
Comment. Math. Helv. 87 (2012), 385–407
DOI 10.4171/CMH/257

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Current twisting and nonsingular matrices

Matt Clay and Alexandra Pettet�

Abstract. We show that for k � 3, given any matrix in GL.k;Z/, there is a hyperbolic fully
irreducible automorphism of the free group of rank k whose induced action on Zk is the given
matrix.
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1. Introduction

Considerable progress has been made in understanding the dynamics of elements
of the outer automorphism group of a nonabelian free group of rank k, Out Fk , by
considering the corresponding situation for the mapping class group of a compact
oriented surface of genus g, MCG.Sg/. Indeed, some of the most fruitful examples
of this pedagogy include the Culler–Vogtmann Outer space CVk [16], as well as the
Bestvina–Handel train-track representatives [7].

As a consequence of the Thurston classification of elements in MCG.Sg/, the
most important elements to understand are the pseudo-Anosov mapping classes [31].
Such elements are characterized as those mapping classes for which no isotopy class
of a simple closed curve in Sg is periodic. If a mapping class fixes the isotopy class of
a simple closed curve, then it restricts to a mapping class on the subsurface obtained
by cutting along the simple closed curve. In general, if f 2 MCG.Sg/, then Sg

decomposes into subsurfaces (which only intersect along their boundaries) such that
for some n, the element f n can be represented by a homeomorphism that restricts
to each subsurface as either the identity or a pseudo-Anosov map and acts as a Dehn
twist in a neighborhood of intersection of the subsurfaces.

An element� 2 Out Fk is fully irreducible, also called irreduciblewith irreducible
powers (iwip), if no conjugacy class of a proper free factor ofFk is periodic. As above,
if � is not fully irreducible, then Fk has a free factor Fk0 such that for some n, the
element �n restricts to an element of Out Fk0 . However, it is not the case that �n
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preserves some free factorization of Fk . The dynamics of iterating a fully irreducible
element on a conjugacy class of an element of Fk are similar to the dynamics of
iterating a pseudo-Anosov mapping class on a simple closed curve [7].

Thurston also characterized pseudo-Anosov mapping classes as those elements
f 2 MCG.Sg/ whose mapping torus Sg � Œ0; 1�=.x; 0/ � .f .x/; 1/ admits a hy-
perbolic metric [31]. However the analogous characterization for fully irreducible
elements does not hold as the mapping torus Fk Ìˆ Z is not necessarily a hyperbolic
group when ˆ 2 Aut Fk represents a fully irreducible element of Out Fk . Auto-
morphisms of Fk such that the mapping torus Fk Ìˆ Z is hyperbolic are precisely
those for which no nontrivial element of Fk is periodic [3], [10], [18]. Using this
correspondence, we say an element � 2 Out Fk is hyperbolic if no conjugacy class
of a nontrivial element of Fk is periodic. In the literature, such elements have also
been called atoriodal. We remark that there are hyperbolic elements that are not
fully irreducible and fully irreducible elements that are not hyperbolic. However,
fully irreducible elements that are not hyperbolic have a power that is realized by a
pseudo-Anosov mapping class on a surface with a single boundary component [7].
When k D 2, no element of Out Fk is hyperbolic as OutF2 Š MCG˙.S1;1/ where
S1;1 is the torus with a single puncture.

One method to understand an element of MCG.Sg/ is to examine its action on the
first homology of the surface, H1.Sg ;Z/ Š Z2g . Any such element preserves the
algebraic intersection number between curves on Sg , giving the short exact sequence

1 ! �g ! MCG.Sg/
f 7!f�����! Sp.2g;Z/ ! 1:

Similarly, the action of an outer automorphism on H1.Fk;Z/ Š Zk leads to the
following short exact sequence:

1 ! IAk ! Out Fk

� 7!������! GL.k;Z/ ! 1:

There are various homological criteria that ensure that a given element of the
mapping class group is pseudo-Anosov [11], [25], [27] or, in the free group setting,
that a given element of Out Fk is hyperbolic and fully irreducible [19]. The main
goal of this paper is to generalize to the free group setting a theorem of Papadopoulos
showing that there is no homological obstruction for an element to be pseudo-Anosov
[29], i.e., for any A 2 Sp.2g;Z/, there is a pseudo-Anosov mapping class f 2
MCG.S/ such that f� D A.

Theorem 6.1. Suppose k � 3. For any A 2 GL.k;Z/, there is a hyperbolic fully
irreducible outer automorphism � 2 Out Fk such that �� D A.

Remark 1.1. For k D 2, the function � 7! �� is an isomorphism and hence there are
matrices A 2 GL.2;Z/ that are not represented by fully irreducible automorphisms.
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Papadopoulos relies on the characterization of pseudo-Anosov mapping classes
in terms of their dynamics on the Thurston boundary of Teichmüller space. The
Teichmüller space for a surfaceSg is the space of marked hyperbolic structures onSg ;
Thurston compactified Teichmüller space using the space of projectivized measured
laminations. Pseudo-Anosovs are precisely the mapping classes with exactly two
fixed points in the compactified Teichmüller space [31]. Using this characterization,
Papadopoulos shows that if f; h 2 MCG.Sg/ where f is pseudo-Anosov and f and
h satisfy an additional hypothesis, then for large enough m, the mapping class f mh

is pseudo-Anosov [29].
Our approach for proving Theorem 6.1 is similar to that of Papadopoulos. Namely,

we show that if � is hyperbolic and fully irreducible, and � and  2 Out Fk satisfy
a certain hypothesis, then for large enough m, the element �m is hyperbolic and
fully irreducible (Propositions 3.1 and 4.5). As such, one needs a space where the
dynamics of an element dictate its type, as with the action of a pseudo-Anosov on the
Thurston boundary of Teichmüller space.

Since the properties of being hyperbolic and of being fully irreducible are inde-
pendent, it is perhaps of no surprise that two different spaces are used in verifying each
property for�m . We consider the action on the space of measured geodesic currents,
Curr.Fk/, as defined by Bonahon [8] (Section 2.4). This space is the completion of
the space of conjugacy classes for Fk , and thus is natural for testing hyperbolicity.
We also consider a new complex defined by Bestvina and Feighn for Out Fk that has
the useful property of being ı-hyperbolic [5] (Section 2.5). Stabilizers in Out Fk of
conjugacy classes of proper free factors have bounded orbits in this complex, and
thus it provides a natural setting for checking fully irreducibility.

