foliation is called a positive Reeb foliation. The orientations given as the core of the R-
component and given by the transverse orientation of R3

0 are opposite on one of the cores.
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Proposition 2.16. In the above situation, we have

H..F i [R;R0 G i /3iD1; .F i /3iD1/ D H..G i /3iD1; .RiC/3iD1/: (4)

Proof. First, we notice that if two frames Le and Le0 on a three-dimensional manifold
M 0 gives the same spin structure, then H. Le; Le0

/ is equal to the algebraic intersec-
tion number of the submanifolds f Le.p/ j p 2 M 0g and f�Le0

.p/ j p 2 M 0g of the
orthonormal frame bundle of M 0.

For convenience, fix Riemannian metrics on M and S3 so that  is an isometry
between S3 nR0 andR. Let LeF , LeG , LeR, Le� be the orthonormal frames induced from
.F i /3iD1, .G i /3iD1, .RiC/3iD1, and .F i [R;R0 G i /3iD1, respectively. By modifying
.RiC/3iD1 in its isotopy class, we may assume thatR0 is a .�1/-framed R-component
of .RiC/3iD1 and  . LeRj

S3nR0/ D LeF jR. Take submanifolds ƒ D fLeG .p/ j p 2 S3g
and ƒ0 D f�LeR.p/ j p 2 S3g of the orthonormal frame bundle of S3. Let Fr 
be the map between the frame bundles on S3 n R0 and R induced by  . Then, we
have Fr .ƒ/ D fLe�.p/ j p 2 Rg and Fr .ƒ0/ D f�LeF .p/ j p 2 Rg. Since
.F i [R;R0 G i /jMnR D F i jMnR, we also have

Fr .ƒ \ƒ0/ D fLe�.p/ j p 2 M g \ f�LeF .p/ j p 2 M g:

This implies formula (4). �

3. Construction of total foliations

3.1. Braids in W . Let SL.2;Z/ denote the group of 2 � 2-integer matrices with
determinant one, and I denote the identity matrix in SL.2;Z/. Each element A of
SL.2;Z/ acts on T2 as a diffeomorphism.

Fixn � 1 and define the pointsQj D .j=n; j=n/CZ2 2 T2 for j D 0; : : : ; n�1.

Definition 3.1. For A 2 SL.2;Z/ and n � 1, we say � � Œ0; 1� � T2 is a smooth
n-braid twisted by A if there exists a map � W f0; : : : ; n � 1g � Œ0; 1� ! T2 and a
permutation  on f0; : : : ; n � 1g such that

� � D f.t; �.j; t// j .j; t/ 2 f0; : : : ; n � 1g � Œ0; 1�g.

� �.j; t/ ¤ �.j 0; t / for any t 2 Œ0; 1� if j ¤ j 0, and

� �.j; "/ D Qj and �.j; 1 � "/ D A � Q�.j / for any j D 0; : : : ; n � 1 and any
sufficiently small " � 0.

We call a subset �j D f.t; �.j; t// j t 2 Œ0; 1�g the j -th string of � .
Let Bn.A/ be the set of all smooth n-braids twisted by A.
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We can identify Bn.A/ with a set of smooth maps from f0; : : : ; n� 1g � Œ0; 1� to
T2. This identification induces a topology on Bn.A/. Let �0.Bn.A// be the set of
connected components of Bn.A/.

For A 2 SL.2;Z/, let FA be the diffeomorphism on W given by FA.t; w/ D
.t; A � w/. We define 	1.t; w/ D .1 � t; w/, 	�.t; w/ D .t=2; w/, and 	C.t; w/ D
..1C t /=2; w/ for .t; w/ 2 W D Œ0; 1� � T2.

Definition 3.2. Let � be a braid in Bn.A/.

� The inverse ��1 2 Bn.A�1/ is defined by ��1 D FA�1 B 	1.�/.
� The composition � 	� 0 2 Bn.A0 �A/ for� 2 Bn.A/ and� 0 2 Bn.A0/ is defined

by � 	 � 0 D 	�.�/ [ .FA B 	C/.� 0/.

They induce corresponding operations on �0.Bn.A//. We can see that they define
a group structure on �0.Bn.I //, which is isomorphic to the braid group of n-strings
on T2. The composition also defines a free and transitive action of �0.Bn.I // on
�0.Bn.A//. In particular, each element of �0.Bn.A// gives a bijective map between
�0.Bn.I // and �0.Bn.A//.

3.2. Total foliations with braided leaves. In this subsection, we fix an integer
n � 1 and a real number � > 0 which is sufficiently smaller than 1=n, for example,
� D .100n/�1. Put qj D .j=n/ C Z 2 S1 for j D 0; : : : ; n � 1. Recall that
Qj D .qj ; qj / 2 T2.

First, we define the standard total foliation .F i
std/

3
iD1 on W D Œ0; 1� � T2. Let

.t; x; y/ be the standard coordinate system ofW D Œ0; 1��T2. Fix a smooth function
N�1 on R such that 0 < N�1.x/ < � for x 2�1=16n; 1=8nŒ and N�1.x/ D 0 otherwise.
Let�1 be the function onS1 given by�1.qjCx/ D N�1..1=2n/Cx/� N�1..1=2n/�x/
for any j D 0; : : : ; n � 1 and x 2 Œ0; 1=n�. See Figure 3. We define 1-forms !1std,

1/2n

1/8n 1/8n 1/8n1/8n

q j q j +1

1/2n 1/2n

Figure 3. Function �1.
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!2std, and !3std on W by

!1std.t; x; y/ D dy � �1.y/dx;
!2std.t; x; y/ D dx � �1.x/dy;
!3std.t; x; y/ D dt � . N�1.t � 3=8/C N�1.t � 5=8//dy:

Let F i
std be the foliation generated by the kernel of !istd for i D 1; 2; 3. See Figure 4.

It is easy to check that the triple .F i
std/

3
iD1 is a total foliation.

x
y

t

Figure 4. Total foliation .F i
std/

3
iD1

on Œ0; 1� � Œj=n; .j C 1/=n�2.

Definition 3.3. LetR be an embedded solid torus inM and F a foliation onM nR.
We say a foliation F� is obtained by a turbularization of F along R if R is a thick
Reeb component of F� and there exists a diffeomorphism  of the open manifold
M nR which is isotopic to the identity and satisfies F�jMnR D  .F /.

Observe that if the restriction of F to R is isotopic to the product foliation
ffptg �D2g, then we can turbularize F along R.

