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A rigidity property of some negatively curved solvable Lie groups
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Abstract. We show that for some negatively curved solvable Lie groups, all self quasiisometries
are almost isometries. We prove this by showing that all self quasisymmetric maps of the ideal
boundary (of the solvable Lie groups) are biLipschitz with respect to the visual metric.
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1. Introduction

In recent years, there have been a lot of interest in the large scale geometry of solvable
Lie groups and finitely generated solvable groups ([D], [EFW1], [EFW2], [FM1],
[FM2], [FM3], [Pe]). In particular, Eskin, Fisher and Whyte ([EFW1], [EFW2])
proved the quasiisometric rigidity of the 3-dimensional solvable Lie group Sol. In this
paper, we use quasiconformal analysis to prove a rigidity property of some negatively
curved solvable Lie groups.

Let A be an n � n diagonal matrix with real eigenvalues ˛i with ˛iC1 > ˛i > 0:

A D

0
BB@

˛1In1
0 : : : 0

0 ˛2In2
: : : 0

: : : : : : : : : : : :

0 0 : : : ˛rInr

1
CCA ;

where Ini
is the ni � ni identity matrix and the 0’s are zero matrices (of various

sizes). Let R act on Rn by the linear transformations etA (t 2 R) and we can form
the semidirect product GA D Rn ÌA R. That is, GA D Rn �R as a smooth manifold,
and the group operation is given for all .x; t/; .y; s/ 2 Rn � R by

.x; t/ � .y; s/ D .x C etAy; t C s/:

The group GA is a simply connected solvable Lie group and is the subject of study
in this paper.
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We endow GA with the left invariant metric determined by taking the standard
Euclidean metric at the identity of GA � Rn � R D RnC1. With this metric GA

has sectional curvature �˛2
r � K � �˛2

1 (and so is Gromov hyperbolic). Hence
GA has a well defined ideal boundary @GA. There is a so-called cone topology on
GA D GA [ @GA, in which @GA is homeomorphic to the n-dimensional sphere and
GA is homeomorphic to the closed .n C 1/-ball in the Euclidean space. For each
x 2 Rn, the map �x W R ! GA, �x.t/ D .x; t/ is a geodesic. We call such a geodesic
a vertical geodesic. It can be checked that all vertical geodesics are asymptotic as
t ! C1. Hence they define a point �0 in the ideal boundary @GA.

Since GA is Gromov hyperbolic, there is a family of visual metrics on @GA.
For each � 2 @GA, there is also the so-called parabolic visual metric on @GAnf�g.
The relation between visual metrics and parabolic visual metrics is analogous to the
relation between spherical metric (on the sphere) and the Euclidean metric (on the
one point complement of the sphere). We next recall the parabolic visual metric D

on @GA viewed from �0.
The set @GAnf�0g can be naturally identified with Rn (see Section 2). Write

Rn D Rn1 � � � � � Rnr , where Rni is the eigenspace associated to the eigenvalue ˛i

of A. Each point x 2 Rn can be written as x D .x1; : : : ; xr/ with xi 2 Rni . The
parabolic visual metric D on @GAnf�0g � Rn is defined by

D.x; y/ D maxfjx1 � y1j; jx2 � y2j˛1=˛2 ; : : : ; jxr � yr j˛1=˛r g;

for all x D .x1; : : : ; xr/; y D .y1; : : : ; yr/ 2 Rn.
Let � W Œ0; 1/ ! Œ0; 1/ be a homeomorphism. An embedding of metric spaces

f W X ! Y is an �-quasisymmetric embedding if for all distinct triples x; y; z 2 X ,
we have

d.f .x/; f .y//

d.f .x/; f .z//
� �

�
d.x; y/

d.x; z/

�
:

If f is further assumed to be a homeomorphism, we say it is �-quasisymmetric. A
map f W X ! Y is quasisymmetric if it is �-quasisymmetric for some �.

When r � 2, Bruce Kleiner has proved that ([K]) every self quasisymmetry of
@GA (equipped with a visual metric) preserves the horizontal foliation (see Section 3)
and fixes the point �0. This is one of the main ingredients in the proof of our main
result. Since Kleiner’s proof is unpublished, we include a proof here for completeness.
Notice that Kleiner’s result implies that a self quasisymmetry of @GA induces a self
map of .Rn; D/.

The following is the main result of this paper.

Theorem 1.1. Let GA and �0 2 @GA be as above. If r � 2, then every self qua-
sisymmetry of @GA (equipped with a visual metric) is biLipschitz on @GA n f�0g with
respect to the parabolic visual metric D.
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One should compare this with quasiconformal maps on Euclidean spaces ([GV])
and Heisenberg groups ([B]), where there are non-biLipschitz quasiconformal maps.
On the other hand, the conclusion of Theorem 1.1 is not as strong as in the cases
of quaternionic hyperbolic spaces, Cayley plane ([P]) and Fuchsian buildings ([BP],
[X]), where every quasisymmetric map of the ideal boundary is actually a conformal
map. In our case, there are many non-conformal quasisymmetric maps of the ideal
boundary of GA. We also remark that in Section 15 of [T2] Tyson has previously
classified (quasi)metric spaces of the form .Rn; D/ up to quasisymmetry.

We list three consequences of Theorem 1.1.
Let L � 1 and C � 0. A (not necessarily continuous ) map f W X ! Y between

two metric spaces is an .L; A/-quasiisometry if

(1) d.x1; x2/=L � C � d.f .x1/; f .x2// � L d.x1; x2/ C C for all x1; x2 2 X ;

(2) for any y 2 Y , there is some x 2 X with d.f .x/; y/ � C .

In the case L D 1, we call f an almost isometry.

Corollary 1.2. Assume that r � 2. Then every self quasiisometry of GA is an almost
isometry.

Notice that an almost isometry is not necessarily a finite distance away from an
isometry.

The following result was previously obtained by B. Kleiner [K].

Corollary 1.3. If r � 2, then GA is not quasiisometric to any finitely generated
group.

