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Some virtually special hyperbolic 3-manifold groups
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Abstract. Let M be a complete hyperbolic 3-manifold of finite volume that admits a decom-
position into right-angled ideal polyhedra. We show that M has a deformation retraction that
is a virtually special square complex, in the sense of Haglund and Wise and deduce that such
manifolds are virtually fibered. We generalise a theorem of Haglund and Wise to the relatively
hyperbolic setting and deduce that �1M is LERF and that the geometrically finite subgroups
of �1M are virtual retracts. Examples of 3-manifolds admitting such a decomposition include
augmented link complements. We classify the low-complexity augmented links and describe an
infinite family with complements not commensurable to any 3-dimensional reflection orbifold.
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1. Introduction

Let fPign
iD1 be a collection of disjoint ideal polyhedra in H3. A face pairing on fPig

is a collection of isometries f�f j f 2 P
.2/
i 1 � i � ng of H3 with the following

properties. If f is a face of Pi , �f takes f onto a face f 0 of some Pj , with
�f .Pi /\Pj D f 0, and �f 0 D ��1

f
. Now let M be a complete hyperbolic 3-manifold

with finite volume. An ideal polyhedral decomposition of M is an isometry between
M and a quotient

F
i Pi= �, where � is the equivalence relation generated by a face

pairing on fPig. If the dihedral angles of every polyhedron Pi are all equal to �=2

then the decomposition is called an ideal right-angled polyhedral decomposition.
Our first result relates fundamental groups of 3-manifolds that admit ideal right-

angled polyhedral decompositions to the class of right-angled Coxeter groups. A
right-angled Coxeter group W is defined by a finite, simplicial graph � (called the
nerve of W ) and has an easily described presentation: the generators are the vertices;
every generator is an involution; and the commutator of two generators is trivial if
and only if they are joined by an edge in �. We will refer to the vertices of the nerve
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as the standard generating set for W . The properties of such W discovered in [3]
and [17] will particularly concern us.

Theorem 1.1. Suppose M is a complete hyperbolic 3-manifoldwith finite volume that
admits a decomposition into right-angled ideal polyhedra. Then �1M has a subgroup
of finite index isomorphic to a word-quasiconvex subgroup of a right-angled Coxeter
group (equipped with the standard generating set).

See Section 5 for the definition of word quasiconvexity. In the terminology of
[19], Theorem 1.1 asserts that �1M is virtually special. The proof relies on work
of Haglund–Wise [19] defining a class of special cube complexes – non-positively
curved cube complexes whose hyperplanes lack certain pathologies – which are lo-
cally isometric into cube complexes associated to right-angled Coxeter groups. In
Section 2.1 we review the relevant definitions and in Section 2.2 describe a standard
square complex associated with an ideal polyhedral decomposition of a hyperbolic
3-manifold.

When an ideal polyhedral decomposition is right-angled, the associated stan-
dard square complex is non-positively curved, and hyperplanes are carried by totally
geodesic surfaces. We will establish these properties in Subsection 2.2 and Section 3.
Separability properties of totally geodesic surfaces then imply that pathologies may
be removed in finite covers. We describe these properties and prove Theorem 1.1 in
Section 4.

This result has important consequences for the geometry and topology of such
manifolds. The first follows directly from work of Agol [3], and confirms that the
manifolds we consider satisfy Thurston’s famous Virtually Fibered Conjecture.

Corollary 1.2. Suppose M is a complete hyperbolic 3-manifold with finite volume
that admits a decomposition into right-angled ideal polyhedra. Then M is virtually
fibered.

A 3-manifold that satisfies the hypotheses of Theorem 1.1 is necessarily not com-
pact, so its fundamental group is not hyperbolic in the sense of Gromov, but rather
hyperbolic relative to the collection of its cusp subgroups. Nonetheless, our second
theorem implies that its subgroup structure shares the separability properties of its
compact cousins. This generalizes [19, Theorem 1.3] to the relatively hyperbolic
setting. We say a subgroup H of a group G is a virtual retract if H is contained in
a finite-index subgroup K of G and the inclusion map H ,! K has a left inverse.
(See [24] for further details of virtual retractions.)

Theorem 1.3. Let � be a compact, virtually special cube complex and suppose that
�1� is hyperbolic relative to a collection of finitely generated abelian subgroups.
Then every relatively quasiconvex subgroup of �1� is a virtual retract.
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As in the case of [19, Theorem 1.3], the proof of Theorem 1.3 relies on a result of
Haglund for separating subgroups of right-angled Coxeter groups [17, Theorem A],
but it also requires new ingredients to surmount the technical obstacle that not every
relatively quasiconvex subgroup is word-quasiconvex. The first is Theorem 5.3, a
variation of [26, Theorem 1.7], which establishes that every relatively quasiconvex
subgroup is a retract of a fully relatively quasiconvex subgroup (see the definition
above Theorem 5.3). The second ingredient, Proposition 5.5, extends work in [21]
to show that fully relatively quasiconvex subgroups satisfy the hypotheses of [17,
Theorem A].

Even without any restrictions on the types of parabolic subgroups allowed, our
results prove that certain subgroups of relatively hyperbolic groups are virtual retracts:
see Theorem 5.8 and its corollaries for precise statements.

The consequences of Theorem 1.3 follow a long-standing theme in the study of
3-manifolds and their fundamental groups. For a group G and a subgroup H , we
say H is separable in G if for every g 2 G � H , there is a finite-index subgroup
K < G such that H < K and g 62 K. If G D �1M for some manifold M , work of
G. P. Scott links separability of H with topological properties of the corresponding
cover MH ! M [35]. A group is called LERF if every finitely generated subgroup
is separable.

Corollary 1.4. Suppose M is a complete hyperbolic 3-manifold with finite volume
that admits a decomposition into right-angled ideal polyhedra. Then:

(1) �1M is LERF.

(2) Every geometrically finite subgroup of �1M is a virtual retract.

We will prove Theorem 1.3 and Corollary 1.4 at the end of Section 5.
The study of LERF 3-manifold groups dates back to [35]. Although there are

examples of graph manifolds with non-LERF fundamental group [9], it remains un-
known whether every hyperbolic 3-manifold group is LERF. Gitik [15] constructed
examples of hyperbolic 3-manifolds with totally geodesic boundary whose funda-
mental groups are LERF, and it is a consequence of Marden’s Tameness Conjecture
that her closed examples are also LERF. Agol, Long and Reid proved that the Bianchi
groups are LERF [2].

It is natural to ask to what extent Theorem 1.1 describes new examples of 3-
manifold groups that virtually embed into right-angled Coxeter groups, and more
generally to what extent it describes new examples of LERF 3-manifold groups.
Hitherto, there have only been a limited number of techniques for proving that finite-
volume 3-manifolds are LERF. The techniques of [15] did not produce non-compact,
finite-volume examples, so we shall not consider them here.

Agol, Long and Reid [2] proved that geometrically finite subgroups of right-
angled, hyperbolic reflection groups are separable. They deduced a similar result
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for the Bianchi groups by embedding them as totally geodesic subgroups of higher-
dimensional, arithmetic right-angled reflection groups. One might naïvely suppose
that the fundamental group of a 3-manifold that decomposes into right-angled poly-
hedra fPig is commensurable with the reflection group in one of the Pi , or perhaps
a union of several, and therefore that Theorem 1.1 could be deduced using the tech-
niques of [2].

We address the above possibility in Sections 6 and 7. There we describe infi-
nite families of hyperbolic 3-manifolds that decompose into right-angled polyhedra
but are not commensurable with any 3-dimensional reflection orbifold. Indeed, Sec-
tion 7 considers a very broad class of hyperbolic 3-manifolds, the augmented link
complements (previously considered in [22] and [33], for example), that decompose
into right-angled polyhedra. Our investigations there strongly support the following
hypothesis: a “generic” augmented link complement is not commensurable with any
3-dimensional reflection orbifold.

If M decomposes into isometric copies of a single, highly symmetric polyhedron
P , we show in Proposition 6.1 that �1M is indeed commensurable with the reflec-
tion group in the sides of P . The lowest-complexity right-angled ideal polyhedra
(measured by number of ideal vertices) are the 3- and 4-antiprisms (see Figure 2), and
these are sufficiently symmetric for the hypotheses of Proposition 6.1 to apply. How-
ever, in Section 6.2, we describe hybrid examples not commensurable with reflection
groups.

Theorem 1.5. For each n 2 N, there is complete, one-cusped hyperbolic 3-manifold
Nn that decomposes into right-angled ideal polyhedra, such that Nn is not commen-
surable with Nm for any m ¤ n, nor to any 3-dimensional reflection orbifold.

Recently, Haglund and Wise have proved that every Coxeter group is virtually
special [18]. Since �1Nn is not commensurable with any 3-dimensional reflection
group, the results of [18] do not apply to it. The proof of Theorem 1.5 uses work of
Goodman–Heard–Hodgson [16] to explicitly describe the commensurator of �1Nn.

A rich class of manifolds that satisfy the hypotheses of Theorem 1.1 consists of the
augmented links introduced by Adams [1]. Any link L in S3 with hyperbolic comple-
ment determines (not necessarily uniquely) an augmented link using a projection of
L which is prime and twist-reduced, by adding a “clasp” component encircling each
crossing region. (See Section 7 for precise definitions.) Each link with hyperbolic
complement admits a prime, twist reduced diagram, and the augmented link obtained
from such a diagram also has hyperbolic complement (cf. [33, Theorem 6.1]). Ian
Agol and Dylan Thurston showed in an appendix to [22] that each augmented link
satisfies the hypotheses of Theorem 1.1.

Example 1 (Agol–Thurston). Let M be a complete hyperbolic manifold homeomor-
phic to the complement in S3 of an augmented link. Then M admits a decomposition
into two isometric right-angled ideal polyhedra.
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In Section 7, we describe another polyhedron, the “crushtacean”, that distills the
most important combinatorial features of the Agol–Thurston ideal polyhedral decom-
position. We record criteria, in Lemmas 7.4 and 7.6, that describe certain situations
in which one may conclude that an augmented link complement is commensurable
with the reflection orbifold in the associated right-angled polyhedron. Section 7.1
describes the scissors congruence classification of the complements of augmented
links with up to 5 crossing regions. Finally, in Section 7.2 we prove:

Theorem 7.10. There is a class of augmented links L.n/, n � 3, such that for all but
finitely many n, M.n/

:D S3 � L.n/ is not arithmetic nor commensurable with any
3-dimensional hyperbolic reflection orbifold. Moreover, at most finitely many M.n/

occupy any single commensurability class.

The crushtaceans of the links of Theorem 7.10 are the famous Löbell polyhedra.
We believe that the behavior recorded in the theorem is generic among augmented
links, but these are particularly amenable to analysis.

While this work was in preparation, we became aware of [7] and [6], which
provide other examples of virtually special hyperbolic manifolds. The former mostly
concerns arithmetic lattices, while the latter deals with finite-sheeted covers of the
3-sphere that branch over the figure-eight knot.

Acknowledgements. The authors would like to thank Ian Agol, Dave Futer, Alan
Reid and Matthew Stover for useful conversations. Thanks also to Jack Button for
confirming some of our Alexander polynomial computations, and to Jessica Purcell
for a helpful reference to [33]. Finally, we thank the referee for a careful reading and
helpful comments.

2. Preliminaries

2.1. Cube complexes. In this subsection we review relevant notions about cube
complexes following the treatment of Haglund–Wise [19]. Another helpful reference
is [8], particularly Chapters I.7 and II.5.

Definition ([19], Definition 2.1). Let I D Œ�1; 1� � R. A cube complex X is a C W -
complex such that each k-cell has a homeomorphism to I k � Rk with the property
that the restriction of the attaching map to each .k � 1/-face of @I k to Xk�1 is an
isometry onto I k�1 followed by the inclusion of a .k � 1/-cell. A map f W X ! Y

between cube complexes is combinatorial if for each k-cell � W I k ! X , the map
f B � is a k-cell of Y following an isometry of I k . A square complex is a 2-dimen-
sional cube complex, and we will refer by vertex, edge, or square to the image in X

of a 0-, 1- or 2-cell, respectively.
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Now let X be a square complex. We will take the link of the vertex .1; 1/ 2 I 2 to
be the line segment in I 2 joining .0; 1/ to .1; 0/ (the midpoints of the edges abutting
.1; 1/), and the link of another vertex v to be the image of the link of .1; 1/ under the
symmetry taking it to v. The link of a vertex v 2 X is the 1-complex obtained by
joining the links of v in the squares of X attaching to it. We say X is simple if for
each vertex v there is a combinatorial map from the link of v to a simplicial graph.
In particular, if X is simple then no two squares meet along consecutive edges.

We will say a square complex X is nonpositively curved if for each vertex v in X ,
the link of v does not contain any simple cycle with fewer than four edges. (We are
taking Gromov’s link condition as a definition; see eg, [8, Ch. II.5] for a discussion.)
In particular, X is simple. If X is simply connected and nonpositively curved, we will
say X is CAT.0/. For a more general discussion, see [8], in particular Chapter II.5.

The notion of a hyperplane is very important in defining “special” cube complexes.
Here we will specialize the definition in [19] to square complexes.

Definition ([19], Definition 2.2). The midlines of I 2 are the subsets I � f0g and
f0g � I , each parallel to two edges of X . The center of a square � W I 2 ! X is
�.0; 0/, and the midpoint of an edge � W I ! X is �.0/. A midline of I 2 meets its
two dual edges perpendicularly at their midpoints.

Given a square complex X , we define a graph Y , the associatedmidline complex, as
follows. The 0-cells of Y are the midpoints of the edges of X , and the 1-cells of Y are
midlines of squares of X , attached by the restrictions of the corresponding attaching
maps. A hyperplane of X is a component of the associated midline complex Y .

By the definition of the midline complex, each hyperplane Y has an immersion into
X , taking an edge to the midline of the square that contains it. Definition 3.1 of [19]
describes the following pathologies of hyperplane immersions: self-intersection, one-
sidedness, direct or indirect self-osculation, or inter-osculation. If the hyperplanes
of X do not have any such pathologies, and its one-skeleton is bipartite, we will say
that X is C -special.

The following theorem of Haglund–Wise is our main concern.

Theorem 2.1 ([19], Lemma 4.3). Let X be a C -special square complex. Then there
exists a right-angled Coxeter group W , an injective homomorphism �1X ,! W and
a �1X -equivariant, combinatorial, isometric embedding from the universal cover of
X into the Davis–Moussong complex of W . In particular, �1X is isomorphic to a
word-quasiconvex subgroup of W (with respect to the standard generating set).

The Davis–Moussong complex of a right-angled Coxeter group W is a certain
CAT(0) cube complex on which W acts naturally. The reader is referred to [19] for
the definition. A square complex X is called virtually special if X has a C -special
finite-sheeted covering space. To prove Theorem 1.1, we will prove that �1M is
isomorphic to the fundamental group of a virtually special square complex.



Vol. 87 (2012) Some virtually special hyperbolic 3-manifold groups 733

We will find the notion of a regular neighborhood of a hyperplane from [19] useful.

Definition. Let Y ! X be a hyperplane of a square complex X . A (closed) regular
neighborhood for Y is a cellular I -bundle p W N ! Y equipped with a combinatorial
immersion j W N ! X such that the diagram

N

p

��

j

���
��

��
��

Y �� X

commutes. (Here the I -bundle N is given the obvious square-complex structure: the
preimage of a vertex is an edge and the preimage of an edge is a square.)

Every hyperplane of a non-positively curved square complex has a regular neigh-
borhood [19, Lemma 8.2]. The I -bundle p W N ! Y has a section taking each
e 2 Y .1/ to a midline of the square p�1.e/. We refer to Y � N as embedded by this
section. In [19, Definition 8.7], the hyperplane subgroup �1Y < �1X is defined as
the image of j� after an appropriate choice of basepoint.

2.2. A standard square complex. In this subsection we will take M to be a complete
hyperbolic 3-manifold of finite volume, with an ideal polyhedral decomposition fPig.
For a pair of faces f and f 0 of polyhedra Pi and Pj such that f 0 D �f .f /, we say
that f and f 0 represent a face of the decomposition. Similarly, let fej gn

j D1 be a
sequence of edges of polyhedra Pij with the property that for each j < n, there is
a face fj of Pij containing ej such that �fj

.ej / D ej C1. Then we say the edges ej

represent an edge of the decomposition.
For each i , let xPi be the union of Pi with its ideal vertices. (In the Poincaré ball

model for H3, the ideal vertices of Pi are its accumulation points on @B3.) Each face
pairing isometry �f induces a homeomorphism from Nf , the union of f with its ideal
vertices, to Nf 0, where f 0 D �f .f /.

The extended face pairings determine a cell complex C such that M is homeo-
morphic to C � C .0/. The 0-cells of C are equivalence classes of ideal vertices under
the equivalence relation generated by v � �f .v/ for ideal vertices v of faces f . The
1- and 2- cells of C are equivalence classes of edges and faces of the Pi under the
analogous equivalence relation, and the 3-cells are the xPi .

Let C 0 be the barycentric subdivision of the cell complex C associated to an ideal
polyhedral decomposition. If v is a vertex of a cell xP of C 0, the open star of v

in xP is the union of the interiors of the faces of xP containing v. The open star
st.v/ of v in C 0 is the union of the open stars of v in the cells of C 0 containing it.
Take st.C .0// to be the disjoint union of the open stars in C 0 of the vertices of C .
Then �0

:D C 0 � st.C .0// is the unique subcomplex of C 0, maximal with respect to
inclusion, with the property that �

.0/
0 D .C 0/.0/ � C .0/.
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A simplex of �0 is determined by its vertex set, which consists of barycenters of
cells of C . We will thus refer to each simplex of �0 by the tuple of cells of C whose
barycenters are its vertices, in order of increasing dimension. For example, a simplex
of maximal dimension is a triangle of the form . Ne; Nf; xPi /, where e is an edge and f

a face of some ideal polyhedron Pi in the decomposition of M , with e � f .

Lemma 2.2. There is a cellular deformation retraction ˆ taking M to j�0j.

Proof. Let v be an ideal vertex of xPi , and let U be the open star in C 0 of the equivalence
class of v in C .0/. Let U0 be the component of U \ xPi containing v. Then xU0 is
homeomorphic to the cone to v of its frontier in xPi , a union of triangles of �0. Hence
there is a “straight line” deformation retraction of xU0 � fvg to its frontier. These may
be adjusted to match up along faces of the Pi , determining ˆ. �

The standard square complex is obtained by taking a union of faces of �0.

