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Abstract. We show that every continuous homogeneous quasimorphism on a finite-dimensional
1-connected simple Lie group arises as the relative growth of some continuous bi-invariant partial
order on that group. More generally we show, that an arbitrary homogeneous quasimorphism
can be reconstructed as the relative growth of a partial order subject to a certain sandwich
condition. This provides a link between invariant orders and bounded cohomology and allows
the concrete computation of relative growth for finite dimensional simple Lie groups as well as
certain infinite-dimensional Lie groups arising from symplectic geometry.
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1. Introduction

In this article we observe a new relation between two different well-known structures
on Lie groups. The one side of our correspondence is formed by continuous invariant
partial orders. Here a partial order � on a topological group G is called invariant
(or bi-invariant), if for all g; h; k 2 G the relation g � h implies both kg � kh and
gk � hk. This means that the associated order semigroup

GC WD fg 2 G j g � eg
is a conjugation-invariant pointed (i.e. GC \ .GC/�1 D feg) monoid. Then �
is called continuous if GC is closed in G and locally topologically generated (i.e.
for every identity neighbourhood U in G the intersection U \GC generates a dense
subsemigroup ofGC). Such orders will be related to continuous homogeneous quasi-
morphism, i.e. continuous maps f W G ! R satisfying f .gn/ D nf .g/ for all g 2 G
and n 2 Z, for which the function f .gh/ � f .g/ � f .h/ is bounded on G2. Both
sides of the correspondence individually are well-studied; for finite-dimensional sim-
ple Lie groups there are classifications of both (see [9] for invariant orderings and
[4] for quasimorphisms). An immediate consequence of these classification results
is the following proposition:
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Proposition 1.1. For a finite-dimensional 1-connected simple Lie group G the fol-
lowing are equivalent:

(i) There exists a non-trivial continuous invariant partial order � on G.

(ii) There exists a non-zero continuous homogeneous quasimorphism on G.

The main result of this article states that we can actually use the continuous in-
variant partial orders to construct the corresponding continuous homogeneous quasi-
morphisms explicitly. For this we use the machinery of relative growth as introduced
in [6]: Given any invariant partial order � on a group G we define the associated set
of dominants in G to be

GCC D fg 2 GC n feg j 8h 2 G 9n 2 N W gn � hg:
We call an invariant order admissible if GCC ¤ ;. For a fixed dominant element
g 2 GCC we define the relative growth

�.g; �/ W G ! R

by

�.g; h/ D lim
n!1

minfp 2 Z j gp � hng
n

:

Then we provide the following explicit correspondence:

Theorem 1.2. Let G be a 1-connected simple Lie group. Then any continuous
invariant order � on G is admissible, and the relative growth of any such order is
given by

�.g; h/ D ˙f .h/

f .g/
.g 2 GCC; h 2 G/;

where f W G ! R is any generator of the one-dimensional space of homogeneous
quasimorphisms on G.

To the best of our knowledge this is the first results which provides a correspon-
dence between invariant order structures and quasimorphisms. In modern language,
the two sides of the correspondence are given by Lie semigroups [10], [18] and con-
tinuous bounded cohomology classes [17], [4], respectively. In fact, the study of
continuous invariant orders reduces to the more classical subject of invariant cones
in Lie algebras. Interest in such invariant cones first arose in the context of infinite-
dimensional representation theory and mathematical physics (in particular, general
relativity) [25], [20], [21]. By now Lie semigroups have found applications in areas
as diverse as logic and geometric control theory (see [12] for a historical overview).
On the other hand, bounded cohomology in general and quasimorphisms in particular
are an indispensable tool in modern geometric group theory. Some articles of partic-
ular relevance to the present work are [1], [2], [4], [5]. We hope that the present work
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will initiate more interaction between these two rich and traditional areas of topo-
logical group theory. We would like to point out that the theory of relative growth
was originally developed in [6] in a completely different context, namely the study
of infinite-dimensional Lie groups arising from problems in contact and symplectic
geometry.

In order to motivate the first step in the proof of Theorem 1.2, we consider a purely
algebraic variant of that theorem, which applies to general groups G and arbitrary
homogeneous quasimorphism f W G ! R. For such a pair .G; f / one can always
construct an invariant partial order �f on G by demanding that

g <f h () f .h�1g/ < �D.f /;
where

D.f / WD sup
g;h2G

.f .gh/ � f .g/ � f .h//

denotes the defect of f . Using the theory of relative growth we can show that �f

actually determines f up to a positive multiplicative constant. Indeed, we have:

Proposition 1.3. Let G be a group, f W G ! R a homogeneous quasimorphism
and �f as above. Then �f is admissible, and for any g 2 GCC and h 2 G the
corresponding relative growth is given by

�.g; h/ D f .h/

f .g/
:

In particular, up to positivemultiple every quasimorphismarises as the relative growth
of some partial order with respect to any dominant.

Proposition 1.3 is an interesting observation in its own right, but it does not provide
continuous orders. In fact, the order semigroup of �f will not even be connected. We
will thus need a stronger version of Proposition 1.3, which can be used to compute the
relative growth of continuous orders as well. Namely, we will show in Proposition 3.3
below that a homogeneous quasimorphismf can be recovered as relative growth from
any invariant partial order, which agrees with �f up to some bounded error. In a
second step we have to obtain explicit descriptions of all continuous quasimorphisms
and continuous invariant orders on 1-connected simple Lie groups. The main work
then lies in the third and final step, where we use the results of Step 2 in order to verify
that the continuous quasimorphisms are related to the continuous orders in such a way
that Proposition 3.3 applies. While the first step uses only elementary methods, the
other two steps depend on an in depth understanding of the fine structure of the Lie
groups under consideration.