Let Uj be the interior of Œ1=4; 1=3� � Œqj C .1=4n/; qj C .3=4n/� � S1 for
j D 0; : : : ; n � 1 and

W0 D W n
n�1[
jD0

Uj :

Definition 3.4. We say a foliation F0 on a subset W 0 of W is almost horizontal if

TF0.p/ � fv 2 TpW 0 j dy.v/2 � ��2.dt.v/2 C dx.v/2/g
for any p 2 W 0.

The next proposition shows how to make almost horizontal foliations part of a
total foliation.
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Proposition 3.5. For any given almost horizontal foliation F onW0, there exists an
extension F 1 of F to W such that .F 1;F 2

std;F
3

std/ is a total foliation.

Proof. Put

RC
j D ˚�

.3=8/C t; qj C .1=2n/C x
� j .t; x/ 2 D2.1=8n/

� � S1;
R�
j D ˚�

.5=8/C t; qj C .1=2n/C x
� j .t; x/ 2 D2.1=8n/

� � S1
for j D 0; : : : ; n � 1. Let fj be a diffeomorphism of S1 which is conjugate to the
holonomy map of F along the torus @Uj . By r˛ , we denote the rigid rotation of

1/4 3/8 5/8 3/4

qj C1

qj C 3=4n

qj C 1=2n

qj C 1=4n

qj

R�
j R

C
j

Uj

Figure 5. The sets W0 and R˙
j

.

angle ˛ 2 R, i.e., r˛.y/ D yC˛. By a consequence of the Fundamental Theorem of
Herman (see e.g. [3], Corollary 8.5.3), there exist ˛�

j ; ˛
C
j 2 R and a diffeomorphism

gj onS1 such that fj D .gj Br˛�
j

Bg�1
j /Br

˛
C
j

for any j D 0; : : : ; n�1. It implies that

we can extend F to an almost horizontal foliation G on W n Sn�1
jD0.R�

j [RC
j / such

that the holonomy map of G along the torus @R�j is conjugate to the rigid rotation r˛�
j

for any j D 0; : : : ; n� 1 and  D ˙. Since G is almost horizontal, it is transverse to
F 2

std and F 3
std. A turbularization of G along all Rj̇ gives a foliation F 1 on W which

is transverse to both F 2
std and F 3

std. See Figure 6. �

Recall that FA.t; w/ D .t; Aw/, 	1.t; w/ D .1� t; w/, 	�.t; w/ D .t=2; w/, and
	C.t; w/ D ..t C 1/=2;w/ for A 2 SL.2;Z/ and .t; w/ 2 W . Let .et ; ex; es/ be the
orthonormal frame on W which corresponds to the standard coordinates .t; x; y/.

Definition 3.6. For A 2 SL.2;Z/, let tFol.A/ be the set of total foliations .F i /3iD1
on W such that

� F 3 is transverse to et .
� F i D F i

std on a neighborhood of f0g � T2 for i D 1; 2; 3,
� F i D FA.F

i
std/ on a neighborhood of f1g � T2 for i D 1; 2; 3
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y

t

x

Figure 6. Total foliation associated to an extension of F0.

We introduce some operations on total foliations in tFol.A/.

Definition 3.7. Let .F i /3iD1 and .G i /3iD1 be total foliations in tFol.A/ and tFol.A0/
respectively.

� The inverse ..F i /�1/3iD1 2 tFol.A�1/ is defined by .F i /�1 D FA�1 B 	1.F i /

for i D 1; 2; 3.
� The composition .F i 	 G i /3iD1 2 tFol.A0A/ of .F i /3iD1 and .G i /3iD1 is defined

by .F i 	 G i /jŒ0;1=2� D 	�.F i / and .F i 	 G i /jŒ1=2;1� D .	C B FA/.G i /.
We define an important subset of tFol.A/ consisting of total foliations with braided

leaves.

Definition 3.8. For A 2 SL.2;Z/, we denote by tFol.A; n/ the subset of tFol.A/
consisting of total foliations .F i /3iD1 such that � D Sn�1

jD0.F 1 \ F 2/.0;Qj / is an
element of Bn.A/. For .F i /3iD1 2 tFol.A; n/, we denote the connected component
of Bn.A/ containing the above � by ..F i /3iD1/.

For any given .F i /3iD1 2 tFol.A; n/ and .G i /3iD1 2 tFol.A0; n/, it is easy to
verify that ..F i /�1/3iD1 is an element of tFol.A�1; n/ with ...F i /�1/3iD1/ D
..F i /3iD1/�1 and .F i	G i /3iD1 is an element of tFol.A0A; n/with..F i	G i /3iD1/ D
..F i /3iD1/ 	 ..G i /3iD1/.

Let .F i /3iD1 be a total foliation in tFol.A; n/. Put �j D F 1 \ F 2.0;Qj / for
j D 0; : : : ; n�1. For each k D 1; 2 and each j D 0; : : : ; n�1, there exists a smooth
function �j

k
on �j such that

cos.2��j
k
.p//ex.p/C sin.2��j

k
.p//ey.p/ 2 TF k.p/

for any p 2 �j . We define the rotation‚k..F i /3iD1; j / of F k along the j -th string
by

‚k..F
i /3iD1; j / D �

j

k
.1; w

j
1 / � �j

k
.0; w

j
0 /;

where f.0; wj0 /; .1; wj1 /g D @�j . It does not depend on the choice of �j
k

.
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For any sufficiently small ı > 0 and j D 0; : : : ; n�1, there exist two maps f and
g from Œ�2ı; 2ı� to R such that the holonomy of F 1\F 2 along�j is given by the map
.0; w

j
0C.x; y// 7! .1; w

j
1CA�.f .x/; g.y///. We define the ı-normalized holonomy

of F 1\F 2 along j -th string by the pair .H ı
x ..F

i /3iD1; j /;H ı
y ..F

i /3iD1; j // of maps
from Œ�2; 2� to R given by

H ı
x ..F

i /3iD1; j /.x/ D ı�1 � f .ıx/; H ı
y ..F

i /3iD1; j /.y/ D ı�1 � g.ıy/:
We denote by Diff0.Œ�2; 2�; 0/ the set of diffeomorphisms f on Œ�2; 2� such that
f .0/ D 0 and ff .x/ ¤ xg �� � 2; 2Œ.
Proposition 3.9. For anyA 2 SL.2;Z/,  2 �0.Bn.A//,m 2 Z, and any sequences
.fj /

n�1
jD0 and .gj /n�1

jD0 in Diff0.Œ�2; 2�; 0/, there exists .F i /3iD1 2 tFol.A; n/and ı > 0
such that

