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Higher arithmetic Chow groups
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Abstract. We give a new construction of higher arithmetic Chow groups for quasi-projective
arithmetic varieties over a field. Our definition agrees with the higher arithmetic Chow groups
defined by Goncharov for projective arithmetic varieties over a field. These groups are the
analogue, in the Arakelov context, of the higher algebraic Chow groups defined by Bloch.
For projective varieties the degree zero group agrees with the arithmetic Chow groups defined
by Gillet and Soulé, and in general with the arithmetic Chow groups of Burgos. Our new
construction is shown to be a contravariant functor and is endowed with a product structure,
which is commutative and associative.
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Introduction

Let X be an arithmetic variety, i.e. a regular scheme which is flat and quasi-projective
over an arithmetic ring. In [14], Gillet and Soulé defined the arithmetic Chow groups
of X , denoted by cCHp.X/, whose elements are classes of pairs .Z; gZ/, with Z a
codimension p subvariety of X and gZ a Green current for Z. Later, in [5], the
first author gave an alternative definition for the arithmetic Chow groups, involving
the Deligne complex of differential forms with logarithmic singularities along infin-
ity, D�

log.X; p/, that computes real Deligne–Beilinson cohomology, H �
D

.X; R.p//.
When X is proper, the two definitions are related by a natural isomorphism that takes
into account the different normalization of both definitions. In this paper, we follow
the latter definition.

It is shown in [5] that the following properties are satisfied by cCHp.X/:

� The groups cCHp.X/ fit into an exact sequence:

CHp�1;p.X/
��! D

2p�1
log .X; p/= im dD

a�! cCHp.X/
��! CHp.X/! 0; (1)

�This work was partially supported by the projects MTM2006-14234-C02-01 and MTM2009-14163-C02-01.
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where CHp�1;p.X/ is the term E
p�1;�p
2 .X/ of the Quillen spectral sequence

(see [23], §7) and � is the Beilinson regulator.

� There is a pairing

cCHp.X/˝ cCHq.X/
��! cCHpCq.X/Q

turning
L

p�0
cCHp.X/Q into a commutative graded unitary Q-algebra.

� If f W X ! Y is a morphism, there exists a pull-back morphism

f � W cCHp.Y /! cCHp.X/:

Assume that X is proper and defined over an arithmetic field. Then the arithmetic
Chow groups have been extended to higher degrees by Goncharov, in [16]. These
groups are denoted by cCHp.X; n/ and are constructed in order to extend the exact
sequence (1) to a long exact sequence of the form

� � � ! cCHp.X; n/
��! CHp.X; n/

��! H
2p�n

D
.X; R.p//

a�! cCHp.X; n � 1/! � � �
� � � ! CHp.X; 1/

��! D
2p�1
log .X; p/= im dD

a�! cCHp.X/
��! CHp.X/! 0:

Explicitly, Goncharov defined a regulator morphism

Zp.X;�/ P�! D
2p��
D .X; p/;

where

� Zp.X;�/ is the chain complex given by Bloch in [3], whose homology groups
are, by definition, CHp.X;�/;

� D�
D.X;�/ is the Deligne complex of currents.

Then the higher arithmetic Chow groups of a regular complex variety X are defined
as cCHp.X; n/ WD Hn.s.P 0//, the homology groups of the simple of the induced
morphism

P 0 W Zp.X;�/ P�! D
2p��
D .X; p/=D2p.X; p/:

For n D 0, these groups agree with the ones given by Gillet and Soulé. However,
this construction leaves the following questions open:

(1) Does the composition of the isomorphism Kn.X/Q ŠL
p�0 CHp.X; n/Q with

the morphism induced by P agree with the Beilinson regulator?

(2) Can one define a product structure on
L

p;n
cCHp.X; n/?

(3) Are there well-defined pull-back morphisms?
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The use of the complex of currents in the definition of P is the main obstacle en-
countered when trying to answer these questions, since this complex does not behave
well under pull-back or products. Moreover, the usual techniques for the comparison
of regulators apply to morphisms defined for the class of quasi-projective varieties,
which is not the case of P .

In this paper we develop a higher arithmetic intersection theory by giving a new
definition of the higher arithmetic Chow groups, based on a representative of the
Beilinson regulator at the chain complex level. Our strategy has been to use the
Deligne complex of differential forms instead of the Deligne complex of currents
in the construction of the representative of the Beilinson regulator. The obtained
regulator turns out to be a minor modification of the regulator described by Bloch
in [4].

The present definition of higher arithmetic Chow groups is valid for quasi-pro-
jective arithmetic varieties over a field, pull-back morphisms are well-defined and can
be given a commutative and associative product structure. Therefore, this construction
overcomes the open questions left by Goncharov’s construction.

The authors, jointly with Takeda, prove in [6] that this definition agrees with Gon-
charov’s definition when the arithmetic variety is projective. Moreover, by a direct
comparison of our regulator with P , it is also proved that the regulator defined by
Goncharov induces the Beilinson regulator. In this way, the open questions (1)–(3)
are answered positively. Moreover, the question of the covariance of the higher arith-
metic Chow groups with respect to proper morphisms will also be treated elsewhere.

Note that since the theory of higher algebraic Chow groups given by Bloch,
CHp.X; n/ is only fully established for schemes over a field, we have to restrict our-
selves to arithmetic varieties over a field. Therefore, the following question remains
open:

(1) Can we extend the definition to arithmetic varieties over an arithmetic ring?

Let us now briefly describe the constructions presented in this paper. First, for
the construction of the higher Chow groups, instead of using the simplicial complex
defined by Bloch in [3], we use its cubical analog, defined by Levine in [19], due to its
suitability for describing the product structure on CH�.X;�/. Thus Zp.X; n/0 will
denote the normalized chain complex associated to a cubical abelian group. Let X be
a complex algebraic manifold. For every p � 0, we define two cochain complexes,
D�

A;Zp .X; p/0 and D�
A.X; p/0, constructed out of differential forms on X � �n

with logarithmic singularities along infinity (� D P 1 n f1g). For every p � 0, the
following isomorphisms are satisfied:

H 2p�n.D�
A;Zp .X; p/0/ Š CHp.X; n/R; n � 0;

H r.D�
A.X; p/0/ Š H r

D.X; R.p//; r � 2p;



524 J. I. Burgos Gil and E. Feliu CMH

where the first isomorphism is obtained by a explicit quasi-isomorphism

D
2p��
A;Zp .X; p/0 �! Zp.X;�/0 ˝R

(see �2.4 and �2.5).
We show that there is a natural chain morphism (see �3.1)

D
2p��
A;Zp .X; p/0

��! D
2p��
A .X; p/0

which induces, after composition with the isomorphism

Kn.X/Q Š
M
p�0

CHp.X; n/Q

described by Bloch in [3], the Beilinson regulator (Theorem 3.5):

Kn.X/Q Š
M
p�0

CHp.X; n/Q
��!

M
p�0

H
2p�n

D
.X; R.p//:

In the second part of this paper we use the morphism � to define the higher
arithmetic Chow group cCHp.X; n/, for any arithmetic variety X over a field. The
formalism underlying our definition is the theory of diagrams of complexes and their
associated simple complexes, developed by Beilinson in [1]. Let X† denote the
complex manifold associated with X and let � be the involution that acts as complex
conjugation on the space and on the coefficients. As usual � as superscript will mean
the fixed part under � . Then one considers the diagram of chain complexes

yZp.X;�/0 D

0BBBBBBBB@

Zp.X†; �/�
0 ˝ R D

2p��

A .X†; p/�
0

Zp.X; �/0

�1

�����������
D

2p��

A;Zp .X†; p/�
0

� 0
1

�
������������

�
�����������

ZD
2p
log .X†; p/�

i
�����������

1CCCCCCCCA
,

where ZD
2p
log .X†; p/� is the group of closed elements of D

2p
log .X†; p/� considered

as a complex concentrated in degree 0. Then the higher arithmetic Chow groups
of X are given by the homology groups of the simple of the diagram yZp.X;�/0

(Definition 4.3): cCHp.X; n/ WD Hn.s. yZp.X;�/0//:

The following properties are shown:
� Theorem 4.8: Let cCHp.X/ denote the arithmetic Chow group defined in [5].

Then there is a natural isomorphism

cCHp.X/
Š�! cCHp.X; 0/:

It follows that if X is proper, cCHp.X; 0/ agrees with the arithmetic Chow group
defined by Gillet and Soulé in [14].
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� Proposition 4.4: There is a long exact sequence

� � � ! cCHp.X; n/
��! CHp.X; n/

��! H
2p�n

D
.X†; R.p//�

a�! cCHp.X; n � 1/! � � � ! CHp.X; 1/

��! D
2p�1
log .X†; p/�= im dD

a�! cCHp.X/
��! CHp.X/! 0;

with � the Beilinson regulator.

� Proposition 4.12 (Pull-back): Let f W X ! Y be a morphism between two
arithmetic varieties over a field. Then there is a pull-back morphism

cCHp.Y; n/
f �

��! cCHp.X; n/;

for every p and n, compatible with the pull-back maps on the groups CHp.X; n/

and H
2p�n

D
.X; R.p//.

� Corollary 4.16 (Homotopy invariance): Let � W X �Am ! X be the projection
on X . Then the pull-back map

�� W cCHp.X; n/! cCHp.X �Am; n/; n � 1

is an isomorphism.

� Theorem 5.46 (Product): There exists a product on

cCH�.X;�/ WD
M

p�0;n�0

cCHp.X; n/;

which is associative, graded commutative with respect to the degree n.

The paper is organized as follows. The first section is a preliminary section. It
is devoted to fix the notation and state the main facts used in the rest of the paper.
It includes general results on homological algebra, diagrams of complexes, cubical
abelian groups and Deligne–Beilinson cohomology. In the second section we recall
the definition of the higher Chow groups of Bloch and introduce the complexes of
differential forms being the source and target of the regulator map. We proceed in
the next section to the definition of the regulator � and we prove that it agrees with
Beilinson’s regulator. In Sections 4 and 5, we develop the theory of higher arithmetic
Chow groups. Section 4 is devoted to the definition and basic properties of the higher
arithmetic Chow groups and to the comparison with the arithmetic Chow group for
n D 0. Finally, in Section 5 we define the product structure on cCH�.X;�/ and prove
that it is commutative and associative.
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1. Preliminaries

1.1. Notation on (co) chain complexes. We use the standard conventions on (co)
chain complexes. By a (co) chain complex we mean a (co) chain complex over the
category of abelian groups.

The cochain complex associated to a chain complex A� is simply denoted by A�
and the chain complex associated to a cochain complex A� is denoted by A�. The
translation of a cochain complex .A�; dA/ by an integer m is denoted by AŒm��.
Recall that AŒm�n D AmCn and the differential of AŒm�� is .�1/mdA. If .A�; dA/ is
a chain complex, then the translation of A� by an integer m is denoted by AŒm��. In
this case the differential is also .�1/mdA but AŒm�n D An�m.

The simple complex associated to an iterated chain complex A� is denoted by
s.A/� and the analogous notation is used for the simple complex associated to an
iterated cochain complex (see [8] �2 for definitions).

The simple of a cochain map A� f�! B� is the cochain complex .s.f /�; ds/ with
s.f /n D An˚Bn�1, and differential ds.a; b/ D .dAa; f .a/� dBb/. Note that this
complex is the cone of �f shifted by 1. There is an associated long exact sequence

� � � ! H n.s.f /�/! H n.A�/
f�! H n.B�/! H nC1.s.f /�/! � � � (1.1)

If f is surjective, there is a quasi-isomorphism

ker f
i�! s.�f /�; x 7! .x; 0/; (1.2)

and if f is injective, there is a quasi-isomorphism

s.f /Œ1�� ��! B�=A�; .a; b/ 7! Œb�: (1.3)

Analogously, equivalent results and quasi-isomorphisms can be stated for chain com-
plexes.

Following Deligne [10], given a cochain complex A� and an integer n, we denote
by ��nA� the canonical truncation of A� at degree n.
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1.2. The simple of a diagram of complexes. We describe here Beilinson’s ideas
on the simple complexes associated to a diagram of complexes (see [1]). A diagram
of chain complexes is a diagram of the form

D� D
0BBB@

B1
� B2

�
: : : Bn

�

A1
�

�1

��������
A2

�

� 0
1

��������
�2

��������
: : : An

�

�n

��������
A

nC1
�

� 0
n

���������

1CCCA . (1.4)

Consider the induced chain morphisms
nC1M
iD1

Ai�
';'1;'2�����!

nM
iD1

B i�;

'1.ai / D �i .ai / if ai 2 Ai�;

'2.ai / D � 0
i�1.ai / if ai 2 Ai�;

'.ai / D .'1 � '2/.ai / D .�i � � 0
i�1/.ai / if ai 2 Ai�:

(1.5)

(where we set �nC1 D � 0
0 D 0). The simple complex associated to the diagram D�

is defined to be the simple of the morphism ':

s.D/� WD s.'/�: (1.6)

1.3. Morphisms of diagrams. A morphism between two diagrams D� and D 0�
consists of a collection of morphisms

Ai�
hA

i��! A
0i� ; B i�

hB
i��! B

0i� ;

commuting with the morphisms �i and � 0
i , for all i . Any morphism of diagrams

D�
h�! D 0� induces a morphism on the associated simple complexes s.D/�

s.h/��!
s.D 0/�: Observe that if, for every i , hA

i and hB
i are quasi-isomorphisms, then s.h/ is

also a quasi-isomorphism.

1.4. Product structure on the simple of a diagram. Let D� and D 0� be two dia-
grams as 1.4. Consider the diagram obtained by the tensor product of complexes:

.D ˝D 0/� D

0BBBBBB@
B1

� ˝ B
01
� B2

� ˝ B
02
�

: : : Bn
� ˝ B

0n
�

A1
� ˝ A

01
�

�1˝�1

����������
A2

� ˝ A
02
�

� 0
1˝�0

1

��								 �2˝�2

����������
: : : An

� ˝ A
0n
�

�n˝�n

��








A

nC1
� ˝ A

0nC1
�

� 0
n˝�0

n

		���������

1CCCCCCA .

(1.7)
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In [1], Beilinson defined, for every ˇ 2 Z, a morphism

s.D/� ˝ s.D 0/�
?ˇ�! s.D ˝D 0/�

as follows. For a 2 A; a0 2 A0; b 2 B and b0 2 B 0, set

a ?ˇ a0 D a˝ a0;
b ?ˇ a0 D b ˝ ..1 � ˇ/'1.a0/C ˇ'2.a0//;
a ?ˇ b0 D .�1/deg a.ˇ'1.a/C .1 � ˇ/'2.a//˝ b0;
b ?ˇ b0 D 0;

where the tensor product between elements in different spaces is defined to be zero.
If B�, C� are chain complexes, let

� W s.B� ˝ C�/! s.C� ˝ B�/

be the map sending b ˝ c 2 Bn ˝ Cm to .�1/nmc ˝ b 2 Cm ˝ Bn.

Lemma 1.8 (Beilinson). (i) The map ?ˇ is a morphism of complexes.
(ii) For every ˇ; ˇ0 2 Z, ?ˇ is homotopic to ?ˇ 0 .
(iii) There is a commutative diagram

s.D/� ˝ s.D 0/�
?ˇ 



�

��

s.D ˝D 0/�
�

��
s.D 0/� ˝ s.D/�

?1�ˇ 

 s.D 0 ˝D/�:

(iv) The products ?0 and ?1 are associative.

1.5. A specific type of diagrams. In this work we will use diagrams of the following
form:

D� D

0BBB@
B1� B2�

A1�

�1

���������
A2�

� 0
1

�


�������

�2

���������

1CCCA ; (1.9)

with � 0
1 a quasi-isomorphism. For this type of diagrams, since � 0

1 is a quasi-isomor-
phism, we obtain a long exact sequence equivalent to the long exact sequence related
to the simple of a morphism. Since a diagram like this induces a map A1� �! B2� in
the derived category, we obtain

Lemma 1.10. Let D� be a diagram like (1.9). Then there is a well-defined morphism

Hn.A1�/
��! Hn.B2�/; Œa1� 7! �2.� 0

1/�1�1Œa1�:
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Moreover, there is a long exact sequence

� � � ! Hn.s.D/�/! Hn.A1�/
��! Hn.B2�/! Hn�1.s.D/�/! � � � (1.11)

Consider now a diagram of the form

D� D

0BBB@
B1� B2�

A1�

�1

���������
A2�

� 0
1

�


�������

�2

���������
A3�




� 0
2



�������

1CCCA ; (1.12)

with � 0
1 a quasi-isomorphism and � 0

2 a monomorphism.

Lemma 1.13. Let D be a diagram as (1.12) and let D 0 be the diagram

D 0� D

0BBB@
B1� B2�=A3�

A1�

�1

���������
A2�

� 0
1

�


�������

�2

��










1CCCA ; (1.14)

Then there is a quasi-isomorphism between the simple complexes associated to D

and to D 0:
s.D/�

��! s.D 0/�:

Proof. It follows directly from the definition that the simple complex associated to
D� is quasi-isomorphic to the simple associated to the diagram

D 00� D

0BBBB@
B1� s.A3�

� 0
2�! B2�/Œ1�

A1�

�1

����������
A2�:

� 0
1

�

		��������

�2

������������

1CCCCA ; (1.15)

Then the quasi-isomorphism given in (1.3) induces a quasi-isomorphism

s.D 0/�
��! s.D 00/�

as desired. �

Corollary 1.16. For any diagram of the form (1.12), there is a long exact sequence

� � � ! Hn.s.D/�/! Hn.A1�/
��! Hn�1.s.� 0

2//! Hn�1.s.D/�/! � � � : (1.17)

Proof. It follows from the previous lemma together with Proposition 1.10. �
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1.6. Cubical abelian groups and chain complexes. Let C� D fCngn�0 be a cubical
abelian group with face maps ı

j
i W Cn ! Cn�1, for i D 1; : : : ; n and j D 0; 1, and

degeneracy maps �i W Cn ! CnC1, for i D 1; : : : ; n C 1. Let Dn � Cn be the
subgroup of degenerate elements of Cn, and let zCn D Cn=Dn.