This article is organized as follows: In Section 2 we recall the structure of those 1-
connected simple Lie groups, which admit continuous invariant partial orders. These
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turn out to be Hermitian. We obtain explicit descriptions of both continuous homo-
geneous quasimorphisms and continuous invariant partial orders on such groups. In
Section 3 we prove Theorem 1.2 along the lines explained above. We first provide the
necessary generalization of Proposition 1.3 and use it to reduce the statement of the
theorem to an estimate on the values of the quasimorphism in question. This estimate
will be established separately for the contribution coming from a maximal compact
subgroup and a complementary non-compact contribution. In a final subsection we
indicate briefly how to generalize our results beyond the simply-connected case. The
concluding Section 4 discusses various applications and extensions of the main result.
Following [6] we introduce the notion of an order space, which is a certain metric
space associated to an ordered group. We explain how our main results allow one
to compute the order space of 1-connected simple Hermitian Lie group for suitable
orderings. This answers in particular a question of Polterovich, which was the start-
ing point for the present article. We then discuss possible extensions of our results to
infinite-dimensional Lie groups arising in symplectic geometry. Again, we are able to
compute certain order spaces, and the results are in strong contrast to existing results
about similar infinite-dimensional groups in the symplectic context.

Convention 1.4. In order to avoid tedious repetitions, throughout the body of this
article all homogeneous quasimorphisms are assumed to be continuous. (Note that
in fact any homogeneous quasimorphism on a finite-dimensional simple Lie group is
automatically continuous [24].)

Acknowledgement. We cordially thank Leonid Polterovich for suggesting the prob-
lem of computing the order spaces of simple Lie groups, which was the starting point
for this paper, and for pointing out the applications of our criterion to groups of
Hamiltonian diffeomorphisms. We also thank Marc Burger for a number of useful
discussions concerning Hermitian Lie groups and their quasimorphisms. This arti-
cle would not have been possible without the competent guidance of Karl Heinrich
Hofmann through the vast literature on Lie semigroups, which is gratefully acknowl-
edged. The second-named author was partially supported by Swiss National Science
Foundation (SNF), grant PP002-102765.

2. Quasimorphisms and partial orders on Hermitian Lie groups

2.1. The structure of Hermitian Lie groups. Let G be a 1-connected simple real
Lie group and G0 WD Ad.G/ so that � W G ! G0 is a universal covering map. Fix
a maximal compact subgroup K0 � G0 and define K WD ��1.K0/. Then X WD
G=K D G0=K0 is a symmetric space andG is called Hermitian if the space�2.X/G

of G-invariant 2-forms on X is non-trivial. In this case, actually, �2.X/G Š R. It
was proved by Vinberg [25] that among simple Lie groups only the Hermitian ones
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can admit continuous invariant partial orders. We will thus focus on such Lie groups
in the sequel. In order to fix our notation we briefly recall the structure theory of
1-connected simple Hermitian Lie groups. For more details the reader is asked to
consult [14], Chapter III of [8] and (regarding compact Lie groups) Chapter IV in
[13]. Throughout, the Lie algebra of a Lie group is denoted by the corresponding
small gothic letter; a subscript C indicates complexification.

� k decomposes as k D z.k/ ˚ k0, where z.k/ denotes the 1-dimensional center
of k and k0 D Œk; k� its semisimple part. This induces global decompositions
K D Z.K/ � K 0 and K0 D Z.K0/K

0
0 (almost direct). Here K 0 is a finite

covering of K 0
0, hence compact, while Z.K/ Š R. In particular, both K 0 and

Z.K/ and hence K are amenable.

� There exists a Cartan subgroup H of G with Z.K/ � H � K. We fix such a
Cartan subgroup once and for all.

� Denote by p the orthogonal complement of k in p with respect to the Killing
form so that g D z.k/˚ k0 ˚ p. Identify p with the tangent space of symmetric
space X of G at the basepoint eK. There are two choices for the invariant
complex structure of X, and we fix one of them. After this choice, there exists a
unique J 2 z.k/ such that ad.J /jp defines the restriction of the chosen complex
structure to p.

� Denote by 4 D 4.gC; hC/ the roots of gC with respect to hC . Choose a
positive system 4C � 4 in such a way that for all ˛ in the set 4C

n of non-
compact positive roots the relation ˛.iJ / D 1 holds. Fix a maximal system of
strongly orthogonal roots 4CC

n � 4C
n .

� The compact Weyl group (associated to our choice of compact Cartan H ) is
defined by Wc WD NK.H/=ZK.H/. This acts on H by conjugation and thus
on h via the adjoint action and h� via the coadjoint action.We denote by .h�/Wc

and .h/Wc the sets of Wc-invariants in h� and h respectively. Our choice of
non-compact root ensures that 4C

n is invariant under Wc.

� Given ˛ 2 4 choose root vectors E˙˛ 2 g˛
C such that

i.E˛ CE�˛/; E˛ �E�˛ 2 k C ip; ˛.ŒE˛; E�˛�/ D 2:

Define h˛ WD �i ŒE˛; E�˛� 2 h, X˛ WD E˛ CE�˛ and Y˛ WD �i.E˛ �E�˛/.
Denote by a the span of the X˛ for ˛ 2 4CC

n (which is a maximal abelian
subalgebra of p) and by A the associated analytic subgroup of G.

