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Abstract. Let F 2 ZŒX; Y � be an integral binary form of degree g > 2, and let

‰F .x; y/ WD cardf1 6 a; b 6 x W P C.F.a; b// 6 yg
where as usual P C.n/ denotes the largest prime factor of n. It is proved that ‰F .x; y/ � x2

for y D xg�2C" in general, and y D x1=
p

eC" if g D 3. Better results are obtained if F is
reducible.
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1. Introduction

For an integer n let as usual P C.n/ and P �.n/ denote respectively the largest and
smallest prime factor of jnj with the conventions P C.˙1/ D 1, P �.1/ D 1,
P C.0/ D 0.1 Given a real number y > 1, an integer n is called y-friable (or
sometimes y-smooth) if P C.n/ 6 y. Friable numbers have proved to be very
useful in many branches of number theory, both theoretically (e.g. in connection with
Waring’s problem) and practically (e.g. for factoring algorithms). See [Gr] for a
recent overview.

When the friability parameter y exceeds a power of x, friable numbers occur with
positive density among integers less than or equal to x. Indeed, for any fixed " > 0,
we have, as x tends to infinity,

‰.x; x"/ WD cardf1 6 a 6 x W P C.a/ 6 x"g � %.1="/x

where % is the Dickman function. It is, however, very often a hard problem to establish
that a given sequence contains a positive proportion of friable numbers, even if we
content ourselves with a relatively modest friability parameter y.

1For the purpose of this paper, the value of P C.0/ is irrelevant, since for a binary form F there are at most
� x pairs .a; b/ 2 Œ1; x�2 such that F .a; b/ D 0. The above definition is chosen to simplify the presentation.
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In this article, we consider integral binary forms F 2 ZŒX; Y �, and define

‰F .x; y/ WD cardf1 6 a; b 6 x W P C.F.a; b// 6 yg:
Without loss of generality we can assume that F is “squarefree”, that is, its irreducible
factors are distinct. We are interested in determining values of y as small as possible
such that we can still guarantee a bound of the type

‰F .x; y/ � x2: (1.1)

If F is a linear form, one can trivially choose y D x", and this is best possible. If
F D X2 CY 2, Moree [Mo] (see also [BW], [TW1], [HTW]) showed that (1.1) holds
again with y D x". Actually the main result of [TW1] evaluates friable sums of fairly
general multiplicative functions and furnishes corresponding asymptotic formulae in
a much larger .x; y/-domain, certainly including exp..log x/"/ 6 y 6 x. It is
not hard to see that this result generalizes to arbitrary irreducible binary quadratic
forms, noting that the representation function is a linear combination of multiplicative
functions attached to certain ring class characters of the underlying quadratic number
field. For higher degree, little has been known so far. We shall prove the following
general theorem.

Theorem 1. Let F D F.X; Y / be a binary form with integer coefficients, degree
t > 2 and no repeated irreducible factor. Let g be the largest degree of an irreducible
factor of F and let k (resp. `) denote the number of distinct irreducible factors of F

having degree g (resp. g � 1). Given any positive real number ", the estimate

‰F .x; y/ �F;" x2

holds for all large x provided y > x˛F C", where the exponent ˛F is defined by

˛F WD

8̂<
:̂

g � 2=k if k > 2;

g � 1 � 1=.` C 1/ if k D 1 and .g; t/ ¤ .2; 3/;

2=3 if .g; k; t/ D .2; 1; 3/:

As is well known, irreducibility over Q is the same as irreducibility over Z. Thus,
distinct factors of F are understood as distinct up to a scalar. Irreducible binary forms
correspond to the case .k; `/ D .1; 0/. The theorem provides for these polynomials
the exponent ˛F D g � 2. In the opposite direction, the theorem provides nontrivial
results for simultaneous friable values of an arbitrary number of, say, binary linear
forms. It also reproves the exponent ˛F D 0 for a reducible or irreducible quadratic
form F .

We obtain a better range for y when F is a cubic form. This is due to the fact
that, when deg.F / D t 6 3, the level of distribution of the sequence fF.a; b/g for
1 6 a; b 6 x, given by Proposition 2 below, exceeds xt=2.
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Theorem 2. Let F 2 ZŒX; Y � be an integral binary cubic form. Let

˛F WD
´

1=
p

e if F is irreducible;

0 if F is reducible:

Then
‰F .x; y/ �F;" x2

provided y > x˛F C".

We have 1=
p

e D 0:606 : : :, so x1=
p

e D .x3/0:202:::. As a comparison, Theorem 1
yields ˛F D 1 if the cubic form F is irreducible and ˛F D 2=3 or 1=3 if F is reducible
(depending on whether F decomposes into a quadratic and a linear form, or into three
linear forms).

It is certainly also an interesting question how small y can be chosen if we drop
the requirement to get a positive proportion of y-friable values. Here we only make
the simple observation that ‰F .x; x"/ � x holds for any " and any F : just consider
the values F.a; ca/ for x"-friable integers a and a suitable constant c 2 Z such that
F.a; ca/ is not constantly zero.

That friable values of binary forms play a central role in the number field sieve
may provide further motivation for our results. Indeed, suppose we want to factorize
a large integer N . Let f 2 ZŒX� be an integral polynomial of degree d and m such
that N D f .m/. Let F be the corresponding homogenized binary form F.a; b/ D
bd f .a=b/. An important step of the number field sieve is to find sufficiently many
pairs .a; b/ such that F.a; b/.a � bm/ is friable. Therefore the study of the function
‰F .x; y/ yields information on the complexity of the factoring algorithm and will
influence the choice of various parameters of the algorithm. The interested reader will
find a detailed presentation of the number field sieve in the monograph of Crandall
and Pomerance ([CP], Chapter 6).

The first key ingredient in the proof of both theorems is a result on the distri-
bution of the values F.a; b/ among arithmetic progressions, see Section 2. Work
of G. Greaves [G2] (see also [Dan]) shows that – at least for an irreducible form –
the level of distribution of the set fF.a; b/ W 1 6 a; b 6 xg is x2�". The proof of
Theorem 1 then follows along the lines of [DMT], although the details are somewhat
more involved in the present case. For cubic forms, we have a little more elbow room,
and we count solutions to F.a; b/ D uvw where the integers u; v; w have restricted
sizes and have their prime factors in certain prescribed intervals. In the reducible
case, we need a generalization of a large sieve type inequality for roots of quadratic
congruences due to Fouvry and Iwaniec [FI]. This may be useful in other situations,
too, and we state and prove it in Section 5.

Acknowledgements. The first two authors would like to thank for the invitation and
excellent working conditions at the Université Nancy 1, where this paper was worked
out.
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2. Preliminaries

2.1. Generalities. Throughout the paper we shall (without loss of generality) always
assume that all binary forms are primitive, that is, the greatest common divisor of
their coefficients is 1. Given a binary form F.X; Y /, a real number x > 1 and a
positive integer d , we define

Ad .xI F / WD cardf1 6 a; b 6 x W F.a; b/ � 0 .mod d/g:
We consider the approximation

Ad .xI F / D �F .d/

d 2
x2 C rd .x/; (2.1)

where
�F .d/ WD cardf0 6 u; v < d W F.u; v/ � 0 .mod d/g

is a multiplicative function and rd .x/ is an error term. When F.X; Y / is irreducible
and not linear, Greaves [G1], [G2]2 proved that the error term is small on average
over d : for x > 1, z > 1 and any " > 0 we have ([G2], 2.4.4)X

d6z

jrd .x/j �";F .z C x/z": (2.2)

A similar form of this relation is proved by S. Daniel (Lemma 3.3 of [Dan]): if
t WD deg F , we haveX

d6z

sup
j@Rj6M

ˇ̌̌
ˇ X

.a;b/2R
F .a;b/�0 .mod d/

1 � �F .d/ vol R

d 2

ˇ̌̌
ˇ

�";F M
p

zflog.2z/g�t C zflog.2z/g3t�1;

(2.3)

where �t WD t .1 C 2t/tC1, R is any compact subset of R2, vol R designates its
volume and j@Rj the length of its boundary.