Definition. Let M be a complete hyperbolic 3-manifold with a decomposition into
ideal polyhedra fPig, with associated cell complex C such that M Š C � C .0/,
and let �0 D C 0 � st.C .0//, where C 0 is the first barycentric subdivision of C .
Define the standard square complex � associated to fPig, with underlying topological
space j� j D j�0j, as follows: � .0/ D �

.0/
0 , � .1/ D �

.1/
0 � f. Ne; xPi / j e � Pig, and

� .2/ D f. Ne; Nf; xPi / [ . Ne; Ng; xPi / j f; g � Pi and f \ g D eg.

Since each 2-dimensional face . Ne; Nf; xPi / [ . Ne; Ng; xPi / of � is the union of two
triangles of �0 which meet along the edge . Ne; xPi /, it may be naturally identified with
a square. Furthermore, since it is exactly the set of edges of the form . Ne; xPi / which
are in �

.1/
0 � � .1/, � has the structure of a cell complex.

Lemma 2.3. Let � be the standard square complex associated to an ideal polyhedral
decomposition fPig. Then � .1/ is bipartite.

Proof. By definition, the vertices of � are barycenters of cells of the cell complex C

associated to fPig. We divide them into two classes by parity of dimension. An edge
of � is of the form . Nf; xPi / for some i , where f is a face of Pi , or . Ne; Nf /, where e

is an edge and f a face of some polyhedron. In either case, the endpoints belong to
different classes. �

Say a cell of � is external if it is contained in � \ C .2/, and internal otherwise.
Each square of � has two adjacent external edges, of the form . Ne; Nf / and . Ne; Nf 0/ in
the notation above, and two internal edges . Nf; xPi / and . Nf 0; xPi /. In particular, each
external edge of each square is opposite an internal edge, and vice-versa.
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Lemma 2.4. As one-subcomplexes, � \ C .2/ D .C .2//0 � st.C .0//, where .C .2//0
is the barycentric subdivision of C .2/. In particular, ˆ restricts to a deformation
retraction from

S
i @Pi to j� \ C .2/j.

Proof. By definition � \ C .2/ D �0 \ C .2/, whence the first claim of the lemma
follows. The second claim now holds because ˆ is cellular. �

Lemma 2.5. Suppose H is a hyperplane of the standard square complex associated
to an ideal polyhedral decomposition fPig of a complete hyperbolic 3-manifold M ,
and let p W N ! H be the regular neighborhood of H . N has boundary components
@eN and @iN , mapped by j W N ! M to a union of external and internal edges,
respectively.

Proof. Let s be a square of � . The vertices of s are the barycenters of Ne, Nf , Ng, and
xPi , where Pi is a polyhedron in the decomposition of M , e is an edge of Pi , and

f and g are the faces of Pi intersecting in e. One midline of s has vertices on the
midpoints of the opposite edges . Ne; Nf / and . Ng; xPi / of s, and the other has vertices
on the midpoints of . Nf; xPi / and . Ne; Ng/. Take H to be the hyperplane containing the
midline m with vertices on . Ne; Nf / and . Ng; xPi /.

Let s0 D p�1.m/ � N ; then s0 is a square which j maps homeomorphically
to s. The edges of s0 \@N are mapped by j to the edges of s parallel to m. These are
. Nf; xPi /, which is internal, and . Ne; Ng/, which is external. Let bi be the edge mapped
to . Nf; xPi / by j , let be be mapped to . Ne; Ng/, and let @iN and @eN be the components
of @N containing bi and be , respectively. It is a priori possible that @iN D @eN , but
we will show that @iN (respectively, @eN ) is characterized by the fact that its edges
map to internal (resp. external) edges of � .

Let s1 be a square of N adjacent to s0. Then the edge m1
:D p.s1/ of H is the

midline of the square s0 D j.s1/ adjacent to s. Suppose first that s0 meets s along
the external edge . Ne; Nf /. Then there is a polyhedron Pj of the decomposition with a
face f 0 and edge e0 � f with �f .f / D f 0 and �f .e/ D e0 (ie, f and f 0 represent
the same face of the decomposition of M , and e and e0 the same edge), such that the
vertices of s0 are the barycenters of Ne0, Nf 0, Ng1, and xPj . Here g1 is the other face of
xPj containing e0.

Since m1 meets m, it has an endpoint at the midpoint of . Ne0; Nf 0/, which is identified
with . Ne; Nf / in M . Then the other endpoint of m1 is on the opposite edge . Ng1; xPj / of
s0. The external edge . Ne0; Ng1/ of s0 which is parallel to m1 meets the external edge
. Ne; Ng/ of s at the barycenter of the edge of the decomposition represented by e and
e0. It follows that j maps the edge of s1 \ @N adjacent to be to . Ne; Ng/. Likewise, the
edge of s1 \ @N adjacent to bi is mapped to the internal edge . Nf 0; xPj / of s0.

Now suppose s0 meets s along the internal edge . Ng; xPi /. Then there is an edge
e1 of g such that the vertices of s0 are the barycenters of Ne1, Ng, Nf1, and xPi . Here f1

is the other face of Pi containing e1. Then m1 meets m at the midpoint of . Ng; xPi /.
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Since be is mapped by j to . Ne; Ng/, the edge of s1 \ @N adjacent to it is mapped to
the external edge . Ne1; Ng/. It follows that the other edge of s1 \ @N is mapped to the
internal edge . Nf1; xPi / of s0 parallel to m1.

The above establishes that the union of the set of edges of @iN mapped to internal
edges of � is open and nonempty in @iN . Since it is clearly also closed, it is all of
@iN . An analogous statement holds for @eN , establishing the lemma. �

It is occasionally useful to think of the standard square complex associated to an
ideal polyhedral decomposition as a subdivision of the “dual two-complex”. If C is
the cell complex associated to the ideal polyhedral decomposition fPig, let DC be the
two-complex with a vertex at the barycenter of each 3-cell of C , for each f 2 C .2/

an edge Df crossing f , and for each e 2 C .1/ a face De crossed by e. The standard
square complex � is obtained from DC by dividing each face along its intersections
with the 2-cells of C which meet at the edge.

Lemma 2.6. Suppose fPig is a decomposition of M into right-angled ideal polyhe-
dra. The standard square complex � associated to fPig is non-positively curved.

Proof. Recall that � is non-positively curved if and only if in the link of any vertex,
each simple cycle has length at least 4. If v is a vertex of � , a simple cycle of length k

in the link of v is a sequence of squares s0; s1; : : : ; sk�1 with the following properties:
for each i there is an edge ei with v � ei � si \ siC1 (taking i C 1 modulo k), and
si ¤ sj and ei ¤ ej when i ¤ j .

Since the decomposition fPig is into right-angled polyhedra, the dual two-complex
DC described above the lemma is a square complex. This follows from the fact that
each edge of C is contained in four faces of C . We will show that DC is non-positively
curved; since � is a subdivision of DC , it will follow that � is non-positively curved.

Suppose v is a vertex of DC , and let fDe0; : : : ; Dek�1g be a simple cycle in the
link of v in DC . The associated sequence of edges fDf0; : : : ; Dfk�1g determines a
sequence of distinct faces ff0; : : : ; fk�1g of the polyhedron Pi containing v, each
meeting the next in an edge. It follows immediately from the necessary conditions of
Andreev’s theorem [4] and the fact that Pi is right-angled that every such cycle has
length at least four. The conclusion of the lemma follows. �

3. Totally geodesic hyperplane groups

Fix an orientable, complete hyperbolic manifold M D H3=� of finite volume,
equipped with a decomposition fPig into right-angled ideal polyhedra. Here we
have identified M with the quotient of H3 by a discrete group of isometries � , thus
identifying �1M with � . Let � be the standard square complex associated to the
polyhedral decomposition as in Section 2.2. The goal of this section is, for each
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hyperplane H ! X , to identify a totally geodesic surface immersed in M which
“carries” H .

Since each Pi is right-angled and the angle in M around each edge is 2� , the
equivalence class of each edge has four members. If f represents a face of the
decomposition and e an edge of f , define the flat e-neighbor of f to be the face of
the decomposition that meets f at angle � along e in M .

If Pi is the polyhedron containing f , let g be the other face of Pi containing
e. Let g0 D �g.g/, a face of some polyhedron Pj , and let e0 D �g.e/. Then
e and e0 represent the same edge of the decomposition, and the flat e-neighbor of
f is represented by the face f1 of Pj which intersects g0 along e0. Let †f be the
collection of faces of the decomposition, minimal with respect to inclusion, satisfying
the properties below.

(1) f 2 †f , and

(2) if g 2 †f and e is an edge of g, then every flat e-neighbor of g is in †f .

Note that if g � †f is a 2-cell then †f D †g . Furthermore, there is a sequence
ff D f0; f1; : : : ; fn D gg such that for each i > 0 there is an edge ei with fi a flat
ei -neighbor of fi�1. Call such a sequence a path of flat neighbors.

Now let y†f be the quotient of †f by the following edge pairings: if g represents
an element of †f and e is an edge of g, glue g to its flat e-neighbor g0 by the restriction
of the face pairing isometry �g described above. Since each face of the decomposition
has a unique flat e-neighbor along each of its edges, y†f is topologically a surface
without boundary. It is connected, since any two faces in †f are connected by a path
of flat neighbors, and it inherits a hyperbolic structure from its faces, since the edge
gluing maps are isometries.

The inclusion maps of faces fg ,! Pi j g � Pi ; g 2 †f g determine an immersion
from y†f to

F
i Pi= �. This is not necessarily an embedding because the preimage of

an edge may consist of two edges of y†f , each mapped homeomorphically. However,
by construction it is a local isometry.

Lemma 3.1. Let i W y†f ! M be the composition of the inclusion-induced map toF
i Pi= � with the isometry to M . Then i is a proper immersion which maps onto

its image with degree one.

Proof. If g is a face of Pi , the inclusion g ,! Pi is proper by definition. Since the
collection fPig is finite, it follows that i is proper. By construction, the interior of
each face in †f is mapped homeomorphically by i , thus it has degree one onto its
image. �

Since the map i W y†f ! M is a proper local isometry and M is complete, the
hyperbolic structure on y†f is complete. Since it is contained in the union of finitely
many polygons of finite area, y†f has finite area. Choosing an isometric embedding
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of f in H2 thus determines a developing map identifying the universal cover of y†f

with H2, and identifying �1
y†f with a subgroup �f of Isom.H2/.

Now fix a component Qf of the preimage of i.f / under the universal cover H3 !
M . This choice determines a lift Q{ W H2 ! H3 of i W y†f ! M , equivariant with
respect to the actions of �f on H2 and i�.�1

y†/ on H3.

Lemma 3.2. Let H be the geodesic hyperplane of H3 containing Qf . Then Q{ maps
H2 isometrically onto H , and i� takes �1

y†f isomorphically onto Stab�.H /.

Proof. Since i is a local isometry, Q{ maps H2 isometrically onto the geodesic hyper-
plane in H3 containing Q{.f / D Qf , hence H . Since �1

y†f acts faithfully on H2 by
isometries, its action on H , and hence all of H3 is also faithful. If i�.�1

y†f / were
properly contained in Stab�.H /, the embedding i would factor through the cover-
ing map H=i�.�1

y†f / ! H=Stab�.H /, contradicting the fact that i maps onto its
image with degree one. �

Let us now take �f D i�.�1
y†f / and yMf D H3=�f . By Lemma 3.2, i W y†f !

M lifts to an embedding O{ to yMf , such that yMf is homeomorphic to O{.y†f / � R. We
thus obtain the following diagram:

H2

��

Q{ �� H3

��
y†f Š H2=�f

i
����������������

O{ �� yMf WD H3=�f

��
M .

Below we will refer by y†f � yMf to the image of O{.

Definition. Let M be a complete, orientable, hyperbolic 3-manifold of finite volume
equipped with a decomposition fPig into right-angled ideal polyhedra, and suppose
H is a hyperplane of the associated square complex, with regular neighborhood
.N; p; j /. Choose a midline m of H , let s D p�1.m/, and let Pi contain j.s/. There
is a unique face f of Pi containing the external edge of j.s \ @N /, and we define
y†.H/ D y†f , �.H/ D �f , and yM.H/ D yMf .

Lemma 3.3. Using notation from the definition above, let y� be the standard square
complex associated to the decomposition yM.H/ inherits from fPig. Then j W N ! �

lifts to an immersion O| to y� , taking @eN to a spine of y†.H/, such that O| j@eN is an
embedding if y†.H/ is orientable, and a two-to-one cover if not.
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Corollary 3.4. If †.H/ is orientable, �1H D �.H/; otherwise �1H is the index-
two orientation-preserving subgroup of �.H/.

Proof of Lemma 3.3. Suppose m0 and m1 are two adjacent midlines of H , and let
s0 D p�1.m0/ and s1 D p�1.m1/ in N . Take Pi0 and Pi1 to be the polyhedra
containing j.s0/ and j.s1/, respectively, and let f0 be the face of Pi0 and f1 the face
of Pi1 containing j.s0 \ @eN / and j.s1 \ @eN /. If m0 meets m1 at the midpoint of
an internal edge of � , it is clear that Pi0 D Pi1 and f0 D f1.

If m0 meets m1 in an external edge of � , then Pi0 and Pi1 abut in M along a
face of the decomposition. Let g � Pi0 represent this face of the decomposition.
Then g and f0 meet along an edge e, and g0 D �g.g/ � Pi1 and f1 meet along
e0 D �g.e/. Hence if m0 meets m1 in an external edge of � , there is an edge e of the
decomposition of M such that f0 and f1 represent flat e-neighbors. It follows that
a sequence of edges m0; m1; : : : ; mk of H , with the property that mi is adjacent to
mi�1 for each i > 0, determines a path of flat neighbors in †.H/. Therefore j maps
@eN into i.y†.H//.

Now let f be a face of some polyhedron Pi representing a face of †.H/. The
cover yM .H/ inherits a polyhedral decomposition from that of M , and since the
covering map is injective on a neighborhood of O{.f /, there is a unique polyhedron
yPi of this decomposition with the property that yPi projects to Pi and contains O{.f /.

For a square s of N , we thus define O|.s/ to be the component of the preimage of j.s/

contained in yPi , where Pi is the polyhedron containing j.s/.
Suppose Pi0 and Pi1 contain faces f0 and f1, respectively, each representing a

face of †.H/, which are flat e-neighbors for some edge e. Let g � Pi0 satisfy
g \ f0 D e and �g.e/ D �g.g/ \ f1 � Pi1 . Since O{.f0/ and O{.f1/ meet in yM.H/

along the preimage of e, yPi0 and yPi1 meet along the face represented by the preimage
of g. For adjacent squares s0 and s1 in N , it follows that if j.s0/ and j.s1/ meet
along an external edge of � , then O|.s0/ and O|.s1/ meet along an external edge of y� .

If s0 and s1 are adjacent squares of N such that j.s0/ meets j.s1/ in an internal
edge of � contained in a polyhedron Pi , then O|.s0/ meets O|.s1/ in yPi . Thus O| is
continuous. Since j is an immersion, O| is an immersion as well. We claim O| maps
@eN onto y� \ y†.H/.

Since O| is continuous, the image of @eN is closed in y� \ y†.H/. Now suppose
e0 and e1 are adjacent edges of y� \ y†.H/ such that e0 � O|.@eN /. Let s0 � N

be a square such that O|.s0/ contains e0, and let m0 D p.s0/ be a midline of j.s0/.
There is a square s of � , containing the projection of e1 to M , such that s \ j.s0/

is a union of edges containing the projection of e0 \ e1. Let m1 be the midline of
s meeting m0; then m1 2 H , so by definition s1 D p�1.m1/ is mapped by j to s.
Now from the above it follows that O|.s1/ contains e1. This implies that O|.@eN / is
open in y� \ y†.H/ and proves the claim.

Lemma 2.4 implies that y� \ y†.H/ is a spine for y†.H/, hence O| maps @eN onto
a spine of y†.H/. Each square s � N has the property that s \ @eN is the unique
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edge of s mapped by O| into y†.H/. For let f � †.H/ be the face of Pi containing
j.s \ @eN /, where Pi contains j.s/, let g be the face containing the other external
edge of j.s/, and let f1 be the flat e-neighbor of f , where e D f \ g. Then O{.f /

and O{.f 0/ are in y†.H/. If the face Og of yPi adjacent to O{.f / were also in O{.y†.H//, O{
would not be an embedding.

Now suppose O|.s0/ D O|.s1/ for squares s0 and s1 of N . By the property above,
there is an edge e of y� \ y†.H/ such that O|.s0 \@eN / D e D O|.s1 \@eN /. It follows
that j maps the external edge of each of s0 and s1 to the projection of e in M . By
definition, p.s0/ is the midline of j.s0/ parallel to j.s0 \ @eN /, and the same holds
true for s1. Thus p.s0/ D p.s1/, so s0 D s1.

The paragraph above implies that O| j@eN is at worst two-to-one, since each external
edge of y� is contained in exactly two squares. Since yM.H/ is orientable, if y†.H/

is orientable as well, then it divides any sufficiently small regular neighborhood into
two components. Since N is connected and O| is continuous, in this case its image is
on one side of y†.H/, so O| j@eN is an embedding.

If y†.H/ is nonorientable, then a regular neighborhood is connected. Thus in this
case, for any edge e of y� \ y†.H/, both squares containing e are in the image of O| ,
and the restriction to @eN maps two-to-one. �

The final result of this section characterizes some behaviors of hyperplanes of �

in terms of the behavior of their associated totally geodesic surfaces. Below we say
distinct hyperplanes H1 and H2 are parallel if †.H1/ D †.H2/.

Proposition 3.5. Let M be a complete, orientable hyperbolic 3-manifold equipped
with a decomposition fPig into right-angled ideal polyhedra, with associated stan-
dard square complex � , and let H1 and H2 be hyperplanes of � . If H1 osculates H2

along an external edge of � , then either

(1) H1 D H2 and †.H1/ is nonorientable; or

(2) H1 and H2 are parallel and †.H1/ D †.H2/ is orientable.

H1 intersects H2 if and only if i.y†.H1// intersects i.y†.H2// at right angles.