� We use the isomorphism ker.�/ D Z.G/ Š �1.G0/ to identify �1.G0/ with a
subgroup ofG. We observe that �1.G0/ Š �1.K0/ is actually a subgroup ofK.
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2.2. Continuous homogeneous quasimorphisms. We keep the notations intro-
duced in the last subsection; in particular, G is a 1-connected simple Hermitian
Lie group. We describe homogeneous quasimorphisms on G. For background on
continuous bounded cohomology and quasimorphisms we refer the reader to [17],
[2], [1]. Homogeneous quasimorphisms on Hermitian Lie groups are discussed in
detail in [5]. In particular we deduce from [5], Proposition 7.8:

Lemma 2.1. There exists a unique homogeneous quasimorphism �G W G ! R sat-
isfying �G.exp.J // D 1. Any homogeneous quasimorphism on G is a multiple of
�G .

The following fact could also be deduced from Proposition 7.8 of [5], but we
prefer to give a short self-contained proof.

Proposition 2.2. Let �G be a homogeneous quasimorphism on G. Then for all
p 2 exp.p/ we have �G.p/ D 0.

Proof. Since A is amenable, the restriction �G jA is a homomorphism. Since homo-
geneous quasimorphisms are conjugation-invariant, its differential is invariant under
X 7! exp.ad.�J //.X/ D �X . This shows that �G jA is trivial, and the proposition
follows by using conjugation-invariance once more. �

By conjugation invariance the restriction �G jK is uniquely determined by �G jH ;
the latter is a homomorphism, which can be determined explicitly. For this the key
observation is the following lemma:

Lemma 2.3. With notation as above we have dim.h�/Wc D dim.h/Wc D 1.

Proof. Decompose h into irreduciblesWc-modules. As a first step let h0 WD h \ k0 so
that h D z.k/˚h0. Then h0 is a maximal torus in the compact semisimple Lie algebra
k0, i.e. h0

C is a maximal torus in the complex semisimple Lie algebra k0
C and Wc is

the Weyl group associated to the pair .k0
C; h

0
C/. In particular, the action ofWc on z.k/

is trivial, while h0 decomposes into irreducible modules corresponding to the simple
subalgebras of k0. Each of these modules has dimension � 3 and is thus non-trivial.
Thus, dim.h/Wc D 1. Now fix a non-degenerate invariant bilinear form on k. The
restriction of this form to h can then be used to identify h and h� as Wc-modules.
This yields dim.h�/Wc D dim.h/Wc . �

Now we deduce easily:

Proposition 2.4. Let notation be as above. Then for all X 2 h we have

�G.exp.X// D 1

j4C
n j

X
˛24C

n

˛.iX/:



Vol. 87 (2012) Reconstructing quasimorphisms from associated partial orders 711

Proof. Bothd.�G jH / and
P
˛.i �/ define elements in .h�/Wc , hence are proportional.

The proportionality constant can be computed by evaluating at J . �

2.3. Continuous partial orders. In this section we describe continuous partial or-
ders on a 1-connected simple real Lie group G. We keep the notation of the last
two sections. Associated with any such order � is a closed, topologically locally
generated order semigroup GC. By results of Neeb [18], GC is a Lie semigroup.
This means that the Lie wedge

CC WD L.GC/ D fX 2 g j 8t > 0 W exp.tX/ 2 GCg
generates GC infinitesimally, i.e.

GC D hexpCCi:
In particular, � is uniquely determined by the Ad-invariant closed, pointed generating
cone CC � g. The set C.g/ of such cones have been described in [25] and [21].
Any CC 2 C.g/ is determined uniquely by its intersection with h and contains either
J or �J , and the corresponding partial order will be called positive or negative
accordingly. Since we may always reverse the roles of J and �J it suffices to
deal with the subset C.g/C � C.g/ of positive orders. It turns out that not every
element of C.g/C is global in the sense that it arises as the Lie wedge of an invariant
continuous partial order onG. The subset C.G/C of global cones in C.g/C has been
determined in [20]. We will not need the precise classification statement, but only the
following observation: Since C.g/C � C.g/, it follows from [25], Theorem 2, that
every CC 2 C.G/C contains the cone denoted Cmin.g/ in [25]. Since the interior of
Cmin.g/ \ h contains the ray ft � J j t > 0g we deduce:

Lemma 2.5. Let CC 2 C.G/C and put c WD CC \ h. Then the interior cı of c in h
contains ft � J j t > 0g.

3. Realizing quasimorphisms as relative growth

3.1. The sandwich condition. We have observed in the introduction that a quasi-
morphism can be reconstructed as relative growth from the associated partial order.
A more general condition allowing for such a reconstruction is the following:

Definition 3.1. A non-zero homogeneous quasimorphism f on a topological group
G is said to sandwich an invariant partial order � if there exist constants C1; C2 2 R
such that

QC
f
.C1/ � GC � QC

f
.C2/; (1)
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where for C 2 R the superlevel set QC
f
.C / is given by

QC
f
.C / WD fg 2 G j f .g/ � C g:

In fact, the upper bound comes for free:

Lemma 3.2. LetG be group, f W G ! R a non-trivial homogeneous quasimorphism
and � be an invariant partial order on G with order semigroup GC. If there exists
C1 > 0 with

QC
f
.C1/ � GC;

then � is sandwiched by f ,QC
f
.C1/ � GCC, and (1) is satisfied with C2 WD 0.