Let us temporarily assume that F is irreducible and set

%F .n/ WD cardf1 6 a 6 n W F.a; 1/ � 0 .mod n/g:
We then have (see [G2], 2.2.2, 2.2.5)

�F .p/ D .p � 1/%F .p/ C 1; �F .p2/ D p.p � 1/%F .p2/ C p2; (2.4)

if p does not divide the leading coefficient of F.X; 1/; in particular, in this case
�F .p/ ¤ 0, �F .p2/ ¤ 0. For t D 3 and all primes p, the following general bounds
hold

�F .p�/ � p1CŒ�=3� .� > 1/: (2.5)
2 Note that these works employ a different normalization for the multiplicative function appearing in the main

term of (2.1).
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This follows by combining (7.2)–(7.4) of [Dan] on noting that Daniel’s function %.d/

is our function �F .d/. We also recall that �F .p/ is p on average: indeed, we have,
[G2], 2.3.1, X

p6�

�F .p/ log p

p2
D log � C O.1/ .� > 1/: (2.6)

More precisely, it is a classical result going back (at least) to Dedekind (see e.g. [Dan],
pp. 126–7, or [T1], (3.35)) that

X
n>1

�F .n/

nsC1
D �K.s/G .s/ (2.7)

where G is an Euler product, absolutely convergent in <s > 1 � 1=t , K WD Q.#/

for some root # of F.X; 1/ and �K is the Dedekind zeta function of the field K.

2.2. A summatory function linked to polynomial congruences. In the proof of
Theorem 2, in the case when F cubic and irreducible, we need an asymptotic formula
for the sum of �F .n/=n over integers without small prime factors. (This is needed
for the evaluation of the u and w-sums in (4.6) below.) We formulate the result in a
somewhat more general context. Its full strength will not be needed for our present
purposes, but it may be useful for further reference in similar situations.

Let K=Q be now an algebraic number field and �K be the corresponding Dedekind
zeta function. We let % and ! denote respectively the Dickman function and the
Buchstab function, see [T2], p. 366, 399. For " > 0, we introduce the domain

.H"/ x > 3; exp
˚
.log log x/5=3C"

�
6 z 6 x:

We also define, for z > 2,

L".z/ WD exp
˚
.log z/3=5�"

�
; Z" WD exp

˚
.log z/3=2�"

�
:

For x > z > 2, we write systematically u WD .log x/= log z and define

H.u/ WD expfu=.1 C log u/2g:
We denote by �.s/ the Riemann zeta function and introduce the partial Euler product

�.s; z/ WD
Y
p6z

�
1 � p�s

��1
.<s > 0/:

Proposition 1. Let f be a multiplicative function with associated Dirichlet series
F .s/ WD P

n>1 f .n/n�s absolutely convergent for <s > 1. Assume that

F .s/ D �K.s/G .s/
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where G is given by an Euler product that is absolutely convergent in a suitable
half-plane <s > 1 � ı with ı > 0. Then there exists an absolute constant c > 0 such
that, for any given " > 0 and uniformly in the domain H", we have

X
n6x

P �.n/>z

f .n/ D �
x!.u/ � z

� e�

�.1; z/
C O

�
x%.u/

.log z/2

˚
H.u/�c C Z�1

"

��
:

Proof. Let F .sI z/ designate the subseries of F .s/ restricted to z-friable integers n.
Let O% denote the Laplace transform of the Dickman function %, viz.

O%.u/ WD
Z 1

0

e�us%.u/ du .s 2 C/:

From formula (3.35) of [T1], we see that Lemma 4.1 of [HTW] may be applied to
F , providing the estimate

F .sI z/ D F .s/.s � 1/.log z/ O%�
.s � 1/ log z

�²
1 C O

�
1

L".z/

�³
(2.8)

whenever z > 2; <s > 1�1=.log z/2=5C"; j=sj 6 L".z/: We obtain the stated result
by reproducing step by step the computations of the proofs of Theorem III.6.7 and
Corollary III.6.7.5 of [T2], pp. 408–417, simply replacing the function �.s/=�.s; z/

by F .s/=F .sI z/, which satisfies the same asymptotic formula, given by (2.8), in
the same range H". This is proved, in particular, by appealing to the fact that �K.s/

has a Vinogradov-type zero-free region analogous to that of �.s/. We note that the
necessary analogue of formula (III.6.72) of [T2], which follows from a simple form
of the approximate functional equation for �.s/, is provided by Lemma 4.4 of [HTW].

2.3. The level of distribution of the sequence fF.a; b/ga;b2N . In this section we
adapt Greaves’ method to obtain a variant of (2.2) related to binary forms that need
not be irreducible. We consider m distinct irreducible binary forms F1; : : : ; Fm, and
write F D .F1; : : : ; Fm/. For all d D .d1; : : : ; dm/ 2 Nm and x > 1, we write

F .a; b/ � 0 .mod d/

to mean that Fj .a; b/ � 0 .mod dj / for 1 6 j 6 m, and define

A.xI F ; d/ WD cardf1 6 a; b 6 x W F .a; b/ � 0 .mod d/g:
Our generalization is stated as follows.

Proposition 2. Let " > 0 and 0 6 s 6 m. Assume further that F1; : : : ; Fs are
linear forms and that FsC1; : : : ; Fm are forms of degree > 2. Then, uniformly for
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D1 > 1; : : : ; Dm > 1, x > 1, we have

X
d16D1

� � �
X

dm6Dm

�2.�m/

ˇ̌̌
ˇA.xI F ; d/ � x2

Y
16j 6m

�Fj
.dj /

d 2
j

ˇ̌̌
ˇ

� �
x {Ds C {D2

s
yDs C D

�
D";

(2.9)

with

�m WD
Y

16j 6m

dj ; {Ds WD 1 C
X

16j 6s

Dj ; yDs WD
Y

s<j 6m

Dj ; D WD
Y

16j 6m

Dj :

When F has no linear factor, we have s D 0, and our definition of {Ds ensures
that {Ds 6D 0 even in this case. The upper bound in (2.9) is then .x C D/D".

We confined ourselves to proving a simple result which is sufficient for the proof
of Theorem 1. With a little more work, the condition that the dj are squarefree and
pairwise coprime could be relaxed.

Proof of Proposition 2. We detect congruences via exponential sums. We have

A.xI F ; d/ D 1

�2
m

X
06g;h<�m

X
06u;v<�m

F .u;v/�0 .mod d/

X
16a;b6x

e

�
g.u � a/ C h.v � b/

�m

�
:

The main contribution arises from g D h D 0. Since .di ; dj / D 1 for all i ¤ j ,
this yields a term x2

Q
16j 6mf�Fj

.dj /=d 2
j g. To estimate the remaining terms, we

consider separately those pairs .g; h/ such that g D 0 or h D 0. Writing

S.d I g; h/ WD
X

06u;v<�m

F .u;v/�0 .mod d/

e

�
gu C hv

�m

�
;

we have

A.xI F ; d/ D x2
Y

16j 6m

�Fj
.dj /

d 2
j

C R1.d/ C R2.d/; (2.10)

with

R1.d/ WD x

�2
m

X
16h<�m

.S.d I 0; h/ C S.d I h; 0//
X

16a6x

e

��ha

�m

�

� x

�m

X
16h<�m

jS.d I 0; h/ C S.d I h; 0/j
min.h; �m � h/

� x

�m

X
16h6�m=2

jS.d I 0; h/j C jS.d I h; 0/j
h

;
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R2.d/ WD 1

�2
m

X
16g;h<�m

S.d I g; h/
X

16a;b6x

e

��ga � hb

�m

�

�
X

16g;h6�m=2

jS.d I g; h/j C jS.d I �g; h/j
gh

:

We proceed to bound the exponential sums S.d ; g; h/. Put �0
m WD �m=d1.