Once we establish that �m is a hyperbolic fully irreducible element under a
certain hypothesis, our problem is reduced to finding for any 2 Out Fk a hyperbolic
fully irreducible element � 2 IAk which, together with  , satisfies the hypothesis.
To build such elements we apply a construction from our earlier work [12]; namely,
we use Dehn twist automorphisms to build customized hyperbolic fully irreducible
elements of Out Fk . Satisfying the hypothesis then requires that we understand the
stable and unstable currents in PCurr.Fk/ associated to a product of Dehn twists.
This is our other main result, with definitions appearing in Section 2.

Theorem 5.2. Let T1 and T2 be very small cyclic trees that fill, with edge stabilizers
c1 and c2, and with associated Dehn twist automorphisms ı1 and ı2. Let N � 0

be such that for n � N , we have that ın
1ı

�n
2 is a hyperbolic fully irreducible outer

automorphism with stable and unstable currents Œ�nC� and Œ�n�� in PCurr.Fk/. Then

lim
n!1Œ�

nC� D Œ�c1
� and lim

n!1Œ�
n�� D Œ�c2

�:
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application of our construction of hyperbolic fully irreducible outer automorphisms.
We are also grateful to the referee for thoughtful and interesting suggestions concern-
ing our results.

2. Preliminaries

2.1. Bounded cancellation. When working with free groups, the following lemma
due to Cooper is indispensable. For a basis A, let jxjA denote the word length of
x 2 Fk with respect to A and `A.x/ the length of the cyclic word determined by x.

Lemma 2.1 ([14], Bounded cancellation lemma). Suppose A and B are bases for
the free group Fk . There is a constant C D C.A;B/ such that if w and w0 are two
elements of Fk , where

jwjA C jw0jA D jww0jA;
then

jwjB C jw0jB � jww0jB � 2C:

We denote by BCC.A;B/ the bounded cancellation constant; that is, the minimal
constant C satisfying the lemma for A and B. In other words, if ww0 is a reduced
word in A, and we can write w D Qm

iD1 xi and w0 D Qm0

iD1 x
0
i where xi ; x

0
i 2 B,

then for C D BCC.A;B/ the subwords x1 � � � xm�C �1 and x0
C C1 � � � x0

m0 appear as
subwords ofww0 when considered as a word in B. Applying the bounded cancellation
lemma tow2 wherew is a cyclically reduced word with respect to A, we see thatw is
“almost cyclically reduced” with respect to B, i.e., w D zxz�1 where x is cyclically
reduced with respect to B and jzjB � BCC.A;B/.

2.2. Culler–Vogtmann Outer space. Equally indispensable to the study of Out Fk

is the Culler–Vogtmann Outer space CVk [16]. This is the projectivized space of
minimal discrete free actions of Fk on R-trees and is analogous to the Teichmüller
space for a surface. There is a compactification CVk [15] that is precisely the projec-
tivized space of minimal very small actions of Fk on R-trees [4], [13]. Recall that an
action on an R-tree is minimal if there is no invariant subtree; it is very small if the
stabilizer of an arc is either trivial or a maximal cyclic subgroup, and if the stabilizer
of any tripod is trivial. We consider the unprojectivized versions cvk and cvk as well.

The group Out Fk acts on either of the above spaces on the right by pre-composing
the action homomorphism. Fully irreducible elements act on CVk with North-South
dynamics.

Theorem 2.2 ([26], Theorem 1.1). Every fully irreducible element � 2 Out Fk acts
on CVk with exactly two fixed points ŒTC� and ŒT��. Further, for any ŒT � 2 CVk such
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that ŒT � ¤ ŒT�� it holds that

lim
m!1ŒT�

m� D ŒTC�:

The trees ŒTC� and ŒT�� are called the stable and unstable trees of � respectively.
The stable and unstable trees of ��1 are ŒT�� and ŒTC�, respectively.

2.3. Dehn twists. As mentioned in the introduction, we build customized hyperbolic
fully irreducible elements of Out Fk using Dehn twist automorphisms. These are
defined analogously to a Dehn twist homeomorphism of a surface. Specifically,
given a splitting Fk D A �hci B , we define an automorphism by

ı.a/ D a for all a 2 A;
ı.b/ D cbc�1 for all b 2 B:

The automorphism ı acts trivially on homology and therefore belongs to the subgroup
IAk . A Dehn twist automorphism arising from amalgamations over Z is analogous
to a Dehn twist around a separating simple closed curve on a surface.

We similarly obtain an automorphism ı from an HNN-extension of the form

Fk D A�Z D hA; t j t�1a0t D a1i
for a0; a1 2 A by

ı.a/ D a for all a 2 A;
ı.t/ D a0t:

An automorphism arising from an HNN-extension should be compared to a Dehn
twist around a nonseparating curve on a surface.

From Bass–Serre theory, a splitting of Fk over Z defines an action of Fk on a
tree T , the Bass–Serre tree of the splitting (see [2] or [30]). We will refer to such
Fk-trees as cyclic. In a certain sense, cyclic trees for Fk correspond to simple closed
curves on a surface; as in the mapping class group, the Dehn twist automorphisms
associated to cyclic trees generate an index two subgroup of Aut Fk (the subgroup
which induces an action of SLk.Z/ on homology). Note that if ı is the Dehn twist
automorphism associated to the cyclic tree T , then ı preserves the action of Fk on
T , i.e., there is an isometry hı W T ! T such that for all g 2 Fk and all x 2 T we
have hı.gx/ D ı.g/hı.x/. In particular, `T .ı.g// D `T .g/ for all g 2 Fk .

We are primarily interested in the outer automorphism group of Fk , and so in the
sequel a Dehn twist will refer to an element of Out Fk which is induced by a Dehn
twist automorphism in Aut Fk .

The role of intersection number of simple closed curves is played by free volume.
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Definition 2.3 (Free volume). Suppose X is a finitely generated free group that acts
on a simplicial tree T such that the stabilizer of an edge is either trivial or cyclic. The
free volume volT .X/ of X with respect to T is the number of edges in the graph of
groups decomposition T X=X with trivial stabilizer. Here T X denotes the smallest
X -invariant subtree.

In the case that X D hxi, the free volume volT .X/ is just the translation length
`T .x/ of x in T .

We say two cyclic trees fill if

volT1
.X/C volT2

.X/ > 0

for every proper free factor or cyclic subgroup X 	 Fk . With these notions we have
shown the following analog to a classical theorem of Thurston:

Theorem 2.4 ([12], Theorem 5.3). Let ı1 and ı2 be the Dehn twist automorphisms
of Fk for two filling cyclic trees of Fk . Then there existsN D N.ı1; ı2/ such that for
all m; n � N :

(1) hım
1 ; ı

n
2 i is isomorphic to the free group on two generators; and

(2) if � 2 hım
1 ; ı

n
2 i is not conjugate to a power of either ım

1 or ın
2 , then � is a

hyperbolic fully irreducible element of Out Fk .