In the identification of GA with Rn � R, we view the map h W Rn � R ! R,
h.x; t/ D t as the height function. A quasiisometry ' of GA is height-respecting if
jh.'.x; t// � t j is bounded independent of x, t .

Corollary 1.4. Assume that r � 2. Then all self quasiisometries of GA are height-
respecting.

The question of whether a quasiisometry of GA is height-respecting is important
for the following three reasons. First, Farb and Mosher ([FM1]) have classified
a large class of solvable Lie groups (including groups of type GA) up to height-
respecting quasiisometries. Second, there is no known examples of non-height-
respecting quasiisometries except for rank one symmetric spaces of noncompact
type. Finally, showing a quasiisometry is height-respecting is a key step in the proof
of the quasiisometric rigidity of Sol ([EFW1], [EFW2]).

When r D 1, the group GA is isometric to a rescaling of the real hyperbolic space.
In this case, all the above results fail.
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This paper is structured as follows. In Section 2 we review some basics about
the group GA. In Section 3 we prove that quasisymmetric self-maps of @GA n f�0g
equipped with the parabolic visual metric preserve horizontal foliations, and in Sec-
tion 4 we will prove that such maps are biLipschitz with respect to this metric. In
Section 5 we provide the proofs of Theorem 1.1 and the corollaries stated in Section 1.

Acknowledgment. We would like to thank Bruce Kleiner for helpful discussions.

2. The solvable Lie groups GA

In this section we review some basic facts about the group GA and define several
parabolic visual (quasi)metrics on the ideal boundary.

Let A and GA be as in the Introduction. We endow GA with the left invariant
metric determined by taking the standard Euclidean metric at the identity of GA �
Rn � R D RnC1. At a point .x; t/ 2 Rn � R � GA, the tangent space is identified
with Rn � R, and the Riemannian metric is given by the symmetric matrix

�
e�2tA 0

0 1

�
:

With this metric GA has sectional curvature �˛2
r � K � �˛2

1 . Hence GA has a well
defined ideal boundary @GA. All vertical geodesics �x (x 2 Rn) are asymptotic as
t ! C1. Hence they define a point �0 in the ideal boundary @GA.

The sets Rn � ftg (t 2 R) are horospheres centered at �0. For each t 2 R, the
induced metric on the horosphere Rn �ftg � GA is determined by the quadratic form
e�2tA. This metric has distance formula dRn�ftg..x; t/; .y; t// D je�tA.x�y/j. Here
j�j denotes the Euclidean norm. The distance between two horospheres, corresponding
to t D t1 and t D t2, is jt1 � t2j. It follows that for .x1; t1/; .x2; t2/ 2 GA D Rn � R,

d..x1; t1/; .x2; t2// � jt1 � t2j: (2.1)

Each geodesic ray in GA is asymptotic to either an upward oriented vertical
geodesic or a downward oriented vertical geodesic. The upward oriented geodesics
are asymptotic to �0 and the downward oriented vertical geodesics are in 1-to-1 cor-
respondence with Rn. Hence @GAnf�0g can be naturally identified with Rn.

Recall that a quasimetric on a set A is a function � W A � A ! Œ0; 1/ satisfying:
(1) �.x; y/ D �.y; x/ for all x; y 2 A; (2) �.x; y/ D 0 only when x D y; (3) there
is a constant L � 1 such that �.x; z/ � L.�.x; y/ C �.y; z// for all x; y; z 2 A.

Given x; y 2 Rn � @GAnf�0g, the parabolic visual quasimetric De.x; y/ is
defined as follows: De.x; y/ D et , where t is the unique real number such that
at height t the two vertical geodesics �x and �y are at distance one apart in the
horosphere; that is, dRn�ftg..x; t/; .y; t// D je�tA.x � y/j D 1: Here the subscript e
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in De means it corresponds to the Euclidean norm. This definition of parabolic visual
quasimetric is very natural, but De does not have a simple formula. Next we describe
another parabolic visual quasimetric which is biLipschitz equivalent with De and
admits a simple formula.

In addition to the Euclidean norm, there is another norm on Rn that is naturally
associated to GA. Write Rn D Rn1 �� � ��Rnr , where Rni is the eigenspace associated
to the eigenvalue ˛i of A. Each point x 2 Rn can be written as x D .x1; : : : ; xr/

with xi 2 Rni . The block supernorm is given by jxjs D maxfjx1j; : : : ; jxr jg for x D
.x1; : : : ; xr/. Using this norm one can define another parabolic visual quasimetric
on @GAnf�0g as follows: Ds.x; y/ D et , where t is the unique real number such that
at height t the two vertical geodesics �x and �y are at distance one apart with respect
to the norm j � js; that is, je�tA.x � y/js D 1: Here the subscript s in Ds means it
corresponds to the block supernorm j � js . Then Ds is given by Lemma 7 of [D]:

Ds.x; y/ D maxfjx1 � y1j 1
˛1 ; : : : ; jxr � yr j 1

˛r g;
for all x D .x1; : : : ; xr/; y D .y1; : : : ; yr/ 2 Rn.

Notice that jxjs � jxj � p
r jxjs for all x 2 Rn. Using this, one can verify the

following lemma, whose proof is left to the reader.

Lemma 2.1. For all x; y 2 Rn we have Ds.x; y/ � De.x; y/ � r1=2˛1Ds.x; y/.

In general, Ds does not satisfy the triangle inequality. However, for each 0 <

� � ˛1, the function D�
s is always a metric, called a parabolic visual metric. In this

paper we consider the following parabolic visual metric

D.x; y/ D D˛1
s .x; y/ D maxfjx1 � y1j; jx2 � y2j˛1=˛2 ; : : : ; jxr � yr j˛1=˛r g:

With respect to this metric the rectifiable curves in Rn � @GA n f�0g are necessarily
curves of the form � W I ! Rn with �.t/ D .�1.t/; c2; : : : ; cr/ where ci 2 Rni ,
2 � i � r , are constant vectors. This follows from the fact that the directions
corresponding to Rni , i � 2, have their Euclidean distance components “snowflaked”
by the power ˛1=˛i < 1.