Proof. First we claim thatGC � QC
f
.0/. Otherwise we find g0 2 GC with f .g0/ <

0. Then every g 2 G can be written as g D gn
0 .g

�n
0 g/, where n 2 N is chosen in

such a way that f .g�n
0 g/ > C . This implies g�n

0 g 2 GC and thus g 2 GC. Since
g 2 G was arbitrary this implies GC D G contradicting the pointedness of GC.
This proves our claim. Now assume QC

f
.C / � GC and suppose g 2 G satisfies

f .g/ � C > 0. Then for any h 2 G we find n 2 N such that f .gnh�1/ > C ,
whence gn > h, showing that already g 2 GCC. �

The following generalization of Proposition 1.3 will be at the heart of our proof
of Theorem 1.2; we therefore give its elementary proof in some details.

Proposition 3.3. Suppose that .G;�/ is ordered group and that f W G ! R is a
non-zero homogeneous quasi-morphism. If f sandwiches � , then � is admissible
and for all g 2 GCC, h 2 G we have

�.g; h/ D f .h/

f .g/
:

Proof. Let g 2 GCC and h 2 G. Define Tn.g; h/ WD fp 2 Z j gp � hng and
�n.g; h/ D inf Tn.g; h/ so that

�.g; h/ D lim
n!1

�n.g; h/

n
: (2)

Choose a constant C1 > 0 such that QC
f
.C1/ � GCC holds. Since f is non-trivial,

QC
f
.C1/ is non-empty, and thus � is admissible. We claim that any integer pn

satisfying

pn � nf .h/C C1 CD.f /

f .g/
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also satisfies pn 2 Tn.g; h/. (Such a pn exists since f .g/ ¤ 0 for any dominant g.)
Indeed, we have

f .gpnh�n/ � pnf .g/ � nf .h/ �D.f /
� .nf .h/C C1 CD.f // � nf .h/ �D.f / D C1;

hence gpnh�n 2 GC, which implies gpn � hn as claimed. In particular �n.g; h/ �
pn and choosing pn minimal possible we obtain

�n.g; h/

n
� f .h/

f .g/
C C1 CD.f /C f .g/

nf .g/
: (3)

Now suppose p 2 Z satisfies

p <
nf .h/ �D.f /

f .g/
:

Then

f .gph�n/ � pf .g/ � nf .h/CD.f / < .nf .h/ �D.f // � nf .h/CD.f / D 0:

Thus gph�n 62 GC and thus p 62 Tn.g; h/. Consequently,

�n.g; h/

n
� f .h/

f .g/
� D.f /

nf .g/
: (4)

Combining (3) and (4) and passing to the limitn ! 1 we obtain the proposition. �

We now turn to the proof of Theorem 1.2. By Proposition 3.3 and Lemma 3.2 it
suffices to establish the following estimate:

Lemma 3.4. Let � be a continuous partial order with order semigroup GC on a
1-connected Hermitian simple Lie group G. Then there exists C > 0 such that

QC.C / WD QC
�G
.C / � GC: (5)

The remainder of this section is devoted to the proof of Lemma 3.4 (and hence
Theorem 1.2). We claim that Lemma 3.4 can be deduced from the following two
lemmata:

Lemma 3.5. There exists a constants C1 2 R such that

QC.C1/ \K � GC \K: (6)

Lemma 3.6. There exists a constant C0 such that for all p 2 expG.p/ � G there
exists k.p/ 2 K with j�G.k.p//j � C0 and k.p/p � e.
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Before we prove the lemmata, let us check carefully that they imply Lemma 3.4.
Every g 2 G can be written as g D kp with k 2 K, p 2 expG.p/. According to
Lemma 3.6 we can choose k.p/ with k.p/p � e and j�G.k.p//j � C0. Now we
claim that Lemma 3.5 provides the desired estimate (5) for

C WD C0 C C1 CD.�G/:

Indeed, suppose �.g/ � C . Then using Proposition 2.2 and (6) we deduce

�G.k/ � �G.kp/ � �G.p/ �D.�G/ D �G.g/ �D.�G/ � C0 C C1

H) �G.kk.p/
�1/ D �G.k/ � �G.k.p// � C1

H) kk.p/�1 2 QC.C 0
1/ \K � GC \K

H) k � k.p/

H) g D kp � k.p/p � e:

This proves the claim and reduces Theorem 1.2 to the above two lemmata, whose
respective proofs will be the content of the following two subsections.

3.2. Proof of the main theorem I: The compact contribution. In this subsection
we prove Lemma 3.5. Thus assume k 2 QC.C1/ \ K for some C1 > 0. Then k
is conjugate to some h 2 H with �G.h/ > C1. Since GC is conjugation-invariant
we have k 2 GC iff h 2 GC. We have thus reduced Lemma 3.5 to the following
observation:

Lemma 3.7. There exists a constant C1 2 R such that

QC.C1/ \H � GC \H: (7)

Proof. We decompose h D z.k/˚ h0; accordingly, every h 2 H can be written as

h D exp.tJ CX/ D exp.tJ / exp.X/ .t 2 R; X 2 h0/: (8)

Here exp.X/ 2 exp.h0/, which is a compact group. Since �G restricts to a homo-
morphism onH and there are no non-trivial homomorphisms from a compact group
into R we have �G.exp.X// D 0 and hence

�G.h/ D �G.exp.tJ // D t:

Denote by ƒ the kernel of the exponential function exp W h0 ! H . Then ƒ is a co-
compact lattice in h0 and thus has a bounded fundamental domain in h0. Consequently,
if we denote by B 0

r.0/ the closed ball of radius r around 0 in h0 then

9R > 0 8r � R 8X 2 h0 9Y 2 ƒ W X C Y 2 B 0
r.0/: (9)
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Now let c WD L.GC/\ h and denote by cı the interior of c. By Lemma 2.5 we have
tJ 2 cı for all t > 0. Denote by St WD tJ C h0 the affine hyperplane through tJ
parallel to h0. Then St \ cı is open in St and non-empty, since it contains tJ . We
thus see that for t > 0 we have

r.t/ WD maxfr > 0 j tJ C B 0
r.0/ � cg > 0:

In fact, convexity of c implies r.t/ ! 1 as t ! 1. By (9) we thus have

9T > 0 8t � T 8X 2 h 9Y 2 ƒ W tJ CX C Y 2 c: (10)

Now we claim that we can choose C1 WD T . Indeed, if h is as in (8) and �G.h/ D
t � T , then by (10) we find Y 2 ƒ with tJ CX C Y 2 c and hence

h D exp.tJ CX/ D exp.tJ CX C Y / 2 exp.c/ � H \GC: �

This finishes the proof of Lemma 3.5.

3.3. Proof of the main theorem II: The non-compact contribution. The purpose
of this subsection is to establish Lemma 3.6, thereby finishing the proof of Theo-
rem 1.2. We will argue by reduction to the case of the universal covering group of
SL2.R/, which we denote by �SL2.R/. (This case was treated in [3].) We recall
that for any ˛ 2 4CC

n the bracket relations ŒX˛; Y˛� D �2h˛ , Œh˛; X˛� D 2Y˛

and Œh˛; Y˛� D �2X˛ hold. (See e.g. [21], where the notation is compatible with
ours.) Therefore, the three-dimensional real Lie algebra sl˛ spanned by X˛; Y˛; h˛

is isomorphic to sl2.R/ via an isomorphism �˛ given by

�˛.X˛/ WD
��1 0

0 1

�
; �˛.Y˛/ WD

�
0 1

�1 0

�
; �˛.h˛/ WD

�
0 1

1 0

�
:

Denote by  ˛ W sl2.R/ ! sl˛ ,! g the inclusion induced by the inverse of this
isomorphism. Then  ˛ integrates to a group homomorphism

‰˛ W �SL2.R/ ! G:

In fact, ‰˛ factors through a map ‰0
˛ W SL2.R/ ! G0, in particular

‰˛.�1.SL2.R/// � �1.G0/: (11)

Indeed, since SL2.C/ is simply-connected the complexification

. ˛/C W sl2.C/ ! gC

integrates to a map .‰˛/C W SL2.C/ ! .G0/C . Since G0 is linear and connected,
it coincides with the analytic subgroup of its universal complexification with Lie
algebra g (see [11], Satz I.6.1 and Satz III.9.24). Now . ˛/C maps sl2.R/ into g
and thus .‰˛/C maps SL2.R/ into G0. Then the restriction of .‰˛/C provides the
desired factorization‰0

˛ of‰˛ . We will now use the maps‰˛ to reduce our problem
to the case of �SL2.R/ by means of the following lemma:
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Lemma 3.8. For each˛ 2 4CC
n there exists a continuous admissible partial ordering

�˛ on �SL2.R/ with the following property: If g �˛ e for some g 2 �SL2.R/, then
‰˛.g/ 2 GC.

Proof. Denote by CC the Lie wedge of GC and define

C C̨ WD �˛.C
C \ sl˛/ � sl2.R/:

Since the kernel of the map

‰˛ W �SL2.R/ ! ‰˛.�SL2.R//

is central, ‰˛ induces an isomorphism Ad.�SL2.R// ! Ad.‰˛.�SL2.R///. As �˛ is
equivariant with respect to these adjoint actions, we deduce thatC C̨ is an Ad-invariant,
closed pointed cone in sl2.R/. This cone is non-trivial, since h˛ 2 CC, and thus
sl2.R/ D C C̨ �C C̨, since the right hand side is a non-trivial ideal. This means that
C C̨ is generating. Now there exists only two (mutually inverse) Ad-invariant, closed
pointed generating cones in sl2.R/, and both are global. This means that there exists
a partial order �˛ on �SL2.R/ with order semigroup hexp.C C̨/i. Since

 ˛.C
C̨/ D CC \ sl˛ � CC;

we have ‰˛.exp.C C̨// � GC, from which the lemma follows. �

To finish our argument we use the following fact about the �SL2.R/-case:

Lemma 3.9. Given any continuous admissible ordering � on G D �SL2.R/ there
exists a constantN and an element z0 2 �1.SL2.R// such that for everyX 2 p there
exists 0 � n � N with

zn
0 expG.X/ � e:

Proof. In [3] a continuous admissible positive order onG was introduced by dynami-
cal means. By [25], Section 3.5, this is the only continuous admissible ordering onG
up to inversion, and we denote it by �. We know from Lemma 2.9 of [3] (specialized
to n D 1) that for every X 2 p there exists a path gt defining a homotopy class
g D Œgt � 2 G which satisfies both g1 D expSL2.R/.X/ and g � e and has Maslov
quasimorphism �Maslov.g/ � 4� . If we denote p WD expG.X/, then the first state-
ment means that g D zp for some z 2 �1.SL2.R// � G. If z0 denotes the positive
generator of �1.SL2.R// Š Z, then z D zn