Proof. Suppose H1 osculates H2 along an external edge e. Then there are squares s1

and s2 of � intersecting along e, such that the midline m1 of s1 parallel to e is in H1,
and the midline m2 � s2 parallel to e is in H2. If f is the face of the decomposition
containing e, then by definition f 2 †.H1/ and f 2 †.H2/. Since s1 and s2 are on
opposite sides of f in M , Lemma 3.3 implies alternatives 1 and 2.

Suppose H1 intersects H2 in a square s contained in some polyhedron Pi , and
for j D 0; 1 let mj be the midline of s in Hj . For each j , there is a unique external
edge ej of s parallel to mj . By definition, the faces f1 and f2 of Pi containing e1

and e2 are contained in †.H1/ and †.H2/, respectively. Since Pi is right-angled
they meet at right angles, establishing the lemma. �
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4. Embedding in Coxeter groups

Let M D H3=� be a complete, orientable hyperbolic 3-manifold of finite volume,
equipped with a decomposition fPig into right-angled ideal polyhedra. In this section
we describe separability properties of hyperplane subgroups which allow pathologies
to be removed in finite covers of M .

If H is a subgroup of a group G, we say H is separable in G if for each g 2 G�H

there is a subgroup K, of finite index in G, such that H < K and g … K. The
separability result needed for the proof of Theorem 1.1 follows from [23, Lemma 1]
and extends its conclusion to a slightly more general class of subgroups.

Lemma 4.1 (Cf. [23], Lemma 1). Let M D H3=� be a complete, orientable hy-
perbolic 3-manifold with finite volume, and let H � H3 be a hyperplane such that
Stab�.H / acts on H with finite covolume. Then the subgroup of Stab�.H / that acts
preserving an orientation of H is separable in � .

Proof. It follows from [23, Lemma 1] that Stab�.H / is separable. It remains to
consider the case in which Stab�.H / is orientation-reversing on H and to show that
the orientation-preserving subgroup is separable.

As in [23, Theorem 1], there is a finite-sheeted covering M 0 ! M such that the
immersed surface H=Stab�.H / lifts to an embedded surface † in M 0. Because M 0
is orientable, the surface † is one-sided. Let N be a closed regular neighborhood of
† and let M0 be the complement of the interior of N in M 0. The boundary of N is
homeomorphic to z†, the orientable double cover of †.

The neighborhood N has the structure of a twisted interval bundle over †, so
�1N Š �1†. The double cover zN of N obtained by pulling back the bundle
structure along the covering map z† ! † is an orientable interval bundle over z†
and hence homeomorphic to the product z† � Œ�1; C1�. This homeomorphism can
be chosen so that z† � f0g double covers †.

The inclusion map i W @N ,! N has precisely two lifts to zN ; let i˙ be the lift that
identifies @N with z† � f˙1g. Construct a new manifold zM as follows: let M0̇ be
two copies of M0 and let @˙N be the corresponding copy of @N in M ˙; then zM is
obtained from

M C
0 t zN t M �

0

by identifying x 2 @˙N with i˙.x/. By construction, zM is a double cover of
M 0 and so a finite-sheeted cover of M . The image of H in zM is precisely the
orientable double cover of †, so �1

zM is a finite-index subgroup of � that contains
the orientation-preserving elements of Stab�.H / but not the orientation-reversing
ones, as required. �

If H is a hyperplane of the standard square complex associated to the decompo-
sition of M into right-angled ideal polyhedra, Lemma 3.2 and Corollary 3.4 together
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describe a geodesic hyperplane H , such that Stab�.H / acts on it with finite covolume
and �1H is the subgroup which preserves an orientation of H . Thus:

Corollary 4.2. Suppose M D H3=� is a complete, orientable hyperbolic 3-manifold
of finite volume that admits a decomposition fPig into right-angled ideal polyhedra.
If H is a hyperplane of the standard square complex associated to fPig, then �1H

is separable in � .

This implies, using [19, Corollary 8.9], that a hyperbolic manifold M with a right-
angled ideal polyhedral decomposition has a finite cover whose associated square
complex lacks most pathologies forbidden in the definition of special complexes.

Proposition 4.3. Suppose M D H3=� is a complete, orientable hyperbolic 3-
manifold with finite volume that admits a decomposition into right-angled ideal poly-
hedra fPig. There is a cover M 0 ! M of finite degree such that hyperplanes of the
standard square complex of M 0 do not self-intersect or -osculate.

Proof. Let X be the standard square complex associated to fPig. Lemma 2.2 implies
that the inclusion X ,! M induces an isomorphism �1X ! � . By Corollary 4.2,
each hyperplane subgroup is separable in �1X , so by [19, Corollary 8.9], X has a finite
cover X 0 such that hyperplanes of X 0 do not self-intersect or -osculate. Let � 0 be the
subgroup of �1X corresponding to X 0, and let M 0 ! M be the cover corresponding
to � 0. The decomposition fPig of M lifts to a right-angled ideal decomposition of
M 0 with standard square complex X 0, proving the proposition. �

Proposition 4.3 already implies that a large class of hyperbolic 3-manifolds is
virtually special. Below we will say that the decomposition fPig of M is checkered
if the face pairing preserves a two-coloring – an assignment of white or black to each
face f of each Pi such that if another face f 0 of Pi intersects f in an edge, it has
the opposite color. The decompositions of augmented link complements described
in the appendix to [22] are checkered, for example.

Theorem 4.4. Suppose M is a complete hyperbolic 3-manifold with finite volume
that admits a checkered decomposition into right-angled ideal polyhedra. Then �1M

has a subgroup of finite index that is isomorphic to a word-quasiconvex subgroup of
a right-angled Coxeter group.

Proof. Let M D H3=� be a complete hyperbolic 3-manifold of finite volume with a
decomposition fPig into right-angled polyhedra. If the decomposition is checkered,
and f represents a face of the decomposition, it is easy to see that for each edge
e � f , the flat e-neighbor of f has the same color as f . It follows that each face of
the surface †f described in Section 3 has the same color as f . If H is a hyperplane
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of the square complex X associated to fPig, we will say H is white if all faces of
†.H/ are white, and black if they are black.

By Proposition 3.5, a hyperplane intersects only hyperplanes of the opposite color
and osculates only hyperplanes of the same color along an external edge. If hyper-
planes H0 and H1 osculate along an internal edge, let s0 and s1 be squares of � ,
meeting along an internal edge e, with parallel midlines m0 2 H0 and m1 2 H1.
Then e is of the form . Ng; xPi /, where Pi is the polyhedron containing s0 and s1 and
g is a face of Pi . The edges of s0 and s1 opposite e are contained in faces f0 and
f1 of Pi in y†.H0/ and y†.H1/, respectively. Then each of f0 and f1 intersects g, so
the color of f0 and f1 is opposite that of g. It follows that hyperplanes of � do not
inter-osculate.

By Proposition 4.3, M has a finite cover M 0 such that hyperplanes of the square
complex X 0 associated to the lifted ideal polyhedral decomposition of M 0 do not
self-intersect or -osculate. The lifted ideal polyhedral decomposition of M 0 inherits
the checkered property from that of M , so by the above, hyperplanes of X 0 do
not inter-osculate. In addition, Lemma 2.6 implies that X 0 is nonpositively curved,
Lemma 2.5 implies that each hyperplane is two-sided, and Lemma 2.3 implies that
X 0.1/ is bipartite. Thus X 0 is C -special, and by Theorem 2.1, the subgroup � 0 <

� corresponding to M 0 embeds as a word-quasiconvex subgroup of a right-angled
Coxeter group. �

In fact, we will show below that every right-angled decomposition determines a
twofold cover whose associated decomposition is checkered. This uses the lemma
below, which is a well-known consequence of Andreev’s theorem.

Lemma 4.5. Let P � H3 be a right-angled ideal polyhedron of finite volume. There
are exactly two checkerings of the faces of P .

Theorem 1.1 follows quickly from this lemma and Theorem 4.4.

Proof of Theorem 1.1. Suppose fPign
iD1 is a right-angled ideal decomposition of M .

Let fP .0/
i ; P

.1/
i gn

iD1 be a collection of disjoint right-angled polyhedra such that for

each i , P
.0/
i and P

.1/
i are each isometric to Pi , and the faces of P

.0/
i have the opposite

checkering of the faces of P
.1/
i . Here we take for granted that we have fixed marking

isometries P
.j /
i ! Pi for each j 2 f0; 1g, so that each face f of Pi has fixed

correspondents f .0/ � P
.0/
i and f .1/ � P

.1/
i .

For each i and each face f of Pi , we determine face pairing isometries �f .0/ and

�f .1/ for fP .0/
i ; P

.1/
i g using the following requirements: each �f .j / , j 2 f0; 1g must

commute with �f under the marking isometries, and each must preserve color. Thus
if f 0 D �f .f / and f 0.0/ has the same color as f .0/, we take �f .j /.f .j // D f 0.j /

for each j ; otherwise we take �f .j /.f .j // D f 0.1�j /
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Let zM be the quotient of fP .0/
i ; P

.1/
i gn

iD1 by the face pairing isometries described
above. By construction, zM is a double cover of M , and it is easy to see that zM is
disconnected if and only if the original decomposition fPig admits a checkering. If
it did, Theorem 4.4 would apply directly to M , so we may assume that it does not.
Then, by Theorem 4.4, the conclusion of Theorem 1.1 applies to zM ; hence it applies
as well to M . �

5. Virtual retractions and quasiconvexity

This section contains the proof of Theorem 1.3. We will need to work with various
different definitions of quasiconvexity for subgroups. These definitions all coincide
in the case of a Gromov-hyperbolic group because Gromov-hyperbolic metric spaces
enjoy a property sometimes known as the Morse Property, which asserts that quasi-
geodesics are uniformly close to geodesics. In our case, M has cusps and therefore
� D �1M is not Gromov hyperbolic but rather relatively hyperbolic. One of the re-
sults we use to circumvent this difficulty, Proposition 5.5, makes use of [13, Theorem
1.12], which the authors call the ‘Morse Property for Relatively Hyperbolic Groups’.

Definition. Let X be a geodesic metric space. A subspace Y is quasiconvex if there
exists a constant � such that any geodesic in X between two points of Y is contained
in the �-neighborhood of Y .

We will apply this notion in two contexts. If U is a CAT(0) cube complex with
base vertex v and a group G acts properly discontinuously by combinatorial isome-
tries on U then we consider the one-skeleton X D U .1/ with the induced length
metric (where each edge has length one). We say that a subgroup H is combina-
torially quasiconvex if Hv is a quasiconvex subspace of X . In fact, combinatorial
quasiconvexity is independent of the choice of basepoint if the action of G on U is
special [19, Corollary 7.8].

On the other hand, given a group G with a generating set S we can consider the
Cayley graph CayS .G/. A subgroup H is word quasiconvex if H is a quasiconvex
subspace of CayS .G/.

Let W be a right-angled Coxeter group with standard generating set S and let
U be the universal cover of the Davis–Moussong complex for W . The one-skeleton
of U is very closely related to CayS .W /: the edges of the Cayley graph come in
pairs; identifying these pairs gives U .1/. Furthermore, the image of the universal
cover of a special cube complex under the isometry defined by Haglund and Wise to
the Davis–Moussong complex of W is a convex subcomplex [19, Lemma 7.7]. We
therefore have the following relationship between combinatorial quasiconvexity and
word quasiconvexity in special cube complexes.
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Remark. Suppose that G is the fundamental group of a C-special cube complex � ,
so that G is isomorphic to a word-quasiconvex subgroup of a right-angled Coxeter
group W [19]. If H is a subgroup of G, then H is combinatorially quasiconvex in G

(with respect to the action of G on the universal cover of �) if and only if H is word
quasiconvex in W (with respect to the standard generating set).

The idea is to prove Theorem 1.3 by applying the following theorem of Haglund.

Theorem 5.1 ([17], Theorem A). Let W be a right-angled Coxeter group with the
standard generating set and let H be a word-quasiconvex subgroup. Then H is a
virtual retract of W .

Theorem A of [17] is not stated in this form. Nevertheless, as observed in the
paragraph following Theorem A, this is what is proved.

Corollary 5.2 (Cf. [19], Corollary 7.9). If G is the fundamental group of a compact,
virtually special cube complex and H is a combinatorially quasiconvex subgroup of
G then H is a virtual retract of G.

Proof. Let G0 be a special subgroup of finite index in G. It is clear that H 0 D H \G0
is combinatorially quasiconvex in G0. By the above remark, H 0 is word-quasiconvex
in the right-angled Coxeter group W , so H 0 is a virtual retract of W and hence of G0
by Theorem 5.1. By [19, Theorem 4.4], G is linear. We can now apply the argument
of [24, Theorem 2.10] to deduce that H is a virtual retract of G. �

The reader is referred to [26] and [21] for definitions of relatively hyperbolic
groups and relatively quasiconvex subgroups, which are the subject of Theorem 1.3.
(See Proposition 5.4 below for a characterization of relative quasiconvexity.) In order
to deduce Theorem 1.3 from Corollary 5.2, it would be enough to show that every
relatively quasiconvex subgroup of the relatively hyperbolic fundamental group of a
C-special cube complex is combinatorially quasiconvex. Unfortunately, this may be
false. For instance, the diagonal subgroup of Z2 with the standard generating set is
not quasiconvex. The next theorem, a minor modification of a result of [26], gets
round this difficulty.

Definition. Suppose a group G is hyperbolic relative to a finite set of subgroups P .
Then a relatively quasiconvex subgroup is called fully relatively quasiconvex if for
every P 2 P and every g 2 G, either H \ gPg�1 is trivial or H \ gPg�1 has finite
index in gPg�1.

Theorem 5.3 (Cf. [26] Theorem 1.7). Suppose that G is hyperbolic relative to P and
that every P 2 P is finitely generated and abelian. If Q is a relatively quasiconvex
subgroup of G then G has a fully relatively quasiconvex subgroup H such that Q is
a retract of H .
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Proof. In the proof of [26, Theorem 1.7], the authors construct a sequence of relatively
quasiconvex subgroups

Q D Q0 � Q1 � 	 	 	 � Qn D H

with H fully relatively quasiconvex. We recall a few details of the construction of
Qk from Qk�1. We will modify this construction slightly so that Qk�1 is a retract
of Qk for each k. For some maximal infinite parabolic subgroup Kk of Qk�1, there
is Pk 2 P and fk 2 G such that Kk � fkPkf �1

k
. Manning and Martinez-Pedroza

find a finite-index subgroup Rk of fkPkf �1
k

that contains Kk and excludes a certain
finite set F . We shall impose an extra condition on Rk that is easily met when Pk

is abelian, namely that Kk should be a direct factor of Rk . Just as in [26], the next
subgroup in the sequence is now defined as Qk D hQk�1; Rki, and just as in that
setting it follows that Qk is relatively quasiconvex.

It remains only to show that Qk�1 is a retract of Qk . By assertion (1) of [26,
Theorem 3.6], the natural map

Qk�1 
Kk
Rk ! Qk

is an isomorphism. But Kk is a direct factor of Rk and so there is a retraction
Rk ! Kk , which extends to a retraction Qk ! Qk�1 as required. �

In light of Theorem 5.3, to prove Theorem 1.3 it will suffice to show that when
G is the relatively hyperbolic fundamental group of a non-positively curved cube
complex, its fully relatively quasiconvex subgroups are combinatorially convex. This
is the content of Proposition 5.5 below.

Hruska has extensively investigated various equivalent definitions of relative hy-
perbolicity and relative quasiconvexity [21]. Corollary 8.16 of [21] provides a char-
acterization of relative quasiconvexity in terms of geodesics in the Cayley graph.
Unfortunately, to prove Theorem 1.3 we need to work in the one-skeleton of the uni-
versal cover of a cube complex. This is not actually a Cayley graph unless the cube
complex in question has a unique vertex. It is, however, quasi-isometric to the Cayley
graph. Therefore, we will need a quasigeodesic version of Hruska’s Corollary 8.16.
Fortunately, we shall see that Hruska’s proof goes through.

In what follows, S is any choice of finite generating set for G and d is the usual
length metric on CayS .G/. For any g 2 G write l.g/ for d.1; g/, the word length of
g with respect to S . For x 2 CayS .G/ we denote by B.x; R/ the open ball of radius
R about x. We define

NR.Y / D
[
y2Y

B.y; R/

for any subspace Y � CayS .G/ and any R > 0. To keep notation to a minimum
we will work with � -quasigeodesics, which are more usually defined as .�; �/-quasi-
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geodesics. That is, a path c is a � -quasigeodesic if

1

�
js � t j � � � d.c.s/; c.t// � � js � t j C �

for all suitable s and t . We will always assume that our quasigeodesics are continuous,
which we can do by [8, Lemma III.H.1.11]. The following definition is adapted from
[21].

Definition (Cf. [21], Definition 8.9). Let H be a subgroup of G. Let c be (the image
of) a quasigeodesic in CayS .G/. If x 2 c is not within distance R of the endpoints
of c and

B.x; R/ \ c � N�.gP /

for some g 2 G and P 2 P then x is called .	; R/-deep in gP . If x 2 c is not
.	; R/-deep in any such coset gP then x is called an .	; R/-transition point of c.

The next proposition characterizes relatively quasiconvex subgroups in terms of
quasigeodesics in the Cayley graph. Roughly, it asserts that every point on a quasi-
geodesic between elements of H is either close to H or is close to some peripheral
coset gP .

Proposition 5.4 (Cf. [21], Corollary 8.16). Suppose G is hyperbolic relative to P

and H is a subgroup of G. Then H is relatively quasiconvex in G if and only if for
every � there are constants 	; R; � such that the following two properties hold.

(1) For any continuous � -quasigeodesic c in CayS .G/, any connected component Nc
of the set of all .	; R/-deep points of c is .	; R/-deep in a unique peripheral left
coset gP ; that is, there exists a unique P 2 P and gP 2 G=P such that every
x 2 Nc is .	; R/-deep in gP and no x 2 Nc is .	; R/-deep in any other peripheral
left coset.

(2) If the quasigeodesic c joins two points of H then the set of .	; R/-transition
points of c is contained in N�.H/.

The statement of [21, Corollary 8.16] only deals with the case when c is a geodesic.
However, the necessary results of Section 8 of [21] also hold in the quasigeodesic
case.

The following proposition completes the proof of Theorem 1.3.