� ..F i /3iD1/ D  ,

� ‚..F i /3iD1; j / does not depend on j and belongs to the interval Œm;m C 1Œ ,
and

� H ı
x ..F

i /3iD1; j / D fj andH ı
y ..F

i /3iD1; j / D gj for any j D 0; : : : ; n � 1.
The rest of the subsection is devoted to the proof of the proposition. We divide it

into several lemmas. Put

Axy D
�
0 1

1 0

�
; A1 D

�
1 0

1 1

�
; A2 D

�
1 1

0 1

�
; A� D

�
0 �1
1 1

�
: (5)

They satisfy the following relations:

A2xy D I; Axy � A1 � Axy D A2; A� D A�1
2 � A1; A3� D �I: (6)

Lemma 3.10. The triple .FAxy
.F 2/; FAxy

.F 1/; FAxy
.F 3// is a total foliation in

tFol.Axy � A � Axy/ for any .F i /3iD1 2 tFol.A/. Moreover, if .F i /3iD1 2 tFol.A; n/,
then the above triple is in tFol.Axy � A � Axy ; n/.
Proof. It is an easy consequence of the identitiesFAxy

.F 1
std/ D F 2

std andFAxy
.F 2

std/ D
F 1

std. �

Let 0 be the connected component of Bn.I / represented by the constant braid
�0 D Œ0; 1� � fQ1; : : : ;Qn�1g. The following lemma is an interpretation of the
construction in [10] (p. 49–50) in our setting.

Lemma 3.11. For any given ı0 > 0 and any sequences .fj /n�1
jD0 and .gj /n�1

jD0 in

Diff0.Œ�2; 2�; 0/ there exist .F i /3iD1 2 tFol.I; n/ and ı 2 .0; ı0/ such that
..F i /3iD1/ D 0, ‚1..F i /3iD1; j / D ‚2..F

i /3iD1; j / D 0, H ı
x ..F

i /3iD1; j / D
fj , andH ı

y ..F
i /3iD1; j / D gj for any j D 0; : : : ; n � 1.
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Proof. Take ı 2 .0;minfı0; 1g/. First, we fix j� 2 f0; : : : ; n � 1g and a diffeomor-
phism g 2 Diff0.Œ�2; 2�; 0/ and we show the lemma for the case all fj ’s and gj ’s
are the identity except gj� D g. Let us modify F 1

std so as to have the holonomy
corresponding to g. Take a smooth map �2 W S1 � Œ1=4; 3=4� ! S1 such that

(1) �2.y; 1=4 C �/ D y and �2.y; 3=4 � �/ D �2.y; 3=4/ for any y 2 Œ0; 1� and
any small � � 0,

(2) �2.y; t/ D y if y 62 Œqj� � 2ı; qj� C 2ı�,

(3) �2.qj� C y0; 3=4/ D qj� C ıg.ı�1y0/ for any y0 2 Œ�ı; ı�,
(4) @h

@y
.y; t/ > 0 and

ˇ̌ˇ@h@t .y; t/
ˇ̌ˇ < ��1 for any .y; t/.

Remark that �2.�; t / is a diffeomorphism of S1 for any t 2 Œ1=4; 3=4�.
Put Jj� D Œqj� � .1=4n/; qj� C .1=4n/� � S1 and Vj� D Œ1=4; 3=4� � Jj� � S1.

Since @Vj� \ Int W0 � f1=4; 3=4g � Jj� � S1, we can define a foliation F 1
0 on W0

such that F 1
0 jW0nVj�

D F 1
std and

.F 1
0 jVj�

/.1=4; x; y/ D ˚
.t; x0; �2.y; t// j .t; x0/ 2 Œ1=4; 3=4� � Jj�

�
for any .x; y/ 2 Jj� � Œ0; 1�. See Figure 7. Since

ˇ̌ˇ@h@t .y; t/
ˇ̌ˇ < ��1 for any .y; t/, the

Figure 7. Foliation .F 1
0

jVj�
/.

foliation F 1
0 is almost horizontal. By Proposition 3.5, there exists a total foliation

.F i /3iD1 2 tFol.I / such that F 1jW0
D F 1

0 and F i D F i
std for i D 2; 3. Since �0 is

tangent to F 1
0 \ F 2

0 , .F i /3iD1 is contained in tFol.I; n/. The holonomy of F 1 \ F 2

along the j�-th string �j�
0 is

.0; qj� C x; qj� C y/ 7! .1; qj� C x; �2.qj� C y; 3=4// for .x; y/ 2 Œ�ı; ı�2.

Hence,H ı
x ..F

i /3iD1; j�/ is the identity map andH ı
y ..F

i /3iD1; j�/ D g. It is easy to
see that H ı

x ..F
i /3iD1; j / and H ı

y ..F
i /3iD1; j / are the identity maps for all j ¤ j�,

and ‚1..F i /3iD1; j / D ‚2..F
i /3iD1; j / D 0 for any j D 0; : : : ; n � 1.
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By Lemma 3.10, the total foliation .FAxy
.F 2/; FAxy

.F 1/; FAxy
.F 3// is con-

tained in tFol.I; n/. It easy to verify that it satisfies the required conditions for the
case fj� D g and all the other fj ’s and gj ’s are the identity map. Hence, we can
obtain the required total foliation for a general sequence .fj ; gj /n�1

jD0 as a composition
of the total foliations given by the above construction. �

Lemma 3.12. For any given  2 �0.Bn.I //, there exists .F i /3iD1 2 tFol.I; n/
such that ..F i /3iD1/ D  and ‚1..F i /3iD1; j / D ‚2..F

i /3iD1; j / D 0 for any
j D 0; : : : ; n � 1.
Proof. Fix a smooth function ˛ on Œ0; 1� such that ˛.t/ D 0 for t 2 Œ0; 1=4�, ˛.t/ D
1=n for t 2 Œ3=4; 1�, and 0 � d˛=dt.t/ � ��1 for any t 2 Œ0; 1�. Put Vj D
Œ0; 1�� Œqj � .1=4n/; qj C .1=4n/��S1 and �j .y/ D f.t; qj ; yC˛.t// j t 2 Œ0; 1�g
for j D 0; : : : ; n � 1 and y 2 S1.

First, for any given m D 0; : : : ; n � 1, there exists .F i
m/
3
iD1 2 tFol.I / such that

� F 1
mjW0nVm

D F 1
stdjW0nVm

, F 2
m D F 2

std, and
� �m.y/ is tangent to F 1

m \ F 2
m for any y 2 S1.