Let C� denote the associated chain complex, that is, the chain complex whose n-th
graded piece is Cn and whose differential is given by ı DPn

iD1

P
j D0;1.�1/iCj ı

j
i :

Thus D� is a subcomplex and zC� is a quotient complex. We fix the normalized chain
complex associated to C�, NC�, to be the chain complex whose n-th graded group
is NCn WD Tn

iD1 ker ı1
i ; and whose differential is ı D Pn

iD1.�1/iı0
i : It is well-

known that there is a decomposition of chain complexes C� Š NC�˚D� giving an
isomorphism NC� Š zC�:

For certain cubical abelian groups, the normalized chain complex can be further
simplified, up to homotopy equivalence, by considering the elements which belong
to the kernel of all faces but ı0

1 .

Definition 1.18. Let C� be a cubical abelian group. Let N0C� be the complex defined
by

N0Cn D
n\

iD1

ker ı1
i \

n\
iD2

ker ı0
i ; and differential ı D �ı0

1 : (1.19)

The proof of the next proposition is analogous to the proof of Theorem 4.4.2 in
[2]. The result is proved there only for the cubical abelian group defining the higher
Chow complex (see �2.1 below). We give here the abstract version of the statement,
valid for a certain type of cubical abelian groups.

Proposition 1.20. Let C� be a cubical abelian group. Assume that it comes equipped
with a collection of maps

hj W Cn ! CnC1; j D 1; : : : ; n;

such that, for any l D 0; 1, the following identities are satisfied:

ı1
j hj D ı1

j C1hj D sj ı1
j ;

ı0
j hj D ı0

j C1hj D id;

ıl
i hj D

´
hj �1ıl

i ; i < j;

hj ıl
i�1; i > j C 1:

(1.21)

Then the inclusion of complexes

i W N0C� ,! NC�

is a homotopy equivalence.
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Proof. Let gj W NCn ! NCnC1 be defined as gj D .�1/n�j hn�j if 0 � j � n� 1

and gj D 0 otherwise. Then there is a well-defined morphism of chain complexes

Hj D .IdCıgj C gj ı/ W NC� ! NC�:

This morphism is homotopically equivalent to the identity.
Let x 2 NCn and 0 � j � n � 1. Then

ıhn�j .x/ D
nC1X
iD1

.�1/iı0
i hn�j .x/

D
n�j �1X

iD1

.�1/ihn�j �1ı0
i .x/C

nC1X
iDn�j C2

.�1/ihn�j ı0
i�1.x/;

hn�j �1ı.x/ D
nX

iD1

.�1/ihn�j �1ı0
i .x/:

Hence,

ıgj .x/C gj ı.x/

D .�1/n�j

nX
iDn�j C1

.�1/i�1hn�j ı0
i .x/C .�1/n�j �1

nX
iDn�j

.�1/ihn�j �1ı0
i .x/:

We consider the decreasing filtration G� of NC�, given by

Gj NCn D fx 2 NCn j ı0
i .x/ D 0; i > max.n � j; 1/g: (1.22)

Then G0NC� D NC� and for j � n � 1, Gj NCn D N0Cn. If x 2 Gj C1NC�,
then ıgj .x/ C gj ı.x/ D 0 and thus, Hj .x/ D x. Moreover, if x 2 Gj NC�, then
Hj .x/ 2 Gj C1NC�. Thus, Hj is the projector from Gj NC� to Gj C1NC�.

Thus, the morphism ' W NC� ! N0C� given, on NCn, by ' WD Hn�2 B � � � BH0

forms a chain morphism homotopically equivalent to the identity. Moreover ' is the
projector from NC� to N0C�. Hence, ' B i is the identity of N0C� while i B ' is
homotopically equivalent to the identity of NC�. �

Remark 1.23. To every cubical abelian group C� there are associated four chain
complexes: C�, NC�, N0C� and zC�. In some situations it will be necessary to
consider the cochain complexes associated to these chain complexes. In this case we
will write, respectively, C �, NC �, N0C � and zC �:

1.7. Cubical cochain complexes. Let X�
� be a cubical cochain complex. Then, for

every m, the cochain complexes NX�
m; N0X�

m and zX�
m are defined.
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Proposition 1.24. Let X�
� , Y �

� be two cubical cochain complexes and let f W X�
� !

Y �
� be a morphism. Assume that for every m, the cochain morphism

X�
m

fm��! Y �
m

is a quasi-isomorphism. Then the induced morphisms

NX�
m

fm��! N Y �
m and zC �

m

fm��! zY �
m

are quasi-isomorphisms.

Proof. The proposition follows from the decompositions

H r.X�
m/ D H r.NX�

m/˚H r.DX�
m/ and H r.Y �

m/ D H r.N Y �
m/˚H r.DY �

m/;

and the fact that fm induces cochain maps

NX�
m

fm��! N Y �
m and DX�

m

fm��! DY �
m: �

Proposition 1.25. Let X�
� be a cubical cochain complex. Then the natural morphism

H r.NX�
n /

f�! NH r.X�
n /

is an isomorphism for all n � 0.

Proof. The cohomology groups H r.X�
� / have a cubical abelian group structure.

Hence there is a decomposition

H r.X�
� / D NH r.X�

� /˚DH r.X�
� /:

In addition, there is a decomposition X�
n D NX�

n ˚DX�
n : Therefore

H r.X�
� / D H r.NX�

� /˚H r.DX�
� /:

The lemma follows from the fact that the identity morphism in H r.X�
� / maps

NH r.X�
� / to H r.NX�

� / and DH r.X�
� / to H r.DX�

� /: �

1.8. Deligne–Beilinson cohomology. In this paper we use the definitions and con-
ventions on Deligne–Beilinson cohomology given in [5] and [8], chapter 5.

One denotes R.p/ D .2�i/p � R � C. Let X be a complex algebraic manifold
and denote by E�

log;R.X/.p/ the complex of real differential forms with logarith-
mic singularities along infinity, twisted by p. Let .D�

log.X; p/; dD/ be the Deligne
complex of differential forms with logarithmic singularities, as described in [5]. It
computes real Deligne–Beilinson cohomology of X , that is,

H n.D�
log.X; p// D H n

D.X; R.p//:
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This complex is functorial on X .
The product structure in Deligne–Beilinson cohomology can be described by a

cochain morphism on the Deligne complex (see [5]):

Dn
log.X; p/˝Dm

log.X; q/
���! DnCm

log .X; p C q/;

x ˝ y 7�! x 	 y:

This product satisfies the expected relations:

(1) Graded commutativity: x 	 y D .�1/nmy 	 x:

(2) Leibniz rule: dD.x 	 y/ D dDx 	 y C .�1/nx 	 dDy:

Proposition 1.26. The Deligne product 	 is associative up to a natural homotopy,
i.e. there exists

h W Dr
log.X; p/˝Ds

log.X; q/˝D t
log.X; l/! DrCsCt

log .X; p C q C l/

such that

dDh.!1 ˝ !2 ˝ !3/C hdD.!1 ˝ !2 ˝ !3/ D .!1 	 !2/ 	 !3 � !1 	 .!2 	 !3/:

Furthermore, if !1 2 D
2p
log .X; p/, !2 2 D

2q
log .X; q/ and !3 2 D2l

log.X; l/ satisfy
dD!i D 0 for all i , then

h.!1 ˝ !2 ˝ !3/ D 0: (1.27)

Proof. This is [5], Theorem 3.3. �

1.9. Cohomology with supports. Let Z be a closed subvariety of a complex alge-
braic manifold X . Consider the complex D�

log.X n Z; p/; i.e. the Deligne complex
of differential forms in X nZ with logarithmic singularities along Z and infinity.

Definition 1.28. The Deligne complex with supports in Z is defined to be

D�
log;Z.X; p/ D s.D�

log.X; p/! D�
log.X nZ; p//:

The Deligne–Beilinson cohomology with supports in Z is defined as the cohomology
groups of the Deligne complex with supports in Z:

H n
D;Z.X; R.p// WD H n.D�

log;Z.X; p//:

Lemma 1.29. Let Z; W be two closed subvarieties of a complex algebraic manifold
X . Then there is a short exact sequence of Deligne complexes,

0! D�
log.X nZ \W; p/

i�! D�
log.X nZ; p/˚D�

log.X nW; p/

j��! D�
log.X nZ [W; p/! 0;

where i.˛/ D .˛; ˛/ and j.˛; ˇ/ D �˛ C ˇ.



534 J. I. Burgos Gil and E. Feliu CMH

Proof. It follows from [7], Theorem 3.6. �

In addition, Deligne–Beilinson cohomology with supports satisfies a semipurity
property. Namely, let Z be a codimension p subvariety of an equidimensional com-
plex manifold X , and let Z1; : : : ; Zr be its codimension p irreducible components.
Then

H n
D;Z.X; R.p// D

´
0; n < 2p;Lr

iD1 RŒZi �; n D 2p:
(1.30)

For the next proposition, let ıZ denote the current integration along an irreducible
variety Z. In the sequel we will use the conventions of [8] §5.4 with respect to the
current associated to a locally integrable form and to the current ıZ .

Proposition 1.31. Let X be an equidimensional complex algebraic manifold and
Z a codimension p irreducible subvariety of X . Let j W X ! xX be a smooth
compactification of X (with a normal crossing divisor as its complement) and xZ the
closure of Z in xX . The isomorphism

cl W RŒZ�
Š�! H

2p

D;Z
.X; R.p//

sends ŒZ� to Œ.j �w; j �g/�, for any Œ.w; g/� 2 H
2p

D; xZ. xX; R.p// satisfying the relation

of currents in xX
� 2@N@Œg� D Œw� � ı xZ : (1.32)

Proof. See [8], Proposition 5.58. �

In particular, assume that Z D div.f / is a principal divisor, where f is a rational
function on X . Then ŒZ� is represented by the couple

.0;�1
2

log.f Nf // 2 H
2p

D;Z
.X; R.p//:

The definition of the cohomology with support in a subvariety can be extended
to the definition of the cohomology with support in a set of subvarieties of X . We
explain here the case used in the sequel. Let Zp be a subset of the set of codimension
p closed subvarieties of X , that is closed under finite unions. The inclusion of subsets
turns Zp into a directed ordered set. We define the complex

D�
log.X nZp; p/ WD lim!

Z2Zp

D�
log.X nZ; p/; (1.33)

which is provided with an injective map

D�
log.X; p/

i�! D�
log.X nZp; p/:



Vol. 87 (2012) Higher arithmetic Chow groups 535

As above, we define
D�

log;Zp .X; p/ WD s.i/�

and the Deligne–Beilinson cohomology with supports in Zp as

H n
D;Zp .X; R.p// WD H n.D�

log;Zp .X; p//:

1.10. Real varieties. A real variety X consists of a couple .XC; F1/, with XC a
complex algebraic manifold and F1 an antilinear involution of XC .

If X D .XC; F1/ is a real variety, we will denote by � the involution of
Dn

log.XC; p/ given by

�.	/ D F �1	:

Then the real Deligne–Beilinson cohomology of X is defined by

H n
D.X; R.p// WD H n

D.XC; R.p//� ;

where the superscript � means the fixed part under � .
The real cohomology of X is expressed as the cohomology of the real Deligne

complex
Dn

log.X; p/ WD Dn
log.XC; p/� ;

i.e. there is an isomorphism

H n
D.X; R.p// Š H n.Dn

log.X; p/; dD/:

1.11. Truncated Deligne complex. In the rest of the work, we will consider the
Deligne complex (canonically) truncated at degree 2p. For simplicity we will denote
it by

�D�
log.X; p/ D ��2pD�

log.X; p/:

The truncated Deligne complex with supports in a variety Z is denoted by
�D�

log;Z.X; p/ D ��2pD�
log;Z.X; p/ and the truncated Deligne complex with sup-

ports in Zp is denoted by �D�
log;Zp .X; p/ D ��2pD�

log;Zp .X; p/.
Note that, since the truncation is not an exact functor, it is not true that

�D�
log;Zp .X; p/ is the simple complex of the map �D�

log.X; p/! �D�
log.X nZp; p/.

2. Differential forms and higher Chow groups

In this section we construct a complex of differential forms which is quasi-isomorphic
to the complex Zp.X;�/0 ˝ R. This last complex computes the higher algebraic
Chow groups introduced by Bloch in [3] with real coefficients. The key point of this
construction is the set of isomorphisms given in (1.30).
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This complex is very similar to the complex introduced by Bloch in [4] in order
to construct the cycle map for the higher Chow groups. In both constructions one
considers a 2-iterated complex of differential forms on a cubical or simplicial scheme.
Since this leads to a second quadrant spectral sequence, to avoid convergence prob-
lems, one has to truncate the complexes involved. The main difference between both
constructions is the direction of the truncation. We truncate the 2-iterated complex at
the degree given by the differential forms, while in loc. cit. the complex is truncated
at the degree given by the simplicial scheme.

2.1. The cubical Bloch complex. We recall here the definition and main properties
of the higher Chow groups defined by Bloch in [3]. Initially, they were defined
using the chain complex associated to a simplicial abelian group. However, since
we are interested in the product structure, it is more convenient to use the cubical
presentation, as given by Levine in [19].

Fix a base field k and let P 1 be the projective line over k. Let � D P 1nf1g.Š A1/:

The cartesian product .P 1/� has a cocubical scheme structure. For i D 1; : : : ; n, we
denote by ti 2 .k [ f1g/ n f1g the absolute coordinate of the i -th factor. Then the
coface and codegeneracy maps are defined as

ıi
0.t1; : : : ; tn/ D .t1; : : : ; ti�1; 0; ti ; : : : ; tn/;

ıi
1.t1; : : : ; tn/ D .t1; : : : ; ti�1;1; ti ; : : : ; tn/;

� i .t1; : : : ; tn/ D .t1; : : : ; ti�1; tiC1; : : : ; tn/:

Then �� inherits a cocubical scheme structure from that of .P 1/�. An r-dimensional
face of �n is any subscheme of the form ı

i1
j1
� � � ıir

jr
.�n�r/.

We have chosen to represent A1 as P 1 n f1g so that the face maps are represented
by the inclusion at zero and the inclusion at infinity. In this way the cubical structure
of �� is compatible with the cubical structure of .P 1/� in [9]. In the literature the usual
representation A1 D P 1 n f1g is often used. We will translate from one definition
to the other by using the involution

x 7�! x

x � 1
: (2.1)

This involution has the fixed points f0; 2g and interchanges the points 1 and1.
Let X be an equidimensional quasi-projective variety of dimension d over the

field k. Let Zp.X; n/ be the free abelian group generated by the codimension p

closed irreducible subvarieties of X ��n, which intersect properly all the faces of
�n. The pull-back by the coface and codegeneracy maps of �� endow Zp.X; �/ with
a cubical abelian group structure. Let .Zp.X;�/; ı/ be the associated chain complex
(see �1.6) and consider the normalized chain complex associated to Zp.X;�/,

Zp.X; n/0 WD NZp.X; n/ D
n\

iD1

ker ı1
i :
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Definition 2.2. Let X be a quasi-projective equidimensional variety over a field k.
The higher Chow groups defined by Bloch are

CHp.X; n/ WD Hn.Zp.X;�/0/:

Let N0 be the refined normalized complex of Definition (1.18). Let Zp.X;�/00

be the complex with

Zp.X; n/00 WD N0Zp.X; n/ D
n\

iD1

ker ı1
i \

n\
iD2

ker ı0
i :

Fix n � 0. For every j D 1; : : : ; n, we define a map

�nC1 hj

��! �n;

.t1; : : : ; tnC1/ 7�! .t1; : : : ; tj �1; 1 � .tj � 1/.tj C1 � 1/; tj C2; : : : ; tnC1/:
(2.3)

The refined normalized complex of [2] §4.4 is given by considering the elements in
the kernel of all faces but ı1

1 , instead of ı0
1 like here. Taking this into account, together

with the involution (2.1), the map hj agrees with the map denoted by hn�j in [2]
§4.4. Therefore, the maps hj are smooth, hence flat, so they induce pull-back maps

hj W Zp.X; n/ �! Zp.X; nC 1/; j D 1; : : : ; nC 1; (2.4)

that satisfy the conditions of Proposition 1.20. Therefore the inclusion

Zp.X; n/00 WD N0Zp.X; n/! Zp.X; n/0

is a homotopy equivalence (see [2] §4.4).

2.2. Functoriality. It follows easily from the definition that the complex Zp.X;�/0

is covariant with respect to proper maps (with a shift in the grading) and contravariant
for flat maps.

Let f W X ! Y be an arbitrary map between two smooth varieties X , Y . Let
Z

p

f
.Y; n/0 � Zp.Y; n/0 be the subgroup generated by the codimension p irreducible

subvarieties Z � Y ��n, intersecting properly the faces of �n and such that the pull-
back X�Z intersects properly the graph of f , 
f . Then Z

p

f
.Y;�/0 is a chain complex

and the inclusion of complexes Z
p

f
.Y;�/0 
 Zp.Y;�/0 is a quasi-isomorphism.