3. Quasisymmetric maps preserve horizontal foliations

In this section we show that every self-quasisymmetry of .Rn; D/ preserves a nat-
ural foliation on Rn. We remark that this fact has been observed previously by
both B. Kleiner [K] and J. Tyson (Section 15, [T2]). We include a proof here for
completeness.

Recall that a metric space X endowed with a Borel measure � is an Ahlfors regular
space of dimension Q (for short, a Q-regular space) if there exists a constant C0 � 1



810 N. Shanmugalingam and X. Xie CMH

so that
C �1

0 rQ � �.Br/ � C0rQ

for every ball Br with radius r < diam.X/.
We need the following result; see [T1] for the definition of the modulus ModQ of

a family of curves.

Theorem 3.1 ([T1], Theorem 1.4). Let X and Y be locally compact, connected,
Q-regular metric spaces (Q > 1) and let f W X ! Y be an �-quasisymmetric home-
omorphism. Then there is a constant C depending only on �, Q and the regularity
constants of X and Y so that

1

C
ModQ � � ModQ f .�/ � C ModQ �

for every curve family � in X .

Recall that we write Rn as Rn D Rn1 � � � � � Rnr . Set Y D Rn2 � � � � � Rnr and
write Rn D Rn1 � Y . Since we assume r � 2, the set Y is nontrivial. The subsets
fRn1 � fyg W y 2 Y g form a foliation of Rn. We call this foliation the horizontal
foliation and each leaf Rn1 � fyg a horizontal leaf. Since ˛1

˛i
< 1 for all 2 � i � r ,

we notice that a curve in .Rn; D/ is not rectifiable if it is not contained in a horizontal
leaf.

Observe that .Rni ; j � j˛1=˛i / with the Hausdorff measure (which is comparable
to the ni -dimensional Lebesgue measure) is ni˛i=˛1-regular. Let � be the product
of the Hausdorff measures on the factors .Rni ; j � j˛1=˛i /. Then it is easy to see
that .Rn; D/ with the measure � is Q-regular with Q D †r

iD1ni
˛i

˛1
. It follows

that Theorem 3.1 applies to the metric space .Rn; D/. We also point out here that
the Hausdorff measure � is comparable to the canonical n-dimensional Lebesgue
measure on Rn.

Theorem 3.2. If r � 2, then every quasisymmetry F W .Rn; D/ ! .Rn; D/ preserves
the horizontal foliation on Rn.

Proof. Suppose F does not preserve the horizontal foliation. Then there are two
points p and q in some Rn1 � fyg such that f .p/ and f .q/ are not in the same
horizontal leaf. Let � be the Euclidean line segment from p to q and � be the family
of straight segments parallel to � in Rn whose union is an n-dimensional circular
cylinder with � as the central axis. The curves in � are rectifiable with respect to
the metric D. Since f is a homeomorphism, by choosing the radius of the circular
cylinder to be sufficiently small (by a compactness argument) we may assume that
no curve in � is mapped into a horizontal leaf. It follows that f .�/ has no locally
rectifiable curve and so ModQ f .�/ D 0. On the other hand, [V1], 7.2 (page 21),
shows that ModQ � > 0 (the Euclidean length element on each ˇ 2 � is the same
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as the length element on ˇ obtained from the metric D). Since Q D †r
iD1ni

˛i

˛1
> 1,

this contradicts Theorem 3.1. Hence each horizontal leaf is mapped to a horizontal
leaf. �

4. Quasisymmetry implies biLipschitz

In this section we show that each self quasisymmetry of .Rn; D/ is actually a biLip-
schitz map. One should contrast this with the case of Euclidean spaces and Heisenberg
groups, where there are non-biLipschitz quasisymmetric maps ([GV], [B]). On the
other hand, .Rn; D/ is not as rigid as the ideal boundary of a quaternionic hyperbolic
space or a Cayley plane ([P]) or a Fuchsian building ([BP], [X]), where each self
quasisymmetry is a conformal map.

Let K � 1 and C > 0. A bijection F W X1 ! X2 between two metric spaces is
called a K-quasisimilarity (with constant C ) if

C

K
d.x; y/ � d.F.x/; F.y// � C K d.x; y/

for all x; y 2 X1. It is clear that a map is a quasisimilarity if and only if it is a
biLipschitz map. The point of using the notion of quasisimilarity is that sometimes
there is control on K but not on C .

Theorem 4.1. Let F W .Rn; D/ ! .Rn; D/ be an �-quasisymmetry. Then F is a
K-quasisimilarity with K D .�.1/=��1.1//2rC2.

In this section, we first develop some intermediate results, and then use these
results to provide a proof of this theorem. We first recall some definitions.

Let g W X1 ! X2 be a homeomorphism between two metric spaces. We define
for every x 2 X1 and r > 0,

Lg.x; r/ D supfd.g.x/; g.x0// W d.x; x0/ � rg;
lg.x; r/ D inffd.g.x/; g.x0// W d.x; x0/ � rg:

Notice that if X1 is connected and X1 n B.x; r/ is non-empty, then lg.x; r/ �
Lg.x; r/. In this paper, we only consider connected metric spaces. Set

Lg.x/ D lim sup
r!0

Lg.x; r/

r
; lg.x/ D lim inf

r!0

lg.x; r/

r
:

Then

Lg�1.g.x// D 1

lg.x/
and lg�1.g.x// D 1

Lg.x/
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for any x 2 X1. If g is an �-quasisymmetry, then Lg.x; r/ � �.1/lg.x; r/ for all
x 2 X1 and r > 0. Hence if in addition

lim
r!0

Lg.x; r/

r
or lim

r!0

lg.x; r/

r

exist, then
0 � lg.x/ � Lg.x/ � �.1/lg.x/ � 1:

Recall the decomposition Rn D Rn1 � Y . Given points y D .x2; : : : ; xr/ and
y0 D .x0