In fact, it can be obtained by the same construction as the total foliation .F i /3iD1 in
the proof of Lemma 3.11 by replacing �2.y; t/ in the definition of F 1

0 with yC˛.t/.
Put G 1m D FAxy

.F 2
m/, G 2m D FAxy

.F 1
m/, and G 3m D FAxy

.F 3
2 /. Let ..F i

m/
�1/3iD1

and ..G im/
�1/3iD1 be the inverses of .F i

m/
3
iD1 and .G im/

3
iD1 respectively. Remark that

all of them are total foliation in tFol.I / by Lemma 3.10.
We define .F i

�m
/3iD1 2 tFol.I / by

F i
�m

D F i
m 	 .F i

mC1/�1 	 G imC1 	 .G im/�1

and put m D ..F i
�m
/3iD1/ for m D 0; : : : ; n � 2. Then, .F i

�m
/3iD1 is a total

foliation in tFol.I; n/ and m represents a half twist of m-th and .mC 1/-st strings.
See Figure 8.

Figure 8. Proof of Lemma 3.12.

Let .F i
�m
/3iD1 and .F i

�m
/3iD1 be n-times compositions .F i

m 	 � � � 	 F i
m/
3
iD1 and

.G im 	 � � � 	 G im/
3
iD1 respectively. Put �m D ..F i

�m
/3iD1/ and 	m D ..F i

�m
/3iD1/.
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We can see that both .F i
�m
/3iD1 and .F i

�m
/3iD1 are total foliations in tFol.I; n/ and

�m (resp. 	m) is represented by a braid such that the m-th string winds once in the
y-(resp. x-)direction and other strings are fixed.

It is easy to see that ‚k..F i
� /
3
iD1; j / D 0 for any k D 1; 2, m D 0; : : : ; n � 1,

and  D m; �m; 	m. It is known that fm; �m; 	m j m D 0; : : : ; n � 1g generates
�0.Bn.I // (see e.g. [1] or [9]). Hence, we can obtain the required total foliation as
a composition of the total foliations constructed above and their inverses. �

Lemma 3.13. There exists .F i
1 /
3
iD1 2 tFol.A1; n/ satisfying

‚1..F
i
1 /
3
iD1; j / D 1=8; ‚2..F

i
1 /
3
iD1; j / D 0 (7)

for any j D 0; : : : ; n � 1.
Proof. Take a smooth map N�3 W Œ0; 1� ! R such that

� 0 � d N�3

dx
.x/ � ��1 holds for any x 2 Œ0; 1�,

� N�3.x/ D 0 holds for any x 2 Œ0; 1 � .9=16n/�, and N�3.x/ D 1 holds for any
x 2 Œ1 � .7=16n/; 1�.

It induces a map �3 W S1 ! S1 of degree 1. We define a diffeomorphism G of
W0 by G.t; x; y/ D .t; x; y C �3.x// if t 2 Œ3=4; 1� and G.t; x; y/ D .t; x; y/

otherwise. It is well-defined and satisfies G.F i
stdjW0

/ D F i
stdjW0

for i D 2; 3. Since
G.F 1

stdjW0
/ is almost horizontal, Proposition 3.5 implies that there exists an extension

G of G.F 1
stdjW0

/ toW which is transverse to F 2
std and F 3

std. Remark that the constant
braid �0 is tangent to G \ F 2

std.
Since �3.x/ � x is a map of degree 0, we can take a smooth function ˛ on

S1 � Œ0; 1� such that ˛.x; t/ D 0 for .x; t/ 2 S1 � Œ0; 3=4� and x D �3.x/C ˛.x; t/

for .x; t/ 2 S1 � Œ7=8; 1�. We define a diffeomorphism xG of W by xG.t; x; y/ D
.t; x; y C ˛.x; t//. Remark that xG B G.t; x; y/ D .t; x; y/ if t 2 Œ0; 3=4� and
xG B G.t; x; y/ D .t; A1.x; y// if t 2 Œ7=8; 1�. Put F 1

1 D xG.G /, F i
1 D xG.F i

std/ for
i D 2; 3 and � D xG.�0/. Then, .F i

1 /
3
iD1 is a total foliation contained in tFol.A1/

and xG.�0/ is a braid in Bn.A1/ which is tangent to F 1
1 \ F 2

1 . Therefore, .F i
1 /
3
iD1

an element of tFol.A1; n/. See Figure 9. Since F 1
1 is almost horizontal on W0, we

have ‚1..F i
1 /
3
iD1; j / D 1=8 for any j D 0; : : : ; n � 1. By the transversality of F 1

1

and F 2
1 , we also have‚2..F i

1 /
3
iD1; j /�‚1..F i

1 /
3
iD1; j / 2�� 1=2; 1=2Œ. It implies

‚2..F
i
1 /
3
iD1; j / D 0 for any j D 0; : : : ; n � 1. �

Starting from the total foliation .F i
1 /
3
iD1 in Lemma 3.13, we define a total foli-

ation .F i
2 /
3
iD1 by F 1

2 D FAxy
.F 2
1 /, F 2

2 D FAxy
.F 1
1 / and F 3

2 D FAxy
.F 3
1 /. By

Lemma 3.10 and the third equation of (6), we have .F i
2 /
3
iD1 2 tFol.A2/. By (7), we

also have
‚1..F

i
2 /
3
iD1; j / D 0; ‚2..F

i
2 /
3
iD1; j / D �1=8: (8)

for any j D 0; : : : ; n � 1.
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G.F 1
std/ F 1

Figure 9. Proof of Lemma 3.13.

Lemma 3.14. For any m 2 Z, there exists .F i /3iD1 2 tFol.I; n/ such that

‚1..F
i /3iD1; j / D ‚2..F

i /3iD1; j / D m

for any j D 0; : : : ; n � 1.

Proof. Let ..F i
2 /

�1/3iD1 be the inverse of .F i
2 /
3
iD1. Put G i D F i

1 	 .F i
2 /

�1 for
i D 1; 2; 3. Since A� D A�1

2 � A1, we have .G i /3iD1 2 tFol.A�; n/. The equations
(7) and (8), we also have ‚1..G i /3iD1; j / D 1=4 and ‚2..G i /3iD1; j / D 1=8 for
any j D 0; : : : ; n � 1. Let .G i

k
/3iD1 be the k-times composition of .G i /3iD1: Since

A3� D �I , we have ‚1..G i3/
3
iD1; j / D 1=2 and ‚2..G i3/

3
iD1; j / D 1=2 for any

j D 0; : : : ; n � 1. Hence, .6m/-times composition .G i6m/
3
iD1 of .G i /3iD1 is the

required total foliation for m � 0. For m < 0, it is sufficient to take the inverse
..G ij6mj/

�1/3iD1 of .G ij6mj/
3
iD1. �

Lemma 3.15. For any A 2 SL.2;Z/, there exist .F i /3iD1 2 tFol.A; n/ such that
‚1..F

i /3iD1; j / and ‚2..F i /3iD1; j / does not depends on j .