Proposition 5.5. Let G be finitely generated and relatively hyperbolic. Suppose that
G acts properly discontinuously and cocompactly by isometries on a geodesic metric
space X . Fix a basepoint v 2 X . For any fully relatively quasiconvex subgroup
H � G there exists a constant 
 such that any geodesic between two points of the
orbit Hv lies in the 
-neighborhood of Hv. In particular, if G is the fundamental
group of a non-positively curved cube complex then, taking X to be the one-skeleton
of the universal cover, it follows that H is combinatorially quasiconvex.
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Proposition 5.4 implies that, to prove Proposition 5.5, it is enough to prove that
deep points of quasigeodesics between points of H lie in a bounded neighborhood
of H . The key technical tool is the following lemma, which is nothing more than the
Pigeonhole Principle.

Lemma 5.6. Let G be a finitely generated group. Fix a choice of finite generating set
and the corresponding word metric on G. If H , K are subgroups and H \ K D 1,
then

#.H \ Nr.K// < 1
for any r > 0.

Proof. For a contradiction, suppose hi 2 H \ Nr.K/ are distinct for all i 2 N. For
each i , there is ki 2 K with d.hi ; ki / < r . Let gi D h�1

i ki , so l.gi / < r . The ball
of radius r in G is finite, so gi D gj for some i ¤ j by the Pigeonhole Principle.
But now

hih
�1
j D higig

�1
j h�1

j D kik
�1
j

is a non-trivial element of H \ K, a contradiction. �

It follows that only short elements of H can be close to parabolic left cosets for
which H intersects the stabilizer trivially.

Lemma 5.7. Suppose G is hyperbolic relative to P and H is any subgroup of G.
Let g 2 G and P 2 P be such that H \ gPg�1 D 1. For any r > 0 there exists
finite � D �.r; gP / such that if h 2 Nr.gP / \ H then l.h/ � �.

Proof. Choose g of minimal word length in gP and set k D l.g/. For any p 2 P ,
d.gp; gpg�1/ D k and it follows that

Nr.gP / � NkCr.gPg�1/

by the triangle inequality. Therefore, by Lemma 5.6 with K D gPg�1, Nr.gP /\H

is finite and so
� D maxfl.h/ j h 2 Nr.gP / \ H g

is as required. �

We are now ready to prove Proposition 5.5.

Proof of Proposition 5.5. Consider a geodesic b in X joining two points of Hv. We
need to show that b is contained in a uniformly bounded neighborhood of Hv.

By the Švarc–Milnor Lemma, G has a finite generating set S and X is quasi-
isometric to the Cayley graph CayS .G/. The geodesic b maps to some � -quasi-
geodesic in CayS .G/, which we denote c. Furthermore, we can assume that c is
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continuous by [8, Lemma III.H.1.11]. It is therefore enough to show that c is contained
in a uniformly bounded neighborhood of H in the word metric d on CayS .G/.

Let 	, R and � be as in Proposition 5.4. By assertion 2 of Proposition 5.4, the
.	; R/-transition points of c are contained in the �-neighborhood of H . Therefore, it
remains to show that the .	; R/-deep points of c are contained in a uniformly bounded
neighborhood of H .

Let Nc be a connected component of the set of all .	; R/-deep points of c. By
definition, every x 2 Nc is in the 	-neighborhood of some peripheral left coset gP .
By assertion 1 of Proposition 5.4, the component Nc is contained between two .	; R/-
transition points of c, which we shall denote y1 and y2. We can take these points to
be arbitrarily close to Nc, and hence we can assume that d.yi ; gP / � 	 for i D 1; 2.
On the other hand, by assertion 2 of Proposition 5.4, there exist h1; h2 2 H such that
d.hi ; yi / < � for i D 1; 2. Therefore, hi 2 N�C�.gP / for i D 1; 2.

Let h0 D h�1
1 h2 and let g0 D h�1

1 g, so h0 2 N�C�.g0P / and, without loss of
generality, l.g0/ � 	 C �. There are two cases to consider, depending on whether h0

is long or short. Let

�max D maxf�.	 C �; gP / j P 2 P ; l.g/ � 	 C �; H \ gPg�1 D 1g
where �.	 C �; gP / is provided by Lemma 5.7. In the first case, l.h0/ � �max

so d.h1; h2/ � �max and therefore d.y1; y2/ < �max C 2�. Because c is a � -
quasigeodesic it follows that for every x 2 Nc, for some i D 1; 2, we have that

d.x; yi / < �0 D �2

2
.�max C 2� C �/ C �

and so d.x; hi / < �0 C �.
In the second case, l.h0/ > �max and so H \ g0Pg�1

0 ¤ 1 by Lemma 5.7.
Therefore H \ g0Pg�1

0 has finite index in g0Pg�1
0 because H is fully relatively

quasiconvex. For each g 2 G and P 2 P for which H \ gPg�1 has finite index in
P , let � D �.gP / be a number such that gPg�1 � N�.H \ gPg�1/. Set

�max D maxf�.gP / j P 2 P ; l.g/ � 	 C �; jgPg�1 W H \ gPg�1j < 1g:
Therefore

g0Pg�1
0 � N�max.H/

and so
g0P � N�maxC�C�.H/

because l.g0/ � 	 C �. For each x 2 Nc we have h�1
1 x 2 N�.g0P / and so h�1

1 x 2
N�maxC2�C�.H/. Therefore x 2 N�maxC2�C�.H/.

In summary, we have shown the following: the .	; R/-transition points of the
geodesic c are contained in the �-neighborhood of H ; the short .	; R/-deep compo-
nents of c are contained in the .�0 C�/-neighborhood of H ; and the long .	; R/-deep
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components of c are contained in the .�max C2	C�/-neighborhood of H . Therefore,
c is completely contained in the 
-neighborhood of H , where


 D maxf�; �0 C �; �max C 2	 C �g:
This completes the proof. �

We have assembled all the tools necessary to prove Theorem 1.3.

Proof of Theorem 1.3. Let Q be a relatively quasiconvex subgroup of G D �1� . By
Theorem 5.3, there exists a fully relatively quasiconvex subgroup H of G such that
Q is a retract of H . Let X be the one-skeleton of the universal cover of � , equipped
with the induced length metric. By Proposition 5.5, for any basepoint v the orbit
Hv is quasiconvex in X ; that is, H is a combinatorially quasiconvex subgroup of
G. Therefore, by Corollary 5.2, H is a virtual retract of G and so Q is also a virtual
retract of G, as required. �

Corollary 1.4 now follows easily.

Proof of Corollary 1.4. Let � D �1M . As pointed out in [10], to prove that � is
LERF it is enough to prove that � is GFERF – that is, that the geometrically finite
subgroups are separable. Furthermore, by [17, Proposition 3.28], it is enough to
prove that the geometrically finite subgroups of G are virtual retracts.

First, suppose that M is orientable. Let Q be a geometrically finite subgroup of � .
By [26, Theorem 1.3], for instance, � is hyperbolic relative to its maximal parabolic
subgroups and Q is a relatively quasiconvex subgroup of � . The maximal parabolic
subgroups of � are isomorphic to Z2. By Theorem 1.1, � is the fundamental group
of a virtually special cube complex � , so Q is a virtual retract of � by Theorem 1.3.

If M is nonorientable then we can pass to a degree-two orientable cover M 0 with
fundamental group � 0. As above, we see that for every geometrically finite subgroup
Q of � , the intersection Q0 D Q \ � 0 is a virtual retract of � 0. Now, by the proof of
[24, Theorem 2.10], it follows that H is a virtual retract of � . �

We take this opportunity to note that the combination of Proposition 5.5 and
Corollary 5.2 shows that many subgroups of virtually special relatively hyperbolic
groups are virtual retracts, even without any hypotheses on the parabolic subgroups.
Indeed, we have the following.

Theorem 5.8. Let � be a compact, virtually special cube complex and suppose that
�1� is relatively hyperbolic. Then every fully relatively quasiconvex subgroup of �1�

is a virtual retract.

Recall that an element 
 of a relatively hyperbolic group is called hyperbolic
if it is not conjugate into a parabolic subgroup. Denis Osin has shown that cyclic
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subgroups generated by hyperbolic elements are strongly relatively quasiconvex [31,
Theorem 4.19]. In the torsion-free case this implies a fortiori that such subgroups
are fully relatively quasiconvex.

Corollary 5.9. Let � be a compact, virtually special cube complex and suppose
that �1� is relatively hyperbolic. For any hyperbolic element 
 2 �1� , the cyclic
subgroup h
i is a virtual retract of �1� .

Combining Theorem 5.8 with [26, Theorem 1.7], we obtain a slightly weaker
version of Theorem 1.3 that holds when the peripheral subgroups are only assumed
to be LERF and slender. (A group is slender if each subgroup is finitely generated.)

Corollary 5.10. Let � be a compact, virtually special cube complex and suppose
that �1� is hyperbolic relative to a collection of slender, LERF subgroups. Then
every relatively quasiconvex subgroup of �1� is separable and every fully relatively
quasiconvex subgroup of �1� is a virtual retract.

This result would apply if �1� were the fundamental group of a finite-volume neg-
atively curved manifold of dimension greater than three, in which case the parabolic
subgroups would be non-abelian but nilpotent. Note that the full conclusion of The-
orem 1.3 does not hold in this case: nilpotent groups that are not virtually abelian
contain cyclic subgroups that are not virtual retracts.

6. Examples

In this section we describe many hyperbolic 3-manifolds that decompose into right-
angled ideal polyhedra. Our aim is to display the large variety of situations in which
Theorem 1.1 applies, and to explore the question of when a manifold that decomposes
into right-angled ideal polyhedra is commensurable with a right-angled reflection
orbifold. When this is the case, the results of this paper follow from previous work,
notably that of Agol–Long–Reid [2]. The theme of this section is that this occurs
among examples of lowest complexity, but that one should not expect it to in general.

Lemma 6.1 describes when one should expect a manifold M that decomposes
into right-angled ideal polyhedra to be commensurable with a right-angled reflection
orbifold. This is the case when all of the polyhedra decomposing M are isometric to
a single right-angled ideal polyhedron P , which furthermore is highly symmetric. A
prominent example which satisfies this is the Whitehead link complement, which is
commensurable with the reflection orbifold in the regular ideal octahedron.

The octahedron (also known as the 3-antiprism, see Figure 1) is the simplest
right-angled ideal polyhedron, as measured by the number of ideal vertices. Propo-
sitions 6.3 and 6.4 imply that any manifold that decomposes into isometric copies of
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the right-angled ideal octahedron or, respectively, the 4-antiprism, is commensurable
with the corresponding reflection orbifold. On the other hand, in Section 6.2 we will
describe an infinite family of “hybrid” hyperbolic 3-manifolds Nn, each built from
both the 3- and 4-antiprisms, that are not commensurable with any 3-dimensional
hyperbolic reflection orbifold. We use work of Goodman-Heard-Hodgson [16] here
to explicitly identify the commensurator quotients for the Nn.

6.1. The simplest examples.. It may initially seem that a manifold that decomposes
into right-angled polyhedra should be commensurable with the right-angled reflection
orbifold in one or a collection of the polyhedra. This is not the case in general;
however, the technical lemma below implies that it holds if all of the polyhedra are
isometric and sufficiently symmetric.

Lemma 6.1. Let M be a complete hyperbolic 3-manifold with a decomposition
fPig into right-angled ideal polyhedra. For a face f 2 Pi , let 
f be reflection in
the hyperplane containing f . If for each such face, �f B 
f is an isometry to the
polyhedron Pj containing �f .f /, then �1M is contained in � Ì Sym.P1/, where �

is the reflection group in P1 and Sym.P1/ is its symmetry group.

Proof. Let M be a hyperbolic 3-manifold satisfying the hypotheses of the lemma.
There is a “dual graph” to the polyhedral decomposition fPig with a vertex for each i ,
such that the vertex corresponding to Pi is connected by an edge to that corresponding
to Pj for every face f of Pi such that �f .f / is a face of Pj . Let T be the tiling of
H3 by �-translates of P1. A maximal tree T in the dual graph determines isometries
taking the Pi into T as follows.

Suppose f is a face of P1 that corresponds to an edge of T . Then by hypothesis
��1

f
.Pi / D 
f .P1/, where Pi contains �f .f /. For arbitrary i , let ˛ be an embedded

edge path in T from the vertex corresponding to P1 to that of Pi , and suppose Pi0

corresponds to the vertex with distance one on ˛ from that of Pi . We inductively
assume that there exists an isometry �i0 such that �i0.Pi0/ is a �-translate of P1.
Let f be the face of Pi0 corresponding to the edge of T between Pi0 and Pi . Then
�i0
f ��1

i0
D 
�i0

.f / 2 � , so by hypothesis,

�i0 B ��1
f .Pi / D �i0
f .Pi0/ D .�i0
f ��1

i0
/.�i0.Pi0//

is a �-translate of P1.
Now for each i , after replacing Pi by �i .Pi / we may assume that there is some


i 2 � such that Pi D 
i .P1/. For a face f of Pi , let Pj be the polyhedron
containing �f .f /. Then by hypothesis 
�1

j �f 
f 
i 2 Sym.P1/. Therefore �f 2
� Ì Sym.P1/; thus the lemma follows from the Poincaré polyhedron theorem. �

A natural measure of the complexity of a right-angled ideal polyhedron is its
number of ideal vertices. By this measure, the two simplest right-angled ideal poly-
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hedra are the 3- and 4-antiprisms, pictured in Figure 1. (The general definition of a
k-antiprism, k � 5 should be evident from the figure.)

Figure 1. The 3- and 4-antiprisms.

Lemma 6.2. The only right-angled ideal polyhedra with fewer than ten vertices are
the 3- and 4-antiprisms.

Proof. By a polyhedron we mean a 3-complex with a single 3-cell whose underlying
topological space is the 3-dimensional ball, such that no two faces that share an edge
e have vertices in common other than the endpoints of e. By Andreev’s theorem,
there is a right-angled ideal polyhedron in H3 with the combinatorial type of a given
polyhedron if and only if each vertex has valence 4, there are no prismatic 3- or
4-circuits, and the following criterion holds: given faces f0, f1, and f2 such that f0

and f2 each share an edge with f1, f0 and f2 have no vertices in common with each
other but not f1. (A prismatic k-circuit is a sequence of k faces f0; f1; : : : ; fk�1

such that no three faces have a common vertex but for each i , fi shares an edge with
fi�1 and fiC1, taking indices modulo k.)

If f is a k-gon face of a right-angled ideal polyhedron P , the final criterion above
implies that P has at least 2k ideal vertices, since each face that abuts f contributes
at least one unique vertex to P . Thus any right-angled ideal polyhedron with fewer
than 10 ideal vertices has only triangular and quadrilateral faces. Let v, e, and f be
the number of vertices, edges and faces of P , respectively. Since each vertex has
valence 4, we have 4v D 2e. If P has only triangular faces, then 2e D 3f , and an
Euler characteristic calculation yields

v � e C f D 3f

4
� 3f

2
C f D 2:

Therefore in this case f D 8, and it is easy to see that P must be the 3-antiprism.
If P has a quadrilateral face f and only 8 vertices, then by the final criterion

of the first paragraph all faces adjacent to it are triangles. The union of f with the
triangular faces adjacent to it is thus a subcomplex that is homeomorphic to a disk
and contains all vertices of P . It follows that P is the 4-prism. Since each vertex of
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a right-angled ideal polyhedron is 4-valent, the number of vertices is even, and the
lemma follows. �

It is well known that the 3-antiprism P , better known as the octahedron, is regular:
there is a symmetry exchanging any two ordered triples .v; e; f / where v � e � f

are faces of dimension 0, 1, and 2, respectively. Now suppose M is a manifold
with a decomposition into polyhedra fPig such that for each i , there is an isometry

i W P ! Pi . If Pi and Pj are polyhedra in this decomposition, containing faces
f and f 0, respectively, such that �f .f / D f 0, then 
�1

j �f 
i takes one face of P

isometrically to another; hence it is realized by a symmetry � of P . It follows that

f 0 B 
j �
�1

i D �f . Thus Lemma 6.1 implies:

Proposition 6.3. Let �1 be the group generated by reflections in the sides of the
octahedron P , and let †1 be its symmetry group. If M is a complete hyperbolic
manifold that decomposes into copies of P , then �1M < �1 Ì †1. In particular,
�1M is commensurable to �1.

The 4-antiprism does not have quite enough symmetry to directly apply Lemma 6.1,
but its double across a square face is the cuboctahedron, the semi-regular polyhedron
pictured on the right-hand side of Figure 2. The cuboctahedron has a symmetry ex-
changing any two square or triangular faces, and each symmetry of each face extends
over the cuboctahedron.

Figure 2. The ideal octahedron P1 and cuboctahedron P2.

Proposition 6.4. Let �2 be the group generated by reflections in the sides of the
cuboctahedron, and let †2 be its group of symmetries. If M is a complete hyperbolic
3-manifold that decomposes into copies of the cuboctahedron, then �1.M/ < �2 Ì
†2. If M decomposes into 4-antiprisms, then �1.M/ has an index-2 subgroup
contained in �2 Ì †2.
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Proof. Since face pairing isometries must in particular preserve combinatorial type,
it follows from Lemma 6.1 as argued above Proposition 6.3 that if M decomposes
into copies of the cuboctahedron, then �1.M/ < �2 Ì †2.

Opposite square faces of the 4-antiprism inherit opposite colors from any check-
ering. Thus if a hyperbolic 3-manifold M has a checkered decomposition into right-
angled ideal 4-antiprisms, they may be identified in pairs along, say, dark square
faces, yielding a decomposition into right-angled ideal cuboctahedra. The proof of
Theorem 1.1 shows that if the decomposition of M is not checkered, there is a twofold
cover zM ! M that inherits a checkered decomposition. Hence if M decomposes
into 4-antiprisms, zM decomposes into copies of the cuboctahedron. The final claim
of the proposition follows. �

The results of [20] imply that for j D 1; 2, �j Ì†j is isomorphic to the arithmetic
group PGL2.Oj /, where Oj is the ring of integers of Q.

p�j /.
The fundamental domain for Sym.P1/ pictured in Figure 2 intersects @P1 in a

.2; 3; 1/ triangle. We refer by ƒ to the group generated by reflections in the sides
of this triangle. The fundamental domain for Sym.P2/ intersects a triangular face in
a .2; 3; 1/ triangle as well; thus ƒ embeds in �j Ì Sym.Pj / for j D 1 and 2. The
lemma below records an observation we will find useful in the following sections.