Since .d1; �0
m/ D 1, the Chinese remainder theorem implies that each pair fu; vg with

1 6 u; v 6 �m has a representation in the form u D u1�0
mCu2d1, v D v1�0

mCv2d1

with 0 6 u1; v1 < d1 and 0 6 u2; v2 < �0
m: Since the forms Fj are homogeneous,

the congruence conditions become

Fj .u; v/ � 0 .mod dj / ()
´

Fj .u2d1; v2d1/ � 0 .mod dj / if j ¤ 1;

F1.u1�0
m; v1�0

m/ � 0 .mod d1/ if j D 1;

()
´

Fj .u2; v2/ � 0 .mod dj / if j ¤ 1;

F1.u1; v1/ � 0 .mod d1/ if j D 1:

Thus we obtain

S.d I g; h/ D
X

06u;v<d1

F1.u;v/�0 .mod d1/

e

�
gu C hv

d1

� X
06u2;v2<�0

m

Fj .u2;v2/�0 .mod �0
m/

e

�
gu2 C hv2

d2 � � � dm

�

D
Y

16j 6m

X
06u;v<dj

Fj .u;v/�0 .mod dj /

e

�
gu C hv

dj

�
DW

Y
16j 6m

Sj .dj I g; h/;

(2.11)

say. When dj D p is a prime and deg.Fj / > 2, Greaves (see [G1] or [G2]) proved
that

Sj .pI g; h/ � �
Fj .�h; g/; p

�
: (2.12)

This inequality is also satisfied when deg.Fj / D 1, i.e. Fj is of type Fj .X; Y / D
j̨ X C ǰ Y with . j̨ ; ǰ / D 1. Indeed, if . j̨ ; p/ D 1, we have

Sj .pI g; h/ D
X

06u;v<p
u�� S̨j ǰ v .mod p/

e

�
gu C hv

p

�
;

where x̨j is defined modulo p by the equation j̨ x̨j � 1 .mod p/. Thus

Sj .pI g; h/ D
X

06v<p

e

�
v.h � g x̨j ǰ /

p

�
D

´
p if � j̨ h C ǰ g � 0 .mod p/;

0 otherwise

(2.13)



Vol. 87 (2012) Friable values of binary forms 647

and (2.12) is still satisfied (with implicit constant 1) in this case. If p j j̨ and
therefore p − ǰ , then Fj .u; v/ � 0 .mod p/ if and only if v D 0, so

Sj .pI g; h/ D
´

p if p j g;

0 otherwise.
(2.14)

Thus (2.12) holds unconditionally. Successive applications of the Chinese remainder
theorem (using the fact that the dj are squarefree) and (2.12) yield

Sj .dj I g; h/ D
Y

pjdj

Sj .pI g; h/ � C
!.dj /

j

�
Fj .�h; g/; dj

�
;

where Cj > 0 depends only of Fj . Thus, there exists C D C.F / > 0 such that

S.d ; g; h/ � C !.�m/
Y

16j 6m

�
Fj .�h; g/; dj

�
: (2.15)

Moreover, we bear in mind that when Fj is linear we also have from the Chinese
remainder theorem, (2.13) and (2.14), that

Sj .dj I g; h/ D
´

dj if Fj .�h; g/ � 0 .mod dj /;

0 otherwise.
(2.16)

We are now in a position to estimate the contributions to (2.9) of the error terms
Rj .d/ in (2.10). Let 0 < "1 < ". The case of R2.d/ is typical. We observe that
when deg Fj > 2, we always have Fj .�h; g/ ¤ 0 in (2.15). Indeed .0; 0/ is the only
solution in Z2 of the equation Fj .a; b/ D 0 because Fj is irreducible and non-linear.
(See [Dar], p. 51, for a proof of this assertion.) We also remark (in the case s ¤ 0)
that if .g; h/ satisfy Fi .�h; g/ D 0 for some 1 6 i 6 s then Fj .�h; g/ ¤ 0 for all
1 6 j 6 s such that j ¤ i .

We handle separately the contribution of those pairs .g; h/ such that Fj .�h; g/ D 0

for some 1 6 j 6 s. We write

R2.d/ D T0.d/ C
X

16j 6s

Tj .d/ (2.17)

where in T0.d/ the summation comprises all 1 6 g; h 6 �m such that F.�h; g/ ¤ 0

and in Tj .d/ with 1 6 j 6 s, the summation is given by the conditions 1 6 g; h 6 �m

and Fj .�h; g/ D 0.
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We first consider the contribution of T0.d/ to the left-hand side of (2.9). We haveX
d16D1

� � �
X

dm6Dm

�.�m/2T0.d/

�
X

d16D1

� � �
X

dm6Dm

�"1
m

X
16g;h6�m=2
F .�h;g/¤0

1

gh

Y
16j 6m

j.Fj .�h; g/; dj /j

� D"1

X
16g;h6D=2
F .�h;g/¤0

1

gh

Y
16j 6m

X
dj 6Dj

ˇ̌�
Fj .�h; g/; dj

�ˇ̌
:

Now we note that for all integers D > 1, N > 1, we haveX
d6D

.N; d/ D
X
d6D

X
t j.N;d/

'.t/ 6
X

t jN; t6D

'.t/D=t 6 D	.N /; (2.18)

where 	.N / denotes the number of divisors of N . Inserting this in the above bound
yields X

d16D1

� � �
X

dm6Dm

�.�m/2T0.d/

� D1C"1

X
16g;h6D=2
F .�h;g/¤0

1

gh

Y
16j 6m

	
�jFj .�h; g/j� � D1C":

(2.19)

Next, we estimate the contributions to (2.9) of the quantities Tj .d/ for 1 6 j 6 s.
Since in these summations we have Fj .�h; g/ D � j̨ h C ǰ g D 0, we may replace
the variable h by g ǰ = j̨ . Note that we must have j̨ ¤ 0 since gh ǰ ¤ 0. We
define �s WD Q

16i6s di . By (2.16) we haveX
d16D1

� � �
X

dm6Dm

�.�m/2Tj .d/

�
X

d16D1

� � �
X

dm6Dm

�"1
m

X
16g6�m=2; j̨ jg

di jFi .�g ǰ = j̨ ;g/ .j ¤i6s/

�s

g2

Y
s<r6m

j.Fr.�h; g/; dr/j:

Let "2 2�"1; "Œ, where " is given in Proposition 2 and "1 was defined after (2.16).
First, we use (2.18) to estimate the dj -partial sums for s < j 6 m much in the same
way as we did for the terms T0.d/. We obtainX

d16D1

� � �
X

dm6Dm

�.�m/2Tj .d/

� yDsD"2

X
d16D1

� � �
X

ds6Ds

�s.�m/
X

16g6�s
yDs ; j̨ jg

di jFi .�g ǰ = j̨ ;g/ .j ¤i6s/

�s

g2
:
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For 1 6 i 6 s, i ¤ j , the congruence Fi .�g ǰ = j̨ ; g/ � 0 .mod di / is equivalent
to

g

j̨

� 0

�
mod

di

.di ; j̨ ˇi � ˛i ǰ /

�
:

Since the di are mutually coprime we have

lcm
j ¤i6s

²
di

.di ; j̨ ˇi � ˛i ǰ /

³
D �s

Kdj

where K D K.d/ satisfies

K j
Y

16i6s
i¤j

. j̨ ˇi � ˛i ǰ /

and is therefore bounded uniformly with respect to d . Thus there exists K0.d/ 2 N,
K0.d/ � 1, such that, whenever g satisfies the conditions di j Fi .�g ǰ = j̨ ; g/ for
1 6 i 6 s; i ¤ j , then �s=fK0.d/dj g j g. Writing g D �sg0=fK0.d/dj g, we infer
that X

d16D1

� � �
X

dm6Dm

�.�m/2Tj .d/

� yDsD"2

X
d16D1

� � �
X

ds6Ds

�.�s/2
X

16�sg0=fK0.d/dj g6�s
yDs

d 2
j

�sg02

� D2
j

yDsD":

(2.20)

The contribution to (2.9) of the terms R1.d/ may be handled similarly. We
appeal to (2.11), (2.15) and (2.16). If there are no defective factors Fj .X; Y / D ˙X

or Fj .X; Y / D ˙Y , then we have Fj .�h; 0/ ¤ 0 and Fj .0; h/ ¤ 0 for all h ¤ 0

and all 1 6 j 6 m. With computations parallel to those employed to estimate the
contribution to (2.9) of the terms T0.d/, we obtainX

d16D1

� � �
X

dm6Dm

�.�m/2jR1.d/j � xD":

If, for instance, we have F1.X; Y / D X then S1.d1I g; 0/ D d1 for all g and d1. We
obtain

R1.d/ � xd1C !.�m/

�m

X
16h6�m=2

1

h

Y
26j 6m

ˇ̌
.Fj .�h; 0/; dj /

ˇ̌�
Arguing as for the estimation of the terms Tj .d/ .j ¤ 0/, we obtainX

d16D1

� � �
X

dm6Dm

�.�m/2jR1.d/j � D"D1x:
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Similarly, if F1.X; Y / D X; F2.X; Y / D Y , we have

X
d16D1

� � �
X

dm6Dm

�.�m/2jR1.d/j � D".D1 C D2/x;

and so in any case

X
d16D1

� � �
X

dm6Dm

�.�m/2jR1.d/j � D" {Dsx: (2.21)

Combining (2.19), (2.20) (summed over 1 6 j 6 s) and (2.21) completes the proof
of Proposition 2.