2; : : : ; x0
r/ 2 Y with xi ; x0

i 2 Rni , set

DY .y; y0/ D maxfjx2 � x0
2j

˛1
˛2 ; jx3 � x0

3j
˛1
˛3 ; : : : ; jxr � x0

r j ˛1
˛r g:

For p D .x1; y/; p0 D .x0
1; y0/ 2 Rn1 � Y , we have D.p; p0/ D maxfjx1 �

x0
1j; DY .y; y0/g. We notice that for every y1; y2 2 Y , the distance in the metric D

of the two horizontal leaves,

D.Rn1 � fy1g; Rn1 � fy2g/ D DY .y1; y2/: (4.1)

Also, for any p D .x1; y1/ 2 Rn1 � Y and any y2 2 Y ,

D.p; Rn1 � fy2g/ D DY .y1; y2/: (4.2)

By Theorem 3.2 the quasisymmetry F preserves the horizontal foliation. Hence
it induces a map G W Y ! Y such that for any y 2 Y , F.Rn1 � fyg/ D Rn1 �
fG.y/g. For each y 2 Y , let H.�; y/ W Rn1 ! Rn1 be the map such that F.x; y/ D
.H.x; y/; G.y// for all x 2 Rn1 . Because F W .Rn; D/ ! .Rn; D/ is an �-
quasisymmetry, it follows that for each fixed y 2 Y , the map H.�; y/ W Rn1 ! Rn1

is an �-quasisymmetry with respect to the Euclidean metric on Rn1 . The following
lemma together with equations (4.1) and (4.2) imply that G W .Y; DY / ! .Y; DY / is
also an �-quasisymmetry.

Lemma 4.2 ([T2], Lemma 15.9). Let g W X1 ! X2 be an �-quasisymmetry and
A; B; C � X1. If d.A; B/ � t d.A; C / for some t � 0, then there is some a 2 A

such that
d.g.A/; g.B// � �.t/d.g.a/; g.C //:

We recall that if g W X1 ! X2 is an �-quasisymmetry, then g�1 W X2 ! X1 is an
�2-quasisymmetry, where �2.t/ D .��1.t�1//�1, see [V2], Theorem 6.3. Note that
�2.1/ D 1=��1.1/ and ��1

2 .1/ D 1=�.1/.
In the proofs of the following lemmas, the quantities lG , LG , lG�1 , LG�1 are

defined with respect to the metric DY . Similarly, lH.�;y/, LH.�;y/, lIy
and LIy

are
defined with respect to the Euclidean metric on Rn1 , where Iy WD H.�; y/�1 W Rn1 !
Rn1 . Lemmas 4.6 and 4.7 together verify Theorem 4.1 for the case r D 2. At the
end of this section we will use induction to then complete the proof of Theorem 4.1
for the general case r � 2.
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Lemma 4.3. The following holds for all y 2 Y and x 2 Rn1 :

(1) LG.y; r/ � �.1/ lH.�;y/.x; r/ for r > 0;

(2) ��1.1/ lH.�;y/.x/ � lG.y/ � �.1/ lH.�;y/.x/;

(3) ��1.1/ LH.�;y/.x/ � LG.y/ � �.1/ LH.�;y/.x/.

Proof. To prove (1), let y 2 Y , x 2 Rn1 and r > 0. Let y0 2 Y be an arbitrary
point with DY .y; y0/ � r and x0 2 Rn1 an arbitrary point with jx � x0j � r . Then
D..x; y/; .x; y0// � r � D..x; y/; .x0; y//. Since F is �-quasisymmetric, we have

DY .G.y/; G.y0// � D.F.x; y/; F.x; y0// � �.1/ D.F.x; y/; F.x0; y//

D �.1/ jH.x; y/ � H.x0; y/j:
Since y0 and x0 are chosen arbitrarily and are independent of each other, the inequality
follows.

Next we prove (2) and (3). Since Y is connected, we have lG.y; r/ � LG.y; r/.
Now the second inequality of (2) follows from (1). Similarly the second inequality
of (3) follows from (1) and the fact that lH.�;y/.x; r/ � LH.�;y/.x; r/.

To prove the first inequalities in (2) and (3), observe that the inverse map

F �1 W .Rn; D/ ! .Rn; D/

is an �2-quasisymmetry, with

F �1.x; y/ D .H.�; G�1.y//�1.x/; G�1.y// D .IG�1.y/.x/; G�1.y//:

Applying the second inequality of (2) proven above to Iy and G�1, we obtain

1

LG.y/
D lG�1.G.y// � �2.1/ � lIy

.H.x; y// D 1

��1.1/
� 1

LH.�;y/.x/
;

hence LG.y/ � ��1.1/LH.�;y/.x/, which is the first inequality of (3). Similarly,
using the second inequality of (3) we obtain the first inequality of (2). �

When r D 2, we have Y D Rn2 and DY D j � j
˛1
˛2 .

Lemma 4.4. Assume that r D 2. Then 0 < lG.y/ � LG.y/ � �.1/lG.y/ < 1 for
a.e. y 2 Y with respect to the Lebesgue measure on Y D Rn2 .