Moreover, the pull-back by f is defined for algebraic cycles in Z
p

f
.Y;�/0 and hence

there is a well-defined pull-back morphism

CHp.Y; n/
f �

��! CHp.X; n/:

A proof of this fact can be found in [20], �3.5. See also [18].
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2.3. Product structure. Let X and Y be quasi-projective smooth varieties over k.
Then there is a chain morphism

s.Zp.X;�/0 ˝Zq.Y;�/0/
[�! ZpCq.X � Y;�/0

inducing exterior products

CHp.X; n/˝ CHq.Y; m/
[�! CHpCq.X � Y; nCm/:

More concretely, let Z be a codimension p irreducible subvariety of X � �n,
intersecting properly the faces of �n and let W be a codimension q irreducible
subvariety of Y ��m, intersecting properly the faces of �m. Then the codimension
p C q subvariety

Z �W 
 X ��n � Y ��m Š X � Y ��n ��m Š X � Y ��nCm;

intersects properly the faces of �nCm. By linearity, we obtain a morphism

Zp.X; n/˝Zq.Y; m/
[�! ZpCq.X � Y; nCm/:

It induces a chain morphism on the normalized complexes

s.Zp.X;�/0 ˝Zq.Y;�/0/
[�! ZpCq.X � Y;�/0;

and hence there is an external product

[W CHp.X; n/˝ CHq.Y; m/! CHpCq.X � Y; nCm/; (2.5)

for all p, q, n, m.
If X is smooth, then the pull-back by the diagonal map � W X ! X�X is defined

on the higher Chow groups, CHp.X � X;�/ ��

��! CHp.X;�/: Therefore, for all p,
q, n, m, we obtain an internal product

[W CHp.X; n/˝ CHq.X; m/! CHpCq.X �X; nCm/
��

��! CHpCq.X; nCm/:

(2.6)
In the derived category of chain complexes, the internal product is given by the
morphism

s.Zp.X;�/0 ˝Zq.X;�/0/
[ 

 ZpCq.X �X;�/0

Z
pCq
� .X �X;�/0

�
��

��


 ZpCq.X;�/0:

Proposition 2.7. Let X be a quasi-projective smooth variety over k. The pairing
(2.6) defines an associative product on CH�.X;�/ DL

p;n CHp.X; n/. This product
is graded commutative with respect to the degree given by n.

Proof. See [19], Theorem 5.2. �
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2.4. Differential forms and affine lines. For every n; p � 0, let �D�
log.X ��n; p/

be the truncated Deligne complex of differential forms in X ��n, with logarithmic
singularities at infinity. The structural maps of the cocubical scheme �� induce a
cubical structure on �Dr

log.X ���; p/ for every r and p.
Consider the 2-iterated cochain complex

D
r;�n
A .X; p/ D �Dr

log.X ��n; p/;

with differential .dD ; ı DPn
iD1.�1/i .ı0

i � ı1
i //. Let

D�
A.X; p/ D s.D

�;�
A .X; p//

be the associated simple complex. Hence its differential ds in D�
A.X; p/ is given,

for every ˛ 2 D
r;�n
A .X; p/, by ds.˛/ D dD.˛/ C .�1/rı.˛/. Since we are using

cubical structures, this complex does not compute the right cohomology and we have
to normalize it.

For every r , n we write

D
r;�n
A .X; p/0 D �Dr

log.X ��n; p/0 WD N�Dr
log.X ��n; p/:

Therefore D
�;�
A .X; p/0 is the normalized 2-iterated complex and we denote by

D�
A.X; p/0 the associated simple complex.

Proposition 2.8. The natural morphism of complexes

�D�
log.X; p/ D D

�;0
A .X; p/0 ! D�

A.X; p/0

is a quasi-isomorphism.

Proof. Consider the second quadrant spectral sequence with E1 term given by

E
r;�n
1 D H r.D

�;�n
A .X; p/0/:

Since
D

r;�n
A .X; p/0 D 0; for r < 0 or r > 2p,

this spectral sequence converges to the cohomology groups H �.D�
A.X; p/0/. This

is the main reason why we use the truncated complexes.
If we see that, for all n > 0, the cohomology of the complex D

�;�n
A .X; p/0 is zero,

the spectral sequence degenerates and the proposition is proved. By the homotopy
invariance of Deligne–Beilinson cohomology, there is an isomorphism

ı1
1 B � � � B ı1

1 W H �.�D�
log.X ��n; p//! H �.�D�

log.X; p//:

By definition, the image of H �.�D�
log.X � �n; p/0/ by this isomorphism is zero.

Since H �.�D�
log.X � �n; p/0/ is a direct summand of H �.�D�

log.X � �n; p//, it
vanishes for all n > 0. �
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We define the complex D�
A.X; p/00 to be the simple complex associated to the

2-iterated complex with

D
r;�n
A .X; p/00 D N0�Dr

log.X ��n; p/:

Corollary 2.9. The natural morphism of complexes

�D�
log.X; p/ D D

�;0
A .X; p/00 ! D�

A.X; p/00

is a quasi-isomorphism.

Proof. It follows from Proposition 2.8, Proposition 1.20 (using as maps fhj g the ones
induced by the maps hj defined in 2.3) and Proposition 1.24. �

2.5. A complex with differential forms for the higher Chow groups. Let Z
p
n;X

be the set of all codimension p closed subvarieties of X ��n intersecting properly
the faces of �n. We consider it as a set ordered by the inclusion relation. When there
is no source of confusion, we simply write Z

p
n or even Zp . Consider the cubical

abelian group
H p.X;�/ WD H

2p

D;Z
p
�

.X ���; R.p//; (2.10)

with faces and degeneracies induced by those of ��. Let H p.X;�/0 be the associated
normalized complex.

Lemma 2.11. Let X be a complex algebraic manifold. For every p � 0, there is an
isomorphism of chain complexes

�1 W Zp.X;�/0 ˝R
Š�! H p.X;�/0;

sending z to cl.z/.

Proof. It follows from the isomorphism (1.30). �

Remark 2.12. Observe that the complex H p.X;�/0 has the same functorial prop-
erties as Zp.X;�/0 ˝R.

Let D
�;�
A;Zp .X; p/0 be the 2-iterated cochain complex, whose component of bide-

gree .r;�n/ is

�Dr
log;Z

p
n

.X ��n; p/0 D N�Dr
log;Z

p
n

.X ��n; p/ D N��2pDr
log;Z

p
n

.X ��n; p/;

and whose differentials are .dD ; ı/. As usual, we denote by D�
A;Zp .X; p/0 the

associated simple complex and by ds its differential.
Let D

2p��
A;Zp .X; p/0 be the chain complex whose n-graded piece is D

2p�n

A;Zp .X; p/0.
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Proposition 2.13. For every p � 0, the family of morphisms

D
2p�n

A;Zp .X; p/0

� 0
1��! H p.X; n/0;

..!n; gn/; : : : ; .!0; g0// 7�! Œ.!n; gn/�

defines a quasi-isomorphism of chain complexes between D
2p��
A;Zp .X; p/0 and

H p.X;�/0.

Proof. The map is well defined because .!n; gn/ 2 �D
2p

log;Z
p
n

.X ��n; p/0. There-

fore, by definition of the truncated complex .!n; gn/ is closed. To see that it is a
morphism of complexes we compute

� 0
1ds..!n; gn/; : : : ; .!0; g0// D � 0

1..�1/2pı.!n; gn/C dD.!n�1; gn�1/; : : : /

D Œı.!n; gn/C dD.!n�1; gn�1/� D ıŒ.!n; gn/�:

Now we consider the second quadrant spectral sequence with E1-term

E
�n;r
1 D H r.�D�

log;Zp .X ��n; p/0/:

By construction, E
�n;r
1 D 0 for all r > 2p. Moreover, for all r < 2p and for all n,

the semipurity property of Deligne–Beilinson cohomology implies that

H r.�D�
log;Zp .X ��n; p// D 0: (2.14)

Hence, by Proposition 1.24, the same is true for the normalized chain complex

H r.�D�
log;Zp .X ��n; p/0/ D 0; r < 2p:

Therefore, the E1-term of the spectral sequence is

E
�n;r
1 D

´
0 if r ¤ 2p;

H 2p.�D�
log;Zp .X ��n; p/0/ if r D 2p:

Finally, from Proposition 1.25, it follows that the natural map

H 2p.�D�
log;Zp .X ��n; p/0/! H p.X; n/0

is an isomorphism. Using the explicit description of the spectral sequence associated
to a double complex, it is clear that the morphism induced in cohomology by � 0

1

agrees with the morphism induced by the spectral sequence. Hence the proposition
is proved. �

We denote
CHp.X; n/R D CHp.X; n/˝R:
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Corollary 2.15. Let z 2 CHp.X; n/R be the class of an algebraic cycle z in X ��n.
By the isomorphisms of Lemma 2.11 and Proposition 2.13, the algebraic cycle z is
represented, in H 2p�n.DA;Zp .X; p/0/, by any cycle

..!n; gn/; : : : ; .!0; g0// 2 D
2p�n

A;Zp .X; p/0

such that
cl.z/ D Œ.!n; gn/�:

Remark 2.16. Our construction differs from the construction given by Bloch in [4]
in two points:

� He considered the 2-iterated complex of differential forms on the simplicial
scheme An, instead of the differential forms on the cubical scheme �n.

� In order to ensure the convergence of the spectral sequence in the proof of last
proposition, he truncated the 2-iterated complex in the direction given by the
affine schemes.

2.6. Functoriality of D�
A;Zp .X; p/0. In many ways, the complex D�

A;Zp .X; p/0

behaves like the complex Z�.X;�/0.

Lemma 2.17. Let f W X ! Y be a flat map between two equidimensional complex
algebraic manifolds. Then there is a pull-back map

f � W D�
A;Zp .Y; p/0 ! D�

A;Zp .X; p/0:

Proof. We will see that in fact there is a map of iterated complexes

f � W Dr;�n
A;Zp .Y; p/! D

r;�n
A;Zp .X; p/:

Let Z be a codimension p subvariety of Y ��n intersecting properly the faces of �n.
Since f is flat, there is a well-defined cycle f �.Z/. It is a codimension p cycle of
X ��n intersecting properly the faces of �n, and whose support is f �1.Z/. Then,
by [14], 1.3.3, the pull-back of differential forms gives a morphism

�D�
log.Y ��n nZ; p/

f �

��! �D�
log.X ��n n f �1.Z/; p/:

Hence, there is an induced morphism

�D�
log.Y ��n nZ

p
Y ; p/

f �

��! lim!
Z2Z

p
Y

�D�
log.X ��n n f �1.Z/; p/

�! �D�
log.X ��n nZ

p
X ; p/;

and thus, there is a pull-back morphism

f � W D�;�n
A;Zp .Y; p/! D

�;�n
A;Zp .X; p/

compatible with the differential ı. �
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Remark 2.18. The pull-back defined here agrees with the pull-back defined by Bloch
under the isomorphisms of Lemma 2.11 and Proposition 2.13. Indeed, let f W X ! Y

be a flat map. Then, if Z is an irreducible subvariety of Y and .!; g/ a couple
representing the class of ŒZ� in the Deligne–Beilinson cohomology with support, then
the couple .f �!; f �g/ represents the class of Œf �.Z/� (see [14], Theorem 3.6.1).

Proposition 2.19. Let f W X ! Y be a morphism of equidimensional complex
algebraic manifolds. Let Z

p

f
be the subset consisting of the subvarieties Z of Y ��n

intersecting properly the faces of �n and such that X �Z ��n intersects properly
the graph of f , 
f . Then

(i) the complex D�
A;Z

p

f

.Y; p/0 is quasi-isomorphic to D�
A;Zp .Y; p/0;

(ii) there is a well-defined pull-back

f � W D�
A;Z

p

f

.Y; p/0 ! D�
A;Zp .X; p/0:

Proof. Arguing as in the proof of the previous proposition, there is a pull-back map

f � W �D�
log.Y ��n nZ

p

f
; p/

f �

��! �D�
log.X ��n nZp; p/;

inducing a morphism

f � W D�
A;Z

p

f

.Y; p/! D�
A;Zp .X; p/;

and hence a morphism

f � W D�
A;Z

p

f

.Y; p/0 ! D�
A;Zp .X; p/0:

All that remains to be shown is that the inclusion

D�
A;Z

p

f

.Y; p/0
i�! D�

A;Zp .Y; p/0

is a quasi-isomorphism. By the quasi-isomorphism mentioned in Paragraph 2.2 and
the quasi-isomorphism of Proposition 2.13, there is a commutative diagram

Z
p

f
.Y;�/0 ˝R 



�
��

D�
A;Z

p

f

.Y; p/0

i

��
Zp.Y;�/0 ˝R

� 

 D�
A;Zp .Y; p/0:

The proof that the upper horizontal arrow is a quasi-isomorphism is analogous to the
proof of Proposition 2.13. Thus, we deduce that i is a quasi-isomorphism. �
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3. Algebraic cycles and the Beilinson regulator

In this section we define a chain morphism, in the derived category of chain complexes,
that induces in homology the Beilinson regulator.

The construction is analogous to the definition of the cycle class map given by
Bloch in [4], with the minor modifications mentioned in 2.16. However, in [4]
there is no proof of the fact that the composition of the isomorphism Kn.X/Q ŠL

p�0 CHp.X; n/Q with the cycle class map agrees with the Beilinson regulator.

3.1. Definition of the regulator. Consider the map of iterated cochain complexes
defined by the projection onto the first factor

D
r;�n
A;Zp .X; p/

D ��2ps.D�
log.X ��n; p/! D�

log.X ��n nZp; p//r ���! �Dr
log.X ��n; p/;

.!; g/ 7�! !:

It induces a cochain morphism

D�
A;Zp .X; p/0

��! D�
A.X; p/0;

and hence a chain morphism

D
2p��
A;Zp .X; p/0

��! D
2p��
A .X; p/0: (3.1)

The morphism induced by � in homology, together with the isomorphisms of Propo-
sitions 2.8, 2.11 and 2.13, induce a morphism

� W CHp.X; n/! CHp.X; n/R ! H
2p�n

D
.X; R.p//: (3.2)

By abuse of notation, it will also be denoted by �.
By Corollary 2.15, we deduce that, if z 2 Zp.X; n/0, then

�.z/ D .!n; : : : ; !0/;

for any cycle ..!n; gn/; : : : ; .!0; g0// 2 D
2p�n

A;Zp .X; p/0 such that Œ.!n; gn/� D cl.z/.

Proposition 3.3. (i) The morphism � W D
2p��
A;Zp .X; p/0 ! D

2p��
A .X; p/0 is con-

travariant for flat maps.
(ii) The induced morphism � W CHp.X; n/! H

2p�n

D
.X; R.p// is contravariant

for arbitrary maps.

Proof. Both assertions are obvious. Let

z D ..!n; gn/; : : : ; .!0; g0// 2 D
2p�n

A;Zp .X; p/0
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be a cycle such that its inverse image by f is defined. This is the case when f is flat
or when z belongs to D

2p��
A;Z

p

f

.X; p/0. In both cases

f �..!n; gn/; : : : ; .!0; g0// D ..f �!n; f �gn/; : : : ; .f �!0; f �g0//

and the claim follows. �

Remark 3.4. Let X be an equidimensional compact complex algebraic manifold.
Observe that, by definition, the morphism

� W CHp.X; 0/ D CHp.X/! H
2p

D
.X; R.p//

agrees with the cycle class map cl.
Now let E be a vector bundle of rank n over X . For every p D 1; : : : ; n, there

exists a characteristic class C CH
p .E/ 2 CHp.X/ (see [17]) and a characteristic class

C D
p .E/ 2 H

2p

D
.X; R.p//, called the p-th Chern class of the vector bundle E. By

definition, cl.C CH
p .E// D C D

p .E/. Hence,

�.C CH
p .E// D C D

p .E/;

for all p D 1; : : : ; n.

3.2. Comparison with the Beilinson regulator. We prove here that the regulator
defined in (3.2) agrees with the Beilinson regulator.

The comparison is based on the following facts:

� The morphism � is compatible with inverse images.

� The morphism � is defined for quasi-projective schemes.

In view of these properties, it is enough to prove that the two regulators agree when
X is a Grassmanian manifold, which in turn follows from Remark 3.4.

Theorem 3.5. Let X be an equidimensional complex algebraic scheme. Let �0 be
the composition of � with the isomorphism given by the Chern character

�0 W Kn.X/Q
Š�!

M
p�0

CHp.X; n/Q
��!

M
p�0

H
2p�n

D
.X; R.p//:

Then the morphism �0 agrees with the Beilinson regulator.

Proof. The outline of the proof is as follows. We first recall the description of the
Beilinson regulator in terms of homotopy theory of simplicial sheaves as in [15].
Then we recall the construction of the Chern character given by Bloch. We proceed
reducing the comparison of the two maps to the case n D 0 and for X a Grassmanian
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scheme. We finally prove that at this stage both maps agree. Our site will always be
the small Zariski site over X .

Consider X as a smooth quasi-projective variety over C. Let B�GLN be the
simplicial version of the classifying space of the group GLN .C/ viewed as a simplicial
complex manifold. Recall that all the face morphisms are flat. Let B�GLN;X be the
simplicial sheaf over X given by the sheafification of the presheaf

U 7! B�GLN .
.U; OU //

for every Zariski open U 
 X . This is the same as the simplicial sheaf given by

U 7! Hom.U; B�GLN /;

where Hom means the simplicial function complex.
Consider the inclusion morphisms B�GLN;X ! B�GLN C1;X , for all N � 1, and

let
B�GLX D lim! B�GLN;X :

Let Z1B�GLN;X and Z1B�GLX be the sheaves associated to the respective Bous-
field–Kan completions. Finally, let Z be the constant simplicial sheaf on Z and
consider the following sheaves on X

KX D Z � Z1B�GLX ;

KN
X D Z � Z1B�GLN;X :

By [15], Proposition 5, there is a natural isomorphism

Km.X/ Š H �m.X; KX / D lim!
N

H �m.X; KN
X /:

Here H ��.�;�/ denotes the generalized cohomology with coefficients in KX and KN
X ,

as described in [15].
The Beilinson regulator is the Chern character taking values in Deligne–Beilinson

cohomology. The regulator can be described in terms of homotopy theory of sheaves
as follows.