3. Proof of Theorem 1

If G.X; Y / is an irreducible factor of F with degree < ˛F , then we have

P C.G.a; b// � x˛F D o.y/

for all 1 6 a; b 6 x. Thus, irreducible factors of F having small degree may be
discarded. Let m be the integer defined by

m WD
´

k if k > 2;

` C 1 if k D 1:

Then m is the number of distinct irreducible factors of F having degree > ˛F . If
m D k, we write the factorization of F in the form:

F.X; Y / D G.X; Y /
Y

16j 6k

Fj .X; Y / ǰ ;

where F1; : : : ; Fk are the distinct (up to scalars) irreducible factors of degree g of F

and all irreducible factors of G have degree at most g � 1. If m > k (i.e. k D 1,
` > 1, m D ` C 1), then we write the factorization of F as

F.X; Y / D H.X; Y /
Y

16i6m

Fi .X; Y /ˇi ;

where F1; : : : ; F` are the distinct irreducible factors of F of degree g � 1 and Fm is
the (only) irreducible factor of F of degree g.
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The arguments of the various proofs in [DMT] were based on properties of arith-
metic functions related to the number of divisors of polynomial values in prescribed
intervals. Here we adapt the ideas, and retain the main notations, of [DMT]. For
m-dimensional vectors w D .w1; : : : ; wm/ and z D .z1; : : : ; zm/, the quantity
HF .xI w; z/ is defined as the number of integer pairs .a; b/ 2 Œ1; x�2 such that,
for all j 2 Œ1; k�, the number Fj .a; b/ has at least one divisor dj with wj < dj 6 zj .

We note at the outset that if k > 2, then there exists a constant K, depending only
on F , such that

‰F .x; y/ > HF .xI w; z/ (3.1)

whenever

Kxg=y < wj 6 zj 6 y .1 6 j 6 k/: (3.2)

Indeed, if .a; b/ is counted by HF .xI w; z/, then Fj .a; b/ D dj d 0
j with Kxg=y <

dj 6 y for each j , whence jd 0
j j 6 jFj .a; b/jy=.Kxg/ 6 y, and so P C�

F.a; b/
�

6 y.
In the case k D 1, there exists K > 0, depending only on F , such that (3.1) holds

provided

Kxg�1=y < wj 6 zj 6 y .1 6 j 6 `/; Kxg=y < wm 6 zm 6 y: (3.3)

Let ı 2�0; 1=.1 C m2/Œ. Using Proposition 2, we shall show that

HF .xI w; z/ � x2 (3.4)

for

zj WD

8̂<
:̂

x.2�ı/=k�.j �1/ı if k > 2 and 1 6 j 6 k;

x.1�ı/=m�.j �1/ı if k D 1 and 1 6 j 6 `;

x1C.1�ı/=m if k D 1 and j D m;

wj WD zj =xı .1 6 j 6 m/:

We note that, with the above choice of parameters, the intervals �wj ; zj � are disjoint.
Let us first assume deg.F / > 4. When k > 2, conditions (3.2) are fulfilled for

y D x˛F C" with ˛F as in Theorem 1, if ı is sufficiently small in terms of " and k.
The required lower bound hence follows from (3.1). When k D 1, g > 3, we arrive at
the same conclusion by noting that (3.3) holds for small enough ı. In the case k D 1,
g D 2, we have ` > 2. Therefore m > 3, and so the first set of conditions in (3.3)
holds for small enough ı. However, the inequality zm 6 y is not necessarily satisfied
and we adapt the definition of HF .xI w; z/ by requiring that the divisor dm is itself
friable. We postpone this case as well as the discussion of the cases deg.F / D 2; 3

to the end of the proof.
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Let us first assume .g; k/ ¤ .2; 1/ (and deg.F / > 4), and prove (3.4) in this case.
Let w, z be as above. We observe that

BF .a; b/ WD
Y

16j 6m

X
pj jFj .a;b/
wj <pj 6zj

1 6
�

max16j 6m log.Kxg/

log wj

�m

�
�

m2g

1 � ı.1 C m2/

�m

(3.5)

for 1 6 a; b 6 x. Hence

HF .xI w; z/ �
X

16a;b6x

BF .a; b/ D
X

w1<p16z1

� � �
X

wm<pm6zm

X
16a;b6x

pj jFj .a;b/ .16j 6m/

1:

(3.6)

Our choice of z guarantees that z1 � � � zm < x2�� for sufficiently small 
 > 0.
Moreover, the primes p1; : : : ; pm in (3.6) are distinct since �wj ; zj � \ �wh; zh� D ¿
if j ¤ h. By Proposition 2 it follows that

HF .xI w; z/ � x2
Y

16j 6m

X
wj <pj 6zj

�Fj
.pj /

p2
j

C O
�
x2��=2

�
: (3.7)

By (2.6) and partial summation we have for all 1 6 j 6 m,X
wj <pj 6zj

�Fj
.pj /

p2
j

D log
�

log zj

log wj

�
C O

�
1

log wj

�
: (3.8)

Inserting (3.8) in (3.7) confirms (3.4) and completes the proof of Theorem 1 in the
case .g; k/ ¤ .2; 1/.

To handle the case .g; k/ D .2; 1/ (still assuming deg.F / > 4), we replace the
weights BF .a; b/ by

B�
F .a; b/ WD

� X
sm<pm6tm
um<qm6vm

pmqmjFm.a;b/

1
� Y

16j 6`

X
pj jFj .a;b/
wj <pj 6zj

1; (3.9)

where pj , qm denote primes and

tm D um WD x
1
2 �ıC.1�ı/=.2m/; sm WD tmx�ı ; vm WD umxı :

If B�
F .a; b/ ¤ 0, then the divisor dm D pmqm of Fm.a; b/ is y-friable and hence

Fm.a; b/ is also y-friable. The other steps are as in the previous case. We have

‰F .x; y/ �
X

16a;b6x

B�
F .a; b/ �

X
w1<p16z1

� � �
X

sm<pm6tm
um<qm6vm

X
16a;b6x

pj jFj .a;b/ .16j 6`/

pmqmjFm.a;b/

1:
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Applying Proposition 2 and using the fact that �Fm
is multiplicative to separate the

summations over pm and qm, we obtain the lower bound ‰F .x; y/ � x2 as before.
This ends the proof of Theorem 1 in the case deg.F / > 4.

It remains to handle the cases deg.F / D 2; 3. Then, in (3.9), the divisors
dj D pj qj 2�wj ; zj � may not be y-friable, and we modify the weights accord-
ingly. Since the corresponding results will be improved in Theorem 2 for cubic forms
and are essentially known for quadratic forms, we only provide a brief description.

(a) F is a cubic form. If F is irreducible, we replace the weights BF .a; b/ defined
in (3.5) by

BF .a; b/ WD
X

p1p2jF .a;b/

x1�ı<p16x

x1�2ı<p26x1�ı

1:

The proof may then be completed by computations very similar to those described in
the case .g; k/ D .2; 1/, deg.F / > 4. If F D F1F2 where Fj is, for j D 1; 2, an
irreducible binary form of degree j , we choose

BF .a; b/ WD
X

p1jF1.a;b/

1
X

p2q2jF2.a;b/

1;

where the primes p1; p2; q2 are subject to the conditions

x.1=3/�ı < p1 6 x1=3; x.2=3/�ı < p2 6 x2=3; x.2=3/�2ı < q2 6 x.2=3/�ı :

When F D F1F2F3 is a product of three linear factors we select

BF .a; b/ WD
Y

16j 63

X
pj qj jFj .a;b/

1;

subject to the conditions x.1=3/�.j �1=2/ı < pj 6 x.1=3/�.j �1/ı and x.1=3/�jı <

qj 6 x.1=3/�.j �1=2/ı .