Key to our analysis in [12] and Section 5 of the present paper is the following
theorem, which measures how the free volume changes upon twisting.

Theorem 2.5 ([12], Theorem 4.6). Let ı2 be a Dehn twist automorphism correspond-
ing to a very small cyclic tree T2 with cyclic edge generator c2, and let T1 be any
other very small cyclic tree. Then there is a constant C D C.T1; T2/ such that for
any x 2 Fk and n � 0 the following hold:

`T1
.ı˙n

2 .x// � `T2
.x/

�
n`T1

.c2/ � C � � `T1
.x/; (2.1)

`T1
.ı˙n

2 .x// � `T2
.x/

�
n`T1

.c2/C C
� C `T1

.x/: (2.2)

These bounds are shown in [12] to hold not only for cyclic subgroups, but for
any finitely generated malnormal subgroup of Fk; in particular any proper free factor
of Fk .

We will also need the following notions from [12] for Section 5.
Suppose that T is a very small cyclic tree for an amalgamated free product Fk D

A �hci B . After possibly interchanging A $ B , there is a basis T D A [ B for Fk

such that c 2 A, and such that A is a basis for A and B [ fcg is a basis for B . Such
a basis is called a basis relative to T . If x 2 Fk and `T .x/ D 2m > 0, then x is
conjugate to a cyclically reduced word of the form

x1c
i1y1c

j1 � � � xmc
imymc

jm
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where for s D 1; : : : ; m, each ys is a word in B, each xs a word in A, such that both
zxs and xsz are reduced for z D c; c�1.

Now suppose that T is a very small cyclic tree for an HNN-extension Fk D
A�htc0t�1Dci. After possibly interchanging A $ tAt�1, there is a basis A [ ft0g for
Fk such that t D t0a for some a 2 A, c 2 A and A [ ft�1

0 ct0g is a basis for A. If
x 2 Fk and `T .x/ D m > 0, then x is conjugate to a cyclically reduced word of the
form

x1.c
i1 t0/

�1x2.c
i2 t0/

�2 � � � xm.c
im t0/

�m

where for s D 1; : : : ; m, xs is a word in A [ ft�1
0 ct0g, �s 2 f˙1g; and if �s D 1,

then xsz is a reduced word for z D c; c�1; and if �r D �1 then zxsC1 is a reduced
word for z D c; c�1.

In either of two above cases, we say that the specific word is T -reduced.

2.4. Currents. Measured geodesic currents for hyperbolic groups were first defined
by Bonahon [8]. Recently, (measured geodesic) currents for free groups have seen
much activity through the work of Kapovich and Lustig [21], [23], [24], [22]. We
briefly introduce the parts of the theory needed for the sequel; see [21] for further
details.

The group Fk is hyperbolic and hence has a boundary @Fk . We denote

@2Fk D f.x1; x2/ 2 @Fk � @Fk j x1 ¤ x2g:
This is naturally identified with the space of oriented geodesics in a Cayley tree for
Fk . There is fixed-point free involution “flip” map � W @2Fk ! @2Fk defined by
�.x1; x2/ D .x2; x1/which corresponds to reversing the orientation on the geodesic.

A (measured geodesic) current on Fk is an Fk-invariant positive Radon measure
on @2Fk=� . The set Curr.Fk/ is the set of all currents on Fk , topologized with
the weak topology. There is an action of R>0 on Curr.Fk/ � f0g, and the quo-
tient PCurr.Fk/ is a compact space. There is a continuous left action of Out Fk on
Curr.Fk/ and PCurr.Fk/ defined by ��.S/ D �.��1.S//, where � 2 Out Fk ,
� 2 Curr.Fk/, and where S is a measurable set of @2Fk=� . There is a slight
abuse of notation here as strictly speaking ��1.S/ is not well-defined. But for any
two ˆ0; ˆ1 2 Aut Fk representing � 2 Out Fk , there is an x 2 Fk such that
xˆ�1

0 .S/ D ˆ�1
1 .S/ and hence �.xˆ�1

0 .S// D �.ˆ�1
1 .S// since � is Fk-invariant.

Given a basis A of Fk , we have an identification between @2Fk=� and unoriented
geodesics in TA, the Cayley tree for A. For a nontrivial g 2 Fk (thought of as a
vertex in TA) and � 2 Curr.Fk/, we define the two-sided cylinder

CylA.g/D funoriented geodesics in TA containing the vertices 1 and gg 	 @2Fk=�

and denote

hg; �iA D �.CylA.g//:
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As the sets
S

h;g2Fk
hCylA.g/ form a basis for the topology of @2Fk=� , and as

�.hCylA.g// D �.CylA.g//, a current � 2 Curr.Fk/ is determined by its values
hg; �iA.

Using these notions there is a useful normalization of a current � relative to the
basis A. Put

!A.�/ D
X
x2A

hx; �iA:

The following lemma provides a useful way to show convergence in PCurr.Fk/:

Lemma 2.6 ([21], Lemmas 2.11 and 3.5). Let A be a basis for Fk . Then

lim
m!1Œ�m� D Œ��

if and only if for every nontrivial g 2 Fk ,

lim
m!1

hg; �miA

!A.�m/
D hg; �iA

!A.�/
:

Particularly useful are the counting currents, defined as follows. Given a nontrivial
h 2 Fk that is not a proper power, define the current �h by

hg; �hiA D hg˙1; hiA:

Here hg˙1; hiA is the number of occurrences of g or g�1 in the cyclic word deter-
mined by h; specifically, this is the number of times either of the reduced words g or
g�1 appear as a subword of the cyclic word determined by h. When h D f m where
m � 1 and f is not a proper power, define �h D m�f . The current �h only depends
on the conjugacy class of h, and for � 2 Out Fk we have ��h D ��.h/. Notice that
for any nontrivial h 2 Fk we have !A.�h/ D `A.h/. Although we will not explicitly
use it, we remark that the set fŒ�h�gh2Fk�f1g is dense in PCurr.Fk/.

Similarly we define o.g˙1; h/A as the number occurrences of g or g�1 in the
word h; specifically, this is the number of times the reduced words g or g�1 appear as
a subword of the word h. A direct application of the Bounded Cancellation Lemma
2.1 gives the following.