Proof. It is an immediate consequence of Lemma 3.13 and the fact that fA1; A2g
generates SL.2;Z/. �

Finally, Proposition 3.9 is an immediate consequence of Lemmas 3.11, 3.12, 3.14,
and 3.15.

3.3. Braided knots in embedded solid tori. Let  be an embedding from Z D
S1 � D2 to an oriented three-dimensional manifold M . We say  is a 0-framed
null-homotopic embedding if K0 D  .S1 � f.0; 0/g/ is null-homotopic and  is a
0-framed tubular coordinate of K0. We also say  is unknotted if K0 is unknotted.

We say a smooth linkL inM is -braided ifL �  .Z/ and �1.L/ is transverse
to the production foliation ft �D2gt2S1 . Remark that any component of L is a  -
braided knot.
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Definition 3.16. Let L be a  -braided oriented knot or link. We denote by n.LI /
the cardinality of  �1.L/\ .0�D2/. We define the . ; n/-framing of L inM by a
vector field

vn. .t; w// D D .cos.2�nt/ex.t; w/C sin.2�nt/ey.t; w//

for .t; w/ 2  �1.L/, where .et ; ex; ey/ is the standard frame on S1�D2 � S1�R2.

Remark that . ; n/-framing of K may not be the n-framing (in the sense of
Definition 2.12) even if  is 0-framed and unknotted. See Lemma 3.18.

Let 0 be a 0-framed unknotted embedding ofZ into R3 defined by 0.t; x; y/ D
..x C 2/ cos 2�t; .x C 2/ sin 2�t; y/ and Pxy denote the projection from R3 to R2

given by Pxy.x; y; z/ D .x; y/. For any given 0-framed unknotted embedding  of
Z intoM , we can take an embedding ' of R3 intoM so that '�1 B D  0. Take a
 -braided linkL inM . The map ' can be perturbed into another embedding '1 such
that the map Pxy B '1 is a regular projection associated with '�1

1 .L/. See e.g. [14]
for the definition of a regular projection and a link diagram. For any component K
of L, let !˙.KI / be the number of positive and negative crossings in the diagram
Pxy B '�1

1 .K/. See Figure 10. We put !.KI / D !C.KI /�!�.KI /. Remark

negative crossing (−)

positive crossing (+)

(−)

(+)

(−)

(−)

K

Im n.KI / D 3; !.KI / D 1 � 3 D �2

Figure 10. A link diagram of a braided knot.

that !.KI / and n.KI / depend only on the isotopy class of K as a  -braided
knot.

We show two lemmas, which give relations between n.KI /, !.KI / and the
framing of K.
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Lemma 3.17. Let  be a 0-framed unknotted embedding from Z to M and K be a
 -braided knot inM . Then, !.KI /C n.KI / is odd.

Proof. Since K is connected, it induces a cyclic permutation on the n.KI /-points
set �1.K/\.0�D2/. Then, the signature of the permutation is .�1/n.KI /C1. Since
the induced permutation is the product of .!C.KI / C !�.KI // transpositions,
its signature is also .�1/.!C.KI /C!�.KI //. In particular, n.KI /� .!C.KI /C
!�.KI // is odd. Hence, also !.KI /C n.KI / is. �

Lemma 3.18. Let  be a 0-framed unknotted embedding from Z to M and let
K be a  -braided knot in M . Then, the . ;m/-framing of K coincides with the
.!.KI /Cm � n.KI //-framing of K as a null-homotopic knot inM .

Proof. Suppose that the . ; 0/-framing of K is the n0-framing. It is easy to see that
the . ;m/-framing is n0 C m � n.KI /. Under the identification of  .Z/ and the
standard torus  0.Z/, the . ; 0/-framing gives the blackboard framing, that is, the
one transverse to the projection to the link diagram. By a well-known result in knot
theory (see e.g. [8], Proposition 4.5.8), it coincides with the !.KI /-framing of K.
Hence, we have n0 D !.KI /. �

3.4. The trefoil complement. In this subsection, we construct a total foliation on
S3 containing R-components such that their cores form an arbitrary given link. It
will be done by using the fibration of the complement of the trefoil. Note that the
same construction can be done for other fibered knot with one-punctured torus fibers,
e.g. the figure-eight knot.

Let A� be the matrix defined in (5) and M� be the mapping torus W=.0;w/ �
.1; A� �w/ of the linear map defined byA�. ByPM� , we denote the natural projection
from W to M�. Since any total foliation .F i /3iD1 2 tFol.A�/ is compatible with the
projection PM� at @W , we can define a total foliation .PM�.F

i //3iD1 on M� such
that PM�.F

i /.PM�.t; w// D PM�.F
i .t; w// for any i D 1; 2; 3 and .t; w/ 2 W .

SinceQ0 D .0; 0/CZ2 is a fixed point ofA�,PM�.Œ0; 1��Q0/ is a knot inM�. We
denote it by K0. Fix an embedding  K0

W Z ! M� such that  K0
.S1 � f.0; 0/g/ D

K0 and  K0
.t �D2/ � PM�.t �D2.1=8n//.

Proposition 3.19. For any  K0
-braided link L and m 2 Z, there exists a total

foliation .F i /3iD1 onM� such that each component ofL is the core of anR-component
and its framing determined by F 1 is the . K0

; m/-framing.

Proof. We take a smooth function � on Œ0; 1� such that D .ex.t; 0; 0// is parallel to
DPM�.cos �.t/ex.t; 0; 0/C sin �.t/ey.t; 0; 0//. For m 2 Z, we define a vector field
Nvm on W by

Nvm.t; w/ D cos.2�mt C �.t//ex.t; w/C sin.2�mt C �.t//ey.t; w/
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for .t; w/ 2 W . Then, the vector field vm D DPM�. Nvm/ on M� is well-defined and
the restriction of vm to a knot K in M� gives the . K0

; m/-framing of K.
Now let fFsgs2Œ0;1� be an isotopy of M� so that F0 is the identity map, F1.L/ 2

Bn.A�/ for some n � 1, andFs.PM�.t �T2// D PM�.t �T2/ for any s 2 Œ0; 1� and
t 2 S1. Put L0 D F1.L/. Since f.Fs.L/; vm/gs2Œ0;1� is an isotopy between framed
knots .L; vm/ and .L0; vm/, it is sufficient to find a total foliation .F i /3iD1 such that
each component of L0 is the core of an R-component and its framing determined by
F 1 coincides with the one represented by vm.