0 for some n > 0, and the uniform bound
on the Maslov quasimorphism implies the uniform bound on n. This establishes the
lemma for � , hence for all continuous admissible orderings on G. �

Now we can finish the proof of Lemma 3.6: Combining Lemma 3.8 and Lemma 3.9
we now choose for every ˛ 2 4CC

n a constant N˛ 2 N and an element z˛;0 2
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�1.SL2.R// such that for every t˛ 2 R there exists 0 � n˛ � N˛ with

z
n˛

˛;0 exp

�
t˛

��1 0

0 1

��
�˛ e:

Define z˛ WD ‰˛.z˛;0/. By (11) we have z˛ 2 �1.G0/ D Z.G/. Applying ‰˛ and
using Lemma 3.8 we obtain

zn˛
˛ exp.t˛X˛/ 2 GC:

Now, any a 2 A is of the form

a D
Y

˛24CC

exp.t˛X˛/

for some t˛ 2 R, and any g 2 exp.p/ is of the form g D kak�1 for some k 2 K.
This implies that for every g 2 exp.p/ we can find 0 � n˛ � N˛ such that� Y

˛24CC
n

zn˛
˛

�
� g D k

� Y
˛24CC

zn˛
˛ exp.t˛X˛/

�
k�1 2 GC:

This implies Lemma 3.6 and finishes the proof of Theorem 1.2.

3.4. Beyond simple-connectedness. In the proof ofTheorem 1.2 we have always as-
sumedG to be simply-connected. This assumption ensured in particular the existence
of a non-zero homogeneous quasimorphism and a non-trivial continuous admissible
partial order on G. As far as the former existence question is concerned, it is easy
to classify the non-simply connected simple Lie groups yG which admit a non-zero
homogeneous quasimorphisms. For this we recall from [17] that the space of such
quasimorphisms can be identified with the kernel

EH 2
cb.

yGI R/ D ker.H 2
cb.

yGI R/ ! H 2
c .

yGI R//

of the natural comparison map between the continuous bounded cohomology and the
continuous cohomology of yG with trivial coefficients. Since dimH 2

cb.
yGI R/ � 1 this

is equivalent to H 2
cb.

yGI R/ Š R and H 2
c .

yGI R/ D 0. Equivalently, yG is Hermitian
with finite fundamental group. Denote by p W G ! yG its universal covering. Then
there is a unique homogeneous quasimorphism� yG W yG ! R such that p�� yG D �G .
Now it follows from the fact that ker.p/ is torsion that for every continuous order
on G with order semigroup GC the image p.GC/ is again the order semigroup of
a continuous order on yG, and these are actually all continuous orders on yG. It then
follows immediately that every continuous order on yG is sandwiched by either � yG
or �� yG . This implies that Theorem 1.2 holds in fact for all simple Hermitian Lie
groups with finite fundamental group.
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4. Implications and further examples

4.1. Basic definitions. Among the initial motivation of Eliashberg and Polterovich
to introduce relative growth was the construction of a certain metric G-space out of
an admissible ordered group .G;�/. To explain their construction, let G be a group
and � an admissible invariant ordering on G. Then the restriction of the relative
growth function defines a positive function

� W GCC �GCC ! R>0;

whose symmetrized logarithm

d.g; h/ WD log maxf�.g; h/; �.h; g/g
yields a pseudo-metric on GCC. We refer to the associated metric space as the order
space of .G;�/ and denote it by X.G;�/. Note that the conjugation action of G on
GCC induces an isometric G-action on X.G;�/. In general, it is a difficult problem
to compute the order space of an ordered group. However, if the order in question is
sandwiched by a homogeneous quasimorphism, then we can apply Proposition 3.3
in order to compute the order space explicitly:

Corollary 4.1. Suppose that .G;�/ is an admissible ordered group and thatf W G !
R is a continuous homogeneous quasi-morphism sandwiching � . Then the map

� W X.G;�/ ! R; Œg� 7! logf .g/;

is an isometry onto its image.

Proof. Let g; h 2 GCC. By Proposition 3.3 we have

d.Œg�; Œh�/ D maxflog �.g; h/; log �.h; g/g D j logf .g/ � logf .h/j;
showing that � is an isometry. �

4.2. Finite-dimensional examples. Applying Corollary 4.1 to the case of 1-con-
nected, finite-dimensional simple Lie groups discussed in the main theorem we obtain:

Corollary 4.2. (i) LetG be a 1-connected simple Hermitian Lie group equipped with
an arbitrary continuous order � . Then there is a surjective isometry

� W X.G;�/ ! R; Œg� 7! log�G.g/:

(ii)Denote by � the admissible orderingonK obtainedby restrictinga continuous
order from G. Then there is still a surjective isometry

� W X.K;�/ ! R; Œk� 7! log�G.k/:
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Indeed, Corollary 4.1 applies in view of Lemma 3.4 and Lemma 3.5 respectively,
and surjectivity follows from �G.exp.tJ // D t in both cases. In fact it is easy to see
that every order space of a Lie group necessarily contains a copy of R as the image
of a suitable one-parameter semigroup in GCC. In that sense the order spaces of
1-connected simple Hermitian Lie group with respect to a given continuous order is
as small as possible for a Lie group. Corollary 4.2 answers a question of Polterovich,
which was the starting point for the investigations in this paper. The results in Corol-
lary 4.2 should be compared to the case of 1-connected, finite-dimensional abelian
Lie groups, i.e. finite-dimensional vector spaces.