(b) F is a quadratic form. When F is irreducible we take

BF .a; b/ WD
X

x2�2ı<d6x2�ı

P C.d/<y; P �.d/>x�

d jF .a;b/

1 � 22=�;

where ı and 
 are sufficiently small parameters and x is sufficiently large. The lower
bound X

x2�2ı<d6x2�ı

P C.d/<y; P �.d/>x�

d jF .a;b/

�F .d/

d 2
� 1
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is then derived from the inequality

X
x2�2ı<d6x2�ı

P C.d/<y; P �.d/>x�

d jF .a;b/

�F .d/

d 2
>

Y
16j 6J

X
xj�<pj 6x.j C1/�

�F .pj /

p2
j

;

where J is chosen in such a way that

2 � 2ı < 1
2
J.J C 1/
; 1

2
J.J C 3/
 < 2 � ı:

This is indeed possible provided ı and 
=ı are small enough, for instance 
 D ı2. It
then only remains to apply (3.8) to the sums over pj . The last case, i.e. F D F1F2

is a product of two linear forms, is essentially trivial, as explained in the proof of
Theorem 2, and we skip the details here.

4. Cubic forms – the irreducible case

4.1. The combinatorial setup. Let F be a primitive irreducible cubic form. By
[G2], p. 37, the form F cannot have a fixed divisor other than 1 and 2, i.e. �F .p/ < p2

if p > 2. If �F .2/ D 22, then F �.X; Y / WD 1
2
F.X; 2Y / is an integral primitive

irreducible form without fixed prime divisor, and Theorem 2 for F � implies the
result for F . Thus we can assume henceforth

�F .p/ < p2 (4.1)

for all p. Let S0 be the set of primes dividing the discriminant3 or the leading
coefficients of F , and let S denote the union of S0 and the set of those primes
satisfying %F .p/ D 0. Then S0 is a finite set depending only on F , and by Hensel’s
lemma we have

%F .p2/ ¤ p%F .p/ (4.2)

for all p 62 S. For this and the following sections we use the notation

Pz WD
Y
p6z

p; P�
z WD

Y
p6z

p 62S

p; P0
z WD

Y
p6z

p 62S0

p

We study y-friable values of F.a; b/ by considering factorizations jF.a; b/j D uvw,
where u and v vary in prescribed ranges (so eventually w as well), and P C.uvw/ 6 y,
.uw; Pz/ D 1, 2 6 z 6 y 6 x. We choose

z D x�;

3 The discriminant of F is in fact the discriminant of the polynomial F .X; 1/.
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a small power of x. Then any F.a; b/ has at most a bounded number of such factor-
izations. We are free to impose further conditions on v to make computations more
comfortable. For example, we can provide .uw; v/ D 1 by requiring P C.v/ 6 z,
and ease the application of multiplicativity by asking that v is square-free. For the
application of the sieve, we shall also need to exclude a few bad primes from v, hence
we require v j P�

z . In other words, u and w are free of prime factors below z or
above y, while v is composed of some primes below z but not in S. We will use
three different levels of small parameters and put

" > ı WD "2 > 
 WD "3 > 0:

For parameters U; V to be fixed later, we have

cardf1 6 a; b 6 x W P C.F.a; b// 6 yg � S WD
X

16a;b6x
jF .a;b/jDuvw

U=x"<u6U; V=xı<v6V

P C.uw/6y
.uw;Pz/D1; vjP�

z

1:

This last sum counts all five-tuples .a; b; u; v; w/ satisfying the long list of conditions.
The condition P C.w/ 6 y is controlled by counting all w first and subtracting the
contribution of those having P C.w/ > y; when doing this second stage we can drop
the condition P C.u/ 6 y as we only need a lower bound. In other words

S >
X

Ux�"<u6U
P C.u/6y
.u;Pz/D1

X
Vx�ı<v6V

vjP�
z

X
16a;b6x

F .a;b/�0 .mod uv/
.F .a;b/=.uv/;Pz/D1

1

�
X

w
P C.w/>y
.w;Pz/D1

X
Vx�ı<v6V

vjP�
z

X
16a;b6x

F .a;b/�0 .mod vw/
.F .a;b/=.vw/;Pz/D1

U=x"<jF .a;b/j=.vw/6U

1:
(4.3)

First realize that the innermost sum in the second term is obviously empty if

w > W WD x3C"C2ı=.U V /:

On the other hand, for any given W0, the contribution of those terms with w 6 W0

can be bounded by (2.3): they contribute at most

�
X

w6W0

X
v6V

.v;w/D1

X
jF .a;b/j6vwU

F .a;b/�0 .mod vw/

1

�
X

w6W0

X
v6V

�F .v/�F .w/.vwU /2=3

v2w2
C O.x�.V W0 C .U V W0/1=3.V W0/1=2//

�.U V W0/2=3 C x�fV W0 C U 1=3.V W0/5=6g:
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By choosing the parameters, we have to provide that the above bound is � x2�� ,
as well as we need that U V 6 x2�2ı , V W 6 x2�2ı (to leave room for a sieving).
The best choice is

W D U WDx1C"C4ı ; U0 WD U=x";

V WDx1�"�6ı ; V0 WD V=xı ;

W0 WDx1Cı D W=x"C3ı :

(4.4)

With these bounds we can drop the uncomfortable conditions on the size of jF.a; b/j
in the second term in (4.3). Next the conditions .w; Pz/ D 1 in the first term and
.u; Pz/ D 1 in the second term can be controlled with a fundamental lemma type
sieve. For a general formulation of a sieve method, see [HR]. There are sieving
weights �˙

d
, supported on d 6 D D xı ; d jPz such that

P
d jn �˙

d
>
6 the character-

istic function of .n; Pz/ D 1. Using these weights in the appropriate place we arrive
at

S >
X

U0<u6U

P C.u/6y
.u;Pz/D1

X
V0<v6V

vjP�
z

X
d6D
d jPz

��
d

X
16a;b6x

F .a;b/�0 .mod uvd/

1

�
X

W0<w6W

P C.w/>y
.w;Pz/D1

X
V0<v6V

vjP�
z

X
d6D
d jPz

�C
d

X
16a;b6x

F .a;b/�0 .mod vwd/

1 C O.x2��/:

At this stage, we derive from (2.2) the following relation

S >
X

U0<u6U

P C.u/6y
.u;Pz/D1

X
V0<v6V

vjP�
z

X
d6D
d jPz

��
d

�F .uvd/x2

.uvd/2

�
X

W0<w6W

P C.w/>y
.w;Pz/D1

X
V0<v6V

vjP�
z

X
d6D
d jPz

�C
d

�F .vwd/x2

.vwd/2
C O.x2��/:

(4.5)

We plainly have .uw; vd/ D 1. Hence we have to compute

T ˙ WD
X

V0<v6V
vjP�

z

X
d6D
d jPz

�˙
d

�F .vd/

.vd/2
;

and (4.5) becomes

S > x2T � X
U0<u6U

P C.u/6y
.u;Pz/D1

�F .u/

u2
� x2T C X

W0<w6W

P C.w/>y
.w;Pz/D1

�F .w/

w2
C O.x2��/: (4.6)
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Remark. Although a big chunk of computation is still ahead, we have at this point a
flash of the final result. Suppose that y D x# . Since z D x� D D", we expect that,
for suitable constants c > 0, �."/, we have

T � � T C � c

log z

X
V0<v6V

vjP�
z

�F .v/

v2
� �."/ > 0:

Indeed, it is expected that an interval, the endpoints of which being two fixed, distinct
powers of z, captures a positive proportion of the friable sum

X
vjP�

z

�F .v/

v2
� log z:

Bearing in mind that �F .q/=q is 1 on average, we similarly expect that, with a suitable
constant b > 0, we haveX

U0<u6U

P C.u/6y
.u;Pz/D1

�F .u/

u2
� b

�
1 � log

�
log U

log y

��
log.U=U0/

log z
� b

"2

�
1 � log

1

#

�
;

and, much in the same way,

X
W0<w6W

P C.w/>y
.w;Pz/D1

�F .w/

w2
� b log

�
log W

log y

�
log.W=W0/

log z
� b

"2
log

1

#
�

Finally these expectations lead to

S >
²
1 � 2 log

1

#
C o.1/

³
b�."/x2

"2
�

This exceeds a positive constant times x2 precisely when # > 1=
p

e.