Lemma 2.7. Let A and B be bases forFk and fix a 2 A. Then there exists a constant
C � 0 such that if w, w0, and ww0 are all reduced words in B and ww0 is cyclically
reduced in B, then

o.a˙1; w/A C o.a˙1; w0/A � ha˙1; ww0iA C C:

Proof. Let B D BCC.B;A/ so that

o.a˙1; w/A C o.a˙1; w0/A � 2B � o.a˙1; ww0/A:
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Since ww0 is cyclically reduced with respect to B, as a word in A we have ww0 D
zxz�1 where jzjA � B and x is cyclically reduced in A. Thus

o.a˙1; ww0/A � ha˙1; ww0iA C 2B:

Therefore, for C D 4B , the lemma holds. �

As in the Outer space setting, a hyperbolic fully irreducible element acts with
North-South dynamics on PCurr.Fk/. Here is a weak version of this statement that
is sufficient for our needs.

Theorem 2.8 ([28], cf. [5], Proposition 4.11). Every hyperbolic fully irreducible
element � 2 Out Fk acts on PCurr.Fk/ with exactly two fixed points, Œ�C� and Œ���.
Further, for any nontrivial h 2 Fk ,

lim
m!1Œ�

m�h� D Œ�C�:

The currents Œ�C� and Œ��� are called the stable and unstable currents of �,
respectively. The stable and unstable currents of ��1 are Œ��� and Œ�C�, respectively.

The existence of a continuous Out Fk-invariant intersection form is established
by the following.

Theorem 2.9 ([23], Theorem A). There is a unique continuous map

h ; i W cvk � Curr.Fk/ ! R�0

such that

(1) for any h 2 Fn we have hT; �hi D `T .h/.

Further, this map is

(2) Out Fk-invariant: hT ;�i D hT; �i;
(2) homogeneous with respect the first coordinate: h	T;�i D 	hT;�i for 	 > 0;

and

(4) linear with respect to the second coordinate: hT; 	1�1 C	2�2i D 	1hT;�1iC
	2hT;�2i for 	1; 	2 � 0.

The actions of Out Fk on cvk and Curr.Fk/ satisfy a type of “unique-ergodicity”
with respect to this intersection form.

Theorem 2.10 ([24], Theorem 1.3). Let � 2 Out Fk be a hyperbolic fully irreducible
element with stable and unstable trees ŒTC�; ŒT�� 2 CVk and stable and unstable
currents Œ�C�; Œ��� 2 PCurr.Fk/. The following statements hold.

(1) If � 2 Curr.Fk/ � f0g, then hT˙; �i D 0 if and only if Œ�� D Œ���.
(2) If T 2 cvk , then hT;�˙i D 0 if and only if ŒT � D ŒT��.

The difference in signs ˙ and 
 between the above and its version in [24] is due
to our use of the right action of Out Fk on cvk .



394 M. Clay and A. Pettet CMH

2.5. Bestvina–Feighn hyperbolic Out.Fk/-complex. The final space we consider
is given by the following theorem.

Theorem 2.11 ([5], Main Theorem). For any finite collection �1; : : : ; �n of fully
irreducible elements of Out Fk there is a connected ı-hyperbolic graph X equipped
with an (isometric) action of Out Fk such that:

(1) the stabilizer in Out Fk of a simplicial tree in CVk has bounded orbits;

(2) the stabilizer in Out Fk of a proper free factor F 	 Fk has bounded orbits; and

(3) �1; : : : ; �n have nonzero translation lengths.

The ı-hyperbolicity of such a complex X makes it comparable to the curve com-
plex for the mapping class group, although its use is significantly restricted by its
dependence on a finite set of fully irreducible elements. For our purposes the actual
definition of X is not necessary; we need only that non-fully irreducible elements of
Out Fk act on X with bounded orbits, and that the action of the elements �1; : : : ; �n

on X have nonzero translation length and satisfy a property known as WPD (weak
proper discontinuity). We refer the reader to [5], [6] for further details.

3. Producing hyperbolic automorphisms

In this section we show how to produce a hyperbolic outer automorphism with a
specified action on H1.Fk;Z/. This involves examining the dynamics of elements
on Curr.Fk/. Using the “unique-ergodicity” and continuity of the intersection form
h ; i we can mimic an argument due to Fathi ([17], Theorem 2.3) giving a construction
of pseudo-Anosov homeomorphisms.

Proposition 3.1. Let � 2 Out Fk be a hyperbolic fully irreducible outer automor-
phism with stable and unstable currents Œ�C� and Œ��� in PCurr.Fk/. Suppose
 2 Out Fk is such that Œ �C� ¤ Œ���. Then there is an M � 0 such that for
m � M the element �m is hyperbolic.

Proof. Let 	C and 	� be the expansion factors for � and ��1 respectively, and let
	 D minf	C; 	�g > 1. Also let TC and T� be representatives of the stable and
unstable trees for � in cvk . Thus TC� D 	CTC and T���1 D 	�T�.

Hence for each m � 0 and any � 2 Curr.Fk/ we have

hTC; �m �i D hTC�m;  �i � 	mhTC;  �i;
and

hT� ; �1��m�i D hT�; ��m�i D hT���m; �i � 	mhT�; �i:
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Now define ˛.�/ D maxfhTC; �i; hT� ;�ig. Then

˛.�m �/ � hTC; �m �i � 	mhTC;  �i;
and

˛. �1��m�/ � hT� ; �1��m�i � 	mhT�; �i:
Hence

maxf˛.�m �/; ˛. �1��m�/g � 	mˇ.�/;

where ˇ.�/ D maxfhTC;  �i; hT�; �ig. Now ˇ.�/ D 0 if and only if both
hTC;  �i and hT�; �i are equal to 0. Applying the “unique-ergodicity” (Theo-
rem 2.10), we have that if � ¤ 0 then hT�; �i D 0 if and only if Œ�� D Œ�C�,
and hTC;  �Ci D 0 if and only if Œ �C� D Œ���. By assumption Œ �C� ¤ Œ���,
and hence ˇ.�/ is strictly positive. Therefore ˛.�/=ˇ.�/ defines a continuous func-
tion on PCurr.Fk/. Since PCurr.Fk/ is compact, there is a constant K such that
˛.�/=ˇ.�/ < K for all � 2 Curr.Fk/ � f0g, i.e., Kˇ.�/ > ˛.�/. For m such that
	m � K, we obtain

maxf˛.�m �/; ˛. �1��m�/g > ˛.�/ for all � 2 Curr.Fk/ � f0g:
It is now easy to see that �m acts on Curr.Fk/ � f0g without a periodic orbit.

Notice that if
 2 Out Fk has a periodic conjugacy class, say
` fixes the conjugacy
class of c, then 
`�c D ��`.c/ D �c , and hence 
 acts on Curr.Fk/ � f0g with a
periodic orbit. Thus as �m acts on Curr.Fk/ � f0g without a periodic orbit it does
not have a periodic conjugacy class, i.e., �m is hyperbolic. �

4. Producing fully irreducible automorphisms

In this section we show how to produce a fully irreducible element of Out Fk with a
specified action on H1.Fk;Z/. This involves examining the dynamics of elements
on the ı-hyperbolic Bestvina–Feighn complex X from Theorem 2.11. We begin with
a theorem about the isometries of ı-hyperbolic spaces. Even though the space we
will ultimate consider has a right action, we will consider the more customary setting
where the space has a left action; it is clear how to convert a right action into a left
action.