Lemma 6.5. For j D 1; 2, let Tj be the tiling of H3 by �j -conjugates of Pj . The
action of �j Ì Sym.Pj / is transitive on the set of all geodesic planes that contain a
triangular face of a tile of Tj .

This lemma follows from the fact, evident by inspection of the fundamental do-
mains in Figure 2, that Sym.Pj / acts transitively on triangular faces of Pj .

6.2. A family of one-cuspedmanifolds. In this section, we exhibit an infinite family
fNng of pairwise incommensurable manifolds that are not commensurable to any
3-dimensional reflection group. Each of these manifolds has a single cusp, and they
are constructed using an explicit right-angled ideal polyhedral decomposition.

Definition. For n � 2, let fPignC2
iD1 be a collection of right-angled ideal polyhedra

embedded in H3 with the following properties.

(1) Pi is an octahedron if i 2 f1; n C 2g, and a cuboctahedron otherwise.

(2) There is an ideal vertex Ov shared by all the polyhedra.

(3) Pi \ Pj if and only if i D j ˙ 1.

(4) If Pi and Pj meet, then they share a triangular face.

Define Dn D SnC2
iD1 Pi .



756 E. Chesebro, J. DeBlois and H. Wilton CMH

An isometric copy in H3 of such a collection is determined by an embedding of
P1, a choice of Ov, and a choice of triangular face P1 \ P2. If we use the upper half
space model for H3 then IsomC.H3/ is identified with PSL2.C/, by isometrically
extending the action by Möbius transformations on @H3 D C [ f1g. Using this
model, we apply an isometry so that Ov D 1 we can project the faces of the Pi ’s to
@H3 to get a cell decomposition of C. This decomposition is pictured for n D 2 in
Figure 3.

Each 2-cell in the figure corresponds to a face of some Pi which is not shared by
any other Pj . Shade half of the faces of P1 and PnC2 gray and label them A, B , C ,
D, E, F , G, and H as indicated in the figure. Label the square face of P2 which
shares an edge with B (respectively A, D) as X1 (respectively Y1, Z1). Label the
square face opposite X1 as X 0

1 and so on. Now use the parabolic translation c that
takes P2 to P3 to translate the labeling to the other cuboctahedra, adding one to the
subscript every time we apply c.

A

B

C

D

X1

Z1

Y1 Y 0
1

Z0
1

X 0
1

X2

Z2

Y2 Y 0
2

Z0
2

X 0
2

F

G

H

E

Figure 3. D2.

Define the isometries a; b; f; g; x; y; z 2 IsomC.H3/ as follows. The isometry
taking A to B so that their shared vertex is taken to the vertex shared by B and C is a.
The isometry taking C to D so that their shared vertex is taken to the vertex shared
by B and D is b. The isometry taking E to F so that their shared vertex is taken to
the vertex shared by F and G is f. The isometry taking G to H so that their shared
vertex is taken to the vertex shared by H and F is g. The isometry taking Y 0

1 to X1 so
that their shared vertex is taken to the vertex shared by X1 and Z0

1 is x. The isometry
taking Z0

1 to Z1 so that the vertex shared by Z0
1 and Y 0

1 is taken to the vertex shared
by X 0

1 and Z1 is y. The isometry taking X 0
1 to Y1 so that their shared vertex is taken

to the vertex shared by Y1 and Z1 is z.
The set Sn defined below is a collection of face pairings for fPignC2

1 . Here we
take xc D cxc�1.

Sn D ˚
a; b; f; g; x; y; z; xc; yc; zc; : : : ; xcn�1

; ycn�1

; zcn�1�
:
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By examining the combinatorics of these face pairings, one deduces that the quotient
by these side pairings is a complete hyperbolic manifold Nn with finite volume and
a single cusp. (See, for instance, [34, Theorem 11.1.6].) By Poincaré’s polyhedron
theorem [34, Theorem 11.2.2], �n D hSni is discrete and Dn is a fundamental
domain for �n. Furthermore, in the manner of [11], one can write down explicit
matrices in PSL2.C/ which represent these isometries and see that the trace field for
�n is Q.i;

p
2/. Hence, Nn Š H3=�n is non-arithmetic.

Definition. The commensurator of � < Isom.H3/ is defined as

Comm.�/
:D fg 2 Isom.H3/ j Œ� W g�g�1 \ �� < 1g:

It is easy to see that every group commensurable with � is contained in Comm.�/.
A well-known theorem of Margulis asserts that if � is discrete and acts with finite
covolume, then Comm.�/ is itself discrete if and only if � is not arithmetic (see [27,
(1) Theorem]).

Let Gn D Comm.�n/ and On D H3=Gn. Since �n is a non-arithmetic Kleinian
group, Gn is discrete and On is an orbifold. We will use the techniques of Goodman–
Hodgson–Heard [16] to prove the following proposition.

Proposition 6.6. Every element of Gn is orientation preserving. Hence, �n is not
commensurable to any 3-dimensional reflection group.

Theorem 1.5 will follow immediately from the proposition above upon observing
that the Nn are pairwise incommensurable. This follows most easily from a Bloch
invariant computation. The Bloch invariant of a hyperbolic 3-manifold M is a sum of
parameters, each an element of C�, of a tetrahedral decomposition of M , considered
as an element of P .C/. For a field k, the Pre-Bloch group P .k/ is the quotient of
the free Z-module on k � f0; 1g by a “five-term relation” that can be geometrically
interpreted as relating different decompositions of the union of two tetrahedra. The
Bloch group B.k/ is a subgroup of P .k/; see e.g. [28].

We will use the decomposition of Nn into a collection of 2 right-angled ideal
octahedra and n cuboctahedra. These may each be divided into tetrahedra yielding a
decomposition of Nn. The parameters of the tetrahedra contained in the octahedron
sum to an element ˇ1 2 B.Q.i//, and those of the cuboctahedron sum to an element
ˇ2 2 B.Q.i

p
2//. It can be showed that ˇ1 and ˇ2 are linearly independent in

B.Q.i;
p

2//, and this in turn implies that the invariants 2 	 ˇ1 C n 	 ˇ2 of the Nn

are pairwise linearly independent. Hence the Nn are pairwise incommensurable; see
[11, Proposition 4.5] for an analogous proof.

In proving Proposition 6.6, we give a partial description of the commensurator Gn.
We use the algorithm of [16] to perform such computations here and in Section 7.2,
so we briefly introduce the set-up below. The Lorentz inner product on R4 is the
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degenerate bilinear pairing

hv; wi D v1w1 C v2w2 C v3w3 � v4w4:

The hyperboloid model of H3 is the set fv j hv; vi D �1; v4 > 0g equipped with the
Riemannian metric on tangent spaces determined by the Lorentz inner product. The
positive light cone is the set LC D fv j hv; vi D 0; v4 � 0g. The ideal boundary
@H3 is identified with the set PLC of equivalence classes of v 2 LC, where v � w

if w D �v for � 2 RC.
Given a vector v 2 LC, we say the set Hv D fw 2 H3 j hv; wi D �1g is

a horosphere centered at v D Œv�. If ˛ 2 RC the horosphere H˛v is a horosphere
centered at the same ideal point as Hv and if ˛ � 1 then Hv is contained in the horoball
determined by ˛v. This correspondence between vectors in LC and horospheres in
H3 is a bijection. Hence, we call the vectors in LC horospherical vectors.

The group Isom.H3/ is the subgroup O0.3; 1/ � GL4.R/ (acting by matrix
multiplication) which preserves the Lorentz inner product and the sign of the last
coordinate of each vector in R4.

Suppose M D H=ƒ is a complete finite volume hyperbolic orbifold with k cusps.
For each cusp ci of M , choose a horospherical vector vi for which Hvi

projects to
a cross section of ci under the covering map H3 ! M . Then V D ƒ 	 fvigk

1 is
ƒ-invariant and determines a ƒ-invariant set of horospheres. The convex hull C of
V in R4 is called the Epstein–Penner convex hull. Epstein and Penner show that @C

consists of a countable set of 3-dimensional faces Fi , where each Fi is a finite sided
Euclidean polyhedron in R4. Furthermore, this decomposition of @C projects to a
ƒ-invariant tiling T of H3 [14, Proposition 3.5 and Theorem 3.6]. If M is a manifold
then the quotient of this tiling by ƒ gives a cell decomposition of M . We refer to the
tiling as a canonical tiling for M and to the cell decomposition as a canonical cell
decomposition of M . If we make a different choice for fvigk

1 by multiplying each
vector by a common positive scalar then the resulting Epstein–Penner convex hull
differs from C by multiplication by this scalar. The combinatorics of the boundary
of this scaled convex hull is identical to that of C and projects exactly to the tiling T .
Hence, we obtain all possibilities for canonical tilings using initial sets of the form
fv1; ˛2v2; : : : ; ˛kvkg.

Consider the group of symmetries Sym.T / � Isom.H3/. Since T is ƒ-invariant
ƒ � Sym.T /. On the other hand, Sym.T / acts on the set V of horospherical
vectors. It follows that Sym.T / is discrete [16, Lemma 2.1] and therefore H3=ƒ !
H3=Sym.T / is a finite cover between orbifolds.

Suppose that ƒ is non-arithmetic. Since Comm.ƒ/ is the unique maximal discrete
group that contains ƒ, then Sym.T / � Comm.ƒ/ for every canonical tiling T .
Furthermore, every canonical tiling for Comm.ƒ/ is also a canonical tiling for ƒ,
hence Comm.ƒ/ D Sym.T / for some canonical tiling T for ƒ.

We say that a set fPig of ideal polyhedra ƒ-generate the tiling T if every tile
of T is of the form 
Pi for some 
 2 ƒ and some i . The canonical tilings can be
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determined using elementary linear algebra. According to [16, Lemma 3.1], a set
fPig of ideal polyhedra ƒ-generates the canonical tiling associated to the set V if

(1) ƒ 	 fPig is a tiling of H3,

(2) given any vertex of any Pi there is a horospherical vector v 2 V so that the
vertex lies at the center of the horosphere Hv,

(3) the set of horospherical vectors corresponding to the vertices of any given Pi

lie on a single plane in R4,

(4) if Pi and 
Pj are two tiles that meet in a common face then the Euclidean planes
in R4 determined by the two tiles meet convexly.

The last two conditions can be re-phrased using linear algebra. If fv1; : : : ; vsg are
the horospherical vectors for Pi and w is a horospherical vector for a neighboring
tile which is not shared by Pi then there exists a normal vector for Pi , n 2 R4 such
that

(3) (coplanar) n 	 vi D 1 for every i D 1; : : : s, and

(4) (positive tilt) n 	 w > 1,

where 	 denotes the standard Euclidean inner product. Note that these conditions are
invariant under Isom.H3/, for if n 	v D ˛ and A 2 Isom.H3/ then .nA�1/ 	Av D ˛.

Proposition 6.7. Let �n < O0.3; 1/ be determined by the following embedding of
the Pi in H3: the isometry group of P2 fixes .0; 0; 0; 1/>, the ideal vertex Ov shared
by the Pi is Œ Ov�, where Ov D .2; 0; 0; 2/>, and P1 \P2 has ideal vertices Œ Ov�; Œv9�; Œv4�,
where v4 D .1; 1; �p

2; 2/> and v9 D .1; �1; �p
2; 2/>. Let Tn be the tiling of H3

determined by Vn D �n 	 f Ovg. The tiles of Tn are the �n-orbits of the Pi .

Proof. If X is a 4�n matrix we denote the i th column of X by xi . When the columns
of X lie in LC and the convex hull of the corresponding ideal points is an ideal
polyhedron we call the polyhedron PX . Consider the matrices

M D

0
BB@

2 1 0 1 0 �1 �2 �1 1 �1 �1 1

0 1 2 1 �2 �1 0 �1 �1 1 1 �1

0
p

2 0 �p
2 0

p
2 0 �p

2 �p
2 �p

2
p

2
p

2

2 2 2 2 2 2 2 2 2 2 2 2

1
CCA ;

and

N D

0
BB@

p
2 0 0 �p

2 0 0

0
p

2 0 0 �p
2 0

0 0
p

2 0 0 �p
2p

2
p

2
p

2
p

2
p

2
p

2

1
CCA :
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The columns of M and N are horospherical vectors and represent horospheres cen-
tered about the ideal vertices of a regular ideal cuboctahedron and octahedron respec-
tively. These matrices are chosen so that, for X D M; N , the isometries in Isom.PX /

all fix .0; 0; 0; 1/> 2 H3 and the columns of X are Isom.PX /-invariant. Furthermore,
if h is the orientation preserving hyperbolic isometry that takes the triangular face
.n1; n2; n3/ of PN to the triangular face .m1; m9; m4/ of PM so that h.PN / \ PM

is exactly this face, then our choice of horospheres agree on this intersection. That
is, h.n1; n2; n3/ D .m1; m9; m4/.

Let P1 D h.PN / and P2 D PM . Embed the remaining polyhedra in fPignC2
1 , as

described above, so that the common ideal vertex is the center of the m1 horosphere.
Choose horospherical vectors for the Pi ’s so that they are Isom.Pi /-invariant and to
coincide with the horospherical vectors of Pi˙1 wherever ideal vertices are shared.

Notice that the face pairings of Pi in Sn are all compositions of elements of
Isom.Pi / with parabolics that fix an ideal vertex of Pi . Since we have chosen
our horospherical vectors to be Isom.Pi /-invariant, it follows that our choice of
horospheres is compatible with the face pairings in Sn. Hence, the choice of horo-
spheres descends to a choice of horospherical torus in Nn and therefore determines
a canonical cell decomposition of Nn and a canonical tiling of H3 whose sym-
metry group is Gn. To prove the proposition, we need to show that this tiling
is Tn.

Take n D .0; 0; 0; 1=2/>. Then n 	 mi D 1 for i D 1; : : : ; 12 and
p

2n 	 ni D
1 for i D 1; : : : ; 6. Therefore by Goodman–Hodgson–Heard’s criterion (3), the
horospherical vertices of k.Pi / are coplanar for every k 2 �n. It remains only to
show that condition (4) holds for adjacent pair of cuboctahedra that meet along a
triangular face, an adjacent pair of cuboctahedra that meet along a square face, and
an octahedron adjacent to a cuboctahedron.

If Q is a cuboctahedron adjacent to PM sharing the triangular face .m1; m9; m4/

with Isom.Q/-invariant horospherical vectors which agree with .m1; m9; m4/ then
w D .7; 1; �5

p
2; 10/> is a horospherical vector for Q which is not shared by PM .

We have n 	 w D 5 > 1. If Q is a cuboctahedron adjacent to PM sharing the
square face .m1; m2; m3; m4/ with Isom.Q/-invariant horospherical vectors which
agree with .m1; m2; m3; m4/ then w D .3; 5; �p

2; 6/> is a horospherical vector for
Q which is not shared by PM . We have n 	 w D 3 > 1. The octahedron h.PN /

is adjacent to PM sharing the face .m1; m9; m4/. Its vectors are invariant under the
isometry group of h.PN / and they agree with those of PM along the shared face.
The vector w D .2 C 2

p
2; 0; �2 � 2

p
2; 4 C 4

p
2/> is a horospherical vector for

h.PN / which is not shared by PM . We have n 	 w D 2 C p
2 > 1. �

For i D 2; n C 1, shade each face of Pi gray if it is identified with a face of an
octahedron in the quotient. For the other cuboctahedra Pi , color each triangular face
red if it is identified with a face of Pi�1. (In Figure 3, every white triangular face of
P3 should be colored red.)
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The tiles of Tn inherit a coloring from the coloring of the Pi ’s. We can further
classify the triangular faces in cuboctahedral tiles of T into type I and type II triangles.
A face of a cuboctahedral tile T is type I if it has exactly one ideal vertex that is shared
by a triangular face of T of the opposite color. Triangular faces of cuboctahedra that
are not type I are type II.

Proof of Proposition 6.6. Suppose h 2 Gn � �n. By [16], h is a symmetry for the
tiling Tn. The polyhedron Dn is a fundamental domain for �n, so by composing h
with some element of �n, we may assume that h.P2/ 2 fPignC2

1 . It is clear that h
must preserve the set of gray faces in the tiling, hence h.P2/ is either P2 or PnC1.

The isometry h must also preserve the types of the triangular faces of cuboctahe-
dra. By examining the combinatorics of the face pairings in Sn, we see that every
cuboctahedron in the tiling has exactly two vertices that are shared by a pair of type I
triangles. There is one such vertex for each of the two triangular colors on the tile. Let
v be the vertex of P2 which is shared by the two gray type I triangles of P2 and w the
vertex shared by the two white type I triangles. If h.P2/ D P2 then, by considering
the coloring of P2 we see that h must be the order-2 elliptic fixing v and w. If, on
the other hand, we have h.P2/ D PnC1 then h.v/ must be the vertex shared by the
two gray type I triangles of PnC1 and h.w/ must be the vertex shared by the two red
type I triangles of PnC1. The gray pattern on PnC1 forces h to be orientable. �

7. Augmented links

A rich class of examples that satisfy the hypotheses of Theorem 1.1 is that of the aug-
mented links. These were introduced by Adams [1] and further studied in e.g. [22],
[32], and [33]. In this section we will describe their construction and, in Section 7.1,
classify up to scissors congruence the complements of augmented links with at most
5 twist regions. We will discuss when an augmented link complement is commen-
surable with a right-angled reflection orbifold, and in Section 7.2 describe an infinite
family of augmented link complements that do not have this property.

A link L in S3 with hyperbolic complement determines (not necessarily uniquely)
an augmented link using a projection of L which is prime and twist-reduced. We will
regard a projection of L as a 4-valent graph in the plane, together with crossing
information at each vertex, and use the term twist region to denote either a maximal
collection of bigon regions of the complement arranged end-to-end or an isolated
crossing that is not adjacent to any bigon.

A projection is prime if there is no simple closed curve 
 in the projection plane
intersecting it in exactly two points, with the property that each component of the
complement of 
 contains a crossing. A projection is twist-reduced if for every simple
closed curve 
 in the projection plane which intersects it in four points, such that two
points of intersection are adjacent to one crossing and the other two are adjacent to
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another, there is a single twist region containing all crossings in one component of
the complement of 
 .

An augmented link is obtained from a prime, twist reduced projection by encircling
each twist region with a single unknotted component, which we call a clasp. This
process is illustrated in Figure 4 for the figure-8 knot, pictured on the left-hand side
with its twist regions in boxes. The augmented link that it determines is pictured
in the middle of the figure. Each link with hyperbolic complement admits a prime,
twist reduced diagram, and the augmented link obtained from such a diagram also
has hyperbolic complement (a direct proof of this fact is given in Theorem 6.1 of
[33]). Thus every hyperbolic link complement in S3 is obtained by Dehn surgery on
some cusps of the complement of an augmented link.