4.2. Estimation of the main term. We return to (4.6). For any fixed vjP�
z we note

that �F .v/ ¤ 0 by (2.4) and (4.2), and we define

gv.p/ WD �F .pv/

p�F .v/
D

8̂̂<
ˆ̂:

�F .p/

p
if p − v;

�F .p2/

p�F .p/
if p j v:

By (4.1), (2.4) and (2.5) we conclude (see also [G2], 2.2.11) that, uniformly in v,

gv.p/ D O.1/; gv.p/ < p:
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This last inequality needs the condition v j P�
z , as it is not true for %F .p/ D 0; p j v,

for example.
Next we check that the function gv.d/ WD �F .vd/=.d�F .v// is multiplicative.

This follows from the well-known general fact that, for any multiplicative function
f and any fixed integer m such that f .m/ ¤ 0, the function fm.n/ D f .mn/=f .m/

is multiplicative. Indeed, writing �p for the p-adic valuation of m, we have

fm.n/ D
Y

p�kn

f
�
p�C�p

�
f

�
p�p

� .n > 1/:

We can now apply a fundamental lemma type sieve estimate for T ˙. What we
need is implicit in Theorem 7.1 of [HR]. We get

T ˙ D
X

V0<v6V
vjP�

z

�F .v/

v2

X
d6D
d jPz

�˙
d

gv.d/

d

D
X

V0<v6V
vjP�

z

�F .v/

v2

n
1 C O

�
e�.log D/= log z

�o Y
p6z

�
1 � gv.p/

p

�

D
n
1 C O

�
e�1="

�o Y
p6z

�
1 � �F .p/

p2

� X
V0<v6V

vjP�
z

��
F .v/

v2
;

where, for shorter reference we have written

��
F .v/ WD �F .v/

Y
pjv

p2 � �F .p2/=�F .p/

p2 � �F .p/
� (4.7)

This is still a multiplicative function. Note that by (2.4) we have ��
F .p/ D 0 if

%F .p/ D 0, but p does not divide the leading coefficient of F.X; 1/. Thus, we can
include those primes into the v-sum, and only need to exclude the primes in S0, that
is

T ˙ D
n
1 C O

�
e�1="

�o Y
p6z

�
1 � �F .p/

p2

� X
V0<v6V

vjP0
z

��
F .v/

v2
�

By (2.7), the product is � A= log z where A is a positive constant. Moreover, by
Theorem 3.2 of [TW2], the v-sum is

f1 C o.1/ge��

Z .1�"�6ı/="3

.1�"�7ı/="3

%.t/ dt
Y

pjP0
z

�
1 C ��

F .p/

p2

�
D f�0."/ C o.1/g log z;

say.



Vol. 87 (2012) Friable values of binary forms 659

Put �."/ WD A�0."/. Substituting into (4.6), we arrive at

S >
n
1 C O

�
e�1="

�o
x2�."/

� X
U0<u6U

P C.u/6y
.u;Pz/D1

�F .u/

u2
�

X
W0<w6W

P C.w/>y
.w;Pz/D1

�F .w/

w2

�
C O.x2��/

>
n
1 C O

�
e�1="

�o
x2�."/

� X
U0<u6U
.u;Pz/D1

�F .u/

u2
� 2

X
W0<w6W

P C.w/>y
.w;Pz/D1

�F .w/

w2

�
C O.x2��/;

(4.8)

as the interval �U0; U � is contained in the interval �W0; W �. We evaluate the sums over
u and w by Proposition 1. By (2.5) and (2.7), the arithmetic function n 7! �F .n/=n

satisfies the hypotheses of Proposition 1. We recall the choices (4.4) of the relevant
parameters as well as D D xı , z D x� D D". From Proposition 1, we obtain

X
n6�

.n;Pz/D1

�F .n/

n
D ®

1 C O
�
e�1="

�¯ �

log z
;

whenever D < � 6 U , while an elementary argument using (2.6) furnishes

X
n6�

.n;Pz/D1

�F .n/

n
� �

log z
C 1

for all � > 1. By partial summation, we infer that

X
U0<u6U
.u;Pz/D1

�F .u/

u2
D

n
1 C O

�
e�1="

�o log.U=U0/

log z
;

and

X
W0<w6W

P C.w/>y
.w;Pz/D1

�F .w/

w2
D

X
y<p6W

�F .p/

p2

X
W0=p<w6W=p

.w;Pz/D1

�F .w/

w2

D
X

y<p6W

�F .p/

p2

n
1 C O

�
e�1="

�o log.W=W0/

log z

D f1 C O."/g log
�

log W

log y

�
log.W=W0/

log z
�
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Suppose that y D x# . Substituting the last two displays into (4.8), we arrive at

S >
˚
1 C O

�
e�1="

��
x2�."/

�
log.U=U0/

log z
� 2 log

�
log W

log y

�
log.W=W0/

log z

�
C O.x2��/

D ˚
1 C O

�
e�1="

��	
" � 2." C 3ı/ log

�
1 C " C 4ı

#

�

�."/

"3
x2 C O.x2��/

>
n
1 � 2 log

1

#
C O."/

o�."/

"2
x2 C O.x2��/:

This completes the proof of Theorem 2 in case the form is irreducible.

5. Cubic forms – the reducible case

There are two possibilities for a reducible cubic form F : either F D F1F2 where F1

is linear and F2 is quadratic, or F D F1F2F3 for three linear forms F1, F2, F3.

5.1. Three linear forms. Let us start with the second case, and let us assume that
two of the three linear forms

Fi .a; b/ D ˛ia C ˇib; ˛i ; ˇi 2 Z; 1 6 i 6 3;

say F1 and F2, are linearly independent over Q. Let A D
�

˛1 ˇ1

˛2 ˇ2

�
2 GL2.Q/, and

set � WD det A ¤ 0. If we write r D F1.a; b/, s D F2.a; b/, then . r
s / D A . a

b /,
and therefore

F3.a; b/ D ˛0
3r C ˇ0

3s; where .˛0
3; ˇ0

3/ WD .˛3; ˇ3/A�1 2
�

1

�
Z

�2

:

Thus

S WD cardf.r; s/ W � j r; � j s; A�1 . r
s / 2 Œ1; x�2; P C.rs.˛0

3r C ˇ0
3s// 6 yg

is a lower bound for the number of 1 6 a; b 6 x such that F.a; b/ is y-friable. Fix
" > 0 and assume y D x". Notice that Œc1x; c2x� 	 Œc3x; c4x� 
 A.Œ1; x�2/ for
suitable (positive or negative) constants c1 ¤ c2; c3 ¤ c4, and let

A WD f˛0
3r W r 2 Œc1x; c2x�; � j r; P C.r/ 6 yg

and

B WD fˇ0
3s W s 2 Œc3x; c4x�; � j s; P C.s/ 6 yg:
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Then jA j � jBj � x2 and A ; B 
 Œ�c5x; c5x� for some constant c5 > 0. By a
result of La Bretèche ([Br], Théorème 2, which holds in the same way and with the
same proof for A ; B 
 Z, not only for A ; B 
 N), we obtain

S � cardf.a; b/ 2 A 	 B W P C.a C b/ 6 yg � jA j � jBj � x2:

If all three linear forms are linearly dependent, La Bretèche’s theorem gives the same
result immediately. It is clear that the same result holds for a reducible quadratic
form.

5.2. A linear and a quadratic form. Let us now turn to the harder case F D F1F2

where

F1.a; b/ D ˛1a C ˇ1b; F2.a; b/ D ˛2a2 C ˇ2ab C �2b2;

where ˛1; ˛2; ˇ1; ˇ2; �2 2 Z and F2 is irreducible of discriminant � D ˇ2
2 � 4˛2�2

which is not a perfect square. In particular, ˛2 ¤ 0. Since not both ˛1 and ˇ1 are 0,
we can assume that ˛1 ¤ 0. Let A D �

˛1 ˇ1

0 1

�
, and change variables . r

s / WD A . a
b /.