Consider the Dold–Puppe functor K�.�/ (see [12]), which associates to every
cochain complex of abelian groups concentrated in non-positive degrees, G�, a
simplicial abelian group K�.G/, pointed by zero. It satisfies the property that
�i .K�.G/; 0/ D H �i .G�/.

In [13], Gillet constructs Chern classes

C D
p 2 H 2p.B�GLN ; R.p//; N � 0;

which induce morphisms

cD
p;X W KN

X;� !K�.D�
X .�; p/Œ2p�/; N � 0
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in the homotopy category of simplicial sheaves.
These morphisms are compatible with the morphisms KN

X;� ! KN C1
X;� . Therefore,

we obtain a morphism

Km.X/ D lim!
N

H �m.X; KN
X /

C D
p;X���! H

2p�m

D
.X; R.p//:

Using the standard formula for the Chern character in terms of the Chern classes, we
obtain a morphism

Km.X/
chD

���! H
2p�m

D
.X; R.p//;

which is the Beilinson regulator.
TheChern character for higherChowgroups. The description of the isomorphism

Kn.X/Q
Š�! L

p�0 CHp.X; n/Q given by Bloch follows the same pattern as the
description of the Beilinson regulator. However, since the complexes that define the
higher Chow groups are not sheaves (in fact not even functors) on the big Zariski site,
a few modifications are necessary. We give here a sketch of the construction. For
details see [3].

If Y� is a simplicial scheme whose face maps are flat, then there is a well-defined
2-iterated cochain complex Zp.Y�;�/0; whose .n; m/-bigraded group is

Zp.Y�n; m/0;

and induced differentials. The higher algebraic Chow groups of Y� are then defined
as

CHp.Y�; n/ D H n.Zp.Y�;�/0/:

Since the face maps of the simplicial scheme B�GLN are flat it follows that the
group CHp.B�GLN ; n/ is well defined for every p and n.

First, Bloch constructs universal Chern classes

C CH
p 2 CHp.B�GLN ; 0/;

following the ideas of Gillet. These classes are represented by elements

C CH;i
p 2 Zp.Bi GLN ; i/0:

Because at the level of complexes the pull-back morphism is not defined for
arbitrary maps, one cannot consider the pull-back of these classes C

CH;i
p to X , as

was the case for the Beilinson regulator. However, by [3], �7, there exists a purely
transcendental extension L of C, and classes C

CH;i
p defined over L, such that the

pull-back f �C
CH;i

p is defined for every C-morphism f W V ! Bi GLN .
Then there is a map of simplicial Zariski sheaves on X

B�GLN;X !KX .g�Z
p
XL

.�;�/0/;
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where g W XL ! X is the natural map obtained by extension to L.
There is a specialization process described in [3], which, in the homotopy category

of simplicial sheaves over X , gives a well-defined map

KX .g�Z
p
XL

.�;�/0/!KX .Z
p
X .�;�/0/:

Therefore, there are maps C CH
p;X 2 ŒB�GLN;X ; KX .Z�

X .�; p//�, where Œ�; �� denotes
the set of arrows in the homotopy category. Proceeding as above, we obtain the Chern
character morphism

Km.X/!
M
p�0

CHp.X; m/Q:

For m D 0, this is the usual Chern character.
End of the proof. Since, at the level of complexes, � is functorial for flat maps,

there is a sheaf map

� W KX .Z�
X .�; p//!K�.Dlog.X; p//

in the small Zariski site of X .
It follows that the composition � B C CH

p is obtained by the same procedure
as the Beilinson regulator, but starting with the characteristic classes �.C CH

p / 2
H

2p

D
.X; R.p// instead of the classes C D

p . Therefore, it remains to see that

�.C CH
p / D C D

p : (3.6)

For integers N; k � 0 let Gr.N; k/ be the complex Grassmanian scheme of N -
planes in Ck . It is a smooth complex projective scheme. Let EN;k be the rank N

universal bundle of Gr.N; k/ and Uk D .Uk;˛/˛ its standard trivialization. Let N�Uk

denote the nerve of this cover. It is a hypercover of Gr.N; k/, N�Uk

��! Gr.N; k/.
Consider the classifying map of the vector bundle EN;k ,

'k W N�Uk ! B�GLN ;

which satisfies ��.EN;k/ D '�
k
.EN

� /, for EN
� the universal vector bundle over

B�GLN . Observe that all the faces and degeneracy maps of the simplicial scheme
N�Uk are flat, as well as the inclusion maps NlUk ! Gr.N; k/. Thus CHp.N�Uk; m/

is defined and there is a pull-back map

CHp.Gr.N; k/; m/
��

��! CHp.N�Uk; m/:

Since � is defined on N�Uk and is a functorial map, we obtain the following
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commutative diagram:

CHp.B�GLN ; 0/
� 



'�
k

��

H
2p

D
.B�GLN ; R.p//

'�
k

��
CHp.N�Uk; 0/

� 

 H 2p

D
.N�Uk; R.p//

K0.Gr.N; k//
C CH

p 



C D
p

��
CHp.Gr.N; k/; 0/

� 



��

��

H
2p

D
.Gr.N; k/; R.p//.

��

��

By construction, C CH
p .EN;k/ is the standard p-th Chern class in the classical Chow

group of Gr.N; k/, and C D
p .EN;k/ is the p-th Chern class in Deligne–Beilinson

cohomology. It then follows from Remark 3.4 that

�.C CH
p .EN;k// D C D

p .EN;k/: (3.7)

The vector bundle EN;k 2 K0.Gr.N; k// D lim!
M

ŒGr.N; k/; KM
� � is represented,

in the homotopy category of simplicial sheaves, by the diagram

Gr.N; k/
� � N�Uk

'k�! B�GLN ;

where the map � is a weak equivalence of sheaves because N�Uk is a hypercover of
Gr.N; k/. This means that

'�
k .C CH

p .EN
� // D ��.C CH

p .EN;k//: (3.8)

Also, since � is an hypercover, �� is an isomorphism in Deligne–Beilinson coho-
mology. Moreover, for each m0, there exists k0 such that, if m � m0 and k � k0,
'�

k
is an isomorphism on the cohomology group H 2m

D
. ; R.m//. To see this, we

first use the computation of the mixed Hodge structure of the cohomology of the
classifying space given in [11] and the well known mixed Hodge structure of the
cohomology of the Grassmanian manifolds to reduce it to a comparison at the level
of singular cohomology. Then we use that the infinite Grassmanian is homotopically
equivalent to the classifying space. Finally we use the cellular decomposition of the
infinite Grassmanian to compare its cohomology with the cohomology of the finite
Grassmanian (see for instance [22]).

Under these isomorphisms, we obtain the equality

C D
p .EN;k/ D .��/�1'�

k .C D
p .EN

� //: (3.9)
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Hence,

�.C CH
p .EN

� // D C D
p .EN

� / () '�
k �.C CH

p .EN
� // D '�

k C D
p .EN

� /

() �'�
k .C CH

p .EN
� // D '�

k C D
p .EN

� /:

The last equality follows directly from (3.7), (3.8) and (3.9). Therefore, the theorem
is proved. �

4. Higher arithmetic Chow groups

Let X be an arithmetic variety over a field. Using the description of the Beilinson reg-
ulator given in Section 3, we define the higher arithmetic Chow groups, cCHn.X; p/.
The definition is analogous to the definition given by Goncharov, in [16], but using
differential forms instead of currents.

We need to restrict ourselves to arithmetic varieties over a field, because the
theory of higher algebraic Chow groups by Bloch is only well established for schemes
over a field. That is, we can define the higher arithmetic Chow groups for arbitrary
arithmetic varieties, but since the functoriality properties and the product structure
of the higher algebraic Chow groups are described only for schemes over a field,
we cannot give a product structure or define functoriality for the higher arithmetic
Chow groups of arithmetic varieties over a ring. Note however that, using work by
Levine [21], it should be possible to extend the constructions here to smooth varieties
over a Dedekind domain, at least after tensoring with Q. In fact, when extending the
definition to arithmetic varieties over a ring, it might be better to use the point of view
of motivic homology à la Voevodsky or any of its more recent variants.

4.1. Higher arithmetic Chow groups. Following [14], an arithmetic field is a triple
.K; †; F1/, where K is a field, † is a nonempty set of complex immersions K ,! C
and F1 is a conjugate-linear C-algebra automorphism of C† that leaves invariant
the image of K under the diagonal immersion. By an arithmetic variety X over the
arithmetic ring K we mean a regular quasi-projective K-scheme X .

To the arithmetic variety X we associate a complex variety XC D `
�2† X�, and

a real variety XR D .XC; F1/. The Deligne complex of differential forms on X is
defined from the real variety XR as

Dn
log.X; p/ WD Dn

log.XC; p/�Did;

where � is the involution as in Paragraph 1.10. We define analogously the chain
complexes

D
2p��
A .X; p/0; D

2p��
A .X; p/00; D

2p��
A;Zp .X; p/0; and D

2p��
A;Zp .X; p/00:
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Let �1 be the composition

�1 W Zp.X; n/0
˝R��! Zp.X; n/0 ˝R

	F R���! Zp.XR; n/0 ˝R Š H p.X; n/0:

We consider the diagram of complexes of the type of (1.12)

yZp.X;�/0 D

0BBBBB@
H p.X; �/0 D

2p��

A .X; p/0

Zp.X; �/0

�1

�����������
D

2p��

A;Zp .X; p/0

� 0
1

�

�����������
�

�����������
ZD

2p
log .X; p/�

i

�����������

1CCCCCA ,

(4.1)

where ZD
2p
log .X; p/� is the chain complex which is zero in all degrees except in degree

zero, where it consists of the vector subspace of cycles in D
2p
log .X; p/. Note that it

agrees with ZE
p;p
log;R.X/.p/, the subspace of E

p;p
log;R.X/.p/ consisting of differential

forms with logarithmic singularities that are real up to a product by .2�i/p , of type
.p; p/ and that vanish under @ and N@. The morphism i is the inclusion of chain
complexes.

Definition4.2. Thehigher arithmeticChowcomplex is the simple complex associated
to the diagram yZp.X;�/0, as defined in (1.6):

yZp.X;�/0 WD s. yZp.X;�/0/:

Recall that, by definition, yZp.X; n/0 consists of 5-tuples

.Z; ˛0; ˛1; ˛2; ˛3/ 2 Zp.X; n/0 ˚D
2p�n

A;Zp .X; p/0 ˚ZD
2p
log .X; p/n

˚H p.X; nC 1/0 ˚D
2p�n�1
A .X; p/0;

and the differential is given by

yZp.X; n/0
d��! yZp.X; n � 1/0

.Z; ˛0; ˛1; ˛2; ˛3/ 7�! �
ı.Z/; ds.˛0/; 0; �1.Z/ � � 0

1.˛0/ � ı.˛2/;

�.˛0/ � ˛1 � ds.˛3/
�
:

Note that ˛1 will be zero unless n D 0. Its differential, however, is always zero.

Definition 4.3. Let X be an arithmetic variety over an arithmetic field. The .p; n/-th
higher arithmetic Chow group of X is defined by

cCHp.X; n/ WD Hn. yZp.X;�/0/; p; n � 0:
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By its definition as the cohomology of a simple of a diagram of complexes it
comes equipped with the following morphisms

� W cCHp.X; n/ �! CHp.X; n/; �Œ.Z; ˛0; : : : ; ˛3/� D ŒZ�;

a W H 2p�n

D
.X; R.p// �! cCHp.X; n/; a.Œa�/ D Œ.0; 0; 0; 0;�a/�;

a W D2p�1
log .X; p/ �! cCHp.X; 0/; a. Qa/ D Œ.0; 0;�dDa; 0;�a/�;

! W cCHp.X; 0/ �! ZD
2p
log .X; p/; !.Œ.Z; ˛0; : : : ; ˛3/�/ D ˛1:

Proposition 4.4. There is a long exact sequence

� � � ! cCHp.X; n/
��! CHp.X; n/

��! H
2p�n

D
.X; R.p//

a�! cCHp.X; n � 1/! � � �
� � � ! CHp.X; 1/

��! D
2p�1
log .X; p/= im dD

a�! cCHp.X; 0/
��! CHp.X; 0/! 0;

(4.5)

where � is the Beilinson regulator.

Proof. It follows from Theorem 3.5, Lemma 1.16 and the fact that the homology
groups of the complex

s.ZD
2p
log .X; p/�

i�! D
2p��
A .X; p/0/

are H
2p�n

D
.X; R.p// in degree n ¤ 0 and D

2p�1
log .X; p/= im dD in degree 0. �

Remark 4.6. Let yD�;�
A .X; p/0 be the 2-iterated cochain complex given by the quo-

tient D
�;�
A .X; p/0=D2p;0.X; p/. That is, for all r , n,

yDr;�n
A .X; p/0 D

´
0 if r D 2p and n D 0;

D
r;�n
A .X; p/0 otherwise:

Let yD�
A.X; p/0 denote the simple complex associated to yD�;�

A .X; p/0. Consider the
composition of � with the projection map

� W D2p��
A;Zp .X; p/0

��! D
2p��
A .X; p/0 ! yD2p��

A .X; p/0:

Then there is a diagram of chain complexes of the type of (1.9)0BBBBB@
H p.X;�/0

yD2p��

A .X; p/0

Zp.X;�/0

�1

�����������
D2p��

A;Zp .X; p/0

� 0
1

�

�����������
�

�����������

1CCCCCA . .4:7/
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By Proposition 1.13, the simple complex associated to the diagram .4:7/ is quasi-
isomorphic to the complex yZp.X;�/0 and hence, its homology groups are isomorphiccCHp.X;�/. Nevertheless, in order to define a product structure in cCH�.X;�/ it is
better to work with the diagram (4.1).

4.2. Agreement with the arithmetic Chow groups. Let X be an arithmetic variety
and let cCHp.X/ denote the p-th arithmetic Chow group of X as defined by Burgos
in [5]. We recall here its definition.

For every p, let Zp.X/ D Zp.X; 0/ and let ZD
2p
log .X; p/ denote the subgroup

of cycles of D
2p
log .X; p/. Let yZp.X/ denote the set²

.Z; .!; Qg// 2 Zp.X/˚ZD
2p
log .X; p/˚ D

2p�1
log .X n Zp; p/

im dD

ˇ̌̌̌
! D dD Qg;

cl.Z/ D Œ.!; g/�

³
:

If Z 2 Zp.X/, a Green form for Z is a couple .!; Qg/ as before such that cl.Z/ D
Œ.!; g/�; where g is any representative of Qg.

Let Y be a codimension p � 1 subvariety of X and let f 2 k�.Y /. As shown in
[5], �7, there is a canonical Green form attached to div f . It is denoted by g.f / and
it is of the form .0; Qg.f // for some class Qg.f /.

Let bRatp.X/ be the subgroup of yZp.X/ generated by

f.div f; g.f // j f 2 k�.Y /; Y � X a codimension p � 1 subvarietyg:

For every p � 0, the arithmetic Chow group of X is defined by

cCHp.X/ D yZp.X/=bRatp.X/:

It is proved in [14], Theorem 3.3.5 and [5], Theorem 7.3, that these groups fit into
exact sequences

CHp�1;p.X/
��! D

2p�1
log .X; p/= im dD

a�! cCHp.X/
��! CHp.X/! 0

where:

� CHp�1;p.X/ is the term E
p�1;�p
2 in the Quillen spectral sequence (see �7 of

[23]).

� The map � is the cycle class map and is the Beilinson regulator after composition
with the isomorphism K1.X/Q ŠL

p�0 CHp�1;p.X/Q.

� The map � is the projection on the first component.

� The map a sends ˛ to .0; .�dD˛;�˛//.
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Theorem 4.8. The morphism

cCHp.X/
ˆ��! cCHp.X; 0/;

Œ.Z; .!; Qg//� 7�! Œ.Z; .!; g/; 0; 0; 0/�;

where g is any representative of Qg 2 D
2p�1
log .X; p/= im dD , is an isomorphism.

Proof. We first prove that ˆ is well defined. Afterwards, we will prove that the
diagram

CHp�1;p.X/
� 



Š

��

D2p�1
log .X; p/= im dD

a 



D

��

cCHp.X/
� 



ˆ

��

CHp.X/ 



Š

��

0

CHp.X; 1/
� 

 D2p�1

log .X; p/= im dD
a 

 cCHp.X; 0/

� 

 CHp.X; 0/ 

 0

is commutative. The statement then follows from the five lemma.
The proof is a consequence of Lemmas 4.9, 4.10 and 4.11 below.

Lemma 4.9. The map ˆ is well defined.

Proof. We have to prove that

(i) the elements in the image of ˆ are indeed cycles in yZp.X; 0/0;

(ii) the map ˆ does not depend on the choice of a representative of g;

(iii) the map ˆ is zero on bRatp.X/.