Figure 4. Augmenting the figure-8 knot.

Each clasp of an augmented link L bounds a disk that has two points of transverse
intersection with L. Given such a disk D, a family of homeomorphisms of S3 � L

is determined by cutting along the twice-punctured open disk D � L and re-gluing
by a rotation of angle n 	 2� , where n 2 Z. This adds or subtracts 2n crossings to
the twist region of L encircled by the clasp bounding D. It follows that the link on
the right-hand side of Figure 4 has a complement homeomorphic to that of the link
in the middle. The complements of two augmented links that differ by only a single
crossing in a twist region are not necessarily homeomorphic; however, we will see
below that they are scissors congruent. We also have:

Lemma 7.1. Let L be an augmented link. Reflection through the projection plane
determines an automorphism of S3 � L.

This is because while such a reflection changes the sign of each crossing, it does
not change the parity of the number of crossings per twist region.

Given an augmented link projection, the appendix to [22] describes a decomposi-
tion of its complement into two isometric ideal polyhedra. These polyhedra may be
checkered so that each white face lies in the projection plane and each dark face is
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an ideal triangle in a “vertical” twice-punctured disk. This is illustrated in Figure 5
for an augmented link with two twist regions.

Figure 5. An augmented link, the associated polyhedron, and its crushtacean.

On the left-hand side of the figure, the dotted lines divide each twice-punctured
clasp disk into the union of two ideal triangles. We arrange for these disks to meet the
projection plane transversely in the dotted lines, so the darkened ideal triangles lie
above the projection plane and the others below it. Cutting the link complement along
the clasp disks and the projection plane yields two ideal polyhedra, one above and
one below the projection plane, with edges coming from the dotted arcs. These are
isomorphic by reflection through the projection plane. Flattening the two-skeleton
of the polyhedron above it onto the plane yields the polyhedron in the middle of the
figure, an ideal octahedron, where each of the darkened half-disks on the left-hand
side gives rise to two ideal triangles and the link itself has been shrunken to darkened
rectangles at the vertices. (See also [32, Figure 3].)

If L is an augmented link, after removing all crossings in each twist region, we
call the polyhedron produced by cutting along the projection plane and clasp disks
the ideal polyhedron associated to L. This polyhedron may be checkered by coloring
black the triangular faces that lie in clasp disks and white the faces that lie in the
projection plane. Note also that each black triangular face has a unique ideal vertex
corresponding to a clasp. The following lemma summarizes the construction of the
appendix to [22], in our language.

Lemma 7.2. If L is an augmented link with hyperbolic complement, there is a right-
angled checkered ideal polyhedron P in H3 combinatorially isomorphic to the ideal
polyhedron associated to L. For a face f of P , let �f denote reflection in the plane
containing f . Fix a white face f0 of P , and let xP D �f0

.P /, Nf D �f0
.f / for each

face f of P , and Nv D �f0
.v/ for each ideal vertex. Then the quotient of P [ xP by

the following face pairing gives a right-angled ideal decomposition of S3 � L.

(1) If f ¤ f0 is a white face of P , let �f D �f0
B �f , taking f to Nf � xP .
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(2) If f is a black triangular face of P , let f 0 be the black face of P that shares
the ideal vertex v of f corresponding to a clasp.

(a) If the corresponding twist region has an even number of crossings, let �f be
the unique orientation-preserving isometry with �f .f / D f 0, �f .v/ D v,
and �f .P / \ P D f 0.

(b) If the corresponding twist region has an odd number of crossings, let �f be
the unique orientation-preserving isometry with �f .f / D Nf 0, �f .v/ D Nv,
and �f .P / \ xP D Nf 0.

Furthermore, �f0
induces the isometry ofS3�L supplied byLemma 7.1. In particular,

� Nf D �f0
B �f B �f0

for each face f of P .

For another discussion of the content of Lemma 7.2, see [32, §2.3]. In particular,
Figure 4 there clarifies the different gluings producing twist regions with even vs. odd
numbers of crossings. The last sentence of the lemma is not covered in [22]; however
it follows easily from the discussion above.

On the right-hand side of Figure 5 is the compact polyhedron obtained from the
checkered ideal octahedron by the following rule: it has a vertex corresponding to
every dark face and an edge joining each pair of vertices that correspond to dark faces
which share ideal vertices. We will call this the crushtacean of L, since it may be
regarded as obtained by crushing the darkened faces of the associated right-angled
polyhedron to points. We note that each vertex of the crushtacean has valence 3, since
each dark face is an ideal triangle. The right-angled ideal polyhedron associated to
L is recovered by truncation from its crushtacean.

For an alternative perspective on obtaining the crushtacean and a connection with
Andreev’s theorem, we refer the reader to Section 6 of [33], in particular page 487.
The one-skeleton of the crushtacean is the graph � dual to the nerve 
 of the circle
packing defined there. We thank Jessica Purcell for pointing this out.

Figure 6 illustrates two augmented links with the same underlying polyhedron,
each depicted draped over the one-skeleton of its crushtacean, the 6-prism. (More
generally, for k � 3 we will call the k-prism the polyhedron combinatorially iso-
morphic to the cartesian product of a k-gon with an interval.) Since the associated
right-angled ideal polyhedron is obtained by truncating vertices of the crushtacean, its
ideal vertices occur at midpoints of edges. Each triangular face resulting from trun-
cation is paired with one of its neighbors across an ideal vertex producing a clasp;
thus for each vertex of the crushtacean, exactly one edge which abuts it is encircled
by a clasp. Each other edge carries a single strand of the “horizontal” component of
the augmented link.

Since the ideal polyhedron P associated to an augmented link is canonically
obtained from its crushtacean, each symmetry of the crushtacean determines a com-
binatorial symmetry of P . Together with Mostow rigidity, this implies:
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Figure 6. Two augmented links with crushtacean the 6-prism.

Lemma 7.3. Let L be an augmented link, P the associated right-angled ideal poly-
hedron in H3, and C its crushtacean. There is a canonical injection Sym.C/ !
Sym.P /.

Lemma 7.3 implies that the complement of an augmented link with a highly sym-
metric crushtacean may be commensurable with the reflection group in the associated
right-angled polyhedron.

Lemma 7.4. Let L be an augmented link, P the associated right-angled polyhedron,
and C its crushtacean, and suppose C has the property that for each clasp component
K of L, corresponding to an edge e of C with vertices v and v0,

(1) if K encloses a twist region with an even number of crossings, there is a reflective
involution of C preserving e and exchanging v with v0;

(2) if K encloses a twist region with an odd number of crossings, there is a rotational
involution of C preserving e and exchanging v with v0.

Then �1.S3 � L/ < �P Ì Sym.P /, where �P is the group generated by reflections
in P and Sym.P / is the group of symmetries of P .

Proof. Lemma 7.3 implies that for each edge e of C corresponding to a clasp K

of L, there is an involution �e of P that exchanges the triangular faces f and f 0
corresponding to v and v0, and fixes the ideal vertex that they share. This involution
is a reflection or 180-degree rotation in case (1) or (2) above, respectively.

We now use the notation of Lemma 7.2, and record that case (2a) there is the same
as case (1) above. In this case, �e B �f realizes the orientation-preserving isometry
�f there. In case (2) above, corresponding to case (2b) of Lemma 7.2, the required
isometry �f is realized by � B �e B �f . �
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Lemma 7.4 implies for instance that the link on the left-hand side of Figure 6 is
commensurable with the reflection group in the corresponding right-angled polyhe-
dron, but it does not apply to the link on the right-hand side on account of the twist
region with a single crossing. On the other hand, the commensurability classes of
some links are entirely determined by their crushtaceans.

Corollary 7.5. Suppose L is an augmented link such that the crushtacean of L is a
regular polyhedron. Then �.S3 � L/ is commensurable with the reflection group in
the sides of the corresponding right-angled polyhedron.

In some cases the crushtacean of an augmented link may not have much symmetry,
but it may be built from highly symmetric polyhedra. In such cases the link may
have hidden symmetries. We will say a crushtacean is decomposable if it contains a
prismatic 3-cycle – that is, a sequence of three faces so that any two intersect along
an edge but all three do not share a common vertex – and indecomposable otherwise.

If C is a decomposable crushtacean, we decompose along a prismatic 3-cycle by
selecting a simple closed curve 
 which lies in the union of the faces of the cycle and
intersects each of the edges of the cycle once, and using the following procedure: cut
along 
 , separate the components that result, and complete each by replacing 
 with
a single vertex containing the endpoints of all the three edges intersecting it. This is
illustrated for the triangular prism in Figure 7, with the dotted curve on the left-hand
side representing 
 . Decomposing results in a disjoint union of two tetrahedra.

F

Figure 7. Decomposing the 3-prism into two tetrahedra.

Suppose L is a link with a decomposable crushtacean C , and let f0, f1, and f2

determine a prismatic 3-cycle of C . Then the corresponding faces in the associated
right-angled ideal polyhedron P , obtained by truncating vertices of C , do not pairwise
intersect but each two share an ideal vertex. It is an elementary fact of hyperbolic
geometry that there is a single hyperplane H which perpendicularly intersects the
hyperplanes containing each of f0, f1 and f2. Cutting P along H decomposes it into
two new right-angled ideal polyhedra, each with an ideal triangular face contained
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in H . Their crushtaceans are obtained by decomposing C along the prismatic cycle
determined by f0, f1, and f2.

Lemma 7.6. Suppose L is an augmented link such that the crushtacean of L de-
composes into a disjoint union of copies of C , where C is a regular polyhedron.
Then �1.S3 � L/ is contained in �P Ì Sym.P /, where P is the right-angled ideal
polyhedron obtained from C by truncating vertices.

Proof. There is a tiling T of H3 consisting of �P -translates of P . If C0 is the
crushtacean of L, then the hypothesis and the description above the lemma establish
that the associated right-angled polyhedron P0 is a union of tiles of T . Checkering
P0 so that dark faces are triangles obtained by truncating vertices of C0, we claim
that for each pair of dark faces f and f 0 which share an ideal vertex v, there exist
in �P Ì Sym.P / both a reflective and a rotational involution of H3 exchanging f

and f 0 and fixing v. We will prove the claim by induction on the number of tiles
comprising P0. The case of one tile, C0 D C , follows as in the proof of Lemma 7.4
from the fact that C is regular.

Suppose that P0 is the union of more than one tile, and let 
.P / be a �P -translate
of P such that P0 is the union of 
.P / and a polyhedron P1 � T across a face f

which is an ideal triangle. The checkering of P0 determines checkerings of each of
P1 and 
.P / by declaring f to be dark. The claim holds for P1 by induction and
for 
.P / by the base case. Thus it only remains to verify the claim for dark faces of
P0 sharing an ideal vertex, one of which lies in P1 and one in 
.P /.

Suppose f0 and f1 are dark faces, of 
.P / and P1 respectively, which share an
ideal vertex v in P0. Then each of f0 and f1 shares v with f . Let �0 (respectively,
�1) be a reflective involution in �P Ì Sym.P / fixing v and exchanging f0 (resp. f1)
with f , and let �0 and �1 be rotational involutions satisfying the same description.
Then �1 B �0 and �1 B �0 are isometries of infinite order taking f0 to f1. This can be
discerned by considering their actions on a horosphere centered at v, intersected by

.P / and P1 in adjacent rectangles. The first acts on this cross section as a translation
and the second as a glide reflection. If �f1

is reflection in the hyperplane containing
f1, it follows that �f1

B �1 B �0 and �f1
B �1 B �0 satisfy the conclusion of the claim.

The conclusion of the lemma now follows from Lemma 7.2. �

7.1. Examples with low complexity. The most natural measure of complexity of
an augmented link is the number of twist regions, which is equal to half the number of
dark faces of the associated right-angled polyhedron, or half the number of vertices of
its crushtacean. Here we will classify the augmented link complements with up to five
twist regions up to scissors congruence. We will say that finite-volume hyperbolic
3-manifolds are scissors congruent if they can be cut into identical collections of ideal
polyhedra. It is natural for us to use this invariant because many different augmented
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links may be produced by different choices of face pairing on the same underlying
right-angled polyhedron.

Lemma 7.7. The indecomposable crushtaceans with at most ten vertices are the
tetrahedron, the cube (or 4-prism), and the 5-prism.

Proof. The only indecomposable crushtacean with a triangular face is the tetrahedron,
since the family of faces adjacent to a triangular face determines a prismatic 3-cycle
unless they share a common vertex. On the other hand, if a crushtacean C with
at most ten vertices has a face which is a k-gon for k � 6, then two edges which
emanate from distinct vertices of this face must share a common endpoint. That C is
decomposable follows from the claim below.

Claim. Suppose f is a face of a crushtacean C , and e0 and e1 are distinct edges of
C , each with one endpoint on f , which share a vertex v. Then e0 and e1 bound a
triangle face of C together with an edge of f .

Proof of claim. The set f [ e0 [ e1 cuts @C into two disks. Let D be the closure
of the disk that does not intersect the edge e2 ¤ e0; e1 with an endpoint at v. There
is a face f 0 � D of C which has v as a vertex and e0 and e1 as edges. Then f 0
intersects f along an edge e0

0 with an endpoint at e0 \ f and also along an edge e0
1

with an endpoint at e1 \ f . But since f and f 0 cannot meet along more than one
edge, we must have e0

0 D e0
1. Thus since e0 [ e1 [ e0

0 forms a simple closed curve in
the boundary of f 0, f 0 D D is a triangle. �

Thus if C is indecomposable and not a tetrahedron, with at most ten vertices, then
every face of C is a quadrilateral or pentagon. Let j be the number of quadrilateral
faces and k the number of pentagon faces, and let v and e be the number of vertices and
edges, respectively. Since each vertex is 3-valent, we have 3v D 2e, and since each
edge bounds two faces we have 2e D 4j C 5k. Computing the Euler characteristic
thus yields:

v � e C .j C k/ D 4j C 5k

3
� 4j C 5k

2
C .j C k/ D j

3
C k

6
D 2:

Using the equation above we find that j C k=2 D 6. Since we require that C have
at most ten vertices, the vertex and edge equations yield 4j C 5k � 30. Thus using
the fact that j and k are non-negative integers, we find that either j D 6 and k D 0

(and hence v D 8) or j D 5 and k D 2 (and v D 10). The cube and the 5-prism
respectively realize these possibilities. It remains to show that these are the unique
crushtaceans with the prescribed numbers of quadrilateral and pentagon faces.

In general, if a crushtacean C has a k-gon face which is adjacent to only quadri-
laterals, then C is the k-prism. This immediately implies that the only crushtacean
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with six quadrilateral faces and no pentagons is a cube. Similarly, if C is an inde-
composable crushtacean with two pentagonal faces and five quadrilaterals, then C is
a 5-prism unless the pentagonal faces are adjacent. In the latter case, we note that the
union of the pentagonal faces has eight vertices, and by the claim above and indecom-
posability, the three “free” edges emanating from one of them have distinct vertices.
Hence C has at least eleven vertices, a contradiction. Therefore the 5-prism is the only
indecomposable crushtacean with five quadrilateral faces and two pentagons. �

Lemma7.8. If C is a decomposable crushtaceanwith atmost ten vertices, amaximal
sequence of decompositions yields a disjoint union of up to four tetrahedra or of a
single tetrahedron and a single cube.

Proof. Suppose C is a decomposable crushtacean, and let C0 and C1 be obtained by
decomposing C along a prismatic 3-cycle. If v, v0, and v1 are the numbers of vertices
of C , C0, and C1, respectively, then from the description of decomposition one finds
that

v C 2 D v0 C v1:

It is easy to see that each crushtacean has at least four vertices, and that the tetrahedron
is the unique such with exactly four. Thus by the equation above, any crushtacean
with six vertices decomposes into two tetrahedra. (By the classification of indecom-
posable crushtaceans, every crushtacean with six vertices is decomposable.) If C is
a decomposable crushtacean with eight vertices, we thus find that a sequence of two
decompositions yields a disjoint union of three tetrahedra.

Finally, suppose that C is a decomposable crushtacean with ten vertices, and
decompose it along a prismatic 3-cycle into crushtaceans C0 and C1 with v0 � v1

vertices, respectively. Then either v0 D v1 D 6 or v0 D 4 and v1 D 8. In the
former case, the above implies that neither C0 nor C1 is indecomposable; hence each
decomposes into a disjoint union of two tetrahedra. In the case v0 D 4 and v1 D 8,
C0 is a tetrahedron. If C1 is indecomposable, it is a cube; otherwise, a sequence of
two decompositions cuts it into a disjoint union of three tetrahedra. �

The scissors congruence classification of augmented links with up to five twist
regions is now readily obtained. Below let L be an augmented link.

� If the crushtacean of L decomposes into a disjoint union of tetrahedra, then
S3�L is a union of right-angled ideal octahedra. It thus follows from Lemma 7.6
and the results of [20] that �1.S3 � L/ < PGL2.O1/. This holds in particular
for all augmented links with at most three twist regions, or for any with four
twist regions and a decomposable crushtacean.

� If L has four twist regions and an indecomposable crushtacean, then S3 � L

is a union of two right-angled ideal cuboctahedra, and by Corollary 7.5 and the
results of [20], �1.S3 � L/ < PGL2.O2/.
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In particular, the commensurability class of an augmented link with at most four
twist regions is determined by its crushtacean, and each such link falls into one of
two commensurability classes. The augmented links with five twist regions display
more variability.

� If L has five twist regions and an indecomposable crushtacean C , then C is the
5-prism. In most cases, we have �1.S3 � L/ < �P Ì Sym.P /, where P is the
associated right-angled polyhedron, the double of the 5-antiprism across one of
its pentagon faces. This holds by Lemma 7.4, unless L has a twist region with
an odd number of crossings that corresponds to an edge of a pentagon face of C .

� If L has five twist regions and a decomposable crushtacean that does not de-
compose into tetrahedra, then S3 � L is a union of two right-angled octahedra
and two cuboctahedra. Two such links are pictured in Figure 8. Using the
techniques of [11, §4.3], one can show that the horizontal component that runs
across all vertices of the crushtacean on the right-hand side has cusp parameter
that is PGL2.Q/-inequivalent to the parameters of all cusps of the left-hand link.
Hence their complements are incommensurable.