Then

˛2
1F2.a; b/ D ˛r2 C ˇrs C �s2 DW zF .r; s/

where ˛ D ˛2 ¤ 0; ˇ D ˛1ˇ2 � 2ˇ1˛2; � D ˇ2
1˛2 � ˇ1ˇ2˛1 C �2˛2

1 , and the
discriminant of zF is z� WD ˛2

1�. By the same argument as above,

card
˚
.r; s/ W r � ˇ1s .mod ˛1/; A�1 . r

s / 2 Œ1; x�2; P C.r zF .r; s// 6 y
�

is a lower bound for the number of 1 6 a; b 6 x such that F.a; b/ is y-friable. Again
as above, this is

� cardf.r; s/ 2 Œc1x; c2x� 	 Œc3x; c4x� W P C.r zF .r; s// 6 yg

for suitable constants c1 < c2; c3 < c4, and by changing the sign of the middle term
of zF if necessary, we can assume that c1; : : : ; c4 > 0. Let f be a smooth nonnegative
function supported on I WD Œc3x; c4x� such that supI jf .j /.t/j �j x�j for all j 2 N
and

R
I

f .t/ dt D c0x for some c0 > 0. Let 0 < " < 1=10 and put D WD x2�"=2,
y WD x", z WD x"=100. Then we can bound the previous display from below by

�
X

x�"=20D6d6D
.d;Pz/D1

P C.d/6y

X
c1x6r6c2x

P C.r/6z

X
zF .r;s/�0 .mod d/

f .s/; (5.1)

since there is only a bounded number of ways to write zF .r; s/ D dd 0 with d as
required in the summation condition, and all pairs .r; s/ of this form yield a y-friable
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value of zF .r; s/. We transform the innermost sum by splitting s into residue classes
modulo d and applying Poisson summation. In this way we obtain

X
zF .r;s/�0 .mod d/

f .s/ D
X

s .mod d/
zF .r;s/�0 .mod d/

1

d

X
h2Z

e
�

hs

d

�
Of

�
h

d

�

where
Of .z/ WD

Z 1

�1
f .t/e.�zt/ dt � x

.1 C jzjx/A
(5.2)

for any A > 0 (after ŒA� C 1 partial integrations), and Of .0/ D c0x. Let

�h;r.d/ WD
X

s .mod d/

d j zF .r;s/

e
�

hs

d

�
: (5.3)

The term h D 0 will contribute the main term

M WD c0x
X

D=x"=206d6D
.d;Pz/D1

P C.d/6y

1

d

X
c1x6r6c2x

P C.r/6z

�0;r.d/ (5.4)

to (5.1), while we treat the remaining part,

E WD
X
h¤0

X
x�"=20D6d6D

.d;Pz/D1

P C.d/6y

1

d

X
c1x6r6c2x

P C.r/6z

�h;r.d/ Of

�
h

d

�
;

as an error term. First we observe that by choosing A large enough in (5.2), we can
truncate the h-sum at H WD Dx."=6/�1 D x1�"=3 with a negligible error, say � 1=x.
Next we open the Fourier transform and perform the change of variables 	 WD ht=H ,
obtaining

E 6
X

D=x"=206d6D

1

d

Z 1

�1

ˇ̌̌
ˇ X

0<jhj6H

H

h
f

�
H	

h

� X
c1x6r6c2x

P C.r/6z

�h;r.d/

ˇ̌̌
ˇ d	 C O

�
1

x

�

D
X

D=x"=206d6D

1

d

Z c4x

�c4x

ˇ̌̌
ˇ X

H j	 j=.c4x/<jhj6H j	 j=.c3x/
	h>0

H

h
f

�
H	

h

�
(5.5)

X
c1x6r6c2x

P C.r/6z

�h;r.d/

ˇ̌̌
ˇ d	 C O

�
1

x

�
:
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To estimate the inner sum, we use the following large sieve inequality which is a
slight generalization of Lemma 3 in [FI].

Proposition 3. Let F.X; Y / D ˛X2 C ˇXY C �Y 2 2 ZŒX; Y � be an arbitrary
(positive definite or indefinite, not necessarily primitive) quadratic form whose dis-
criminant � D ˇ2 � 4˛� is not a perfect square. Define �h;r.d/ as in (5.3) with {F
replaced by F . For any sequence �h;r of complex numbers, positive real numbers D,
H , R, and any ı > 0, we have

X
d6D

ˇ̌̌ X
h6H

X
r6R

�h;r�h;r.d/
ˇ̌̌

�ı;F D1=2.D C HR/1=2
�X

h;r

j�h;r j2
�1=2

.DHR/ı :

We postpone the proof of this estimate to the next section and proceed with
bounding the error term (5.5). This is

� x"=20

D
HD1=2.Hx/1=2

Z c4x

�c4x

�
Rx

H	

�1=2

d	.DHR/ı � x"=20x4ıHR1=2x3=2

D1=2

D x2�"=60

on choosing ı D "=240. This is plainly acceptable.
Let us now turn to the main term M defined in (5.4). We first observe that our

summation conditions imply .r; d/ D 1, so that �0;r.d/ DW g.d/ is independent of
r . It therefore remains to show thatX

D=x"=206d6D
.d;Pz/D1

P C.d/6y

g.d/

d
> c."/ > 0 (5.6)

for some constant c."/. For a prime p − 2˛ z� we have g.p/ D 1 C . z�jp/ 2 f0; 2g
which depends only on p modulo z�. Let

P�
p denote a sum over primes satisfying

g.p/ D 2. For such primes, we have g.p�/ > 2 for all integers � > 1. Let

"

80
< "0 WD "

40

�
40 � 11"

40 � 10:5"

�
<

"

40
; I WD Œx"0 ; x"=40�; k WD

�
80

"
� 20

�
2 N:

Note that xk"=40 6 x2�"=2 D D and xk"0 > x2�11"=20 D Dx�"=20. Thus the left
hand side of (5.6) can be bounded below by

� X
p2I

� 1

p

�k

> c."/:

This completes the proof of the theorem.
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5.3. A large sieve inequality. We prove Proposition 3. The basic device is a well-
spacing property of the fractions �=d (mod 1), where d � D and � runs through the
solutions of F.�; 1/ � 0 .mod d/; we follow closely the argument of [FI], where the
case F.r; s/ D r2 C s2 is treated. The underlying idea goes back to Hooley [Ho],
see also [To]. In the sequel, all implicit and explicit constants depend at most upon
F , and the word “bounded” is understood as “bounded only in terms of F ”.

Let us fix a positive integer d . Completing the square, we find a one-to-one
correspondence between the two sets4

f� .mod d/ W F.�; 1/ � 0 .mod d/g
and

f.�; k/ 2 .Z=dZ/ 	 Z W .2˛� C ˇ/2 � 4˛dk D �g;
and the latter set can be identified with the set of (not necessarily primitive) integral
quadratic forms

faX2 C bXY C dY 2 W b2 � 4ad D �; a � 0 .mod ˛/;

b .mod 2˛d/; b � ˇ .mod 2˛/g; (5.7)

via
a D ˛k and b D 2˛� C ˇ: (5.8)

The group SL2.Z/ acts on the set of all integral binary quadratic forms F .�/ of
discriminant �: if  D . r s

t u / 2 SL2.Z/ and Q.X; Y / D aX2 C bXY C cY 2 2
F .�/, then Q
 .X; Y / D Q..X; Y / � / D a
X2 C b
XY C c
Y 2 with

a
 D Q.r; s/; b
 D 2art C bru C bst C 2csu; c
 D Q.t; u/:

It is known that SL2.Z/ X F .�/ D fQ1; : : : ; Qhg is finite. For each representative
Qj D aj X2 C bj XY C cj Y 2, say, let Sj .d/ be the set of matrices  D . r s

t u / 2
SL2.Z/ such that Q


j contributes to (5.7). Clearly we must have Qj .t; u/ D d . The
set O.Qj / WD f 2 SL2.Z/ W Q


j D Qj g of automorphisms of Qj acts on Sj .d/,
and matrices in the same O.Qj /-orbit contribute the same quadratic form to (5.7).
Thus we see that by (5.8) a typical fraction �=d is of the form

�

d
D b


j � ˇ

2˛d
D 2aj rt C bj .ru C st/ C 2cj su � ˇ

2˛Qj .t; u/
; (5.9)

with 1 6 j 6 h, . r s
t u / 2 Sj .d/. We claim that for each  D . � �

t u / 2 Sj .d/ there
is a representative modulo O.Qj / such that t; u � p

d . Indeed, if � < 0, then

4 For the second set, we have identified (non-canonically) the pairs .�; k/ 2 Œ0; dŒ�Z such that

.2˛� C ˇ/2 � 4˛dk D �

with the pairs .�; k/ 2 .Z=dZ/ � Z satisfying this equation.
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. � �
t u / 2 Sj .d/ implies .2aj t C bj u/2 � �u2 D 4aj d , and the claim is obvious.