We recall some basics about ı-hyperbolic spaces needed for this section. Some
references for this material are [1], [9], [20].

A geodesic metric space X is called ı-hyperbolic if for any geodesic triangle in
X , the ı-neighborhood of the union of any two of the sides contains the third. There
are various other equivalent notions. There is an inner product defined for points
x; y 2 X by

.x:y/w D 1

2
.d.x;w/C d.w; y/ � d.x; y//
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for a given basepoint w 2 X . Associated to a ı-hyperbolic space is a boundary @X
which compactifies X as X [ @X when X is locally compact. One definition of @X
is as equivalence classes of sequences fxig with limi;j !1.xi :xj / D 1 (the inner
product is defined with respect to some basepoint), the equivalence relation is defined
by fxig � fyig if limi!1.xi :yi / D 1. If f is an isometry of X with nonzero
translation length (i.e., limn!1 1

n
d.x; f n.x// > 0 for all x 2 X ), then the action

of f extends to a continuous action on @X with exactly two fixed points. One fixed
point is represented by the sequence ff n.x/g for any x 2 X ; the other is represented
by ff �n.y/g for any y 2 X . These points are called the attracting and repelling
fixed points of f respectively.

Theorem 4.1. Suppose X is a ı-hyperbolic space and f 2 Isom.X/ acts on X with
nonzero translation length, with attracting and respectively repelling fixed pointsAC
and A� in @X . If g 2 Isom.X/ acts on X such that gAC ¤ A�, then there is an
M � 0 such that for m � M the element f mg acts on X with nonzero translation
length.

Before proving this theorem we need a lemma that allows us to locally build uni-
form quasi-geodesics. Recall that a .	; �/-quasi-geodesic is a function˛ W Œa; b� ! X

such that for all t; t 0 2 Œa; b� we have

1

	
jt � t 0j � � � d.˛.t/; ˛.t 0// � 	jt � t 0j C �:

We allow for the possibility that the domain of ˛ is R or R�0. A function ˛ W Œa; b� !
X is an L-local .	; �/-quasi-geodesic if for all a � a0 � b0 � b where b0 � a0 � L,
the function ˛

ˇ̌
Œa0;b0�

is a .	; �/-quasi-geodesic. First we recall a standard fact about
ı-hyperbolic spaces.

Lemma 4.2 ([9], Chapter III.H, Lemma 1.15). Let X be a ı-hyperbolic space, and
let c1 W Œ0; T1� ! X and c2 W Œ0; T2� ! X be geodesics such that c1.0/ D c2.0/. Let
T D maxfT1; T2g and extend the shorter geodesic to Œ0; T � by the constant map. If
K D d.c1.T /; c2.T //, then d.c1.t/; c2.t// � 2.K C 2ı/ for all t 2 Œ0; T �.

The next lemma shows us that the sequence of points .f mg/n.x/ defines a local
quasi-geodesic with uniform constants.

Lemma 4.3. LetX , f and g be as in Theorem 4.1. Fix x 2 X and form � 0, let ˛m

be a geodesic connecting x to f mg.x/. Then there is an � � 0 such that for m � 0

the concatenation of the geodesics ˛m � f mg.˛m/ is a .1; �/-quasi-geodesic.

Proof. Letˇm D ˛m[f mg.˛m/, dm D d.x; f mg.x// and consider the pointsg.x/,
f �m.x/ andgf mg.x/. Noticef �m.ˇm/ is a path fromf �m.x/ togf mg.x/ passing
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throughg.x/; see Figure 1. AsgAC ¤A�, the inner product .f �m.x/:gf mg.x//g.x/

stays bounded as m ! 1. Hence there is a constant C � 0 that does not depend on
m such that

d.x; f mgf mg.x// D d.f �m.x/; gf mg.x//

� d.f �m.x/; g.x//C d.g.x/; gf mg.x// � 2C
D 2dm � 2C:

gAC

A�

gf mg.x/

f �m.x/

g.x/
f m

z

f mgf mg.x/

x0
f mg.x/

x

˛m

ı

C C 2ı

Figure 1. The geodesics in Lemma 4.3.

Fix a geodesic c from x to f mgf mg.x/, and let z be the midpoint on c. As X is
ı-hyperbolic, there is an x0 2 ˇm such that d.z; x0/ � ı. Without loss of generality
we can assume that x0 2 ˛m. Thus

d.x0; x/ � d.x; z/ � ı � dm � C � ı;
and therefore

d.x0; f mg.x// D dm � d.x; x0/ � C C ı;

from which we concluded.z; f mg.x// � CC2ı. Letd 0
m D d.x; f mgf mg.x// and

define cz W Œ0; dm� ! X by cz.t/ D c.t/ if 0 � t � 1
2
d 0

m and cz.t/ D z otherwise.
Then by Lemma 4.2 we have for 0 � t � dm that d.ˇm.t/; cz.t// � 2.C C 4ı/.
Similarly define c0

z W Œdm; 2dm� ! X by c0
z.t/ D z if dm � t � 2dm � 1

2
d 0

m and
c0

z.t/ D c.t C d 0
m � 2dm/ otherwise. Then another application of Lemma 4.2 shows

that for dm � t � 2dm we have d.ˇm.t/; c
0
z.t// � 2.C C 4ı/. Notice that if

0 � t � dm � t 0 � 2dm then

.t 0 � t / � 2C � d.cz.t/; c
0
z.t

0// � .t 0 � t /
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as 2dm � d 0
m � 2C . Therefore if 0 � t � dm � t 0 � 2dm then

.t 0 � t / � .6C C 16ı/ � d.ˇm.t/; ˇm.t
0// � .t 0 � t /:

The other cases (0 � t � t 0 � dm or dm � t � t 0 � 2dm) are clear since ˛m is a
geodesic. �

Now to complete the proof of Theorem 4.1 we need the following theorem.

Theorem 4.4 ([9], Chapter III.H, Theorems 1.7 and 1.13). Let X be a ı-hyperbolic
space, and let � W Œa; b� ! X be an L-local .	; �/-quasi-geodesic. Then there is an
R D R.ı; 	; �/ such that if L > R, then for some 	0 � 1 and �0 � 0, the path � is a
.	0; �0/-quasi-geodesic.

We can now give a proof of Theorem 4.1.