Take a subsetSL of f0; : : : ; n�1g such that each component ofL0 contains exactly
one point of fPM�.0;Qj / j j 2 SLg. By HR W R ! R, we denote the holonomy
map of the foliation yR1 (see Subsection 2.2 for the definition of yR1). Proposition 3.9
implies that there exist n � 1, ı > 0, and .G i /3iD1 2 tFol.A�; n/ which satisfy the
following properties:

� P�1
M�
.L0/ is tangent to G 1 \ G 2,

� ‚1..G
i /3iD1; j / D mC �.1/ for any j D 0; : : : ; n � 1, and

� both H ı
x ..G

i /3iD1; j / and H ı
y ..G

i /3iD1; j / are conjugate to HRjŒ�2;2� for j 2
SL and the identity map otherwise.

The total foliation .G i /3iD1 induces a total foliation .F i� D PM�.G
i //3iD1 onM�. For

each componentK 0 ofL0, the first and the last condition above imply that there exists
an embedding  K0 W Z ! M� such that  K0.S1 � f.0; 0/g/ D K 0 and  K0.Ri / D
G i j K0 .Z/. Since G 3 is transverse to .G 1 \ G 2/, F 3� j K0 .Z/ is diffeomorphic to the
product foliation ft � D2 j t 2 S1g. Hence, a turbularization of F 3� at  K0.Z/

produces an R-component whose core is K 0.
By the second condition in the above, the framing on L0 determined by F 1�

coincides with the one represented by vm. Hence, we can obtain the required total
foliation by a turbularization along a tubular neighborhood of L0. �

Let K3 be the right-handed trefoil on S3. It is known that K3 is a fibered knot
with monodromy matrix A� (see e.g. Section 10.I in [14]). Hence, there exists a
diffeomorphism ' fromM� nK0 to S3 nK3, an embedding  K3 from Z to S3, and
an integer m� such that  K3.S1 � f.0; 0/g/ D K3 and

' B K0
.t; r cos.2��/; r sin.2��/// D  K3.�Cm�t; r cos.2�t/; r sin.2�t//: (9)

for any t; � 2 S1 and r 2 Œ0; 1�. Note that K3 is a 0-framed null-homotopic embed-

ding as  K3.S1 � f.1; 0/g/ is contained in a Seifert surface '.PM�.0 � fT2 nQ0g/
of K3. We define another embedding  0 from Z to S3 by

 0.t; x; y/ D  K3

�
x

4
;
y C 2

4
cos.2�t/;

y C 2

4
sin.2�t/

�
:
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Then, the core  0.S1 � f.0; 0/g/ bounds a disk D0 D  K3.0 � D2.1=2/g. In
particular,  0.S1 � f.0; 0/g/ is a meridian of K3. Since  0.S1 � f.0;�1/g/ is
contained in D0,  0 is a 0-framed unknotted embedding. See Figure 11.

K3

y  0

t

x

y
x  K3

t

Figure 11. The 0-framed unknotted embedding  0.

Lemma 3.20. For any  0-braided linkL, L0 D '�1.L/ is  K0
-braided and ' maps

the . 0; n �m�/-framing of L0 to the . K0
; n/-framing of L.

Proof. By direct calculation, we have

 0.t; x; y/ D ' B  K0

�
t;
y C 2

4
cos 2�

�x
4

�m�t
�
;
y C 2

4
sin 2�

�x
4

�m�t
� �

for .t; x; y/ 2 Z. It implies '�1 B  0.t � D2/ �  K0
.t � D2/ for any t 2 S1.

Hence, L0 D '�1.L/ is  K0
-braided for any  0-braided link L. The above equation

also implies that '�1 maps the . 0; 0/-framing of L to the . K0
;�m�/-framing of

L0. Since the map  �1
K0

B'�1 B 0 preserves the orientation of t �D2, it implies that
the '�1 maps the . 0; n/-framing of L to the . K0

; n �m�/-framing of L0. �

Proposition 3.21. For any  0-braided link L, there exists a total foliation .F i /3iD1
on S3 such that any connected component K of L is the core of an .!.KI 0/ C
n.KI 0//-framed R-component.

Proof. The link L� D K0 [ '�1.L/ in M� is  K0
-braided. By Proposition 3.19,

there exists a total foliation .F i� /3iD1 on M� such that each component of L� is
the core of an R-component and the framing determined by F 1� coincides with the
. K0

; 1 �m�/-framing. Let R0 be the R component of .F i� /3iD1 whose core is K0.
Without loss of generality, we may assume that R0 D  K0

.S1 � D2.�// for some
� > 0. Then, aR.R0/ is represented by a curve

C0 D  K0
.f.t; � cos.2�.1 �m�/t/; � sin.2�.1 �m�/t// j t 2 S1g/

with a suitable orientation.
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Put F i D '.F i� jM�nR/ for i D 1; 2; 3 and R0
0 D  K3.S1 � D2.�//. Then,

.F i /3iD1 is a total foliation on S3 nR0
0 with an R-boundary @R0

0. By (9), we have

'.C0/ D  K3.f.t; � cos.2�t/; � sin.2�t//g/:
Since  K3 is a 0-framed embedding, we can extend .F i /3iD1 so that R0

0 is a .C1/-
framed R-component with C.R0/ D K3. Since the framing on L� determined by
F 1� coincides with the . K0

; 1�m�/-framing, Lemma 3.20 implies that the framing
on L determined by F 1 is the . 0; 1/-framing. Since  0 is a 0-framed unknotted
embedding, it gives the .!.KI 0/Cn.KI 0//-framing on each componentK of L
by Lemma 3.18. In particular, each componentK ofL is the core of an .!.KI 0/C
n.KI 0//-framed R-component. �

3.5. A proof of Hardorp’s theorem. First, we show that we can change the framing
of an R-component by an arbitrary even integer.

Lemma 3.22. Suppose that a total foliation .F i /3iD1 on S3 admits a k-framed R-
component R. Then, for any integer n, there exists a total foliation .F i

n /
3
iD1 on S3

such that it admits a .k C 2n/-framed R-component R0 with C.R0/ D C.R/ and
F i
n j
S3nR D F i j

S3nR for i D 1; 2; 3.