Proof. Observe in this case that DY .y; y0/ D jy�y0j˛1=˛2 for y; y0 2 Y D Rn2 . Be-
cause G is an �-quasisymmetry with respect to the metric DY , it is �1-quasisymmetric
with respect to the Euclidean metric, where �1.t/ D .�.t˛1=˛2//˛2=˛1 . Hence the map
G W .Rn2 ; j�j/ ! .Rn2 ; j�j/ is differentiable a.e. with respect to the Lebesgue measure.
With Le

G ; le
G the distortion quantities of the map G with respect to the Euclidean met-

ric, the differentiability property of G shows that limr!0
Le

G
.y;r/

r
and limr!0

le
G

.y;r/

r
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exist. Since LG.y; r/ D Le
G.y; r˛2=˛1/˛1=˛2 and lG.y; r/ D le

G.y; r˛2=˛1/˛1=˛2 ,

this implies that both limr!0
LG.y;r/

r
and limr!0

lG.y;r/
r

exist for a.e. y 2 Y . It
follows that

0 � lG.y/ � LG.y/ � �.1/lG.y/ � 1:

Fix y 2 Y such that both limr!0
LG.y;r/

r
and limr!0

lG.y;r/
r

exist. We next
prove that LG.y/ 6D 0; 1. Suppose that LG.y/ D 1. Then lG.y/ D 1 and so by
Lemma 4.3 (2), lH.�;y/.x/ D 1 for all x 2 Rn1 . Hence Iy D H.�; y/�1 W Rn1 !
Rn1 has the property that LIy

.x/ D 0 for all x 2 Rn1 . This implies that Iy is a
constant map, contradicting the fact that it is a homeomorphism. Similarly we use
Lemma 4.3 (3) to show that LG.y/ 6D 0. �

In the next two lemmas we use the fact that �.1/ � 1 and 0 < ��1.1/ � 1.

Lemma4.5. Suppose that r D 2. Then, for a.e.y 2 Y , themapH.�; y/ W Rn1 ! Rn1

is an �.1/=��1.1/-quasisimilarity with constant lG.y/ > 0.

Proof. By Lemma 4.3 (2) we have lH.�;y/.x/ � lG.y/=�.1/. Lemma 4.3 (3) and
Lemma 4.4 imply that, for a.e. y 2 Y , we have lG.y/ > 0 and

LH.�;y/.x/ � LG.y/=��1.1/ � .�.1/=��1.1// lG.y/

for all x 2 Rn1 . Because Rn1 is a geodesic space, for a.e. y 2 Y the map H.�; y/ is
an �.1/=��1.1/-quasisimilarity with constant lG.y/. �

Lemma 4.6. If r D 2, then there exists a constant C > 0 with the following proper-
ties:

(1) For each y 2 Y , H.�; y/ is an .�.1/=��1.1//4-quasisimilarity with constant C ;

(2) G W .Y; DY / ! .Y; DY / is an .�.1/=��1.1//5-quasisimilarity with constant C .

Proof. (1) Fix any y0 2 Y that satisfies both Lemma 4.4 and Lemma 4.5. Set
C D lG.y0/. Let y 2 Y be an arbitrary point satisfying both Lemma 4.4 and Lemma
4.5. Fix x0 2 Rn1 and choose x 2 Rn1 such that jx � x0j � DY .y; y0/. Then

D..x; y0/; .x0; y// D D..x; y/; .x0; y// D jx � x0j:
By choosing x so that in addition jH.x; y0/ � H.x0; y/j > DY .G.y0/; G.y//, by
the �-quasisymmetry of F we have

jH.x; y0/ � H.x0; y/j D D.F.x; y0/; F .x0; y//

� �.1/D.F.x; y/; F.x0; y// D �.1/jH.x; y/ � H.x0; y/j:
By the choice of y and Lemma 4.5, we have

jH.x; y/ � H.x0; y/j � .�.1/=��1.1//lG.y/jx � x0j:
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On the other hand,

jH.x; y0/ � H.x0; y/j � jH.x; y0/ � H.x0; y0/j � jH.x0; y0/ � H.x0; y/j
� lG.y0/

�.1/=��1.1/
jx � x0j � jH.x0; y0/ � H.x0; y/j:

Combining the above inequalities and letting jx � x0j ! 1, we obtain

lG.y/ � 1

.�.1//3.��1.1//�2
lG.y0/ D C

.�.1//3.��1.1//�2
: (4.3)

Switching the roles of y0 and y, we obtain lG.y/ � .�.1//3.��1.1//�2lG.y0/. By
Lemma 4.4, we have

LG.y/ � �.1/lG.y/ � .�.1//4.��1.1//�2C: (4.4)

Because Rn1 is a geodesic space, to show that H.�; y/ is a quasisimilarity it
suffices to gain control over lH.�;y/ and LH.�;y/. By (4.4) and Lemma 4.3 (3),

LH.�;y/.x/ � LG.y/=��1.1/ � C.�.1//4.��1.1//�3

for all x 2 Rn1 , and by (4.3) and Lemma 4.3 (2),

lH.�;y/.x/ � 1

�.1/
lG.y/ � C

.�.1//4.��1.1//�2
:

for all x 2 Rn1 . Hence for a.e. y, H.�; y/ is an .�.1/=��1.1//4-quasisimilarity with
constant C . A limiting argument shows this is true for all y. Hence (1) holds.

(2) Recall that when r D 2 we have Y D Rn2 and DY D j � j˛1=˛2 . Hence to
prove (2) it suffices to show that G W .Rn2 ; j � j/ ! .Rn2 ; j � j/ is a K-quasisimilarity
with K D .�.1/=��1.1//5˛2=˛1 . As observed before, G is �1-quasisymmetric with
respect to the Euclidean metric, where �1.t/ D .�.t˛1=˛2//˛2=˛1 . Because Rn2 is
a geodesic space, it suffices to gain control over le

G and Le
G , where le

G and Le
G are

similar to lG and LG , but with the Euclidean metric instead of the metric DY . Because
le
G.p/ D lG.p/˛2=˛1 and Le

G.p/ D LG.p/˛2=˛1 , it suffices to gain control over the
quantities lG and LG in terms of .�.1/=��1.1//5.

Notice that (1) implies

C

.�.1/=��1.1//4
� lH.�;y/.x/ � LH.�;y/.x/ � C.�.1/=��1.1//4

for all x 2 Rn1 and all y 2 Y . By Lemma 4.3, for all y 2 Y we have

C

.�.1/=��1.1//5
� lG.y/ � LG.y/ � C.�.1/=��1.1//5:

Hence (2) holds. �
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Lemma 4.7. Suppose that r � 2 and there are constants K � 1 and C > 0 with the
following properties:

(1) G W .Y; DY / ! .Y; DY / is a K-quasisimilarity with constant C ;

(2) For each y 2 Y , H.�; y/ is a K-quasisimilarity with constant C .