Proof of Theorem 4.1. Fix x 2 X , and let � be given from Lemma 4.3 and let R D
R.ı; 1; �/ be the constant from Theorem 4.4. As f has nonzero translation length,
for m � 0 we can let Lm D d.x; f mg.x// � d.g.x/; f mg.x// � d.x; g.x// �
mt �d.x; g.x// for some t > 0. LetM be such thatLM > R. As in Lemma 4.3, let
˛m be a geodesic connecting x to f mg.x/, and let ˇm D ˛m � f mg.˛/. Then define
a path � W Œ0;1/ ! X by

� D ˇm

[
f mg.˛m/

f mg.ˇm/
[

.f mg/2.˛m/

.f mg/2.ˇm/ : : : :

By Lemma 4.3, � is an Lm-local .1; �/-quasi-geodesic and hence if m � M then �
is a .	0; �0/-quasi-geodesic from some 	0 � 1 and �0 � 0 by Theorem 4.4. Therefore
for any x0 2 X and ` � 0 we have

d.x0; .f mg/`.x0// � d.x; .f mg/`.x// � 2d.x0; x/

� 1

	0Lm` � �0 � 2d.x0; x/

and hence f mg has nonzero translation length. �

The fully irreducible analog of Proposition 3.1 follows easily from Theorems 2.11
and 4.1.

Proposition 4.5. Let � 2 Out Fk be a fully irreducible outer automorphism with
stable and unstable trees ŒTC� and ŒT�� in CVk . Suppose  2 Out Fk is such that
ŒTC � ¤ ŒT��. Then there is anM � 0 such that m � M the element �m is fully
irreducible.
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Proof. Let X be the Bestvina–Feighn ı-hyperbolic complex fromTheorem 2.11 using
�1 D � and letAC andA� denote the attracting and repelling fixed points of � in @X.
What needs to be shown in order to apply Theorem 4.1 is that ŒTC � ¤ ŒT�� implies
thatACg ¤ A�. As the action of � on X satisfies WPD, see Proposition 4.27 of [5],
if AC D A� then for some r; s > 0 we have  �r �1 D ��s ([6], Proposition 6).
As the stable and unstable tree for positive powers of � are the same as for �, this
would imply ŒTC � D ŒT��.

Now we can apply Theorem 4.1 to the pair � and  acting on X to conclude that
for large enough m, the element �m does not have a bounded orbit and hence by
Theorem 2.11 is fully irreducible. �

We would like to thank Mladen Bestvina for suggesting the use of WPD in the
above argument.

5. The stable current for a product of twists

In this section we examine the qualitative behavior of the stable and unstable currents
associated to a product of Dehn twists. The main result is Corollary 5.4 which
produces elements of Out Fk satisfying the hypotheses of Propositions 3.1 and 4.5.
We begin with a simple lemma describing the change of a conjugacy class in Fk

resulting from powers of a single twist.

Lemma 5.1. Let T1 and T2 be very small cyclic trees with edge stabilizers c1 and
c2 and associated Dehn twists ı1 and ı2. Suppose T1 and T2 are bases relative to T1

and T2 respectively such that c2 is cyclically reduced with respect to T1 and C is the
constant from Lemma 2.7 using these bases. Then for any x 2 Fk and n � r > 0 the
following hold.

hc˙r
1 ; ın

1 .x/iT1
� .n � r C 1/`T1

.x/ � hc˙1
1 ; xiT1

; (5.1)

`T1
.ın

1 .x// � n`T1
.x/C `T1

.x/; (5.2)

`T1
.ın

1 .x// � n`T1
.x/C `T1

.x/ � hc˙1
1 ; xiT1

; (5.3)

hc˙1
1 ; ı�n

2 .x/iT1
� `T2

.x/
�
nhc˙1

1 ; c2iT1
C 2C

� C hc˙1
1 ; xiT1

; (5.4)

`T1
.ı�n

2 .x// � `T2
.x/

�
n`T1

.c2/C 2C
� C `T1

.x/ (5.5)

Proof. We begin by proving the first three inequalities. By replacing x by a conjugate
we are free to assume that x is T1-reduced as all of the quantities involved in the
inequalities only depend on the conjugacy class of x. If T1 is dual to an amalgamated
free product we have

x D x1c
i1
1 y1c

j1

1 � � � xmc
im
1 ymc

jm

1 :
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Therefore

ın
1 .x/ D x1c

i1Cn
1 y1c

j1�n
1 � � � xmc

imCn
1 ymc

jm�n
1

is a cyclically reduced word in T1. Hence by only counting the occurrences of c˙r
1

that appear in the cisCn
1 and cjs�n

1 we see that

hc˙r
1 ; ın

1 .x/iT1
�

mX
sD1

�jis C nj � r C 1
� C �jjs � nj � r C 1

�

� 2m.n � r C 1/ �
mX

sD1

jisj C jjsj

� .n � r C 1/`T1
.x/ � hc˙1

1 ; xiT1
:

A similar proof works if T1 is dual to an HNN-extension. This shows (5.1); the
inequalities (5.2) and (5.3) follow similarly by looking at the given cyclically reduced
expression for ın

1 .x/.
We now prove the last two inequalities. As before, by replacing x by a conjugate

we are free to assume that x is T2-reduced. If T2 is dual to an amalgamated free
product we have

x D x1c
i1
2 y1c

j1

2 � � � xmc
im
2 ymc

jm

2 :

Therefore

ı�n
2 .x/ D x1c

i1�n
2 y1c

j1Cn
2 � � � xmc

im�n
2 ymc

jmCn
2

is a cyclically reduced word in T2. Hence by counting the number of occurrences of
c˙1

1 in the various xs , ys , cis�n
2 and cjsCn

2 we see that

hc˙1
1 ; ı�n

2 .x/iT1

� `T2
.x/o.c˙1

1 ; cn
2 /T1

C
mX

sD1

o.c˙1
1 ; xs/T1

C o.c˙1
1 ; c

is
2 /T1

C o.c˙1
1 ; ys/T1

C o.c˙1
1 ; c

js

2 /T1

� `T2
.x/nhc˙1

1 ; c2iT1
C hc˙1

1 ; xiT1
C 4mC

� `T2
.x/

�
nhc˙1

1 ; c2iT1
C 2C

� C hc˙1
1 ; xiT1

:

A similar proof works if T1 is dual to an HNN-extension. This shows (5.4). The
inequality (5.5) is just an application of the bounded cancellation lemma using the
cyclically reduced expression for ı�n

2 .x/. �

These estimates allow us to show our main technical result concerning the stable
currents.
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Theorem 5.2. LetT1 andT2 be very small cyclic trees that fill, with edge stabilizers c1

and c2 and associated Dehn twist automorphisms ı1 and ı2. Let N � 0 be such that
for n � N , we have that ın