Figure 8. Augmented links with 5 twist regions and a decomposable crushtacean.

From the classification above, we find that an augmented link with at most five
twist regions is almost determined up to commensurability by its crushtacean. This is
primarily because the indecomposable crushtaceans with at most ten vertices have so
much symmetry. Already among those with twelve vertices, we find an example with
less symmetry. This is pictured on the left-hand side of Figure 9. On the right-hand
side is an augmented link that has this polyhedron as a crushtacean.

Lemma 7.9. The indecomposable crushtaceans with twelve vertices are the 6-prism
and the polyhedron on the left-hand side of Figure 9.
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Figure 9. An indecomposable crushtacean with 12 vertices, and an augmented link built on it.

Proof. Reasoning as in the proof of Lemma 7.7, we find that a crushtacean with
twelve vertices and a face which is a k-gon for k > 6 is decomposable, and that
such a crushtacean with a hexagonal face is the 6-prism. Thus as in the proof of that
lemma, we are left to consider crushtaceans with all quadrilateral and pentagon faces.
If j is the number of quadrilateral and k the number of pentagonal faces, an Euler
characteristic calculation again yields j C k=2 D 6. Counting vertices in this case
yields 4j C 5k D 36, and solving these two equations yields j D 4 and k D 4.

Let C be an indecomposable crushtacean with twelve vertices and 4 each of
quadrilateral and pentagon faces. Then every pentagon face of C is adjacent to at
least one other pentagon face.

Claim. No vertex of C is shared by three pentagon faces.

Proof of claim. Suppose v is a vertex with this property, and let v0, v1, and v2 be the
vertices adjacent to v in the one-skeleton of C . Then for i 2 f0; 1; 2g, let fi be the
face of C which contains vi but not v. We may assume without loss of generality
that f0 and f1 are quadrilaterals (at least two must be).

Consider the subcomplex of @C which is the union of f0, f1, and the pentagon
faces containing v. If any edges on the boundary of this subcomplex were identified in
@C , then it would have a prismatic k-cycle for k � 3; hence this subcomplex is a disk
embedded in @C . It contains all twelve vertices, and sixteen out of the eighteen edges
of C . But it is easy to see that any way of joining the four “free” vertices by two edges
in the complement yields a triangular face, contradicting indecomposability. �

One may also rule out the possibility of a quadrilateral face which meets only
pentagonal faces – the union of these faces would be an embedded disk containing all
twelve vertices but only fourteen edges – and to establish that each pentagonal face
meets at least two other pentagonal faces. Thus the pentagonal faces form a prismatic
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4-cycle of C , neither of whose complementary regions can be occupied by a single
quadrilateral. It follows that C is as pictured in Figure 9. �

7.2. Löbell links. For n � 3, we will denote by L.n/ the nth Löbell polyhedron.
This is the unique polyhedron with vertices of valence 3 and faces consisting of n-
gons F and F 0, and 2n pentagons, such that F has distance 3 from F 0 in the dual
graph. The Löbell polyhedron L.4/ is pictured on the left-hand side of Figure 10,
under a link that has it as a crushtacean. We denote this link L.4/. There is an
evident rotational symmetry of .S3; L.4//, with order 4 and quotient the link on the
right-hand side of Figure 10. An additional component, the fixed axis of this rotation,

44

Figure 10. The Löbell link L.4/ and its 4-fold cyclic quotient.

has been added to the diagram and labeled with 4. For arbitrary n � 3, we define
L.n/ to be the link with crushtacean L.n/ that n-fold branched covers the diagram
on the right-hand side. The main result of this section is:

Theorem 7.10. For all but finitely many n � 4, M.n/
:D S3 �L.n/ is not arithmetic

nor commensurablewith any 3-dimensional hyperbolic reflection orbifold. Moreover,
at most finitely many M.n/ occupy any commensurability class.

Remark. Since L.5/ is the dodecahedron, L.5/ falls under the purview of Corol-
lary 7.5 and so is commensurable with a right-angled reflection orbifold. Therefore
the stipulation “all but finitely many” above is necessary. We do not know of any M.n/

that is arithmetic, however. We note also that L.3/ decomposes into two tetrahedra
and a cube, whereas L.n/ is indecomposable for n > 3.
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Proving the theorem requires identifying the commensurator quotient of M.n/.
We begin by identifying the symmetry group of L.n/.

Fact. For n ¤ 5, the symmetry group of L.n/ has presentation

†.n/ D h a; bn; s j .bn/n D s2 D a2 D 1; sbns D .bn/�1;

abna D .bn/�1; asa D bns i:
The subgroup ha; bni preserves orientation, and s reverses it. The subgroup hbn; si
preserves each n-gon face, and a exchanges them.

Proof. Since n ¤ 5, L.n/ has exactly two n-gon faces F and F 0. Let e0; e1; : : : ; en�1

be a cyclic ordering of the edges of F ; ie, for each i , ei shares a vertex with eiC1, where
i C 1 is taken modulo n. The union of F with the pentagonal faces of L.n/ that abut
it is a disk D embedded in @L.n/, with boundary consisting of 2n edges that can be
cyclically ordered f1; f2; : : : ; f2n as follows: for 0 � i < n, let Fi be the pentagonal
face of L.n/ containing ei and let f2iC1 � Fi \ @D and f2.iC1/ � FiC1 \ @D be
the unique pair of edges that share a vertex (with i C 1 taken modulo n).

We now let bn be the rotational symmetry of F taking ei to eiC1 for each i ,
and take s to be the reflection of F preserving e0 and exchanging ei with en�i for
0 < i < n. It is easy to see that these extend to a rotation and reflection of L.n/,
respectively, yielding the subgroup hbn; si described above (we refer to the extensions
by the same name).

There is a symmetry a of the embedded circle f1 [ f2 [ 	 	 	 [ f2n that preserves
f1 and fnC1, exchanging endpoints of each, and exchanges fi with f2nC2�i for
1 < i � n. This extends to a rotational symmetry of L.n/ taking F to F 0. In
particular, for 0 � i < n, we can take F 0

i to be the pentagonal face adjacent to F 0
that contains f2iC1 and f2.iC1/. Then a takes Fi to F 0

n�i .
The relations on bn, s, and a follow by considering their actions on F . Since

every automorphism of L either exchanges F and F 0 or preserves each, there is a
map to Z=2Z D f˙1g taking such an element to �1 or 1, respectively. The subgroup
hbn; si is contained in the kernel of this map; since it is the entire symmetry group of
F , it is the entire kernel. Hence the entire symmetry group of L.n/ is generated by
hbn; si and a, which maps to �1. �

A fundamental domain for the action on L.n/ of the cyclic group hbni is depicted
on the left-hand side of Figure 11, cut out by the dotted line segments. These should
be interpreted as meeting at the point at infinity, in addition to the center of F . The
segment that runs through the edge joining endpoints of e0 and f2n is fixed by the
reflection sbn, and the other is fixed by bns.

Recall that by Lemma 7.3, each symmetry of L.n/ determines a symmetry of
the right-angled ideal polyhedron P .n/ obtained by truncating vertices of L.n/. In
particular, sbn and bns determine reflective symmetries of P .n/. Cutting along the
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f2n

e0 e1

f1

2�=n

r5r6

r3

F

r2

Figure 11. A fundamental domain for the action of hbni on L.n/, and the corresponding sub-
polyhedron O.n/ of P .n/.

mirrors of these reflections yields the polyhedron O.n/ pictured on the right-hand
side of the figure. The three edges with “free” ends should again be interpreted as
meeting at the point at infinity. The darkened vertices of O.n/ are ideal; the remaining
vertices, each the midpoint of an edge of P .n/, are not.

The intersection of the mirror of s with @O.n/ is the dotted axis on the right-
hand side of Figure 11. Clearly, s restricts to an isometry of O.n/. Although a
does not preserve O.n/, it does preserve the sub-polyhedron, obtained by cutting
along the mirror of s, that contains the ideal vertex labeled r5. Indeed, it acts on this
polyhedron as a 180-degree rotation fixing r5 and the midpoint of the edge labeled
2�=n, exchanging each of r3 and r2 with an unlabeled ideal vertex.

Since P .n/ is right-angled, each edge of O.n/ that is contained in one of P .n/

has dihedral angle �=2. Since the mirrors of sbn and bns meet each edge of P .n/

transversely, each edge of O.n/ that is the intersection of @P .n/ with a mirror of one
of these reflections has dihedral angle �=2 as well. Thus the only edge of O.n/ with
a dihedral angle different than �=2 is the intersection of the mirrors of sbn and bns,
labeled 2�=n at the top of the figure. That this is the dihedral angle follows from
the fact that the product of these reflections is the rotation .bn/2, through an angle of
2 	 2�=n.

Each symmetry of L.n/, n ¤ 5, exchanges edges enclosed by clasps of L.n/;
hence the corresponding isometry of P .n/ induces one of M.n/ D S3 �L.n/. Since
O.n/ is a fundamental domain for the action of the rotation group hbni on L.n/,
Lemma 7.2 implies O.n/ [ xO.n/ is a fundamental domain for the action on H3 of
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the orbifold fundamental group of O.n/ D M.n/=hbni. Here xO.n/
:D d1.O.n//,

where d1 is the reflection through the white face of O.n/ whose sole ideal vertex is
r2. Using the further symmetries a and s of P .n/, we thus obtain the lemma below.

Lemma 7.11. Let d2 be the reflection through the white face of O.n/ with ideal
vertices r2, r3, s.r3/, r5, r6, and let c be the parabolic isometry fixing r3 and taking
r2 to r5. Then O.n/ is isometric to H3=�.n/, where

�.n/ D h d1d2; d1da
2; d1dsa

2 ; d1da
1; bn; c; ca; cs; bd1

n ; cd1 ; cd1a; cd1s i:
Furthermore, the isometry of O.n/ visible on the right-hand side of Figure 10 as
reflection through the projection plane is induced by d1.

Let L be the link in S3 that is the union of the fixed locus of O.n/ with the other
components pictured on the right-hand side of Figure 10. Then O.n/ is obtained
from S3 �L by .n; 0/-Dehn filling on the added component, where the meridian here
is chosen to lie in the projection plane and the longitude bounds a 3-punctured disk.
Because the singular locus of O.n/ is the image of the edge e of O.n/ with dihedral
angle 2�=n, S3 � L is obtained from O.n/ � e by the restriction of the face pairings
described in Lemma 7.11. Thus Poincaré’s polyhedron theorem implies:

Lemma 7.12. LetO be the all-right polyhedron inH3 homeomorphic toO.n/�e, and
let a, b, c, d1 and d2 have the same combinatorial descriptions as the correspondingly-
named isometries determined by O.n/. Let

�L D hd1d2; d1da
2; d1dsa

2 ; d1da
1; b; c; ca; cs; bd1 ; cd1 ; cd1a; cd1si:

Then S3 � L is homeomorphic to H3=�L.

The only aspect of this lemma that requires comment is that Andreev’s theorem
implies that there is a right-angled polyhedron O with the requisite combinatorial
description. An ideal vertex of O replaces the edge of O.n/ with dihedral angle
2�=n. Thus b is parabolic, rather than elliptic like bn.

Denote by r7 the ideal vertex of O fixed by b; that is, r7 replaces the edge of O.n/

with dihedral angle 2�=n. The polyhedron obtained by cutting along the mirror of
s, that has r5 as an ideal vertex, has 180-degree rotational symmetry a fixing r5 and
r7. Therefore a single geodesic plane contains the ideal vertices r2, r5, r7, and a.r2/.
Let Q0 be the polyhedron with r3 as an ideal vertex that is obtained by cutting along
this plane.

An ideal polyhedron Q may be obtained from Q0 as follows. The geodesic plane
Œr5; r3; a.r2/� containing r5, r3, and a.r2/ cuts off a tetrahedron T , with a finite vertex
opposite this plane, from the remainder of Q0. Let Q D .Q0 � T / [ c�1.T /. Since
all edges abutting each finite vertex of Q0 have dihedral angle �=2, the finite vertices
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of Q0, which are identified in Q, lie in the interior of an edge of Q. We have depicted
Q0 and Q on the left- and right-hand sides of Figure 12, respectively, coloring black
the face of Q in Œr5; r3; a.r2/� and its image under c�1.

QQ0

T
c�1.T /r5

r2

a.r2/

r7r7

r3

Figure 12. Q0 and Q.

The lemma below follows from Poincaré’s polyhedron theorem and the descrip-
tions from Lemma 7.12 of face pairing isometries on O [ d1.O/ yielding S3 � L.

Lemma 7.13. Let � D ha; c; d1; d2; d3
:D asai be generated by face pairings for Q.

Then H3=� is a three-cusped hyperbolic 3-orbifold, and �L C � with index 8.

The isometry d3 defined in Lemma 7.13 acts as reflection in the face of Q contain-
ing r7, a.r2/, r3, and c�1a.r2/, since a takes this face into the mirror of s. That the
other generators act as face pairings follows from previous observations. The index
computation uses the fact that O is the union of 4 isometric copies of Q; namely,
O D Q [ a.Q/ [ s.Q [ a.Q//. In verifying that each generator for �L lies in � , it
is helpful to note that b D d1s 2 � .

The key result in the proof of Theorem 7.10 is the proposition below.

Proposition 7.14. � is its own commensurator.

We defer the proof of Proposition 7.14 for now, and first apply it.

Proof of Theorem 7.10. Since the orbifold fundamental group �.n/ of O.n/ contains
the elliptic element bn, with order n, its invariant trace field k�.n/ contains the trace
of .bn/2 and thus Q.cos.2�i 2

n
// (cf. [25, §3.3] for the definition and properties of

the invariant trace field). This is a degree-two subfield of the cyclotomic field Q.�k/,
where k D n if n is odd and k D n=2 otherwise. Thus lim infn!1Œk�.n/ W Q� is
infinite. It follows that at most finitely many O.n/ belong to any one commensura-
bility class. Furthermore, at most finitely many are arithmetic, since non-compact
arithmetic hyperbolic 3-manifolds have quadratic invariant trace fields.

Throwing away the arithmetic �.n/, Margulis’ theorem implies that Comm.�.n//

is a finite extension of �.n/ for the remaining n. We remarked above Lemma 7.11 that
each symmetry of L.n/ determines an isometry of M.n/ D S3 �L.n/. In particular,
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there are isometries determined by a and s, and since hbni C ha; bn; si, these generate
a group of isometries of O.n/ D M.n/=hbni with order 4. By Lemma 7.11, d1

determines an additional isometry of O.n/, that can easily be seen to commute with
ha; si. Thus Comm.�.n// contains the degree-8 extension h�.n/; a; s; d1i of �.n/.

As the right-hand side of Figure 10 makes clear, O.n/ is obtained from S3 � L

by .n; 0/-Dehn filling on a fixed component. Therefore the hyperbolic Dehn surgery
theorem implies that the O.n/ converge geometrically to the hyperbolic structure
on S3 � L, and in particular, their volumes approach its from below. (See e.g.
[5, §E.5] for background on the hyperbolic Dehn surgery theorem.) Furthermore, the
explicit descriptions above imply that the �.n/ converge algebraically to �L, and the
h�.n/; a; s; d1i to � .

If on an infinite subsequence, h�.n/; a; s; d1i were contained in Comm.�.n//

properly, then a further subsequence of the Comm.�.n// would converge to a discrete
group �0 with covolume a proper fraction of that of � . This follows from the fact that
the Chabauty topology on discrete subgroups of PSL2.C/ with bounded covolume
is compact, see e.g. [5, Corollary E.1.7]. In this case, since h�.n/; a; s; d1i ! �

and limits are unique in this topology (see e.g. [5, Lemma E.1.1]), we would have
� < �0 properly, contradicting Proposition 7.14. Thus for all but finitely many n,
Comm.�.n// D h�.n/; a; s; d1i.

Fixing a horosphere H centered at the ideal vertex r3 of O.n/, a fundamental
domain for the action on H of its stabilizer in Comm.�.n// is thus the rectangle
O.n/ \ H . Two parallel sides of this rectangle are given by the intersection of H

with the white sides of O.n/ containing r3. One of these, contained in the side with
ideal vertices r2, r3, s.r3/, r5, and r6, is stabilized by the reflection d2 2 �.n/ defined
in Lemma 7.11. The other is stabilized by the reflection d3

:D asa 2 Comm.�.n//,
defined in analogy with the identically-named element of � from Lemma 7.13. For
the other pair of parallel sides of this rectangle, the parabolic c fixing r3 acts by
translation taking one to the other.

The stabilizer of H in Comm.�.n// is thus hc; d2; d3i. If � 0 were a reflection
group commensurable with �.n/, then Stab�0.r3/ would be a reflection group con-
tained in hc; d2; d3i, acting on H with finite coarea. But since c translates parallel
to the lines fixed by d2 and d3, every reflection in hc; d2; d3i fixes a line parallel to
the lines fixed by d2 and d3. Hence no reflection subgroup of hc; d2; d3i acts on H

with finite coarea. Therefore Comm.�.n// is not commensurable with a reflection
group. �

Proving Proposition 7.14 requires an explicit description of � . This will follow
from the lemma below, which describes an embedding of Q in the upper half-space
model for H3.

Lemma 7.15. There is an isometric embedding of Q in H3 determined by the fol-
lowing ideal vertices: r2 D �1 C i , r3 D 0, r5 D .

p
3 C i/=2, r7 D 1.
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Proof. Our description of Q includes the following facts: its edge joining the ideal
vertex r7 to c�1a.r2/ has a dihedral angle of �=2, and there are two quadrilateral
faces with ideal vertices r7, a.r2/, r5, r2 and r7, a.r2/, r3, c�1a.r2/, respectively. We
will choose an embedding of Q that sends the latter face into the geodesic plane of
H3 with ideal boundary R [ f1g, taking r3 to 0 and r7 to 1 in particular.

We have pictured such an embedding in Figure 13. The ideal vertices c�1a.r2/

and a.r2/ go to points x and z, respectively, in R on either side of r3 D 0. We take
x < 0 and z > 0. Since the edge joining r7 to c�1a.r2/ has dihedral angle �=2,
the image of r2 is of the form x C iy for some y 2 R. We may assume y > 0, by
reflecting through R if necessary. The final ideal vertex r5 lies somewhere on the line
segment joining r2 with a.r2/, since it is in the ideal boundary of a plane containing
r2, r7, and a.r2/. Its coordinates are determined by the fact that a preserves this
plane, fixing r5 and r7.

r5 D xCz
2

C i y
2

c�1a.r2/ D x a.r2/ D zr3 D 0

r2 D x C iy

Figure 13. An embedding of Q in H3.