Then F is an .�.1/=��1.1//K-quasisimilarity with constant C .

Proof. Let .x1; y1/; .x2; y2/ 2 Rn1 � Y . We shall first establish a lower bound for
D.F.x1; y1/; F .x2; y2//. If jx1 � x2j � DY .y1; y2/, then D..x1; y1/; .x2; y2// D
DY .y1; y2/ and by (1),

D.F.x1; y1/; F .x2; y2// � DY .G.y1/; G.y2//

� C

K
DY .y1; y2/ D C

K
D..x1; y1/; .x2; y2//:

If jx1 � x2j > DY .y1; y2/, then

D..x1; y1/; .x2; y2// D D..x1; y2/; .x2; y2// D jx1 � x2j;
and since F is an �-quasisymmetry, by using (2),

D.F.x1; y1/; F .x2; y2// � 1

�.1/
D.F.x1; y2/; F .x2; y2//

D 1

�.1/
jH.x1; y2/ � H.x2; y2/j

� C

�.1/K
jx1 � x2j

D C

�.1/K
D..x1; y1/; .x2; y2//:

Hence we have a lower bound for D.F.x1; y1/; F .x2; y2//.
By (1), G�1 W .Y; DY / ! .Y; DY / is a K-quasisimilarity with constant C �1.

Similarly, (2) implies that for each y 2 Y , .H.�; y//�1 is a K-quasisimilarity
with constant C �1. Also recall that F �1 is an �2-quasisymmetry and F is an �-
quasisymmetry. Now the argument in the previous paragraph applied to F �1 implies

D.F �1.x1; y1/; F �1.x2; y2// � 1

CK�2.1/
D..x1; y1/; .x2; y2//:

It follows that

D.F.x1; y1/; F .x2; y2// � CK�2.1/D..x1; y1/; .x2; y2//

D CK

��1.1/
D..x1; y1/; .x2; y2//

for all .x1; y1/; .x2; y2/ 2 Rn, completing the proof. �
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Proof of Theorem 4.1. We induct on r . Lemmas 4.6 and 4.7 yield the desired result
in the case r D 2. Now we assume that r � 3 and that the Theorem is true for r � 1.
By Lemma 4.2, F induces an �-quasisymmetry G W .Y; DY / ! .Y; DY /. It follows
that G is �1-quasisymmetric with respect to the metric D

˛2=˛1

Y (and it is easy to verify
that this is indeed a metric), where �1.t/ D Œ�.t˛1=˛2/	˛2=˛1 . We point out here that
for .x2; : : : ; xr/; .x0

2; : : : ; x0
r/ 2 Y ,

DY ..x2; : : : ; xr/; .x0
2; : : : ; x0

r//˛2=˛1

D maxfjx2 � x0
2j; jx3 � x0

3j˛2=˛3 ; : : : ; jxr � x0
r j˛2=˛r g:

Hence the induction hypothesis applied to G W .Y; D
˛2=˛1

Y / ! .Y; D
˛2=˛1

Y / shows that
G is an .�1.1/=��1

1 .1//2r -quasisimilarity with constant C . Therefore G W .Y; DY / !
.Y; DY / is a K1-quasisimilarity with constant C ˛1=˛2 , where

K1 D
�

�1.1/

��1
1 .1/

� 2r˛1
˛2 D

�
�.1/

��1.1/

�2r

: (4.5)

This implies that C ˛1=˛2=K1 � lG.y/ � LG.y/ � C ˛1=˛2K1 for all y 2 Y . Now
Lemma 4.3 yields

C ˛1=˛2
1

K1�.1/
� lH.�;y/.x/ � LH.�;y/.x/ � C ˛1=˛2

K1

��1.1/

for all y 2 Y and all x 2 Rn1 . Since Rn1 is a geodesic space, for each y 2 Y the
map H.�; y/ is a K1

�.1/

��1.1/
-quasisimilarity with constant C ˛1=˛2 . By Lemma 4.7,

the map F is a K1. �.1/

��1.1/
/2-quasisimilarity with constant C ˛1=˛2 . Here K1 is as

in (4.5). �

5. Proof of the main results

In this section we will prove Theorem 1.1 and the corollaries from the introduction.
Let X be a CAT.�1/ space. Bourdon [Bo] defined a visual metric dx on @X for

each x 2 X . For each ! 2 @X , there is also a so-called parabolic visual metric
on @Xnf!g, whose definition is recalled below. Let ! 2 @X , and b W X ! R a
Busemann function associated to !. Define the Gromov product with respect to this
Busemann function by

.xjx0/b D 1

2
.b.x/ C b.x0/ � d.x; x0//;

which extends to points at infinity. The corresponding Hamenstädt metric [H] �b

is then defined as �b.�; �/ D e�.�j�/b for �; � 2 @Xnf!g. If x 2 X is such that
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b.x/ D 0, then

�b.�; �/ D dx.�; �/

dx.�; !/dx.�; !/
(5.1)

for �; � 2 @Xnf!g, see [FS], Section 2.3.
We remark that parabolic visual metrics have also been considered by Hersonsky–

Paulin [HP] and Bonk–Kleiner [BK].
Let A and GA be as in the introduction, and g0 the Riemannian metric on GA. Let

g D ˛2
1g0. Since .GA; g0/ has sectional curvature �˛2

r � K � �˛2
1 , we conclude

that .GA; g/ has sectional curvature �˛2
r =˛2

1 � K � �1 and hence is CAT.�1/.
Notice that b WD �˛1h is a Busemann function on .GA; g/ associated to �0, where
h W GA ! R, h.x; t/ D t is the height function. It is not difficulty to see that for
X D .GA; g/, the metric �b on @GAnf�0g is biLipschitz equivalent to D.