Let Œ.Z; .!; Qg//� 2 cCHp.X/. The claim (i) follows from the equality cl.Z/ D
Œ.!; Qg/� D Œ.!; g/�. Indeed, since ds.!; g/ D 0,

d.Z; .!; g/; 0; 0; 0/ D .0; 0; 0; cl.Z/ � cl.!; g/; 0/ D 0:

To see (ii), assume that g1; g2 2 D
2p�1
log .X; p/ are representatives of Qg, i.e. there

exists h 2 D
2p�2
log .X; p/ such that dDh D g1 � g2: Then

d.0; .0; h/; 0; 0; 0/ D .0; .0; g1 � g2/; 0; 0; 0/

D .Z; .!; g1/; 0; 0; 0/ � .Z; .!; g2/; 0; 0; 0/

and therefore we have Œ.Z; .!; g1/; 0; 0; 0/� D Œ.Z; .!; g2/; 0; 0; 0/�:

Finally, to prove (iii), we have to see that, if Y is a codimension p � 1 subvariety
and f 2 k�.Y /, then

ˆ.div f; g.f // D 0 2 cCHp.X; 0/;
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i.e. that
Œ.div f; .0; g.f //; 0; 0; 0/� D 0;

for any fixed representative g.f / of Qg.f /.
Let Of be the function of Y ��1 given by .y; .t1 W t2// 7! t1�t2f .y/

t1�t2
: Its divisor

defines a codimension p subvariety of X � �1. Moreover, it intersects properly
X � .0 W 1/ and X � .1 W 0/. Fix g. Of / to be any representative of Qg. Of /. Since
ı. Qg. Of // D Qg.f /; there exists h 2 D

2p�1
log .Xndiv f; p/ with dDh D ı.g. Of //�g.f /:

Then

d.div Of; .0; g. Of /; .0; h//; 0; 0; 0/ D .div f; .0; g.f //; 0; 0; 0/

as desired. �

Lemma 4.10. There are isomorphisms

CHp.X/
'1��! CHp.X; 0/;

CHp�1;p.X/
'2��! CHp.X; 1/;

making the following diagrams commutative:

CHp�1;p.X/
� 



'2

��

D
2p�1
log .X; p/= im dD

D
��

CHp.X; 1/
� 

 D2p�1

log .X; p/= im dD ,

cCHp.X/
� 



ˆ

��

CHp.X/

'1

��cCHp.X; 0/
� 

 CHp.X; 0/:

Proof. Both isomorphisms are well known. The morphism '1 is the isomorphism
between the classical Chow group CHp.X/ and the Bloch Chow group CHp.X; 0/.
The diagram is obviously commutative, since '1.ŒZ�/ D ŒZ�.

The isomorphism '2 is defined as follows. Let f 2 CHp�1;p.X/. It can be
represented by a linear combination

P
i Œfi �, where fi 2 k�.Wi /, Wi is a codimension

p � 1 subvariety of X and
P

div fi D 0. Let 
fi
be the restriction of the graph of

fi in� X �P 1, to X ��1. That is, 
fi
is the codimension p subvariety of X ��1

given by
f.y; fi .y//j y 2 Wi ; fi .y/ ¤ 1g:

Then '2.f / is represented by the image in

Zp.X; 1/=DZp.X; 1/ Š Zp.X; 1/0

of
P


fi
, where DZp.X; 1/ are the degenerate elements.

We want to see that �'2 D �, i.e., �.
P

i 
fi
/ D �.

P
Œfi �/. See [5] or [8] for

more details on the definition of � on the right hand side.
Let f DP

i Œfi � 2 CHp�1;p.X/ be as above. For every i , we can choose:



556 J. I. Burgos Gil and E. Feliu CMH

� a rational function Qfi 2 k�.X/ whose restriction to Wi is fi ,
� a Green form for Wi , g.Wi / D .!i ; gi /:

The form
g. Qfi / WD

�
0;�1

2
log Qfi

xQf i

�
is a Green form for the divisor div Qfi on X .

Let ? denote the ?-product of Green forms as described by Burgos in [5]. Then
we write

.!�; Qg�/ D
X

g. Qfi / ? g.Wi /:

Since the first component of g. Qfi / is zero, we have that !� D 0 as well. Moreover,
since .0; Qg�/ is a Green form for

P
i div Qfi \Wi DP

i div fi D 0, we can obtain a
representative g� of Qg� that is a closed smooth form. Then g� is a representative of
�.

P
Œfi �/.

Let us show now that g� is a representative of �.'2.f // as well. By the results of
the previous sections, the form �.

P
i 
fi

/ is obtained as follows. Let Z 2 Zp.X; 1/0

be a cycle in the normalized group that differs from
P


fi
by a degenerate element.

We consider a representative .!Z ; gZ/ 2 �D
2p

Zp .X ��1; p/0 of Z. Since

ˇ D ı0
1.!Z ; gZ/ � ı1

1.!Z ; gZ/

represents the class of
P

i div fi D 0, the class of ˇ is zero and hence there exists
.!; g/ such that dD.!; g/ D ˇ. Moreover, since dD!Z D 0 and the complex
�D�

log.X � �1; p/0 is acyclic (see the proof of Proposition 2.8), there exists ˛ 2
D

2p�1
log .X � �1; p/0 such that dD.˛/ D !Z . Then �.

P
i 
fi

/ is represented by
! C ı.˛/.

Therefore, we start by constructing the cycle Z and suitable forms .!Z ; gZ/

representing the class of Z. Consider the rational function hi 2 k�.X ��1/ given
by

.y; .t1 W t2// 7! t1 � t2 Qfi .y/

t1 � t2
:

If we write div fi D .div fi /
0 � .div fi /

1 where .div fi /
0 is the divisor of zeroes

and .div fi /
1 is the divisor of poles, the intersection of the divisor of hi with Wi ,

div hi \Wi , is exactly 
fi
� .div fi /

1. Observe that .div fi /
1 is a codimension p

degenerate cycle. Moreover div hi \Wi belongs to Zp.X; 1/0. Hence

Z D
X

div hi \Wi

is the cycle we need. Let g.hi / D .0;�1
2

log hi
xhi / be the canonical Green form for

div hi . Then, as above, a Green form for Z is given byX
g.hi / ? g.Wi / D .0; QgZ/:
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Now, observe that

ı.0; QgZ/ D
X

i

ı0
1.g.hi // ? g.Wi / D

X
i

g. Qfi / ? g.Wi / D .0; Qg�/:

Since we can assume that g� is a smooth representative of Qg�, we have that ds.g�; 0/ D
.0; g�/; and hence by the above description of � we see that

�
� X

i


fi

�
D g�:

This finishes the proof of the lemma. �

Lemma 4.11. The following diagram is commutative:

cCHp.X/

ˆ

��
D

2p�1
log .X; p/= im dD

a ���������

a �������
� cCHp.X; 0/.

Proof. Let Q̨ 2 D
2p�1
log .X; p/= im dD . Then the lemma follows from the equality

d.0; .˛; 0/; 0; 0; 0/ D .0; .dD˛; ˛/; 0; 0; 0/C .0; 0; 0; 0; ˛/

in cCHp.X; 0/. �

This finishes the proof of Theorem 4.8. �

4.3. Functoriality of the higher arithmetic Chow groups

Proposition 4.12 (Pull-back). Let f W X ! Y be amorphismbetween two arithmetic
varieties. Then, for all p � 0, there exists a chain complex, yZp

f
.Y;�/0 such that:

(i) There is a quasi-isomorphism

yZp

f
.Y;�/0

��! yZp.Y;�/0:

(ii) There is a pull-back morphism

f � W yZp

f
.Y;�/0 ! yZp.X;�/0;

inducing a pull-back morphism of higher arithmetic Chow groups

cCHp.Y; n/
f �

��! cCHp.X; n/;

for every p; n � 0.
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(iii) The pull-back is compatible with the morphisms a and �. That is, there are
commutative diagrams

� � � 

 H 2p�n�1

D
.Y; R.p//

a 



f �

��

cCHp.Y; n/
� 



f �

��

CHp.Y; n/ 



f �

��

� � �

� � � 

 H 2p�n�1

D
.X; R.p// a



 cCHp.X; n/
�



 CHp.X; n/ 

 � � � :
(4.13)

Proof. Recall that there are inclusions of complexes

Z
p

f
.Y;�/0 
 Zp.Y;�/0;

H
p

f
.Y;�/0 
 H p.Y;�/0;

D�
A;Z

p

f

.Y; p/0 
 D�
A;Zp .Y; p/0;

which are quasi-isomorphisms. The pull-back by f is defined for any ˛ in Z
p

f
.Y;�/0;

in H
p

f
.Y;�/0 or in D�

A;Z
p

f

.Y; p/0. Moreover, by construction, there is a commutative

diagram

Z
p

f
.Y; �/0

f �

��

�1 

 H p

f
.Y; �/0

f �

��

D�

A;Z
p

f

.Y; p/0

f �

��

� 0
1

�
�� � 

 D�

A.Y; p/0

f �

��

ZD
2p
log .X; p/�

i��

f �

��
Zp.X; �/0 �1



 H p.X; �/0 D�
A;Zp .X; p/0

� 0
1

���
�



 D�
A.X; p/0 ZD

2p
log .Y; p/�:

i��

Let yZp

f
.Y;�/0 denote the simple associated to the first row diagram. Then there is a

pull-back morphism
f � W yZp

f
.Y;�/0 ! yZp.X;�/0:

Moreover, as noticed in �1.3, the natural map

yZp

f
.Y;�/0 ! yZp.Y;�/0

is a quasi-isomorphism. Therefore, (i) and (ii) are proved. Statement (iii) follows
from the construction. �

Remark 4.14. If the map is flat, then the pull-back is already defined at the level of
the chain complexes yZp.Y;�/0 and yZp.X;�/0.

Proposition 4.15 (Functoriality of pull-back). Let f W Y and g W Y ! Z be two
morphisms of arithmetic varieties. Then

f � B g� D .g B f /� W cCHp.Z; n/! cCHp.X; n/:
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Proof. Let yZp

gf [g
.Z; n/0 be the subgroup of yZp.Z; n/0 obtained considering, at

each of the complexes of the diagram yZp.Z;�/0, the subvarieties W of Z � �n

intersecting properly the faces of �n and such that

� X �W ��n intersects properly the graph of g B f ,

� Y �W ��n intersects properly the graph of g.

That is,
yZp

gf [g
.Z; n/0 D yZp

gf
.Z; n/0 \ yZp

g .Z; n/0:

Then the proposition follows from the commutative diagram

yZp.X;�/0

yZp

gf [g
.Z;�/0

.gBf /� ��������

g� ������
��

yZp

f
.Y;�/0:

f �

��

�

Corollary 4.16 (Homotopy invariance). Let � W X �Am ! X be the projection on
X . Then the pull-back map

�� W cCHp.X; n/! cCHp.X �Am; n/

is an isomorphism for all n � 1.

Proof. It follows from the five lemma in the diagram (4.13), using the fact that both
the higher Chow groups and the Deligne–Beilinson cohomology groups are homotopy
invariant. �

5. Product structure

Let X , Y be arithmetic varieties over an arithmetic field K. In this section, we
define an external product, cCH�.X;�/ ˝ cCH�.Y;�/ ! cCH�.X � Y;�/, and an
internal product cCH�.X;�/ ˝ cCH�.X;�/ ! cCH�.X;�/, for the higher arithmetic
Chow groups. The internal product endows cCH�.X;�/ with a ring structure. It
will be shown that this product is commutative and associative. There are two main
technical difficulties. The first one is that we are representing a cohomology class
with support in a cycle by a pair of forms, the first one smooth on the whole variety
and the second one with singularities along the cycle. The product of two singular
forms has singularities along the union of the singular locus. Therefore, in order to
define a cohomology class with support on the intersection of two cycles we need
a little bit of homological algebra. To this end we adapt the technique used in [5].
The second difficulty is that the external product in higher Chow groups is not graded
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commutative at the level of complexes, but only graded commutative up to homotopy.
To have explicit homotopies we will adapt the techniques of [19].

Recall that the higher arithmetic Chow groups are the homology groups of the
simple complex associated to a diagram of complexes. Therefore, in order to define
a product, we use the general procedure developed by Beilinson, as recalled in �1.4.
To this end, we need to define a product for each of the complexes in the diagram
yZp.X;�/0 (4.1), commuting with the morphisms �1, � 0

1, � and i . The pattern for
the external product construction is analogous to the pattern followed to define the
external product for the cubical higher Chow groups, described in �2.3.

For the complex Zp.X;�/0 we already have an external product recalled in §2.3.
Since the complex H p.X;�/0 is isomorphic to Z

p
R.XR;�/0, the external product on

the complex H �.X;�/0 can be defined by means of this isomorphism. We will now
construct the product for the remaining complexes.

5.1. Product structure on the complexes D�
A

.X; p/ and ZD
2p

log .X; p/�. We start
by defining a product structure on D�

A.X; p/. Let

X � Y ��n ��m p13��! X ��n; X � Y ��n ��m p24��! Y ��m

be the projections indicated by the subindices. For every !1 2 �Dr
log.X � �n; p/

and !2 2 �Ds
log.Y ��m; q/, we define

!1 	A !2 WD .�1/nsp�
13!1 	 p�

24!2 2 �DrCs
log .X � Y ��nCm; p C q/;

where 	 in the right hand side is the product in the Deligne complex (see §1.8).
This gives a map

D
r1

A .X; p/˝D
r2

A .Y; q/
�A��! D

r1Cr2

A .X � Y; p C q/;

.!1; !2/ 7�! !1 	A !2:

Lemma 5.1. The map 	A satisfies the Leibniz rule. Therefore, there is a cochain
morphism

s.D�
A.X; p/˝D�

A.Y; q//
�A��! D�

A.X � Y; p C q/:

Proof. Let !1 2 �Dr
log.X; n/ and !2 2 �Ds

log.Y; m/. By definition of ı, the following
equality holds

ı.p�
13!1 	 p�

24!2/ D p�
13.ı!1/ 	 p�

24!2 C .�1/np�
13!1 	 p�

24.ı!2/:
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Then

ds.!1 	A !2/ D .�1/nsds.p�
13!1 	 p�

24!2/

D .�1/nsdD.p�
13!1 	 p�

24!2/C .�1/rCsCnsı.p�
13!1 	 p�

24!2/

D .�1/nsdD.p�
13!1/ 	 p�

24!2 C .�1/rCnsp�
13!1 	 dD.p�

24!2/

C .�1/rCsCnsp�
13.ı!1/ 	 p�

24!2

C .�1/rCsCnCnsp�
13!1 	 p�

24.ı!2/

D dD!1 	A !2 C .�1/rCn!1 	A dD.!2/

C .�1/rı!1 	A !2 C .�1/rCnCs!1 	A ı.!2/

D ds.!1/ 	A !2 C .�1/rCn!1 	A ds.!2/;

as desired. �

Definition 5.2. Let �D�
log.X �Y ������; p/0 be the 3-iterated cochain complex

whose .r;�n;�m/-th graded piece is the group �Dr
log.X � Y ��n ��m; p/0 and

whose differentials are .dD ; ı; ı/. Let

D�
A	A.X � Y; p/0 WD s

�
�D�

log.X � Y ��� ���; p/0

�
(5.3)

be the associated simple complex.

Remark 5.4. Observe that there is a cochain morphism

D�
A	A.X � Y; p/0

	�! D�
A.X � Y; p/0

sending ˛ 2 �Dr
log.X � Y ��n ��m; p/ to ˛ 2 �Dr

log.X � Y ��nCm; p/ under
the identification

�nCm Š��! �n ��m;

.x1; : : : ; xnCm/ 7�! ..x1; : : : ; xn/; .xnC1; : : : ; xnCm//:

Moreover, the product 	A that we have defined previously, factors through the mor-
phism 
 and a product, also denoted by 	A,

D�
A.X; p/˝D�

A.Y; q/
�A��! D�

A	A.X � Y; p C q/:

In order to define the product on the complex ZD
2p
log .X; p/�, recall that we have

an isomorphism (see [5])

ZD
2p
log .X; p/ Š ZE

p;p
log;R.X/.p/
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and that the restriction of the product 	 to this subspace is given by the product ^.
The inclusion i is compatible with the product 	A and the product ^. That

is, consider the projections pX W X � Y ! X and pY W X � Y ! Y . Then, if
˛ 2 ZE

p;p
log;R.X/.p/ and ˇ 2 ZE

q;q
log;R.Y /.q/, we put

˛ ^ ˇ D p�
X .˛/ ^ p�

Y .ˇ/ 2 ZE
pCq;pCq
log;R .X � Y /.p C q/:

We have a commutative diagram

ZE
p;p
log;R.X/.p/˝ZE

q;q
log;R.Y /.q/ ^ 



i˝i

��

ZE
pCq;pCq
log;R .X � Y /.p C q/

i

��
s.D�

A.X; p/0 ˝D�
A.Y; q/0/ �A



 D�
A.X � Y; p C q/0:

5.2. Product structure on the complex D�
A;Zp .X; p/. We define here a product

on the complex D�
A;Zp .X; p/. It will be compatible with the product on D�

A.X; p/,
under the morphism �, and with the product on H p.X;�/0 under � 0

1.
Let X; Y be two real varieties. For every p, let Z

p
X;n be the subset of codimension

p subvarieties of X ��n intersecting properly the faces of �n. Let

Z
p;q
X;Y;n;m 
 Z

pCq
X	Y;nCm

be the subset of the set of codimension p C q subvarieties of X � Y � �nCm,
intersecting properly the faces of �nCm, which are obtained as the cartesian product
Z �W with Z 2 Z

p
X;n and W 2 Z

q
Y;m.