Proof. Let  be a 0-framed unknotted embedding of Z into S3 and L D K1 [K2
be the  -braided link in Figure 12. By Proposition 3.21, we can take a total foliation
.G i /3iD1 on S3 which admits R-components R1 and R2 such that Ki is the core of

K1K2

Im 

Figure 12. The link L for the proof of Lemma 3.22.
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Ri for i D 1; 2 and the framings of R1 and R2 are C3 and C1, respectively. Put
MC D S3 nR2. Since L is a positive Hopf link, MC is diffeomorphic to Z. Hence,
there exists a diffeomorphism 'C W Z ! MC such that K1 D 'C.S1 � f.0; 0/g/
coincides with the core of R1 as oriented knots and .'Cj@Z/�.at / D aR.@R2/,
where at is the homology class in H1.@Z;Z/ represented by a map t 7! .t; 1; 0/.
It is easy to see that K1 is a 'C-braided knot. Since K1 is .C3/-framed and K2 is
.C1/-framed, G 1� gives the .'C; 2/-framing of K1.

The lemma for n D 0 is trivial. First, we show the lemma for n D 1. Let W Z !
R be a diffeomorphism such that  .S1 � f.0; 0/g/ D C.R/ as oriented knots and
 �.at / D aR.@R/. By Proposition 2.11, if we choose 'C suitably in its isotopy class,
then we can obtain a total foliation .F i

1 /
3
iD1 onS3 such that F i

1 jR D  B'�1C .G i�jMC
/

and F i
1 j
S3nR D F i j

S3nR for i D 1; 2; 3. Since  is a k-framed embedding and G 1�
gives the .'C; 2/-framing of C.R1/ D K1,  B '�1C .R1/ is a .k C 2/-framed R-
component with C. B '�1C .R1// D C.R/. By inductive construction, it gives the
proof for n � 1.

Using the fact that M� D S3 n R1 is diffeomorphic to Z, we can take a diffeo-
morphism '� W MC ! Z such that '�.K2/ D S1 � f.0; 0/g as oriented knots and
.'�/�.aR.@R2// D at . Similar to 'C,K2 is  �-braided and G 1� gives the .'�;�2/-
framing of K2. Hence, the same construction to the above completes the proof for
n � �1. �

Now, we give an alternative proof of Hardorp’s theorem [10] with some extension.

Theorem 3.23. For any given closed three-dimensional manifold M equipped with
a spin structure s, there exists a total foliation .F i /3iD1 such that

� s is the spin structure given by .F i /3iD1,
� .F i /3iD1 admits two unknotted R-components RC and R�,

� RC is .C1/-framed and R� is .�1/-framed, and

� RC and R� are contained in mutually disjoint three-dimensional balls.

Proof. Let X be a four-dimensional 2-handlebody such that @X D M and the re-
striction of the unique spin structure on X to M is s. Let L0 be the Kirby diagram
of X . We denote by n.K/ the integer-valued framing of each component K of L0.
Remark that all n.K/ are even sinceX admits a spin structure. Take two unknotsK�
and KC which are contained in mutually disjoint three-dimensional ball in S3 nL0.
Put n.K�/ D 0 and n.KC/ D 2.

Fix an unknotted embedding  0 of the solid torus. Recall that any link can be
 0-braided by Alexander’s theorem (see e.g. [2], Theorem 2.1). By Proposition 3.21,
there exists a total foliation .F i

0 /
3
iD1 on S3 such that each component K of L0 [

K� [ KC is contained in an R-component with .!.KI 0/ C n.KI 0//-framing.
Lemma 3.17 implies that these R-components are odd-framed. By Lemma 3.22, we
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can modify .F i
0 /
3
iD1 so that the framing of an R-componentR is n.C.R//�1. Then,

the standard surgery on L0 (not L0 [K� [KC) produces a total foliation .F i /3iD1
on M . It is easy to see that each K˙ � M is the core of a .˙1/-framed unknotted
R-component of .F i /3iD1. Proposition 2.14 implies that the spin structure given by
.F i /3iD1 is s. �

Remark The last sentence of Paragraph 14 of Chapter 7 (p. 71) of [10] seems
incorrect. In fact, branched double covering along the unknot changes the framing
of braided knots in general. For example, Figure 13 illustrates a branched double

k

k

k

K

K�K�

K0

Figure 13. Double covering of a solid torus.

covering along the unknot K�. The box represents a tangle where the difference of
the numbers of positive and negative crossings is k. Suppose that the knot K in the
left-side of the figure has the blackboard framing, which is equal to the .k C 1/-
framing. In the right-side of the figure, which is a double covering of the left-side,
the lift K 0 of the framed knot K has the blackboard framing, which is equal to the
k-framing. Hence, the knot K is isotopic to K 0 as a knot, but is not isotopic to K 0
as a framed knot. It is because one positive crossing in the left-side is not counted in
the right-side. The same phenomenon occurs in the setting in Chapter 7 of [10].

3.6. Proof of Theorem 1.1. First, we construct a suitable total foliation on S3. Let
.RiC/3iD1 be the positive total Reeb foliation on S3, that is, a total foliation consisting
of two .�1/-framed unknotted R-components.

Lemma 3.24. For any integer n, there exists a total foliation .G in/
3
iD1 on S3 with

unknotted R-components RC and R� such that H..G in/
3
iD1; .RiC/3iD1/ D n, RC is

.C1/-framed,R� is .�1/-framed, andRC andR� are contained in mutually disjoint
three-dimensional balls.

Proof. First, we show the lemma for n D �1. By Theorem 3.23, there exists a
total foliation .F i

0 /
3
iD1 on S3 with unknotted R-components RC and R� such that



Vol. 87 (2012) Homotopy classes of total foliations 299

RC is .C1/-framed, R� is .�1/-framed, and they are contained in mutually disjoint
three-dimensional balls BC and B�, respectively. Since S3 n RC is an unknotted
solid torus, we can take an orientation reversing diffeomorphism ' on S3 so that
'.S3 n RC/ D RC. Then, S3 n RC D '.RC/ is a .�1/-framed unknotted R-
component of .'.F i

0 //
3
iD1.