Proof of Theorem 1.1. Let F W .@GA; dx/ ! .@GA; dx/ be a quasisymmetric map,
where dx is the Bourdon metric associated to some base point x 2 GA in the
CAT.�1/ space .GA; ˛2

1g0/. We first prove that F.�0/ D �0. Let D be the met-
ric on @GAnf�0g D Rn considered in the previous sections. We have observed that
D is biLipschitz equivalent with the Hamenstädt metric �b , where b D �˛1h. Let

� be the product of the Hausdorff measures on the factors .Rni ; j � j
˛1
˛i / of Rn. Then

the metric measure space .Rn; D; �/ is Q-regular with Q D †r
iD1ni

˛i

˛1
. On @X

we define a measure �0 as follows: �0.f�0g/ D 0, and on @GAnf�0g D Rn, �0 is
absolutely continuous with respect to � with Radon–Nikodym derivative

d�0

d�
.�/ D 1

.1 C D.o; �//2Q

for � 2 @GA. It can be shown that .@GA; dx/ with �0 is also Q-regular. Hence
Theorem 3.1 applies to the map F W .@GA; dx/ ! .@GA; dx/ and the measure �0.

Suppose F.�0/ 6D �0. Then F �1.�0/ lies in exactly one horizontal leaf. Fix
some y 2 Y such that Rn1 � fyg does not contain F �1.�0/. Notice that the subset
.Rn1 � fyg/ [ f�0g of @GA is an n1-dimensional topological sphere. So F.Rn1 �
fyg[f�0g/ is an n1-dimensional topological sphere in Rn. Since each horizontal leaf
is an n1-dimensional Euclidean space, the set F.Rn1 � fyg [ f�0g/ is not contained
in any horizontal leaf. It follows that as a dense subset of F.Rn1 � fyg [ f�0g/, the
set F.Rn1 � fyg/ is also not contained in any horizontal leaf. Hence there are two
points p and q in Rn1 � fyg such that F.p/ and F.q/ are not in the same horizontal
leaf.

Let � be the Euclidean line segment from p to q and � be the family of straight
segments parallel to � in Rn whose union is an n-dimensional circular cylinder C

with � as the central axis. The curves in � are rectifiable with respect to the metric
D. Since F is a homeomorphism, by choosing the radius of the circular cylinder to
be sufficiently small (by a compactness argument) we may assume that no curve in
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� is mapped into a horizontal leaf and that F �1.�0/ is not in this cylinder. It follows
that F.�/ has no locally rectifiable curve with respect to D. Now notice that F.C /

is a compact subset of @GAnf�0g. By (5.1) the two metrics dx and �b are biLipschitz
equivalent on F.C /. As D and �b are biLipschitz equivalent, the metrics dx and D

are biLipschitz equivalent on F.C /. It follows that F.�/ has no locally rectifiable
curve with respect to dx . Hence ModQ F.�/ D 0 in the metric measure space
.@GA; dx; �0/. Theorem 3.1 then implies that ModQ � D 0 in the metric measure
space .@GA; dx; �0/. On the other hand, ModQ� > 0 in the metric measure space
.Rn; D; �/ (see the proof of Theorem 3.2). Since D and dx are biLipschitz equivalent
on C , and � and �0 are also comparable on C , we have ModQ � > 0 in the metric
measure space .@GA; dx; �0/, a contradiction.

Next we prove that F is biLipschitz with respect to the metric D. Since F.�0/ D
�0, the map F induces a map F W .@GAnf�0g; dx/ ! .@GAnf�0g; dx/. Then (5.1) im-
plies that F W .@GAnf�0g; �b/ ! .@GAnf�0g; �b/ is quasisymmetric. Since �b and D

are biLipschitz equivalent, F W .@GAnf�0g; D/ ! .@GAnf�0g; D/ is also quasisym-
metric. Now the result follows from Theorem 4.1. �

We note that because GA has sectional curvature �˛2
r � K � �˛2

1 , GA is a proper
geodesic ı-hyperbolic space with ı depending only on ˛1.

Proof of Corollary 1.3. Suppose there is a quasiisometry f W GA ! G from GA to
a finitely generated group G, where G is equipped with a fixed word metric. Since
GA is Gromov hyperbolic, it follows that G is Gromov hyperbolic and f induces a
quasisymmetric map @f W @GA ! @G. The left translation of G on itself induces an
action of G on the Gromov boundary @G by quasisymmetric maps. By conjugating
this action with @f we obtain an action of G on @GA by quasisymmetric maps. By
Theorem 1.1, this action has a global fixed point. It follows that the action of G on
@G has a global fixed point. This can happen only when G is virtually infinite cyclic,
in which case the Gromov boundary @G consists of only two points. This contradicts
the fact that @GA is a sphere of dimension n � 2 (since r � 2). �

The proofs of Corollaries 1.4 and 1.2 require some preparation.
Let X be a proper geodesic ı-hyperbolic space and �1; �2; �3 2 X [ @X be three

distinct points. For any constant C � 0, a point x 2 X is called a C -quasi-center
of the three points �1, �2, �3 if for each i D 1; 2; 3, there is a geodesic 
i joining �i

and �iC1 (�4 WD �1) such that the distance from x to 
i is at most C . For any C � 0,
there is a constant C 0 that depends only on ı and C such that the distance between
any two C -quasi-centers of �1, �2, �3 is at most C 0.

Notice that, if X is a CAT.�1/ space, !; �; � 2 @X are three distinct points,
x 2 X is a C -quasi-center of !; �; � for some C � 0, and b is a Busemann function
associated to !, then j.�j�/b � b.x/j � C 0 for some constant C 0 depending only on
C . It follows that

e�C 0

e�b.x/ � �b.�; �/ � eC 0

e�b.x/:
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Corollaries 1.2 and 1.4 follow from Theorem 1.1 and the following lemma. Recall
that, the metric �b is biLipschitz equivalent to D, and by Theorem 1.1, for any quasi-
isometry f W GA ! GA, the boundary map @f fixes �0 and restricts to a biLipschitz
map of .@GA n f�0g; D/, which we still denote by @f .