For shorthand, we make the following identifications:

Z
q
Y;m D fX �Z j Z 2 Z

q
Y;mg 
 Z

q
X	Y;nCm;

Z
p
X;n D fW � Y j W 2 Z

p
X;mg 
 Z

p
X	Y;nCm:

To ease the notation, we write temporarily

�n;m
X;Y WD X � Y ��n ��m:

For every n, m, p, q, let j
p;q

X;Y .n; m/ be the morphism

D�
log.�n;m

X;Y nZp
X;n; p C q/˚D�

log.�n;m
X;Y nZ

q
Y;m; p C q/

j
p;q

X;Y
.n;m/

��������! D�
log.�n;m

X;Y nZ
p
X;n [Z

q
Y;m; p C q/

induced on the limit complexes by the morphism j in Lemma 1.29.
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Lemma 5.5. There is a short exact sequence

0 �! D�
log.�n;m

X;Y nZ
p;q
X;Y;n;m; p C q/

�! D�
log.�n;m

X;Y nZ
p
X;n; p C q/˚D�

log.�n;m
X;Y nZ

q
Y;m; p C q/

j
p;q

X;Y
.n;m/

�������! D�
log.�n;m

X;Y nZ
p
X;n [Z

q
Y;m; p C q/! 0:

Proof. This follows from Lemma 1.29. �

By the quasi-isomorphism between the simple complex and the kernel of an
epimorphism (see (1.2)), for every n, m, there is a quasi-isomorphism

D�
log.�n;m

X;Y nZ
p;q
X;Y;n;m; p C q/

���! s.�j
p;q

X;Y .n; m//�

! 7�! .!; !; 0/:

It induces a quasi-isomorphism

D�
log;Z

p;q
X;Y;n;m

.�n;m
X;Y ; pCq/

��! s
�
D�

log.�n;m
X;Y ; pCq/� i

p;q
X;Y

.n;m/

������! s.�j
p;q

X;Y .n; m//
��

;

(5.6)
where i

p;q
X;Y .n; m/ is defined by

D�
log.�n;m

X;Y ; p C q/
i
p;q
X;Y

.n;m/

������! s.�j
p;q

X;Y .n; m//�;

! 7�! .!; !; 0/:

Remark 5.7. Observe that there is an induced bicubical cochain complex structure on
s.i

p;q
X;Y .�; �//�. For every r , let s.i

p;q
X;Y .�;�//r

0 denote the 2-iterated complex obtained
by taking the normalized complex functor to both cubical structures. Consider the
3-iterated complex s.i

p;q
X;Y .�;�//�

0 whose piece of degree .r;�n;�m/ is the group
�r�2pC2qs.i

p;q
X;Y .n; m//r

0, and whose differential is .ds; ı; ı/. Denote by s.i
p;q
X;Y /�

0 the
associated simple complex. Observe that the differential of ˛ D .˛0; .˛1; ˛2/; ˛3/ 2
s.i

p;q
X;Y /r

0 is given by

d 0
s.˛0; .˛1; ˛2/; ˛3/ D .dD˛0; .˛0 � dD˛1; ˛0 � dD˛2/;�˛1 C ˛2 C dD˛3/:

Definition 5.8. Let 	A be the map

Dr
log;Zp .X ��n; p/0 ˝Ds

log;Zq .Y ��m; q/0

�A��! s.i
p;q
X;Y .n; m//rCs

0

defined by sending .!; g/˝ .!0; g0/ to

.�1/ns.! 	 !0; .g 	 !0; .�1/r! 	 g0/; .�1/r�1g 	 g0/:
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Lemma 5.9. The map 	A defines a pairing of complexes

s
�
D�

A;Zp .X; p/0 ˝D�
A;Zq .Y; q/0

� �A��! s.i
p;q
X;Y /�

0 :

Proof. Let .!; g/ 2 Dr
log;Zp .X � �n; p/0 and .!0; g0/ 2 Ds

log;Zq .Y � �m; q/0.
Then we have to see that

d 0
s..!; g/ 	A .!0; g0// D d 0

s.!; g/ 	A .!0; g0/C .�1/r�n.!; g/ 	A d 0
s.!0; g0/:

That is, we have to show that the following two equalities hold:

ds..!; g/ 	A .!0; g0// D ds.!; g/ 	A .!0; g0/C .�1/r�n.!; g/ 	A ds.!0; g0/;

ı..!; g/ 	A .!0; g0// D .�1/sı.!; g/ 	A .!0; g0/C .�1/n.!; g/ 	A ı.!0; g0/:

The proof of the second equality is analogous to the proof of Lemma 5.1. The first
equality is a direct computation. �

We define a complex D�
A	A;Z

p;q
X;Y

.X�Y; pCq/0 that is analogous to the complex

D�
A	A.X; p/0 of Definition 5.2.

Definition 5.10. Let D�
A	A;Z

p;q
X;Y

.X � Y; pC q/0 be the simple complex associated

to the 3-iterated complex whose .r;�n;�m/ graded piece is

�Dr
log;Z

p;q
X;Y;n;m

.X � Y ��n ��m; p C q/0:

As in Remark 5.4, we will denote by 
 the morphisms obtained by identifying
�n ��m with �nCm.

D�
A	A;ZpCq .X � Y; p C q/0

	�! D�
A;ZpCq .X � Y; p C q/0:

We will denote by � the morphisms obtained by forgetting the support:

D�
A	A;Z

p;q
X;Y

.X � Y; p C q/0

��! D�
A	A.X � Y; p/0;

s.i
p;q
X;Y /�

0

��! D�
A	A.X � Y; p/0:

There are also natural morphisms, whose definitions are obvious,

D�
A	A;Z

p;q
X;Y

.X � Y; p C q/0 �! D�
A	A;ZpCq .X � Y; p C q/0;

D�
A	A;Z

p;q
X;Y

.X � Y; p C q/0 �! s.i
p;q
X;Y /�

0 :

Lemma 5.11. The natural map

D�
A	A;Z

p;q
X;Y

.X � Y; p C q/0 ! s.i
p;q
X;Y /�

0 (5.12)

is a quasi-isomorphism. Moreover, it commutes with �.
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Proof. It follows from the quasi-isomorphism (5.6). �
The external product on D�

A;Z�.�;�/0 is given, in the derived category of com-
plexes, by

Dr

A;Z
p
X

.X; p/0 ˝Ds

A;Z
q
Y

.Y; q/0
�A 

 s.i

p;q

X;Y
/rCs
0

DrCs

A�A;Z
p;q
X;Y

.X � Y; p C q/0

�

��

� 

 DrCs

A;Z
pCq
X�Y

.X � Y; p C q/0:

The fact that to define the product in this complex we need to invert a quasi-isomor-
phism is the main reason of the complexity of the definition of the product on the
higher arithmetic Chow groups.

By definition, it is clear that this morphism commutes with the morphism defined
on the complex D�

A.X; p/. It remains to be seen that the product on D
2p�n

A;Zp .X; p/0

is compatible with the product on H p.X; n/0, under the quasi-isomorphism � 0
1.

Let ! 2 s.i
p;q
X	Y /

2pC2q�l
0 and let

.!0
l ; : : : ; !l

l / 2
lM

j D0

��2pC2qs.i
p;q
X;Y .j; l � j //

2pC2q
0

be the components of ! corresponding to the degree .2pC 2q;�j; j � l/. These are
the components that have maximal degree as differential forms and, by the definition
of the truncated complex they satisfy ds!

j

l
D 0. Thus, the form !

j

l
defines a

cohomology class Œ!
j

l
� in the complex s.i

p;q
X;Y .j; l � j //�

0 . Since there is a quasi-
isomorphism

D�
log;Z

p;q
X;Y

.X � Y ��l ; p C q/0
��! s.i

p;q
X;Y .j; l � j //�

0;

we obtain a cohomology class in H �.D�
log;Z

p;q
X;Y

.X � Y � �l ; p C q/0/. Hence,

a cohomology class Œ!
j

l
� 2 H pCq.X � Y; l/0. This procedure defines a chain

morphism, denoted by � 0
1,

s.i
p;q
X;Y /

2pC2q�l
0

� 0
1��! H pCq.X � Y; l/0;

! 7�!
X

j

Œ!
j

l
�:

By composition, we can define a morphism, also denoted by � 0
1,

D�
A	A;Z

p;q
X;Y

.X � Y; p C q/0

� 0
1��! H pCq.X � Y;�/0:
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Moreover there is a commutative diagram

D�
A	A;Z

p;q
X;Y

.X � Y; p C q/0

	

��

� 0
1

�����
����

����
����

�

H pCq.X � Y;�/0.

D�
A;ZpCq .X � Y; p C q/0

� 0
1

������������������

Proposition 5.13. Let Z 2 Z
p
X;n and T 2 Z

q
Y;m. Let Œ.!Z ; gZ/� 2 H p.X; n/0

represent the class of a cycle z 2 Zp.X; n/0 with support on Z and let
Œ.!T ; gT /� 2 H q.Y; m/0 represent the class of a cycle t 2 Zq.Y; m/0 with sup-
port on T . Then

Œ.!Z ; gZ/ 	A .!T ; gT /� 2 H pCq.X � Y; nCm/0

represents the class of the cycle z � t in ZpCq.X � Y; nCm/0.

Proof. It follows from [14], Theorem 4.2.3 and [5], Theorem 7.7. �

Corollary 5.14. For every p, q, n, m, the diagram

D
2p�n

A;Zp .X; p/0 ˝D
2q�m

A;Zq .Y; q/0

� 0
1 



�A

��

H p.X; n/0 ˝H q.Y; m/0

	
��

s.i
p;q
X;Y /

2pC2q�n�m
0 � 0

1



 H pCq.X � Y; nCm/0

is commutative. �

5.3. Product structure on the higher arithmetic Chow groups. Once we have
defined a compatible product on each of the complexes involved, the product on the
higher arithmetic Chow groups is given by the following diagram.
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Hp.X; n/0 ˝ Hq.Y; m/0

�

��

D
2p�n
A .X; p/0 ˝ D

2q�m
A .Y; q/0

�A

��

Zp.X; n/0 ˝ Zq.Y; m/0

�

��

�1

�����������
D

2p�n

A;Zp .X; p/0 ˝ D
2q�m

A;Zq .Y; q/0

�0
1

�

������������
�

������������

�A

��

ZD
2p
log .X; p/n ˝ ZD

2q
log .Y; q/m

i

������������

^

��

HpCq.X � Y; n C m/0 D
2.pCq/�n�m
A�A .X � Y; p C q/0

ZpCq.X � Y; n C m/0

�1

����������
s.i

p;q
X;Y /

2pC2q�n�m
0

�0
1

�����������
�

������������
ZD

2.pCq/
log .X � Y; p C q/nCm

i

������������

HpCq.X � Y; n C m/0 D
2.pCq/�n�m
A�A .X � Y; p C q/0

�

��

ZpCq.X � Y; n C m/0

�1

�����������
D

2.pCq/�n�m

A�A;Z
p;q
X;Y

.X � Y; p C q/0

�0
1

�����������
�

������������

�

��

�

��

ZD
2.pCq/
log .X � Y; p C q/nCm

i

������������

HpCq.X � Y; n C m/0 D
2.pCq/�n�m
A .X � Y; p C q/0

ZpCq.X � Y; n C m/0

�1

�����������
D

2.pCq/�n�m

A;ZpCq
.X � Y; p C q/0

�0
1

�

�����������
�

������������
ZD

2.pCq/
log .X � Y; p C q/nCm

i

������������

Observe that, in the first set of vertical arrows is where the product is defined, in
the second set of vertical arrows we are just inverting the quasi-isomorphism (5.12),
finally in the last set of vertical arrows we are applying the morphism 
.

The above diagram induces a morphism in the derived category of chain complexes

s
� yZp.X;�/0 ˝ yZq.Y;�/0

� [�! s
� yZpCq.X � Y;�/0

� D yZpCq.X � Y;�/0:

Recall here the notation we are using, the symbol yZp.X;�/0 denotes the diagram
where the symbol yZp.X;�/0 denotes the associated simple complex.

By �1.4, for any ˇ 2 Z there is a morphism ?ˇ :

yZp.X;�/0 ˝ yZq.Y;�/0

?ˇ�! s
� yZp.X;�/0 ˝ yZq.Y;�/0

�
:

The composition of ?ˇ with [ induces a product

cCHp.X; n/˝ cCHq.Y; m/
[�! cCHpCq.X � Y; nCm/;

independent of ˇ.
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Finally the pull-back by the diagonal map X
��! X �X gives an internal product

on cCHp.X;�/:

cCHp.X; n/˝ cCHq.X; m/
[�! cCHpCq.X �X; nCm/

��

��! cCHpCq.X; nCm/:

Thus, in the derived category of complexes, the product is given by the composition

yZp.X; n/0 ˝ yZq.X; m/0

?ˇ

��
s
� yZp.X; n/0 ˝ yZq.X; m/0

� [ 

 yZpCq.X �X; nCm/0

yZpCq

�
.X �X; nCm/0

�

��

�� 

 yZpCq.X; nCm/0:

Remark 5.15. It follows from the definition that, for n D 0, the product [ agrees
with the product on the arithmetic Chow group cCHp.X/ defined in [5].

5.4. Commutativity of the product. Let X; Y be arithmetic varieties over a field
K. We prove here that the pairing defined in the previous subsection on the higher
arithmetic Chow groups is commutative, in the sense detailed below.

We first introduce some notation:

� If B�; C� are chain complexes, let

� W s.B� ˝ C�/! s.C� ˝ B�/

be the map sending b ˝ c 2 Bn ˝ Cm to .�1/nmc ˝ b 2 Cm ˝ Bn.

� Let �X;Y be the morphism

�X;Y W Y �X ! X � Y

interchanging X with Y .

We will prove that there is a commutative diagram

cCHp.X; n/˝ cCHq.Y; m/
[ 



�

��

cCHpCq.X � Y; nCm/

��
X;Y

��cCHq.Y; m/˝ cCHp.X; n/
[ 

 cCHpCq.Y �X; nCm/.

In particular, the internal product on the higher arithmetic Chow groups will be
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graded commutative with respect to the degree n. That is, if W 2 cCHp.X; n/ and
Z 2 cCHq.X; m/, then

W [Z D .�1/nmZ [W:

Recall that, by definition, the product factorizes as

cCHp.X; n/˝cCHq.Y; m/
?ˇ��! HnCm.s. yZp.X;�/0˝ yZq.Y;�/0//

[�! cCHpCq.X�Y; nCm/:

By Lemma 1.8, this factorization is independent on the integer ˇ. Moreover, there
is a commutative diagram

cCHp.X; n/˝ cCHq.Y; m/
?ˇ 



�

��

HnCm.s. yZp.X;�/0 ˝ yZq.Y;�/0//

�

��cCHq.Y; m/˝ cCHp.X; n/
?1�ˇ 

 HnCm.s. yZp.Y;�/0 ˝ yZq.X;�/0//

Therefore, all that remains is to check the commutativity for

s
� yZp.X;�/0 ˝ yZq.Y;�/0

� [Ü yZpCq.X � Y;�/0: (5.16)

Hence, we want to see that, in the derived category of chain complexes, there is a
commutative diagram

s
� yZp.X;�/0 ˝ yZq.Y;�/0

�
�

��

[ 

 yZpCq.X � Y;�/0

��
X;Y

��
s
� yZq.Y;�/0 ˝ yZp.X;�/0

�
[



 yZpCq.Y �X;�/0:

The obstruction to strict commutativity comes from the change of coordinates

�nCm D �m ��n
�n;m���! �n ��m D �nCm;

.y1; : : : ; ym; x1; : : : ; xn/ 7�! .x1; : : : ; xn; y1; : : : ; ym/:
(5.17)

Recall that the product is described by the big diagram in §5.3. In order to prove
the commutativity, we change the second and third row diagrams of this big diagram,
by more suitable diagrams. These changes do not modify the definition of the product,
but ease the study of the commutativity.

We define a complex Z
p
A	A.X; n/0 analogously to the definition of the complex

D�
A	A.X; p/0 (see �5.2). Let

Zp.X; n; m/0 WD Zp.X; nCm/0;
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and let ı0 DPn
iD1.�1/iı0

i and ı
00 DPnCm

iDnC1.�1/i�nı0
i . Then

.Zp.X;�;�/0; ı0; ı
00

/

is a 2-iterated chain complex. For the sake of simplicity, we denote both ı0 and ı
00

by ı.
Denote by Z

p
A	A.X;�/0 the associated simple complex, and analogously define

the complex H
p
A	A.X;�/0.

Let yZp;q
A	A.X � Y;�/0 be the diagram

H
pCq

A�A.X 	 Y; �/0 D
2.pCq/��

A�A .X 	 Y; p C q/0:

Z
pCq

A�A.X 	 Y; �/0

�1

��         
s.i

p;q

X;Y /
2.pCq/��

0

�
��!!!!!!!!!!!

� 0
1

�
�����������

ZD
2pCq
log .X 	 Y; p C q/�.

i
��""""""""""""

This diagram will fit in the second row of the new big diagram. Denote by
yZp;q

A	A.X � Y;�/0 the simple complex associated to this diagram.
The third row of the new big diagram corresponds to a diagram whose complexes

are obtained from the refined normalized complex of Definition 1.18. The fact that,
in these complexes, most of the face maps vanish is the key point to construct ex-
plicit homotopies for the commutativity of the product. So, consider the following
complexes:

� Let Zq.X;�;�/00 be the 2-iterated chain complex with

Zq.X; n; m/00 WD
\

i¤0;nC1

ker ı0
i � Zq.X; nCm/0;

and with differentials .ı0; ı00/ D .�ı0
1 ;�ı0

nC1/. Denote by Z
q
A	A.X;�/00 the

associated simple complex.

� Let �D�
log.X ��� ���; p/00 be the 3-iterated complex whose .r;�n;�m/-

graded piece is

�Dr
log.X ��n ��m; p/00 D

\
i¤0;nC1

ker ı0
i � �Dr

log.X ��nCm; p/0;

and with differentials .dD ;�ı0
1 ;�ı0

nC1/. Let D�
A	A.X; p/00 be the associated

simple complex.