Example 4.3. Let V be a finite-dimensional vector space (considered as an abelian
Lie group under addition) and CC � V a closed, pointed convex cone with non-
empty interior. By Corollary 11.7.1 of [23] there exists a weak-�-compact subset A�
of the unit ball V �

1 in V � such that

CC D fv 2 V j 8˛ 2 A� W ˛.v/ � 0g: (12)

The dominants of the partial order with order semigroup CC are given by CCC D
Int.CC/. A short computation shows that the pseudo-distance d on CCC is given by

d.v;w/ D max
˛2A�

j log˛.v/ � log˛.w/j: (13)

This is actually a metric on CCC, and thus X.V;�/ D .Int.CC/; d/.

Thus in the abelian case, the order space is as large as possible (i.e. the natural map
GCC ! X.G;�/ is one-to-one), while in the simple case it is as small as possible.

4.3. Infinite-dimensional examples. The strong dichotomy between order spaces
of finite-dimensional simple and finite-dimensional abelian Lie groups discovered in
the last subsection exists also for certain families of infinite-dimensional Lie groups,
which we discuss here. For this we return to the original setup, in which relative
growth was introduced, namely contact and symplectic geometry. Various infinite-
dimensional Lie groups with natural invariant orders arise in this context, and for
several classes of such groups the associated order spaces have been studied in [6],
[3]. In all these examples the order spaces turn out to be infinite-dimensional. In
this subsection we provide an example of a similar geometric flavour, in which the
order space fails not only to be infinite-dimensional, but in fact collapses to R. The
reason for this collapse is again provided by a homogeneous quasimorphism, which
sandwiches the order in question.

In order to explain our example, we introduce the following notation: Denote by
.M;!/ a closed symplectic manifold of dimension 2n. Every smooth, time dependent
functionHt W M ! R gives rise to a smooth vector field,XH via the pointwise linear
equation dH D �!.XH ; �/. These vector fields are called Hamiltonian. The group
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G0 WD Ham.M;!/ of Hamiltonian motions is by definition the subgroup of the
diffeomorphism group Diff.M/ given by the time-1 maps of the flows generated by
the Hamiltonian vector fields. Since !n is a volume form on M , G0 is actually a
subgroup of the volume preserving diffeomorphisms of M . A detailed study of the
groupG0 is provided in [22]. Here we just remark thatG0 admits a natural topology
and smooth structure, turning it into an infinite-dimensional Lie group. We will be
interested in the universal covering G of G0.

An important problem is the existence and uniqueness problem for Calabi type
quasimorphisms onG. For background on this complex of problems see [16], Chap-
ter 10. Here we recall only some of the most basic definitions in order to fix our
notation: Given an open subset U � M , denote by G0

U the group of Hamiltonian
diffeomorphisms of M generated by Hamiltonians supported inside U , and observe
that the elements of G0

U are then automatically compactly supported. On the uni-
versal covering GU of G0

U there exists a homomorphism CalU W GU ! R called the
Calabi homomorphism given as follows: If Œft � 2 GU is represented by a path ft in
G0

U generated by a time-dependent Hamiltonian Ft , then

CalU .Œft �/ D
Z 1

0

Z
U

Ft!
ndt:

This homomorphism descends to a homomorphism of G0
U if !jU is exact, but not in

general. Now let us call an open subset U � M displacable if there exists g 2 G0

such that gU \ xU D ;. Then we define:

Definition 4.4. A quasimorphism f W G ! R is called of Calabi type if for every
displacable open subset U � M the equality

f jU D CalU

holds.

In [7] the existence of a Calabi type quasimorphism was established for symplec-
tic manifolds which are spherically monotone and the even part of whose quantum
homology algebra is semisimple. We cannot explain these assumptions here, but
refer the reader to the aforementioned article and the references therein for details.
Here we can only sketch some ideas of the construction. The basic idea of Entov
and Polterovich for constructing a Calabi type quasimorphism is to use the spectral
invariants of G. For the present purpose it suffices to know that these are given by a
map

c W QHev.M/ �G ! R; .a; g/ 7! c.a; g/;

whereQHev.M/ is the even part of the quantum homology algebra ofM . Then they
prove the following result:
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Lemma 4.5 (Entov–Polterovich). If QHev.M/ D Q1 ˚ � � � ˚ Qd denotes the de-
composition ofQHev.M/ into a direct sum of fields and e the unit ofQ1, then

r WD �c.e; �/ W G ! R

is a continuous quasimorphism. Moreover,

(i) r.gh/ � r.g/C r.h/ for all g; h 2 G;

(ii) if eG denote the identity element of G, then r.eG/ D 0;

(iii) r is conjugation-invariant.

Up to a constant factor of Vol.M/ the homogeneization Qr of r is of Calabi type.

For proofs see again [7], in particular Section 2.6, Theorem 3.1 and Proposi-
tion 3.3. We refer to r as the spectral quasimorphism on G. Based on the examples
from finite-dimensional Lie groups it is reasonable to ask whether Qr sandwiches a
partial order. For the study of this problem, we suggest the following terminology:

Definition 4.6. A closed symplectic manifold .M;!/ is called Calabi orderable if
there exists a partial order � on G and a dominant g 2 GCC with respect to this
ordering such that the relative growth �.g; �/ is a Calabi type quasimorphism. In this
case, � is called a Calabi order on G.