Let M be a CAT.�1/ space, �0 2 @M , and x0 2 M a base point. Let � be
the geodesic ray with �.0/ D x0 and �.1/ D �0, and B� the Busemann function
associated with � . Let �M WD �B�

be the Hamenstädt metric associated with the
Busemann function B� .

Let N be another CAT.�1/ space, and f W M ! N an .L0; C0/-quasiisometry.
For any � 2 @M and x 2 M , we set � 0 D @f .�/ and x0 D f .x/. Let � 0 be the
geodesic ray with � 0.0/ D x0

0 and � 0.1/ D � 0
0, and B� 0 the Busemann function

associated with � 0. Let �N WD �� 0 be the Hamenstädt metric associated with the
Busemann function B� 0 .

Lemma 5.1. Let s > 0. Suppose that there exists a constant C1 � 0 such that every
point x 2 M is a C1-quasi-center of some distinct triple .�0; �; �/ in @M . Then the
following three conditions are equivalent:

(i) there is a constant C � 0 such that jB� 0.f .x//� s �B� .x/j � C for all x 2 M ;

(ii) the boundary map @f W .@Mnf�0g; �s
M / ! .@N nf� 0

0g; �N / is biLipschitz;

(iii) there exists a constant C � 0 such that s � d.x; y/ � C � d.f .x/; f .y// �
s � d.x; y/ C C for all x; y 2 M:

Proof. .2/ H) .1/. Suppose that the boundary map

@f W .@Mnf�0g; �s
M / ! .@N nf� 0

0g; �N /

is L-biLipschitz for some L � 1. Let x 2 M . By assumption, x is a C1-quasi-center
of some distinct triple .�0; �; �/ in @M . By the property of Hamenstädt metric we
have

1

C2

e�B� .x/ � �M .�; �/ � C2e�B� .x/; (5.2)

where C2 depends only on C1. Since f W M ! N is an .L0; C0/-quasiisometry, the
point f .x/ is a C3-quasi-center of .� 0

0; � 0; �0/ with C3 D C3.L0; C0; C1/. It follows
that

1

C4

e�B�0 .f .x// � �N .� 0; �0/ � C4e�B�0 .f .x//; (5.3)

where C4 depends only on C3. Since @f W .@M nf�0g; �s
M / ! .@N nf� 0

0g; �N / is
L-biLipschitz, (5.2) and (5.3) imply jB� 0.f .x// � s � B� .x/j � ln.LC4C s

2 /.
.1/ H) .2/. Suppose there is a constant C such that jB� 0.f .x// � s � B� .x/j �

C for all x 2 M . Let � 6D � 2 @Mnf�0g. Then the triple .�0; �; �/ has a C2-
quasi-center x 2 M , where C2 is a universal constant. Since f W M ! N is
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an .L0; C0/-quasiisometry, the point f .x/ is a C3-quasi-center of .� 0
0; � 0; �0/ with

C3 D C3.L0; C0/. Then we have

1

C4

e�B� .x/ � �M .�; �/ � C4e�B� .x/

and
1

C5

e�B�0 .f .x// � �N .� 0; �0/ � C5e�B�0 .f .x//;

where C4 depends only on C2 and C5 depends only on C3. Now it follows from
jB� 0.f .x// � s � B� .x/j � C that @f W .@Mnf�0g; �s

M / ! .@N nf� 0
0g; �N / is L-

biLipschitz, where L D C5eC C s
4 .

.1/ H) .3/. Suppose there is a constant C � 0 such that jB� 0.f .x//�s �B� .x/j �
C for all x 2 M . Let x; y 2 M . Let p 2 M be a C2-quasi-center of .x; y; �0/,
where C2 is a universal constant. Since f W M ! N is an .L0; A0/-quasiisometry,
f .p/ is a C3-quasi-center of .f .x/; f .y/; � 0

0/ with C3 D C3.L0; C0; C2/. Then

jB� .x/ � B� .p/ � d.x; p/j � 2C2;

jB� .y/ � B� .p/ � d.y; p/j � 2C2;

jB� 0.f .y// � B� 0.f .p// � d.f .y/; f .p//j � 2C3

and
jB� 0.f .x// � B� 0.f .p// � d.f .x/; f .p//j � 2C3:

Also notice that jd.x; y/ � d.p; x/ � d.p; y/j � 2C2 and

jd.f .x/; f .y// � d.f .p/; f .x// � d.f .p/; f .y//j � 2C3:

These inequalities together with assumption (1) imply

jd.f .x/; f .y// � s � d.x; y/j � 6C3 C 4C C 6sC2:

.3/ H) .1/: Suppose (3) holds. Fix some � 2 @Mnf�0g. The image f .��0/ is
an .L0; C0/-quasi-geodesic from � 0 to � 0

0. By the stability of quasi-geodesics, the
Hausdorff distance HD.f .��0/; � 0� 0

0/ � C2 for some constant C2 D C2.L0; C0/. It
follows from this and (3) that

jB� 0.f .p// � B� 0.f .q// � sŒB� .p/ � B� .q/	j � C C 4C2

for all p; q 2 ��0. Fixing q 2 ��0 we obtain

jB� 0.f .p// � sB� .p/j � C3 WD C C 4C2 C jB� 0.f .q// � sB� .q/j (5.4)

for all p 2 ��0. Now let x 2 M be arbitrary. Let p 2 ��0 be the projection of x

onto ��0. Then p is a C4-quasi-center of .x; �; �0/ for some universal constant C4. It
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follows that f .p/ is a C5-quasi-center of .f .x/; � 0; � 0
0/ with C5 D C5.L0; C0; C4/.

Hence
jB� .x/ � B� .p/ � d.x; p/j � 2C4 (5.5)

and
jB� 0.f .x// � B� 0.f .p// � d.f .x//; f .p//j � 2C5: (5.6)

Now (5.4), (5.5), (5.6) and assumption (3) imply

jB� 0.f .x// � sB� .x/j � C C 2C5 C C3 C 2sC4

for all x 2 M . �
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