� Let �D�
log;Z

p;q
X;Y;�;�

.X � Y ��� ���; pC q/00 be the 3-iterated complex with

�Dr
log;Z

p;q
X;Y;n;m

.X � Y ��n ��m; p C q/00 D
\

i¤0;nC1

ker ı0
i
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as a subset of �Dr
log;Z

p;q
X;Y;n;m

.X � Y � �nCm; p C q/0. The differentials are

given by .dD ;�ı0
1 ;�ı0

nC1/. Let D�
A	A;Z

p;q
X;Y

.X � Y; p/00 be the associated

simple complex.

Remark 5.18. Observe that there are induced morphisms

Z
pCq
A	A.X � Y;�/00

�1��! H
pCq
A	A.X � Y;�/00;

D
2.pCq/��
A	A;Z

p;q
X;Y

.X � Y; p C q/00

� 0
1��! H

pCq
A	A.X � Y;�/00;

D
2.pCq/��
A	A;Z

p;q
X;Y

.X � Y; p C q/00

���! D
2.pCq/��
A	A .X � Y; p C q/00:

Let yZp;q
A	A.X � Y;�/00 be the diagram

H
pCq
A�A.X � Y; �/00 D

2.pCq/��

A�A .X � Y; p C q/00:

Z
pCq
A�A.X � Y; �/00

�1

��









D

2.pCq/��

A�A;Z
p;q
X;Y

.X � Y; p C q/00

�
�������������

� 0
1

�
��##########

ZD
2pCq
log .X � Y; p C q/� .

i

�������������

This is the diagram fitting in the third row of the new diagram. Let yZp;q
A	A.X�Y;�/00

be the simple complex associated to this diagram.

Lemma 5.19. Let X be an arithmetic variety over a field.

(i) The natural chain morphisms

Z
q
A	A.X;�/00

i�! Z
q
A	A.X;�/0; (5.20)

Z
q
A	A.X;�/0

	�! Zq.X;�/0; (5.21)

are quasi-isomorphisms.

(ii) The natural cochain morphisms

D�
A	A.X; p/00

i�! D�
A	A.X; p/0; (5.22)

D�
A	A;Z

p;q
X;Y

.X � Y; p C q/00
i�! D�

A	A;Z
p;q
X;Y

.X � Y; p C q/0; (5.23)

D�
A	A.X; p/0

	�! D�
A.X; p/0; (5.24)

are quasi-isomorphisms.

Proof. The proofs of the facts that the morphisms i are quasi-isomorphisms are
analogous for the three cases. For every n, m, let B.n; m/ denote either Zp.X; n; m/,
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�Dr
log.X ��n ��m; p/ or �Dr

log;Z
p;q
X;Y;n;m

.X � Y ��n ��m; pC q/, for some r .

The groups B.n; m/0 and B.n; m/00 are defined analogously.
Observe that for every n; m, B.�; m/ and B.n; �/ are cubical abelian groups. We

want to see that there is a quasi-isomorphism

s.N 2
0 N 1

0 B.�;�// i�! s.N 2N 1B.�;�//; (5.25)

where the superscript 1 refers to the cubical structure given by the first index n and
the superscript 2 to the cubical structure given by the second index m. A spectral
sequence argument together with Lemma 1.20 and Proposition 1.24 show that there is

a quasi-isomorphism s.N 2N 1
0 B.�;�// ��! s.N 2N 1B.�;�//: By Lemma 1.20 and

an spectral sequence argument again, we obtain that there is a quasi-isomorphism

s.N 2
0 N 1

0 B.�;�// i�! s.N 2N 1
0 B.�;�//: Therefore, (5.25) is a quasi-isomorphism.

The proofs of the facts that the morphisms in (5.21) and (5.24) are quasi-isomor-
phisms are analogous to each other. Therefore, we just prove the statement for the
morphism (5.21). Consider the composition morphism

j W Zq.X; m/0 ! Zq.X; 0; m/0 ! Z
q
A	A.X; m/0:

The composition of morphisms Zq.X; m/0

j�! Z
q
A	A.X; m/0

	�! Zq.X; m/0 is the
identity. Hence, it is enough to see that j is a quasi-isomorphism. Consider the 1st
quadrant spectral sequence with

E1
n;m D Hm.Zq.X; n;�/0/:

We will see that if n � 1, E1
n;m D 0. By the homotopy invariance of higher Chow

groups, the map

f W Zq.X ��n;�/0

ı1
1

���ı1
1����! Zq.X;�/0

is a quasi-isomorphism. By Proposition 1.24, it induces a quasi-isomorphism

f W Zq.X ��n;�/0 D NZq.X ��n;�/0 ! NZq.X;�/0

where the cubical structure on Zq.X;�/0 is the trivial one. Since for a trivial cubical
abelian group NZq.X;�/0 D 0, we see that

Hm.Zq.X; n;�/0/ D 0; n > 0;

and hence

E1
n;m D

´
0 if n > 0;

CHq.X; m/ if n D 0: �
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It follows from the lemma that the product on the higher arithmetic Chow groups
is also represented by the following diagram of complexes:

Hp.X; n/0 ˝ Hq.Y; m/0

�

��

D
2p�n
A .X; p/0 ˝ D

2q�m
A .Y; q/0

�A

��

Zp.X; n/0 ˝ Zq.Y; m/0

�

��

�1

��










D

2p�n

A;Zp .X; p/0 ˝ D
2q�m

A;Zq .Y; q/0

�0
1

�

��##########
�

��$$$$$$$$$$$

�p;q

��

ZD
2p
log .X; p/n ˝ ZD

2q
log .X; q/m

i

�������������

^

��

H
pCq
A�A.X � Y; n C m/0 D

2.pCq/�n�m
A�A .X � Y; p C q/0

Z
pCq
A�A.X � Y; n C m/0

�1

��









s.i

p;q
X;Y /

2pC2q�n�m
0

�0
1

��##########
�

��$$$$$$$$$$$
ZD

2.pCq/
log .X � Y; p C q/nCm

i

�������������

H
pCq
A�A.X � Y; n C m/00

i�

��

D
2.pCq/�n�m
A�A .X � Y; p C q/00

i�

��

Z
pCq
A�A.X � Y; n C m/00

i�

��

�1

�����������
D

2.pCq/�n�m

A�A;Z
p;q
X;Y

.X � Y; p C q/00

�0
1

�����������
�

��!!!!!!!!!!!

	

��

i�

��

ZD
2.pCq/
log .X � Y; p C q/nCm

i

�������������

H
pCq
A�A.X � Y; n C m/00

�

��

D
2.pCq/�n�m
A�A .X � Y; p C q/00

�

��

Z
pCq
A�A.X � Y; n C m/00

�

��

�1

��









D

2.pCq/�n�m

A�A;ZpCq
.X � Y; p C q/00

�0
1

�

������������
�

��!!!!!!!!!!!

�

��

ZD
2.pCq/
log .X � Y; p C q/nCm

i

�������������

HpCq.X � Y; n C m/0 D
2.pCq/�n�m
A .X � Y; p C q/0

ZpCq.X � Y; n C m/0

�1

��









D

2.pCq/�n�m

A;ZpCq
.X � Y; p C q/0

�0
1

�

������������
�

��!!!!!!!!!!!
ZD

2.pCq/
log .X � Y; p C q/nCm .

i

�������������

In the first set of vertical arrows of this diagram is where the product is defined.
In the second set of vertical rows we invert the quasi-isomorphisms that relate the
normalized complex and the refined normalized complex. Moreover, we also invert
the quasi-isomorphism analogous to (5.12). In the third set of vertical arrows we just
consider the change of supports Z

p;q
X;Y � ZpCq . We will denote the map induced by

this change of support by 	. Finally in the last set of vertical arrows we apply the
morphisms 
 induced by the identification �n ��m D �nCm.
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Let yZpCq
A	A.X�Y;�/00 denote the simple of the diagram of the fourth row. Hence,

in the derived category of complexes, this product is described by the composition

s. yZp.X;�/0 ˝ yZq.Y;�/0/
[ 

 yZp;q

A	A.X � Y;�/0

yZp;q
A	A.X � Y;�/00

i

��%
%
%


 

 yZpCq
A	A.X � Y;�/00

	

��
yZpCq.X � Y;�/0:

Note that the difference between the complexes yZp;q
A	A.X � Y;�/00 and yZpCq

A	A.X �
Y;�/00 lies on the change of supports Z

p;q
X;Y � ZpCq . This is indicated by either two

codimension superscripts p, q in the first one or a unique codimension superscript
p C q in the second.

We next use this description of the product in the higher arithmetic Chow groups
in order to prove its commutativity.

Recall that the map �n;m is defined by

�nCm D �m ��n
�n;m���! �n ��m D �nCm;

.y1; : : : ; ym; x1; : : : ; xn/ 7�! .x1; : : : ; xn; y1; : : : ; ym/:

Let
�X;Y;n;m W Y �X ��m ��n ! X � Y ��n ��m

be the map �X;Y � �n;m.
We define a morphism of diagrams

yZp;q
A	A.X � Y;�/0

��
X;Y;������! yZq;p

A	A.Y �X;�/0

as follows:
� Let ��

X;Y;� W ZpCq
A	A.X � Y;�/0 ! Z

pCq
A	A.Y �X;�/0 be the map sending

Z 2 ZpCq.X � Y; n; m/0 to .�1/nm��
X;Y;n;m.Z/ 2 ZpCq.Y �X; m; n/0:

The morphism ��
X;Y;� W H pCq

A	A.X � Y;�/0 ! H
pCq
A	A.Y � X;�/0 is defined anal-

ogously.
� Let ��

X;Y;� W D�
A	A.X � Y; p C q/0 ! D�

A	A.Y � X; p C q/0 be the map that,
at the .�;�n;�m/ component, is

.�1/nm��
X;Y;n;m W �D�

log.X�Y ��n��m; pCq/0 ! �D�
log.Y �X��m��n; pCq/0:

Observe that it is a cochain morphism.
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� We define analogously the morphism ��
X;Y;� W s.i

p;q
X;Y /�

0 ! s.i
q;p
Y;X /�

0 :

These morphisms commute with the morphisms �1; � 0
1 and �. Hence, they induce a

morphism of diagrams and therefore a morphism on the associated simple complexes:

yZp;q
A	A.X � Y;�/0

��
X;Y;������! yZq;p

A	A.Y �X;�/0:

Note that the morphism ��
X;Y;� restricts to yZp;q

A	A.X � Y;�/00 and to yZpCq
A	A.X �

Y;�/00.

Lemma 5.26. The diagram

yZp;q
A	A.X � Y;�/0

��
X;Y;�

��

yZp;q
A	A.X � Y;�/00

i�� 
 



��
X;Y;�

��

yZpCq
A	A.X � Y;�/00

��
X;Y;�

��
yZq;p

A	A.Y �X;�/0
yZq;p

A	A.Y �X;�/00
i�� 
 

 yZpCq

A	A.Y �X;�/00

is commutative.

Proof. The statement follows from the definitions. �

Lemma 5.27. The diagram

s. yZp.X;�/0 ˝ yZq.Y;�/0/

�

��

[ 

 yZp;q
A	A.X � Y;�/0

��
X;Y;�

��

s. yZq.Y;�/0 ˝ yZp.X;�/0/
[ 

 yZq;p

A	A.Y �X;�/0

is commutative.

Proof. It follows from the definition that the morphism ��
X;Y;� commutes with the

product � in Z�.X;�/0 and in H �.X;�/0. The fact that it commutes with 	A and
	p;q is an easy computation. �

By Lemmas 5.26 and 5.27, we are left to see that the diagram

yZpCq
A	A.X � Y;�/00

��
X;Y;�

��

	 

 yZpCq.X � Y;�/0

��
X;Y

��
yZpCq

A	A.Y �X;�/00
	 

 yZpCq.Y �X;�/0

(5.28)
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is commutative up to homotopy. We follow the ideas used by Levine, in [19], �4, in
order to prove the commutativity of the product on the higher algebraic Chow groups.
We will end up with an explicit homotopy for the commutativity of diagram 5.28.

Remark 5.29. For any scheme X , consider the morphism

yZp
A	A.X;�/00

��
���! yZp

A	A.X;�/00

induced by .�1/nm��
n;m at each component. Then ��

X;Y;� D ��
X;Y ��

� and hence,
the commutativity of the diagram (5.28) will follow from the commutativity (up to
homotopy) of the diagram

yZp
A	A.X;�/00

��
�

��

	

��&&&&&
&&&&&&

yZp.X;�/0:

yZp
A	A.X;�/00

	

��'''''''''''

Let Wn be the closed subvariety of �nC1 � P 1 defined by the equation

t1.1 � x1/.1 � xnC1/ D t1 � t0; (5.30)

where .t0 W t1/ are the coordinates in P 1 and .x1; : : : ; xnC1/ are the coordinates
in �nC1. Recall that we have identified �1 with the subset t0 6D t1 of P 1, with
coordinate x D t0=t1. Then there is an isomorphism Wn Š �n ��1. The inverse
of this isomorphism is given by

�nC1 'n��! Wn;

.x1; : : : ; xnC1/ 7�! .x1; : : : ; xnC1; x1 C xnC1 � x1xnC1/:

Consider the projection

�n W Wn ! �n; .x1; : : : ; xnC1; t / 7! .x2; : : : ; xn; t /:

Let � be the permutation

�n ��! �n; .x1; : : : ; xn/ 7! .x2; : : : ; xn; x1/:

Remark 5.31. Let �n;m be the map defined in (5.17). Observe that it is decomposed
as �n;m D �B m: : : B�: Therefore, ��

n;m D ��B m: : : B��:
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It is easy to check that the following identities are satisfied:

�n'nıi
0 D

8̂<̂
:

id if i D 1;

ıi�1
0 �n�1'n�1 if i D 2; : : : ; n;

� if i D nC 1I

�n'nıi
1 D

8̂<̂
:

ın
1 �n if i D 1;

ıi�1
1 �n�1'n�1 if i D 2; : : : ; n;

ın
1 �n� if i D nC 1:

(5.32)

Let W X
n be the pull-back of Wn to X ��n. Then the maps

�n W W X
n ! X ��n; and 'n W X ��nC1 ! W X

n

are defined accordingly.

Proposition 5.33. Let X be a quasi-projective regular scheme over a field k.

(i) The scheme Wn is a flat regular scheme over �n.

(ii) There is a well-defined map

Zp.X; n/
hn�! Zp.X; nC 1/; Y 7! '�

n��
n .Y /:

Proof. See [19], Lemma 4.1. �

For every n � 1, we define the morphisms

H p.X; n/
hn��! H p.X; nC 1/;

�D�
log.X ��n; p/

hn��! �D�
log.X ��nC1; p/;

�D�
log;Zp .X ��n; p/

hn��! �D�
log;Zp .X ��nC1; p/;

by hn D '�
n��

n : By Proposition 5.33, (ii), these morphisms are well defined.

Lemma 5.34. Let ˛ be an element of Zq.X; n/0, H p.X; n/0, �D�
log;Zp .X��n; p/0

or �D�
log.X ��n; p/0. Then the following equality is satisfied:

ıhn.˛/C
n�1X
iD1

.�1/ihn�1ı0
i .˛/ D �˛ C .�1/nC1��.˛/:
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Proof. By hypothesis, ı1
i .˛/ D 0 for all i D 1; : : : ; n. Then, by the pull-back of the

equalities (5.32), we see that ı1
i '�

n��
n .˛/ D 0. Therefore, using (5.32),

ıhn.˛/ D
nC1X
iD1

X
j D0;1

.�1/iCj ı
j
i '�

n��
n .˛/ D

nC1X
iD1

.�1/iı0
i '�

n��
n .˛/

D �˛ C
nX

iD2

.�1/i'�
n��

n�1ı0
i�1.˛/C .�1/n�1��.˛/

D �˛ �
n�1X
iD1

.�1/ihn�1ı0
i .˛/C .�1/nC1��.˛/;

as desired. �

Proposition 5.35. Let X be an arithmetic variety over a field. Then the following
diagram is commutative up to homotopy.

yZp

A�A.X; n/00 �

��&&&&&
&&&&&&

��
�

��
yZp.X; n/0:

yZp

A�A.X; n/00

�

��'''''''''''

Proof. We start by defining maps

Zp.X; n; m/00

Hn;m���! Zp.X; nCmC 1/0;

H p.X; n; m/00

Hn;m���! H p.X; nCmC 1/0;

�D�
log.X ��n ��m; p/00

Hn;m���! �D�
log.X ��nCmC1; p/0;

�D�
log;Zp .X ��n ��m; p/00

Hn;m���! �D�
log;Zp .X ��nCmC1; p/0:

By construction, these maps will commute with �1; � 0
1 and �. This will allow us to

define the homotopy for the commutativity of the diagram in the statement.
All the maps Hn;m will be defined in the same way. Thus, let B.X; n; m/00 denote

either Zp.X; n; m/00, H p.X; n; m/00, �D�
log.X ��n��m; p/00; or �D�

log;Zp .X �
�n � �m; p/00: For the last two cases, B.X; n; m/00 is a cochain complex, while
for the first two cases, it is a group. Analogously, denote by B.X; n C m C 1/0

the groups/complexes that are the target of Hn;m. The map Hn;m will be a cochain
complex for the last two cases.

Let ˛ 2 B.X; n; m/00. Then let Hn;m.˛/ 2 B.X; nCmC 1/0 be defined by

Hn;m.˛/ D
´Pn�1

iD0.�1/.mCi/.nCm�1/hnCmC1..��/mCi .˛//; n ¤ 0;

0; n D 0:
(5.36)
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From the definition it follows that:

B If B.X; n; m/00 is �D�
log.X��n��m; p/00; or �D�

log;Zp .X��n��m; p/00,
then

dDHn;m.˛/ D Hn;mdD.˛/;

i.e. Hn;m is a cochain morphism.