1ı
�n
2 is a hyperbolic fully irreducible outer automorphism

with stable and unstable currents Œ�nC� and Œ�n�� in PCurr.Fk/. Then

lim
n!1Œ�

nC� D Œ�c1
� and lim

n!1Œ�
n�� D Œ�c2

�:

Proof. Let T1 be a basis for Fk relative to T1. Denote by �n D ın
1ı

�n
2 . Fix an

element a 2 T1, denote its conjugacy class by ˛, and denote �m
n .˛/ by ˛m

n . Hence
�m

n �˛ D �˛m
n

. As `T2
.˛/ > `T1

.˛/ D 0, Lemma 5.2 of [12] shows that since n is
sufficiently large, for m � 0 we have `T2

.˛m
n / � `T1

.˛m
n /. Let K > 0 be such that

for all m; n � 0,

`T1
.˛m

n / � K.`T1
.˛m

n /C `T2
.˛m

n // � 2K`T2
.˛m

n /:

Such a K exists by Theorem 1.4 in [24].
Then for each n � N , as �nC is the stable current for �n, from the North-South

dynamics of �n on PCurr.Fk/ (Theorem 2.8), we have for any g 2 Fk and � > 0, a
constant M D M.n; g; �

2
/ such that for m � M (Lemma 2.6),
ˇ̌
ˇ̌hg; �˛m

n
iT1

!T1
.�˛m

n
/

� hg; �nCiT1

!T1
.�nC/

ˇ̌
ˇ̌ < �

2
: (5.6)

We analyze how the current �˛m
n

changes as m ! 1 in terms of n. Fix a basis
T2 that is relative to T2 such that c2 is cyclically reduced with respect to T1, and let
C be larger than either constant C D C.T1; T2/ from Theorem 2.5 or the constant C
from Lemma 2.7, using the bases T1 and T2. Applying (2.1), (5.1) and (5.4), for any
m � 0 and n � r > 0 we have

hc˙r
1 ; ın

1ı
�n
2 .˛m

n /iT1

� .n � r C 1/`T1
.ı�n

2 .˛m
n // � hc˙1

1 ; ı�n
2 .˛m

n /iT1

� .n � r C 1/
h
`T2
.˛m

n /
�
n`T1

.c2/ � .C C 1/
�i

�
h
`T2
.˛m

n /
�
nhc˙1

1 ; c2iT1
C 2C

� C hc˙1
1 ; ˛m

n iT1

i

� n2`T2
.˛m

n /`T1
.c2/

� n`T2
.˛m

n /
�
.C C 1/C .r � 1/`T1

.c2/C hc˙1
1 ; c2iT1

�

� 2C`T1
.˛m

n / � `T1
.˛m

n /

� `T2
.˛m

n /
h
n2`T1

.c2/

� n�
.C C 1/C .r � 1/`T1

.c2/C hc˙1
1 ; c2iT1

� � .2C C 2K/
i

� `T2
.˛m

n /
�
n2`T1

.c2/ � nC1 � C2

�
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for some constants C1 � 0 and C2 � 0 that do not depend on m. Applying (2.2),
(5.2) and (5.5) we also have for any m � 0 and n > 0 that

`T1
.ın

1ı
�n
2 .˛m

n // � n`T1
.ı�n

2 .˛m
n //C `T1

.ı�n
2 .˛m

n //

� n
h
`T2
.˛m

n /
�
n`T1

.c2/C .C C 1/
�i

C `T2
.˛m

n /
�
n`T1

.c2/C 2C
� C `T1

.˛m
n /

� n2`T2
.x/`T1

.c2/

C n`T2
.˛m

n /
�
.C C 1/C `T1

.c2/
� C .2C C 2K/`T1

.˛m
n /

� `T2
.˛m

n /
�
n2`T1

.c2/C nC 0
1 C C 0

2

�

for some constants C 0
1 � 0 and C 0

2 � 0 that do not depend on m. Therefore, given
r > 0 there are constants ˇ1 � 0 and ˇ2 � 0 that do not depend on m such that for
any n � r ,

`T1
.ın

1ı
�n
2 .˛m

n // � hc˙r
1 ; ın

1ı
�n
2 .˛m

n /iT1
� `T2

.˛m
n /

�
nˇ1 C ˇ2

�
: (5.7)

Now, applying (2.1) and (5.3), we have for any m � 0 and n > 0,

`T1
.ın

1ı
�n
2 .˛m

n // � n`T1
.ı�n

2 .˛m
n //C `T1

.ı�n
2 .˛m

n // � hc˙1
1 ; ı�n

2 .˛m
n /iT1

� n
h
`T2
.˛m

n /
�
n`T1

.c2/ � .C C 1/
�i

� `T2
.˛m

n /
�
n`T1

.c2/C 2C
� � hc˙1

1 ; ˛m
n iT1

� n2`T2
.˛m

n /`T1
.c2/

� n`T2
.˛m

n /
�
.C C 1/C `T1

.c2/
� � .2C C 2K/`T2

.˛m
n /

Therefore, there are constants �1 � 0, �2 � 0 and �3 � 0 that do not depend on m
such that for n > 0,

`T1
.ın

1ı
�n
2 .˛m

n // � `T2
.˛m

n /
�
n2�1 � n�2 � �3

�
: (5.8)

As a first approximation, we will show that the currents �˛m
n

converge to the
correct value on CylT1

.cr
1/. Notice �c1

.CylT1
.cr

1// D 1. Suppose g D c˙r
1 for some

r > 0. Let � > 0 and fix n � maxfN; rg large enough such that �.n2�1 �n�2 ��3/ >
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2.nˇ1 C ˇ2/. Now let m � M.n; g; �
2
/. Then

ˇ̌
ˇ̌hg; �c1

iT1

!T1
.�c1

/
� hg; �nCiT1

!T1
.�nC/

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌
ˇ
hg; �c1

iT1

!T1
.�c1

/
�

hg; �
˛

mC1
n

iT1

!T1
.�

˛
mC1
n

/

ˇ̌
ˇ̌
ˇ

C
ˇ̌
ˇ̌
ˇ
hg; �

˛
mC1
n

iT1

!T1
.�

˛
mC1
n

/
� hg; �nCiT1

!T1
.�nC/

ˇ̌
ˇ̌
ˇ

<

ˇ̌
ˇ̌
ˇ1 �

hg; �
˛

mC1
n

iT1

!T1
.�

˛
mC1
n

/

ˇ̌
ˇ̌
ˇ C �

2

D
ˇ̌
ˇ̌`T1

.ın
1ı

�n
2 .˛m

n // � hc˙r
1 ; ın

1ı
�n
2 .˛m

n /iT1

`T1
.ın

1ı
�n
2 .˛m

n //

ˇ̌
ˇ̌ C �

2

�
ˇ̌
ˇ̌
ˇ

`T2
.˛m

n /
�
nˇ1 C ˇ2

�

`T2
.˛m

n /
�
n2�1 � n�2 � �3

�
ˇ̌
ˇ̌
ˇ C �

2

<
�

2
C �

2
D �:

(5.9)