We will now provide criteria which guarantee Calabi orderability. We call the
spectral quasimorphism r non-degenerate if it satisfies

r.g/ D r.g�1/ D 0 H) g D eG

for allg 2 G. In this situation, Lemma 4.5 immediately yields the following corollary:

Corollary 4.7. Let .M;!/ be a spherically monotone closed symplectic manifold
the even part of whose quantum homology algebra is semisimple and whose spectral
quasimorphism is non-degenerate. Then

(i) The set
GC WD fg 2 G j r.g�1/ � 0g

is a closed, conjugation invariant pointed submonoid of G and thus defines a
partial order � on G.

(ii) The homogeneization Qr (and hence the Calabi quasimorphism Q� WD Vol.M/ � Qr)
sandwich � .

We refer to the order � from Proposition 4.7 as the spectral order onG. We briefly
recall some conditions that guarantee the non-degeneracy of the spectral quasimor-
phism:
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Definition 4.8. A closed symplectic manifold .M;!/ is called

� rational if !.�2.M// � R is a discrete subset;

� strongly semipositive, if there is no spherical homology class A 2 �2.M/ such
that !.A/ > 0 and 2 � n � c1.A/ < 0.

Then we have:

Theorem 4.9. Let .M;!/ be a spherically monotone closed symplectic manifold the
even part of whose quantum homology algebra is semisimple. If M is rational and
strongly semipositive, then it is Calabi orderable. More precisely, a Calabi order is
given by the spectral order � . Moreover, X.G;�/ Š R.

Proof. By a result of Oh ([19], Theorem A) the conditions on M ensure that the
spectral quasimorphism is non-degenerate. Thus the Calabi type quasimorphism Q�
of Entov and Polterovich sandwiches the spectral order and the result follows. �

The theorem applies in particular to CP n with the Fubini–Study form; in particular

X.eHam.CP n/;�/ Š R

is not infinite-dimensional.

4.4. Collapse of the order space in the absence of quasimorphisms. We have
seen examples of both finite- and infinite-dimensional ordered Lie groups for which
the order space is much smaller than expected. This collapsing phenomenon could in
both cases be tracked back to the existence of a certain homogeneous quasimorphisms
and one might thus get the impression that homogeneous quasimorphisms are the only
reason for a collapse of the order space. The following example shows that this is not
the case and, in fact, that the order space can collapse even in the complete absence
of quasimorphisms: Consider the standard embeddings

Sp.2;R/ � Sp.4;R/ � Sp.6;R/ � � � �
induced from the embeddings

T �R � T �R2 � T �R3 � � � � :
Let us abbreviate byGn the universal covering of Sp.2n;R/. Then we have a similar
chain for the groups Gn. Each Gn carries a unique continuous admissible partial
ordering (the maximal partial ordering in the notation of the last section) and we
denote the associated order semigroup by GC

n . We then define

G WD lim! Gn D
[
Gn; GC WD

[
GC

n � G:
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It turns out that GC defines an admissible order � on G with

GCC D
[
GCC

n :

We claim that

X.G;�/ Š R: (14)

Indeed, let J 2 CCC
1 be the element in the center of k defining the complex structure

on the symmetric space and L WD fexp.tJ / j t > 0g � GCC. We denote by ŒL� the
image ofL in X.G;�/. Clearly, ŒL� Š R. We claim that X.G;�/ D ŒL�. Indeed, let
g 2 GCC and choose n 2 N such that g 2 Gn. Since exp.J / and g are dominant in
Gn we have both �Gn

.exp.J // > 0 and �Gn
.g/ > 0. Thus, there exists t > 0 such

that �Gn
.exp.tJ // D �Gn

.g/. We now consider exp.tJ / and g as elements ofGCC
n

and denote by dGn
.exp.tJ /; g/ the corresponding pseudo-distance. By Corollary 4.2

we have
dGn

.exp.tJ /; g/ D 0:

This implies
dG.exp.tJ /; g/ D 0;

since the natural map X.Gn;�/ ! X.G;�/ is contractive. This shows that Œg� D
Œexp.tJ /� 2 X.G;�/. Since exp.tJ / 2 L we have Œg� 2 ŒL� as claimed. This
establishes (14). On the other hand, applying the Kotschick swindle [15] to the di-
agonal �SL2.R/-subgroups ofG, we see immediately that every homogeneous quasi-
morphism f on G restricts to a homomorphism on G1. Since G1 is simple, this
homomorphism is trivial. But the only quasimorphism of Gn restricting trivially to
G1 is the trivial one, whence f must be trivial on everyGn, hence onG. This shows
that G does not possess any non-trivial homogeneous quasimorphism.

4.5. Open problems. We have seen in various examples that suitable homogeneous
quasimorphisms allow the explicit computation of relative growth and, consequently,
order spaces for ordered Lie groups. There are various directions into which our
results can be extended. As far as finite-dimensional Lie groups are concerned,
we have dealt with the extremal cases of simple and abelian Lie groups. In view
of the structure theory of finite-dimensional Lie groups, the next step towards a
complete understanding of order spaces would be to understand the behaviour of
relative growth under semidirect products. For non-semisimple Lie groups the order
space will probably not collapse, since the quasimorphism becomes trivial on the
radical, whence it would be interesting to compute its precise form.

A second direction to be pursued is obviously the study of infinite-dimensional
Lie groups. Here the interest is probably not in maximal generality, but rather in
concrete computations of relative growth for specific classes of groups arising in
contact and symplectic geometry. In the finite-dimensional case, a key step towards
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our computations was the reduction of continuous orders to invariant cones inside the
Lie algebra. It would be interesting to know, whether such a reduction can also be
used in the infinite-dimensional context.
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