B �1Hn;m D Hn;m�1, � 0
1Hn;m D Hn;m� 0

1 and �Hn;m D Hn;m�.

Recall that in all these complexes,

ı0.˛/ D �ı0
1.˛/ 2 B.X; n � 1; m/00;

ı00.˛/ D �ı0
nC1.˛/ 2 B.X; n; m � 1/00:

Lemma 5.37. For every ˛ 2 B.X; n; m/00 we have

ıHn;m.˛/ �Hn�1;mı0
1.˛/ � .�1/nHn;m�1ı0

nC1.˛/ D ˛ � .�1/nm��
n;m.˛/:

Proof. If n D 0, since ˛ D �0;m.˛/ and H0;m.˛/ D 0 the equality is satisfied. For
simplicity, for every i D 0; : : : ; n � 1, we denote

H i
n;m.˛/ D .�1/.mCi/.nCm�1/hnCmC1..��/mCi .˛// 2 B.X; nCmC 1/0:

An easy computation shows that

ı0
j ��.˛/ D

´
��ı0

j �1.˛/ if j ¤ 1;

ı0
n.˛/ if j D 1;

and hence

ı0
j .��/i .˛/ D

8̂<̂
:

.��/iı0
j �i .˛/ if j > i;

.��/i�1ı0
n.˛/ if j D i;

.��/i�1ı0
n�iCj .˛/ if j < i:

Therefore,

ıH i
n;m.˛/ D

nCmC1X
j D1

.�1/j C.mCi/.nCm�1/ı0
j hnCmC1..��/mCi .˛//

D .�1/1C.mCi/.nCm�1/.��/mCi .˛/C .�1/.mCiC1/.nCm�1/.��/mCiC1.˛/

C
nCmX
j D2

.�1/j C.mCi/.nCm�1/hnCm.ı0
j �1.��/mCi .˛//:

Recall that the only non-zero faces of ˛ are ı0
1 and ı0

nC1. Therefore, from the
equalities (5.32), we see that the only non-zero faces are the faces corresponding to
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the indices j D m C i C 2 and j D i C 2. In these cases, they take the values
.��/mCiı0

1 and .��/mCi�1ı0
nC1 respectively. Therefore, if i ¤ n � 1, we obtain

ıH i
n;m.˛/ D �.�1/.mCi/.nCm�1/.��/mCi .Z/

C .�1/.mCiC1/.nCm�1/.��/mCiC1.˛/

C .�1/.mCi/.nCm�2/hnCm..��/mCiı0
1.˛//

C .�1/iC.mCi/.nCm�1/hnCm..��/m�1Ciı0
nC1.˛//:

Observe that .�1/iC.mCi/.nCm�1/ D .�1/.mCi�1/.nCm/Cn. Therefore, the last sum-
mand in the previous equality is exactly

H i
n�1;m.ı0

1.˛//C .�1/nH i
n;m�1.ı0

nC1.˛//:

If i D n � 1, then ı0
j �1.��/mCi .˛/ D 0, for j D 2; : : : ; n �m. Therefore,

ıH n�1
n;m .˛/ D .�1/1C.mCn�1/.nCm�1/.��/mCn�1.˛/

C .�1/.mCn/.nCm�1/.��/mCn.˛/

C .�1/n�1C.mCn�1/.nCm�1/hnCm..��/m�1Ciı0
nC1.˛//

D �.�1/.mCn�1/.nCm�1/.��/mCn�1.˛/C ˛

C .�1/nC.mCn�2/.nCm/hnCm..��/m�1Ciı0
nC1.˛//:

Finally, we have seen that

ıHn;m.˛/ D �.�1/m.nCm�1/.��/m.˛/C
n�2X
iD0

H i
n�1;m.ı0

1.˛//

C
n�1X
iD0

.�1/nH i
n;m�1.ı0

nC1.˛//C ˛;

and since .�1/m.nCm�1/ D .�1/nm, we obtain the equality

ıHn;m.˛/�Hn�1;m.ı0
1.˛//� .�1/nHn;m�1.ı0

nC1.˛// D ˛� .�1/nm��
n;m.˛/: �

Let

Z
p
A	A.X;�/00

H�! Zp.X;� C 1/0; H
p
A	A.X;�/00

H�! H p.X;� C 1/0;

be the maps which are Hn;m on the .n; m/-component. Let

D
2p��
A	A;Zp .X; p/00

H�! D
2p���1

A;Zp .X; p/0;
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be the maps which are .�1/rHn;m on the .r;�n;�m/-component. Observe that now

dDH D �HdD :

Let
H W yZp

A	A.X; n/00 ! yZp.X; nC 1/0

be defined by

H.Z; ˛0; ˛1; ˛2; ˛3/ D .H.Z/; H.˛0/; ˛1;�H.˛2/;�H.˛3//:

Let x D .Z; ˛0; ˛1; ˛2; ˛3/ 2 yZp
A	A.X; n/00. Then

dH.x/ D .ıH.Z/; dsH.˛0/; dD .˛1/; �1H.Z/ � � 0
1H.˛0/

C ıH.˛2/; �H.˛0/C dsH.˛3/ � ˛1/

Hd.x/ D .Hı.Z/; Hds.˛0/; dD .˛1/;�H�1.Z/CH� 0
1.˛0/CHı.˛2/;

�H�.˛0/CHds.˛3/CH.˛1//:

Observe that for ˛0 2 �Dr
log;Zp .X ��n ��m; p/00, we have

Hds.˛0/ D HdD.˛0/C .�1/rHı.˛0/ D �dDH.˛0/C .�1/rHı.˛0/;

dsH.˛0/ D dDH.˛0/C .�1/rıH.˛0/:

The same remark applies to ˛3 2 �Dr
log.X � �n � �m; p/00. Moreover, since ˛1

equals zero in all degrees but 0 and H is the identity in degree zero, we have, by
Lemma 5.37,

dH.x/CHd.x/ D x � ��
�.x/: �

Corollary 5.38. The following diagram is commutative up to homotopy:

yZpCq
A	A.X � Y;�/00

��
X;Y;�

��

	 

 yZpCq.X � Y;�/0

��
X;Y

��
yZpCq

A	A.Y �X;�/00
	 

 yZpCq.Y �X;�/0.

Proof. It follows from Proposition 5.35. �

Corollary 5.39. Let X; Y be arithmetic varieties.

(i) Under the canonical isomorphism X � Y Š Y �X , the pairing

cCHp.X; n/˝ cCHq.Y; m/
[�! cCHpCq.X � Y; nCm/;

is graded commutative with respect to the degree n.

(ii) The internal pairing

cCHp.X; n/˝ cCHq.X; m/
[�! cCHpCq.X; nCm/;

is graded commutative with respect to the degree n.
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5.5. Associativity. We prove here that the product for the higher arithmetic Chow
groups is associative. First of all, observe that the product on Z�.X;�/0 is strictly
associative. Hence, all that remains is to study the associativity of the product in
the complexes with differential forms, except for ZD

2p
log .X; p/�, where it is already

associative. The key point will be Proposition 1.26.
Denote by h the homotopy for the associativity of the product in the Deligne

complex of differential forms of Proposition 1.26. Let X , Y , Z be complex algebraic
manifolds. Then the external product 	A is associative, in the sense that there is a
commutative diagram up to homotopy:

Dr
A.X; p/0 ˝ Ds

A.Y; q/0 ˝ D t
A.Z; l/0

�A˝id

��((((
((((

((((
((

id˝�A

��)))
))))

))))
))))

D
rCs
A .X 	 Y; p C q/0 ˝ D t

A.Z; l/0

�A ��)))
))))

))))
)))

Dr
A.X; p/0 ˝ D

sCt
A .Y 	 Z; q C l/0.

�A��((((
((((

((((
((

D
rCsCt
A .X 	 Y 	 Z; p C q C l/0 (5.40)

This follows from the fact that the homotopy h is functorial (see [5]).

Proposition 5.41. Let X , Y , Z be complex algebraic manifolds. Then there is a
commutative diagram, up to homotopy:

Dr
A;Zp .X; p/0 ˝ Ds

A;Zq .Y; q/0 ˝ D t

A;Zl .Z; l/0

�A˝id

��***
***

***
*** id˝�A

  ++
+++

+++
+++

++

D
rCs

A;ZpCq .X 	 Y; p C q/0 ˝ D t

A;Zl .Z; l/0

�A   ++
+++

+++
+++

+
Dr

A;Zp .X; p/0 ˝ D
sCt

A;ZqCl .Y 	 Z; q C l/0 .

�A��***
***

***
***

D
rCsCt

A;ZpCqCl .X 	 Y 	 Z; p C q C l/0

Proof. In order to prove the proposition, we need to introduce some new complexes,
which are analogous to s.i

p;q
X;Y /�, but with the three varieties X; Y; Z. Due to the

similarity, we will leave the details to the reader.
We write �n;m;d

X;Y;Z D X � Y �Z ��nCmCd . Let

A� D D�
log.�n;m;d

X;Y;Z
nZp

X;n
; k/˚D�

log.�n;m;d
X;Y;Z

nZq

Y;m
; k/˚D�

log.�n;m;d
X;Y;Z

nZl
Z;d ; k/;

and

B� D D�
log.�n;m;d

X;Y;Z
nZp;q

X;Y;n;m
; k/˚D�

log.�n;m;d
X;Y;Z

nZp;l

X;Z;n;d
; k/

˚D�
log.�n;m;d

X;Y;Z
nZq;l

Y;Z;m;d
; k/;
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and consider the sequence of morphisms of complexes

A� i�! B� j�! D�
log.�n;m;d nZp;q;l

X;Y;Z
; k/:

By analogy with the definition of s.�j
p;q

X;Y .n; m//�, denote by s.�j
p;q;l

X;Y;Z.n; m; d//�
the simple complex associated to this sequence of morphisms. Consider the morphism

D�
log.�n;m;d

X;Y;Z ; k/
i
p;q;l
X;Y;Z

.n;m;d/

���������! s.�j
p;q;l

X;Y;Z.n; m; d//�;

! 7�! .!; !; !; 0; 0; 0; 0/:

Observe that for every n; m; d , the simple of this morphism is a cochain complex.
Moreover, considering the normalized complex associated to the cubical structure
at every component of s.i

p;q;l
X;Y;Z.�; �; �//�, we obtain the cochain complex s.i

p;q;l
X;Y;Z/�

0

(analogous to the construction of s.i
p;q
X;Y /�

0 in Remark 5.7).
Let D�

A	A	A;Z
p;q;l
X;Y;Z

.X � Y � Z; p C q C l/0 be the complex analogous to

D�
A	A;Z

p;q
X;Y

.X � Y; p C q/0, but with the cartesian product of 3 varieties. It is the

simple complex associated to the analogous 4-iterated complex (see Remark 5.7).
Observe that there is a quasi-isomorphism

D�
A	A	A;Z

p;q;l
X;Y;Z

.X � Y �Z; p C q C l/0
��! s.i

p;q;l
X;Y;Z/�

0 :

We define a pairing

s.i
p;q
X;Y .n; m//r

0 ˝D
s;d

A;Zl .Z; l/0
��! s.i

p;q;l
X;Y;Z.n; m; d//rCs

0

by

.a; .b; c/; d/ 	 .a0; b0/ D .�1/.nCm/s
�
a 	 a0; .b 	 a0; c 	 a0; .�1/ra 	 b0/;

.d 	 a0; .�1/r�1b 	 b0; .�1/r�1c 	 b0/; .�1/r�2d 	 b0�:
Define analogously a pairing

D
r;n
A;Zp .X; p/0 ˝ s.i

q;l
Y;Z.m; d//s

0

��! s.i
p;q;l
X;Y;Z.n; m; d//rCs

0

by

.a; b/ 	 .a0; .b0; c0/; d 0/ D .�1/ns
�
a 	 a0; .b 	 a0; .�1/ra 	 b0; .�1/ra 	 c0/;

..�1/r�1b 	 b0; .�1/r�1b 	 c0; a 	 d 0/; b 	 d 0�:
It is easy to check that these two morphisms are chain morphisms.
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Lemma 5.42. The diagram

Dr
A;Zp .X; p/0 ˝ Ds

A;Zq .Y; q/0 ˝ D t

A;Zl .Z; l/0

�p;q˝id

��((((
((((

((((
(((

id˝�A

�����
����

����
����

s.i
p;q

X;Y /
rCs
0 ˝ D t

A;Zl .Z; l/0

�
��)))

))))
))))

))))
Dr

A;Zp .X; p/0 ˝ s.i
q;l

Y;Z/
sCt
0

�
��,,,,

,,,,
,,,,

,,,

s.i
p;q;l

X;Y;Z/
rCsCt
0

(5.43)

is commutative up to homotopy.

Proof. Let .!1; g1/ 2 �Dr
log;Zp .X � �n; p/0; .!2; g2/ 2 �Ds

log;Zq .Y � �m; q/0;

and .!3; g3/ 2 �D t
log;Zl .Z � �d ; l/0: Then the composition of the morphisms on

the left side of the diagram is

.�1/.nCm/tCns
�
.!1 	 !2/ 	 !3; ..g1 	 !2/ 	 !3; .�1/r.!1 	 g2/ 	 !3;

.�1/rCs.!1 	 !2/ 	 g3/; ..�1/r�1.g1 	 g2/ 	 !3; .�1/rCs�1.g1 	 !2/ 	 g3;

.�1/s�1.!1 	 g2/ 	 g3/; .�1/s�1.g1 	 g2/ 	 g3

�
:

The composition of the morphisms on the right side of the diagram is

.�1/.nCm/tCns
�
!1 	 .!2 	 !3/; .g1 	 .!2 	 !3/; .�1/r!1 	 .g2 	 !3/;

.�1/rCs!1 	 .!2 	 g3//; ..�1/r�1g1 	 .g2 	 !3/; .�1/rCs�1g1 	 .!2 	 g3/;

.�1/s�1!1 	 .g2 	 g3//; .�1/s�1g1 	 .g2 	 g3/
�
:

Then the homotopy for the commutativity of the diagram is given by

Hn;m;d D .�1/.nCm/tCns
�
.h.!1 ˝ !2 ˝ !3/; h.g1 ˝ !2 ˝ !3/;

.�1/rh.!1 ˝ g2 ˝ !3/; .�1/rCsh.!1 ˝ !2 ˝ g3//;

..�1/r�1h.g1 ˝ g2 ˝ !3/; .�1/rCs�1h.g1 ˝ !2 ˝ g3/;

.�1/s�1h.!1 ˝ g2 ˝ g3//; .�1/s�1h.g1 ˝ g2 ˝ g3/
�
:

Observe that it gives indeed a homotopy, since H and ı commute. �
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Finally, the claim of Proposition 5.41 follows from the commutative diagram (all
squares and triangles, apart from the one marked with # are strictly commutative),

Dr
A;Zp .X; p/0 ˝ Ds

A;Zq .Y; q/0 ˝ D t

A;Zl .Z; l/0

�p;q ˝id
!!����

���� id˝�q;l�����
����

��

s.i
p;q

X;Y /
rCs
0 ˝ D t

A;Zl .Z; l/0

� �����
����

�
# Dr

A;Zp .X; p/0 ˝ s.i
q;l

Y;Z/
sCt
0

�!!����
����

s.i
p;q;l

X;Y;Z/
rCsCt
0

D
rCs

A�A;Zp;q .X 	 Y; p C q/0 ˝ D t

A;Zl .Z; l/0

�

��

��

Dr
A;Zp .X; p/0 ˝ D

sCl

A�A;Zq;t .Y 	 Z; q C l/0

�

��

��

s.i
p;q;l

X;Y;Z/
rCsCt
0

�����
����

�
!!����

����

s.i
pCq;l

X�Y;Z/
rCsCt
0 s.i

p;qCl

X;Y �Z/
rCsCt
0

D
rCsCt

A�A�A;Zp;q;l .X 	 Y 	 Z; p C q C l/0

����������
""��������

�

��

�

��

�

�����
����

�
�

!!,,,,
,,,,

D
rCsCt

A�A;ZpCq;l .X 	 Y 	 Z; p C q C l/0

�

�����
����

�

�

��

D
rCsCt

A�A;Zp;qCl .X 	 Y 	 Z; p C q C l/0

�!!����
����

�

��

D
rCsCt

A;ZpCqCl .X 	 Y 	 Z; p C q C l/0:

�

Remark5.44. Observe that the homotopy constructed in the proof of Proposition 5.41
has no component in maximal degree, that is, in D

2pC2qC2l

A;ZpCqCl .X�Y �Z; pCqC l/0.

Corollary 5.45. Let X; Y; Z be arithmetic varieties.

(i) Under the canonical isomorphism .X � Y / �Z Š X � .Y �Z/, the external
pairing cCHp.�; n/˝ cCHq.�; m/˝ [�! cCHpCq.� � �; nCm/;

is associative.

(ii) The internal pairing

cCHp.X; n/˝ cCHq.X; m/
[�! cCHpCq.X; nCm/;

is associative.

Proof. It follows from (5.40) and Proposition 5.41, together with Remark 5.44 and the
compatibility of the homotopies in (5.40) and Proposition 5.41. For n D m D l D 0,
the associativity follows from equality (1.27). �
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Finally, we have proved the following theorem.

Theorem 5.46. Let X be an arithmetic variety over an arithmetic field K. Then

cCH�.X;�/ WD
M

p�0;n�0

cCHp.X; n/

is a commutative and associative ring with unity (graded commutative with respect to
the degree n and commutative with respect to the degree p). Moreover, the morphismcCH�.X;�/ ��! CH�.X;�/ of Proposition 4.4 is a ring morphism.
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