Now suppose g ¤ c˙r
1 for any r > 0; in this case �c1

.CylT1
.g// D 0. There is some

a0 2 T1 � fc1g such that ha˙1
0 ; giT1

> 0. Therefore for any m � 0,

ha˙1
0 ; ˛m

n iT1
ha˙1

0 ; giT1
� hg˙1; ˛m

n iT1
(5.10)

as every occurrence of g˙1 in ˛m
n contains some occurrence of a˙1

0 in ˛m
n and such

an occurrence can only be used ha˙1
0 ; giT1

times. Since

1

`T1
.˛m

n /

X
x2T1�fc1g

hx˙1; ˛m
n iT1

D 1 � hc˙1
1 ; ˛m

n iT1

`T1
.˛m

n /
;

the computation in (5.9) combined with (5.10) shows that there is an n D n.g; �/ such
that 2hg˙1; ˛m

n iT1
< �`T1

.˛m
n / for m sufficiently large. Then for m � M.n; g; �

2
/,

ˇ̌
ˇ̌hg; �c1

iT1

!T1
.�c1

/
� hg; �nCiT1

!T1
.�nC/

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌hg; �c1

iT1

!T1
.�c1

/
� hg; �˛m

n
iT1

!T1
.�˛m

n
/

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌hg; �˛m

n
iT1

!T1
.�˛m

n
/

� hg; �nCiT1

!T1
.�nC/

ˇ̌
ˇ̌

<

ˇ̌
ˇ̌hg; �˛m

n
iT1

!T1
.�˛m

n
/

ˇ̌
ˇ̌ C �

2

D
ˇ̌
ˇ̌hg˙1; ˛m

n iT1

`T1
.˛m

n /

ˇ̌
ˇ̌ C �

2

<
�

2
C �

2
D �:

(5.11)
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Putting together (5.9) and (5.11), we have that limn!1Œ�nC� D Œ�c1
�. The same

argument applied to ��1
n shows that limn!1Œ�n�� D Œ�c2

�. �

Remark 5.3. We remark that Theorem 5.2 is analogous to the surface setting. Given
two simple closed curves ˛; ˇ 	 Sg that fill, the stable and unstable measured
laminations ŒƒnC� and Œƒn�� in the Thurston boundary of Teichmüller space associated
to the pseudo-Anosov mapping classes ın

˛ı
�n
ˇ

converge to Œ˛� and Œˇ� respectively.
Here ı˛ and ıˇ are the respective Dehn twist homeomorphisms about ˛ and ˇ.

This raises a subtle point. To the hyperbolic fully irreducible outer automorphisms
ın

1ı
�n
2 in Theorem 5.2 are also associated the stable and unstable trees ŒT nC� and ŒT n� �

in CVk (see Section 2.2). As CVk is compact, the associated sequences fŒT nC�g and
fŒT n� �g have accumulation points. But in contrast with Theorem 5.2, it is not clear
whether there is a single accumulation point for each respective sequence or how
to characterize an accumulation point for either sequence. By Theorems 2.9, 2.10
and 5.2, the element c2 has a fixed point in any accumulation point of fŒT nC�g, and
similarly c1 has a fixed point in any accumulation point of fŒT n� �g. However it is
unlikely that this is a characterization of the accumulation points for the sequences
fŒT nC�g and fŒT n� �g.

The following corollary is essential for our main theorem (Theorem 6.1).

Corollary 5.4. Let T1 and T2 be very small cyclic trees that fill, with edge stabilizers
c1 and c2 and associatedDehn twist automorphisms ı1 and ı2. LetN � 0 be such that
for n � N , we have that ın

1ı
�n
2 is a hyperbolic fully irreducible outer automorphism

with stable andunstable currents Œ�nC�and Œ�n�� inPCurr.Fk/and stable andunstable
trees ŒT nC� and ŒT n� � in CVk . For  2 Out Fk such that the conjugacy class of  .c1/

is not equal to the conjugacy class of c2, there is an N1 � N such that for n � N1

we have Œ �nC� ¤ Œ�n�� and ŒT nC � ¤ ŒT n� �.

Proof. As the conjugacy class of  .c1/ is not equal to the conjugacy class of c2 we
have that Œ �c1

� ¤ Œ�c2
�. Fix disjoint open sets U1 and U2 of PCurr.Fk/ containing

Œ �c1
� and Œ�c2

� respectively. By Theorem 5.2, there is anN1 such that for n � N1 we
have Œ �nC� 2 U1 and Œ�n�� 2 U2, and hence asU1 andU2 are disjoint, Œ �nC� ¤ Œ�n��.

Additionally for n � N1 we have hT nC ;�nCi D hT nC;  �nCi > 0 by Theo-
rem 2.10, as Œ �nC� ¤ Œ�n��. As hT n� ; �nCi D 0, this shows that ŒT nC � ¤ ŒT n� �.

�

6. A hyperbolic fully irreducible automorphism for every matrix in GL.k; Z/

Our main theorem now follows easily.
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Theorem 6.1. Suppose k � 3. For any A 2 GL.k;Z/, there is a hyperbolic fully
irreducible outer automorphism � 2 Out Fk such that �� D A.

Proof. Fix  2 Out Fk such that  � D A. Let T be a very small cyclic tree dual
to an amalgamated free product with edge stabilizer c1 (a primitive element of Fk)
and associated Dehn twist ı1. As is shown in [12], Remark 2.7, given any hyperbolic
fully irreducible automorphism 
 2 Out Fk , the pair T and T 
` fill for sufficiently
large `. The edge stabilizer for T 
` is 
�`.c1/. Thus for large enough ` we can
assure that the very small cyclic trees T and T 
` fill and that the conjugacy class of
 .c1/ is not equal to the conjugacy class of 
�`.c1/ (the edge stabilizer for T 
`).

Let ı2 be the associated Dehn twist for T 
`. By Theorem 2.4, Propositions 3.1
and 4.5 and Corollary 5.4, for largem and n the outer automorphism .ın

1ı
�n
2 /m is a

hyperbolic fully irreducible element. Since both ı1 and ı2 act trivially onH1.Fk;Z/,
we have ..ın

1ı
�n
2 /m /� D  � D A. �
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