If � > 0, we can assume that Qj is a primitive form (otherwise divide everything
by the gcd of the coefficients). Then it is known [La] that O.Qj / is generated by

�I D � �1 �1

�
and 0 WD

�
.��bj �/=2 �cj �

aj � .�Cbj �/=2

�
corresponding to the fundamental

solution of Pell’s equation �2 � �
2 D 4. For a point P WD .x0; y0/ 2 R2 on the
hyperbola Qj .x; y/ D d , the segment ŒP; P � 0� is a fundamental domain for the
action of O.Qj / on the pairs .t; u/ with . � �

t u / 2 Sj .d/, and hence we can assume
that .t; u/ is on that segment. Choosing P such that x0; y0 � p

d , we obtain the
claim also in the indefinite case.

If jt j > juj, we can write (5.9) as (using ru � st D 1)

�

d
D r

˛t
� bj t C 2cj u C ˇt

2˛tQj .t; u/
D r

˛t
C O

�
1

d

�
(5.10)

where5 r � Nu (mod jt j), and we can assume r � jt j � p
d . Analogously, if

juj > jt j, we obtain the expression

�

d
D s

˛u
� aj t C 2bj u C ˇt

2˛uQj .t; u/
D s

˛u
C O

�
1

d

�

for (5.9) where s � Nt (mod juj), and we can assume s � juj � p
d . We partition

now the (multi-)set²
�

d
(mod 1) W F.�; 1/ � 0 .mod d/; D 6 d 6 2D

³

into 2h classes Ci , 1 6 i 6 2h, according to the representative Qj , 1 6 j 6 h, in
(5.9) and according to jt j > juj or juj > jt j, and we consider one of these classes
Ci with, say, jt j > juj. If . r �

t � / 2 SL2.Z/ is any matrix, there are at most two
choices for . s

u / with jt j > juj. Hence we can partition Ci into a bounded number of
subclasses Ci;k , k � 1, such that the fractions �=d 2 Ci;k correspond to matrices
. r s

t u / with different values of r=.˛t/ (mod 1). We consider one such subclass and
order the fractions �=d 2 Ci;k , viewed as elements of Œ0; 1Œ, in ascending order:

�1

d1

6 �2

d2

6 � � � :

Since

0 ¤
ˇ̌̌
ˇ r1

˛t1
� r2

˛t2

ˇ̌̌
ˇ > 1

˛t1t2
� 1

D
; (5.11)

for two matrices
� r1 �

t1 �
�

;
� r2 �

t2 �
�

corresponding to two members in Ci;k , there is a
constant L 2 N large enough in terms of the implicit constants in (5.10) and (5.11)
such that  �LC`

dLC`

� �`

d`

 � 1

D

5 Here we note that u D 0 can only happen when t D 1, and we interpret N0 WD 0 (mod 1).
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for all ` 2 N. Once again we partition Ci;k into a bounded number of subclasses
such that any two fractions �=d; �0=d 0 in a given subclass satisfy �

d
� �0

d 0
 � 1

D
:

Applying the classical large sieve inequality (see e.g. [S]) for each subclass separately
we conclude X

D6d62D

X
F .�;1/�0 .d/

ˇ̌̌ X
n6N

%ne
��n

d

�ˇ̌̌2 � .D C N /
X
n6N

j%nj2

for any sequence %n. Now we are exactly in the situation of Lemma 2 in [FI], and
verbatim as in [FI], pp. 252–254, we derive the proposition.

References

[BW] A. Balog and T. Wooley, Sums of two squares in short intervals. Canad. J. Math. 52
(2000), 673–694 Zbl 0961.11030 MR 1767398

[Br] R. de la Bretèche, Sommes sans grand facteur premier. Acta Arith. 88 (1999), 1–14.
Zbl 0935.11031 MR 1698349

[CP] R. Crandall and C. Pomerance, Prime numbers, a computational perspective. Springer-
Verlag, New York 2001. Zbl 0995.11072 MR 1821158

[Dan] S. Daniel, On the divisor-sum problem for binary forms. J. Reine Angew. Math. 507
(1999), 107–129. Zbl 0913.11041 MR 1670278

[Dar] C. Dartyge, Propriétés multiplicatives des valeurs de certains polynômes en deux vari-
ables. Acta Arith. 58 (1996), 37–74. Zbl 0869.11070 MR 1425000

[DMT] C. Dartyge, G. Martin and G. Tenenbaum, Polynomial values free of large prime factors.
Acta. Math. Hung. 43 (2001), 111–119. Zbl 0980.11041 MR 1830570

[FI] E. Fouvry and H. Iwaniec, Gaussian primes. Acta Arith. 79 (1997), 249–287.
Zbl 0881.11070 MR 1438827

[Gr] A. Granville, Smooth numbers: Computational number theory and beyond. In Algorith-
mic number theory: lattices, number fields, curves and cryptography. Math. Sci. Res.
Inst. Publ. 44, Cambridge University Press, Cambridge 2008, 267–323. Zbl 1230.11157
MR 2467549

[G1] G. Greaves, On the divisor-sum problem for binary cubic forms. Acta Arith. 17 (1970),
1–28. Zbl 0198.37903 MR 0263761

[G2] G. Greaves, Large prime factors of binary forms. J. Number Theory 3 (1971), 35–59.
Zbl 0214.30301 MR 0271026

[HR] H. Halberstam and H. E. Richert, Sieve methods. London Math. Soc. Monogr. 4, Aca-
demic Press, London 1974. Zbl 0298.10026 MR 0424730

[HTW] G. Hanrot, G. Tenenbaum and J. Wu, Moyennes de certaines fonctions multiplicatives
sur les entiers friables, 2. Proc. Lond. Math. Soc. 96 (2008), 107–135. Zbl 1195.11129
MR 2392317

http://www.emis.de/MATH-item?0961.11030
http://www.ams.org/mathscinet-getitem?mr=1767398
http://www.emis.de/MATH-item?0935.11031
http://www.ams.org/mathscinet-getitem?mr=1698349
http://www.emis.de/MATH-item?0995.11072
http://www.ams.org/mathscinet-getitem?mr=1821158
http://www.emis.de/MATH-item?0913.11041
http://www.ams.org/mathscinet-getitem?mr=1670278
http://www.emis.de/MATH-item?0869.11070
http://www.ams.org/mathscinet-getitem?mr=1425000
http://www.emis.de/MATH-item?0980.11041
http://www.ams.org/mathscinet-getitem?mr=1830570
http://www.emis.de/MATH-item?0881.11070
http://www.ams.org/mathscinet-getitem?mr=1438827
http://www.emis.de/MATH-item?1230.11157
http://www.ams.org/mathscinet-getitem?mr=2467549
http://www.emis.de/MATH-item?0198.37903
http://www.ams.org/mathscinet-getitem?mr=0263761
http://www.emis.de/MATH-item?0214.30301
http://www.ams.org/mathscinet-getitem?mr=0271026
http://www.emis.de/MATH-item?0298.10026
http://www.ams.org/mathscinet-getitem?mr=0424730
http://www.emis.de/MATH-item?1195.11129
http://www.ams.org/mathscinet-getitem?mr=2392317


Vol. 87 (2012) Friable values of binary forms 667

[Ho] C. Hooley, On the greatest prime factor of a quadratic polynomial. Acta Math. 117
(1967), 281–299. Zbl 0146.05704 MR 0204383

[La] E. Landau, Elementary number theory. Chelsea, New York 1958. Zbl 0079.06201
MR 0092794

[Mo] P. Moree, On the number of y-smooth natural numbers 6 x representable as a sum of two
integer squares. Manuscripta Math. 80 (1993), 199–211 Zbl 0791.11046 MR 1233481

[S] A. Selberg, Lectures on sieves. Collected papers, Vol. II, Springer-Verlag, Berlin 1991.
Zbl 0729.11001 MR 1295844
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