Let .G i�1/3iD1 be the total foliation obtained by gluing .F i
0 /
3
iD1 and .'.F i

0 //
3
iD1

along R-components RC and '.RC/ as in Subsection 2.4. It admits unknotted R-
components R� and '.R�/ which are contained in mutually disjoint balls B� and
'.B�/ � '.S3 nRC/ D RC. Then, we have

H..G i�1/3iD1; .RiC/3iD1/ D H..G i�1/3iD1; .F i /3iD1/CH..F i /3iD1; .RiC/3iD1/
D H..'.F i //3iD1; .RiC/3iD1/CH..F i /3iD1; .RiC/3iD1/
D �1;

where each equality follows from the formulas (2), (3), and (4) in Subsections 2.1
and 2.3. Since R� and '.R�/ have the .�1/ and .C1/-framings respectively, the
proof for n D �1 is completed.

Second, we show the lemma for n � �1 by induction. Suppose that there ex-
ists a total foliation .G in/

3
iD1 which satisfies the assertion of the lemma for some

n � �1. Let R0C and R0� be .C1/ and .�1/-framed unknotted R-components con-
tained in mutually disjoint balls. We construct the total foliation .G in�1/3iD1 by gluing
.G in/

3
iD1 and .G i�1/3iD1 along R-components R0C and R�. By the formula (4), we

haveH..G in�1/3iD1; .RiC/3iD1/ D n� 1. It is easy to see that R-components R0� and
'.R�/ satisfy the assertion of the lemma.

For n � 0, put .G in/
3
iD1 D .'.G i�n�1//3iD1. By the formula (3), we have

H..G in/
3
iD1; .RiC/3iD1/ D n. It is easy to see that .G in/

3
iD1 is the required one. �

Now, we show the following theorem which implies Theorem 1.1.

Theorem 3.25. LetM be a closed oriented three-dimensional manifold. Any homo-
topy class of total plane fields onM can be realized by a total foliation .F i /3iD1 with
.C1/- and .�1/-framed unknotted R-components.

Proof. Fix a spin structure s on M . By Theorem 3.23, we can take a total foliation
.F i /3iD1 on M such that it admits .C1/ and .�1/-framed unknotted R-components
RC and R�, and the spin structure given by .F i /3iD1 is s. By Proposition 2.5, it is
sufficient to show that there exists a total foliation .F i

n /
3
iD1 onM such that it admits

.C1/- and .�1/-unknotted R-components, the spin structure given by .F i
n /
3
iD1 is s,

and H..F i
n /
3
iD1; .F i /3iD1/ D n for any given integer n.

Take an integern. Let .G in/
3
iD1 be the total foliation onS3 obtained in Lemma 3.24

for n. It admits .C1/-and .�1/-framed R-components R0C and R0� which are con-
tained in mutually disjoint balls. Let .F i

n /
3
iD1 be the total foliation obtained by gluing
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.F i /3iD1 and .G in/
3
iD1 along R-components RC and R0�. Since RC is contained in

a three-dimensional ball, .F i
n /
3
iD1 and .F i /3iD1 give the same spin structure. By

Proposition 2.16, we obtainH..F i
n /
3
iD1; .F i /3iD1/ D n. It is easy to see thatR� and

R0C are .�1/ and .C1/-framed unknotted R-components of .F i
n /
3
iD1. �

4. Bi-contact structures

First, we recall some basic definitions and results on contact topology. A plane field
� on a three-dimensional manifold M is called a positive (resp. negative) contact
structure if it is the kernel of a 1-form ˛ with ˛ ^ d˛ > 0 (resp. ˛ ^ d˛ < 0). We
say a knot K in .M; �/ is Legendrian if it is tangent to � . The Thurston–Bennequin
invariant tb.K; �/ is the integer-valued framing of a null-homologous knot K given
by �. The rotation rot.K; �/ is the Euler number �.�;†;K/ of � on a Seifert surface
† relative to K.

A contact structure � on M is called overtwisted if there exists a Legendrian
unknot K such that tb.K; �/ D 0. We say � is tight if it is not overtwisted. It is
known that if � is tight, then any null-homologous Legendrian knot K satisfies the
Thurston–Bennequin inequality:

tb.K; �/C �.†/ � �jrot.K; �/j;
where �.†/ is the Euler number of a Seifert surface † of K.

Theorem 4.1 (Eliashberg, [6]). LetM be a three-dimensional closed manifold, any
homotopy class of plane fields on M contains exactly one positive (resp. negative)
overtwisted contact structure up to isotopy.

The following lemma gives a criterion for the overtwistedness of a contact structure
which is close to a foliation of a total foliation.

Lemma 4.2. Let .F i /3iD1 be a total foliation on a three-dimensional manifold M
and suppose it admits a .C1/-framed (resp. .�1/-framed) unknotted R-component
R. Then, any positive (resp. negative) contact structure which is sufficientlyC 0-close
to TF 1 is overtwisted.

Proof. We show the assertion for positive contact structures. The proof for negative
contact structures is obtained by reversing the orientation.

The foliation F 1j@R admits a closed leaf C which is isotopic to the core of R as
an oriented knot in M . In particular, C is unknotted. The foliation F 1 gives the
.C1/-framing on C .

Recall that @R is a leaf of F 3. By Lemma 2.8, if a smooth plane field � is
sufficiently C 0-close to TF 1, there exists a closed curve C� in @R which is tangent
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to � \ TF 3 and isotopic to C in @R. The curve C� is unknotted in M , and hence,
it bounds a disk D� . Since � \ TF 3 gives an trivialization of � on D� , we have
rot.C� ; �/ D 0.

By the transversality, F 1 and F 3 define the same framing on C , and � and F 3

define the same framing on C� . Hence, the framing on C� given by � is .C1/. In
particular, tb.C� ; �/ D C1. It violates the Thurston–Bennequin inequality since

tb.C� ; �/C �.D�/ D 2 > 0 D jrot.C� ; �/j: �

Now, we prove Theorem 1.5. Let M be a closed and oriented three-dimensional
manifold. Fix a pair .�; �/ of positive and negative contact structures such that they
are homotopic as plane fields and their Euler class is zero. Then, there exists a total
plane field .� i /3iD1 on M such that � i is homotopic to � and � for i D 1; 2; 3. By
Theorem 3.25, .�i /3iD1 is homotopic to a total foliation .F i /3iD1 onM which admits
.C1/ and .�1/-framed unknotted R-components.

By the fundamental theorem of confoliations ([7], Theorem 2.4.1) we can take a
bi-contact structure .��; ��/ onM so that �� is C 0-sufficiently close to F 1 and �� is
C 0-sufficiently close to F 2. Lemma 4.2 implies that both �� and �� are overtwisted.
By Theorem 4.1, �� and �� are isotopic to � and � as contact structures, respectively.
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