We have darkened the triangles in C that lie under the dark faces of Q after the
embedding described above. The parabolic isometry c takes one to the other, fixing r3,
thus it is of the form

�
1 0
w 1

�
for some w 2 C. Using the fact that c takes c�1a.r2/ D x

to a.r2/ D z, a computation implies w D .x � z/=xz. Another computation, using
the fact that c.r2/ D r5, determines z D �x.

p
3 C 1/.

We are free to choose x < 0, since one choice may be changed to another by
applying a hyperbolic isometry fixing 0 and 1 to Q. Choosing x D �1 yields

c�1a.r2/ D x D �1; r2 D x C iy D �1 C i;

a.r2/ D z D p
3 C 1; r5 D

p
3 C i

2
:

This is the embedding described in the statement. �

A few additional parabolic fixed points that will be useful below we name as
follows: let r1 D d3.r2/, r4 D d3.r5/, and r6 D da

3.r5/. Note that r2, r4, r5, and r6

are each �-equivalent to r1.
In proving Proposition 7.14, it will be convenient to use a different embedding of

Q than that described in Lemma 7.15 above. Let us apply a Möbius transformation
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taking r1, r2, and r3 to 0, 1, and 1, respectively. Such a map is given by z 7!
1Ci

2
C i=z. This takes the other ideal vertices to

r4 D i
1 C p

3

2
; r5 D 1 C i

1 C p
3

2
; r6 D 1 C i

3 C p
3

6
; r7 D 1 C i

2
:

The representation of � determined by the embedding described above is related to
that determined by the embedding of Lemma 7.15 by conjugation by

�
�i

p
2

2

p
2

2 .1�i/

�
p

2
2 .1Ci/ 0

�
:

Since Q is a fundamental domain for � , each cusp of H3=� corresponds to a
point on @H3 that is �-equivalent to an ideal vertex of Q. Inspection of the face
pairings of Lemma 7.13 thus reveals that H3=� has exactly three cusps. We let c1

correspond to the points of � 	 r1, c2 to � 	 r7, and c3 to � 	 r3.
Our explicit description of Q allows computation of the invariant trace field and

cusp parameters. This implies:

Lemma 7.16. � is non-arithmetic. The cusps c1 and c2 are commensurable to each
other and are not commensurable to c3.

Proof. An explicit description of generators for � , as may be obtained from Lem-
ma 7.15, enables direct computation of the invariant trace field (see [25, §3.5]).
Performing this calculation, we find that � has trace field Q.i;

p
3/. Alternatively,

the link L may be entered into the computer program Snappea, and the resulting
triangulation data into Snap, yielding the same description (see [12]). Since every
non-compact arithmetic hyperbolic 3-manifold has an imaginary quadratic invariant
trace field, � is not arithmetic.

Using the embedding described in Lemma 7.15, we find that an index-8 subgroup
of Stab�.1/ is generated by z 7! z C2.2Cp

3/ and z 7! z C2i ; thus the parameter
of the associated cusp c2 is PGL2.Q/-equivalent to i.2 C p

3/ (cf. [11, §4.3]). After
re-embedding as above, the stabilizer of 1 corresponds to the cusp c3. An index-

2 subgroup of this lattice is generated by c W z 7! z C i 1Cp
3

2
and the product of

reflections d2d3 W z 7! z C 1. Thus the parameter of c3 is PGL2.Q/-equivalent to
i.1Cp

3/. A similar computation reveals that c1 has the same parameter as c2. Since
the complex modulus is a complete commensurability invariant for lattices in C2, and
i.1 C p

3/ is not PGL2.Q/-equivalent to i.2 C p
3/, the lemma follows. �

From Margulis’ theorem, we immediately obtain:

Corollary 7.17. Comm.�/ is a finite extension of � , and the minimal orbifold O
:D

H3=Comm.�/ has either two or three cusps.
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In particular, if O has two cusps then c1 and c2 are identified by the covering
map H3=� ! O . We have used the algorithm of Goodman–Heard–Hodgson [16]
to compute Comm.�/. Recall that we introduced the setting for this algorithm in
Section 6.2 between the statements of Propositions 6.6 and 6.7.

Let

v1 D .�2; 2; �1; 3/> ; v3 D .0; 0; �3; 3/> ;

v7 D
�
0; 0; 9 � 4

p
3; 9 � 4

p
3
�>

:

These vectors are chosen so that there is an isometry ˆ from the upper half space
model to the hyperboloid model which takes the parabolic fixed point ri to the center
of the horosphere Hvi

when i D 1; 3; 7. Under ˆ, the isometries a, b, c, d1, d2, d3

correspond to the matrices A; B; C; D1; D2; D3 2 O0.3; 1/ listed below:

A D

0
BB@

�1 0 �1=2 1=2

0 �1
p

3=2 �p
3=2

�1=2
p

3=2 1=2 1=2

�1=2
p

3=2 �1=2 3=2

1
CCA ; D1 D

0
BB@

1 0 0 0

0 �1 �1 1

0 �1 1
2

1
2

0 �1 �1
2

3
2

1
CCA ;

B D

0
BB@

1 0 �1 1

0 1 0 0

1 0 1=2 1=2

1 0 �1=2 3=2

1
CCA ; D2 D

0
BB@

�1 0 2 2

0 1 0 0

2 0 �1 �2

�2 0 2 3

1
CCA ;

C D

0
BB@

1 0 0 0

0 1 �1 � p
3 �1 � p

3

0 1 C p
3 �1 � p

3 �2 � p
3

0 �1 � p
3 2 C p

3 3 C p
3

1
CCA ; D3 D

0
BB@

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCA :

Thus, ˆ allows us to also think of � as a subgroup of O0.3; 1/. Each vi is a
horospherical vector for the cusp ci of H3=� so fv1; v3; v7g determines a �-in-
variant set V as above. We have fvig7

1 given by vi D ˆ.ri / and these vectors may
be calculated explicitly by applying appropriate isometries from � . We have that vi

is the i th column of the matrix0
BB@

�2 2 0 �2 2 6 0

2 2 0 �2
p

3 �2
p

3 �2
p

3 0

�1 �1 �3 �3 �3 �1 9 � 4
p

3

3 3 3 5 5 7 9 � 4
p

3

1
CCA :

As discussed above, we obtain all possibilities for canonical tilings associated to �

by using initial sets of the form fv1; ˇv7; 
v3g where ˇ; 
 2 RC. We write H .ˇ; 
/
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to denote the set � 	 fv1; ˇv7; 
v3g and T .ˇ; 
/ to denote the associated canonical
tiling.

Recall that O D H3=Comm.�/ has either 2 or 3 cusps. If O has 3 cusps then, for
any pair .ˇ; 
/, H .ˇ; 
/ descends to cusp cross sections of O and so Comm.�/ D
Sym.T .ˇ; 
//. If O has 2 cusps then there is some g 2 Comm.�/ and ˇ0 with
g.v1/ D ˇ0v7. We have Comm.�/ D Sym.T .ˇ0; 
// for any 
 2 RC. Therefore,
it suffices to compute the triangulations T .ˇ; 1/ for ˇ 2 RC. Either there exists a
unique ˇ0 so that Sym.T .ˇ0; 1// contains an isometry taking v1 to ˇ0v7 or there is
no such ˇ. In the first case, O has 2 cusps and Comm.�/ D Sym.T .ˇ0; 1//. In the
second case, O has 3 cusps and Comm.�/ D Sym.T .ˇ; 1// for every ˇ.

Lemma 7.18. O has 3 cusps and Comm.�/ D Sym.T .ˇ; 1// for every ˇ.

Proof. The proof follows by showing that there does not exist a unique ˇ so that
Sym.T .ˇ0; 1// contains an isometry taking v1 to ˇ0v7. We first describe the canon-
ical triangulations as ˇ decreases from 1 to 0. The interval .0; 1/ has a finite cell
decomposition so that if two values for ˇ are chosen from the same cell then they
determine the same canonical triangulation. As ˇ moves to the boundary of a 1-cell
there is a pair of neighboring tiles T1 and T2 so that the tilt at their common face
changes from positive to zero. At the boundary value, these two tiles merge to form
a tile in the new canonical triangulation. The decomposition of .0; 1/ and the asso-
ciated tilings of H3 are described in Tables 1–3. The triangulations T .ˇ; 1/ can be
checked by repeatedly verifying the coplanar and positive tilt conditions on sets of
�-generating tiles. In the tables, we let Œp1; : : : ; pk� denote the convex hull in H3 of
a collection fp1; : : : ; pkg � @H3.

Table 1. The data that determine the first two canonical tilings.

ˇ �-generating tiles

P1 D Œv3; v4; v5; A.v2/�

T1 ˇ > 3
11

.4 C 3
p

3/ P2 D Œv3; v5; A.v2/; A.v3/�

P3 D Œv3; v5; CA.v2/; CA.v3/�

P4 D Œv3; v4; v5; CA.v2/�

P5 D Œv4; v5; CA.v2/; C.v7/�

P1 D Œv3; v4; v5; A.v2/�

T2 ˇ D 3
11

.4 C 3
p

3/ � 2:51 P2 D Œv3; v5; A.v2/; A.v3/�

P3 D Œv3; v5; CA.v2/; CA.v3/�

P4 D Œv3; v4; v5; CA.v2/; C.v7/�
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Table 2. More canonical tilings.

ˇ �-generating tiles

P1 D Œv3; v4; v5; C.v7/�

T3
1

22
.21 C 13

p
3/ < ˇ P2 D Œv3; v4; v5; A.v2/�

< 3
11

.4 C 3
p

3/ P3 D Œv3; v5; A.v2/; A.v3/�

P4 D Œv3; v5; C.v7/; CA.v2/�

P5 D Œv3; v5; CA.v2/; CA.v3/�

P1 D Œv3; v4; v5; C.v7/�

T4 ˇ D 1
22

.21 C 13
p

3/ � 1:978 P2 D Œv3; v4; v5; A.v2/�

P3 D Œv3; v5; A.v2/; A.v3/�

P4 D Œv3; v5; C.v7/; CA.v2/; CA.v3/�

P1 D Œv3; v4; v5; C.v7/�

T5
1

11
.9 C 4

p
3/ < ˇ P2 D Œv3; v4; v5; A.v2/�

< 1
22

.21 C 13
p

3/ P3 D Œv3; v5; A.v2/; A.v3/�

P4 D Œv3; v7; A.v2/; A.v3/�

P1 D Œv3; v4; v5; C.v7/�

T6 ˇ D 1
11

.9 C 4
p

3/ � 1:45 P2 D Œv3; v4; v5; A.v2/�

P3 D Œv3; v5; v7; A.v2/; A.v3/�

P1 D Œv1; v2; v3; v7�

T7
1

121
.72 C 43

p
3/ < ˇ P2 D Œv2; v3; v5; v7�

< 1
11

.9 C 4
p

3/ P3 D Œv3; v5; v7; A.v2/�

P4 D Œv3; v4; v5; A.v2/�

P1 D Œv1; v2; v3; v7�

T8 ˇ D 1
121

.72 C 43
p

3/ � 1:21 P2 D Œv2; v3; v5; v7�

P3 D Œv3; v4; v5; v7; A.v2/�

P1 D Œv1; v2; v3; v7�

T9 .�21 C 13
p

3/�1 < ˇ P2 D Œv2; v3; v5; v7�

< 1
121

.72 C 43
p

3/ P3 D Œv3; v4; v5; v7�

P4 D Œv2; v5; v6; v7�

P1 D Œv1; v2; v3; v7�

T10 ˇ D .�21 C 13
p

3/�1 � 0:659 P2 D Œv2; v3; v5; v7�

P3 D Œv3; v4; v5; v7�

P4 D Œv2; v5; v6; v7; D2.v7/�
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Table 3. The remaining tilings.

ˇ �-generating tiles

P1 D Œv3; v4; v5; C.v7/�

T11
1

143
.48 C 25

p
3/ < ˇ P2 D Œv2; v3; v5; v7�

< .�21 C 13
p

3/�1 P3 D Œv3; v4; v5; v7�

P4 D Œv5; v6; v7; D2.v7/�

P5 D Œv2; v5; v7; D2.v7/�

P1 D Œv3; v4; v5; C.v7/�

T12 ˇ D 1
143

.48 C 25
p

3/ � 0:638 P2 D Œv2; v3; v5; v7; D2.v7/�

P3 D Œv3; v4; v5; v7�

P4 D Œv5; v6; v7; D2.v7/�

P1 D Œv3; v4; v5; C.v7/�

T13
1

11
.6 � p

3/ < ˇ P2 D Œv3; v4; v5; v7�

< 1
143

.48 C 25
p

3/ P3 D Œv3; v5; v7; D2.v7/�

P4 D Œv2; v3; v7; D2.v7/�

P5 D Œv5; v6; v7; D2.v7/�

P1 D Œv3; v4; v5; v7; C.v7/�

T14 ˇ D 1
11

.6 � p
3/ � 0:39 P2 D Œv3; v5; v7; D2.v7/�

P3 D Œv2; v3; v7; D2.v7/�

P4 D Œv5; v6; v7; D2.v7/�

P1 D Œv3; v5; v7; C.v7/�

T15
1

33
.3 C 5

p
3/ < ˇ P2 D Œv4; v5; v7; C.v7/�

< 1
11

.6 � p
3/ P3 D Œv3; v5; v7; D2.v7/�

P4 D Œv2; v3; v7; D2.v7/�

P5 D Œv5; v6; v7; D2.v7/�

P1 D Œv3; v5; v7; C.v7/�

T16 ˇ D 1
33

.3 C 5
p

3/ � 0:353 P2 D Œv4; v5; v7; C.v7/; DC
1
.v7/�

P3 D Œv3; v5; v7; D2.v7/�

P4 D Œv2; v3; v7; D2.v7/�

P5 D Œv5; v6; v7; D2.v7/�

P1 D Œv3; v5; v7; C.v7/�

T17
1

143
.24 C 7

p
3/ < ˇ P2 D Œv5; v7; C.v7/; DC

1
.v7/�

< 1
33

.3 C 5
p

3/ P3 D Œv3; v5; v7; D2.v7/�

P4 D Œv2; v3; v7; D2.v7/�

P5 D Œv5; v6; v7; D2.v7/�

P1 D Œv3; v5; v7; C.v7/; D2.v7/; D2C.v7/�

T18 ˇ D 1
143

.24 C 7
p

3/ � 0:252 P2 D Œv5; v7; AC.v7/; D2.v7/�

P1 D Œv3; v7; C.v7/; D2.v7/; D2C.v7/�

T19
1

33
.6 � p

3/ < ˇ P2 D Œv5; v7; C.v7/; D2.v7/; D2C.v7/�

< 1
143

.24 C 7
p

3/ P3 D Œv5; v7; AC.v7/; D2.v7/�

P1 D Œv3; v7; C.v7/; D2.v7/; D2C.v7/�

T20 ˇ D 1
33

.6 � p
3/ � 0:129 P2 D Œv5; v7; C.v7/; D2.v7/; D2C.v7/; AC.v7/�

P1 D Œv3; v7; C.v7/; D2.v7/; D2C.v7/�

T21 ˇ < 1
33

.6 � p
3/ P2 D Œv7; C.v7/; D2.v7/; D2C.v7/; AC.v7/�

P3 D Œv5; C.v7/; D2C.v7/; AC.v7/�
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From our earlier observations, it remains only to check that there are no symmetries
of the even numbered tilings that interchange vertices of �:v1 with those of �:v7. The
arguments for each of the cases are very similar, we start with T2 as a model case.
Recall that v2, v4, v5, and v6 are each �-equivalent to v1.

Suppose there exists 
 2 Sym.T2/ exchanging �:v1 with �:v7. Then 
.P4/ is a
tile of T2 with exactly five vertices. P4 is the unique generating tile with five vertices
so there exists 
 0 2 � with 
 0
.P4/ D P4. Since 
 0 2 � it preserves the cusp classes
of the vertices of tiles in T2. On the other hand, since 
 exists, the minimal orbifold
must have exactly two cusps, hence 
 0
 must exchange the vertices of P4 in �:v1

with those in �:v7. But our explicit description implies that there are three of the
former and only one of the latter, a contradiction.

The same sort of argument also works for the remaining even numbered triangu-
lations with the exception of T12 and T14. Consider the case of T12. Suppose there
is 
 2 Sym.T12/ exchanging �:v1 with �:v7. Arguing as before, we have an element
ı 2 Comm.�/ with ı.P2/ D P2 and which interchanges its vertices in �:v1 with
those in �:v7. Since P2 has two vertices in �:v1 and two in �:v7, we have not yet
arrived at a contradiction. But such a ı still cannot exist since it can be seen that the
two vertices in �:v7 are connected by an edge but those in �:v1 are not.

The argument for T14 follows the outline of the argument for T12. Here P1 is the
unique generating tile with five vertices, its two vertices in �:v1 are connected by an
edge, and those in �:v7 are not. �

Proof of Proposition 7.14. By Lemma 7.18, we have Comm.�/ D Sym.T18/ so
to prove the theorem we need to show Sym.T18/ D � . We already know that
� � Sym.T18/.

Suppose that 
 2 Sym.T18/ � � is non-trivial. Since T18 is �-generated by P1

and P2 and these two polyhedra have different numbers of vertices, we may assume
that 
.P1/ D P1. By composing 
 with d2, if necessary, we may assume that 
 is
orientation preserving. P1 has one vertex in �:v1, one in �:v3, and four in �:v7; thus
by Lemma 7.18, 
 fixes v5 (which is in �:v1) and v3.

Using our embedding in the upper half space model, the vertices of P1 in �:v7

are taken to

r7 D 1 C i

2
; c.r7/ D 1 C i.2 C p

3/

2
;

d2c.r7/ D 3 C i.2 C p
3/

2
; d2.r7/ D 3 C i

2
:

Since 
 is an elliptic isometry preserving P1 and fixing r3 D 1 and r5 D 1 C i
2
.1 Cp

3/, it must act as a cyclic permutation on the set fr7; c.r7/; d2c.r7/; d2.r7/g. But
it is easy to see that the axis of 
 is not perpendicular to the plane that these points
span, so this is impossible. �
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