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Complete minimal surfaces and harmonic functions
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Abstract. We prove that for any open Riemann surface N and any non-constant harmonic
function h W N ! R, there exists a complete conformal minimal immersion X W N ! R3

whose third coordinate function coincides with h.
As a consequence, complete minimal surfaces with arbitrary conformal structure and whose

Gauss map misses two points are constructed.
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1. Introduction

Conformal minimal immersions of Riemann surfaces in R3 are harmonic maps. This
basic fact has strongly influenced the global theory of minimal surfaces, supplying
this field with powerful tools coming from classical complex analysis and Riemann
surfaces theory.

If X D .X1; X2; X3/ W N ! R3 is conformal and minimal, the holomorphic
1-forms �j WD @Xj , j D 1; 2; 3, satisfy the equation �2

1 C �2
2 C �2

3 D 0. As
a consequence, any conformal minimal immersion is uniquely determined (up to
translations) by any two of its harmonic coordinate functions. On the other hand,
it is reasonable to think that the family of conformal minimal immersions with a
prescribed coordinate function is in general vast. However, the construction of this
kind of surfaces turns out to be more complicated than expected under completeness
assumptions. A pioneering result in this direction can be found in [AF], where a
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satisfactory answer in the simply connected case is given. The aim of this paper is to
extend this result to the more general setting of arbitrary open Riemann surfaces.

Our main theorem asserts that:

Theorem I. Let N be an open Riemann surface, let h W N ! R be a non-constant
harmonic function and let p W H1.N ;Z/ ! R3 be a group morphism such that the
third coordinate of p.�/ coincides with Im

R
�
@h, for all � 2 H1.N ;Z/.

Then there exists a complete conformal minimal immersion

X D .X1; X2; X3/ W N ! R3

with X3 D h and flux map pX D p.

Recall that the flux map of a conformal minimal immersionX W N ! R3 is given
by pX .�/ D Im

R
�
@X , for all � 2 H1.N ;Z/.

As a consequence of Theorem I, we obtain some interesting results concerning the
Gauss map of minimal surfaces, the Calabi–Yau problem, holomorphic null curves
in C3 and maximal surfaces in the Lorentz–Minkowski space R3

1.
The study of the Gauss map is one of the fundamental problems in the theory of

minimal surfaces. Fujimoto [Fu] showed that the number of exceptional values of
the Gaussian image of a complete non-flat minimal surface is at most four, improving
some classical results by Osserman [Os1] and Xavier [Xa]. Since Sherk’s minimal
surfaces omit four points, then Fujimoto’s theorem is sharp. However, the number
of exceptional values strongly depends on the underlying conformal structure. For
instance, by Picard’s theorem there are no conformal non-flat minimal immersions
of the complex plane in R3 whose Gauss map omits three points. So it is natural
to wonder whether any open Riemann surface admits a complete conformal mini-
mal immersion with Gauss map omitting two points. We answer affirmatively this
question, proving considerably more:

Theorem II. Let N be an open Riemann surface, and let p W H1.N ;Z/ ! R3 be a
group morphism.

Then there exists a complete conformal minimal immersion X W N ! R3 whose
Gauss map omits two antipodal points and pX D p.

Calabi–Yau conjectures deal with the existence problem of complete minimal
surfaces with bounded coordinate functions. There is large literature on this topic,
see [JX], [Na], [CM], [FMM] for a good setting. From Theorem I follows that a
(necessary and) sufficient condition for an open Riemann surface to admit a complete
conformal non-flat minimal immersion into an open slab of R3 is to carry non-constant
bounded harmonic functions (see Corollary 4.3).

Likewise, by Theorem I, if N is an open Riemann surface and f W N ! C a non-
constant holomorphic function, there exists a complete null holomorphic immersion
.F1; F2; F3/ W N ! C3 (and so a complete holomorphic immersion .F1; F3/ W N !
C2) with F3 D f . The family of open Riemann surfaces admitting non-constant
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bounded holomorphic functions is particularly interesting from several points of view.
This space contains examples of arbitrary open topological type, and as above any
such surface admits a complete null holomorphic immersion in C2 � D (and so a
complete holomorphic immersion in C � D). We have compiled these ideas in the
following result (for the construction of proper complete null curves in C2 � D and
proper complete holomorphic curves in C � D see Corollary 4.4):

Corollary III. Let M be an open orientable surface. Then there exists a complete
minimal surface homeomorphic to M all whose associate surfaces are well defined
and contained in a slab of R3.

Complete minimal surfaces properly immersed in an open slab of R3 of arbitrary
topological type can be found in [FMM] (see also [JX], [RT], [Lo1], [Lo2], [MM],
[AFM] for a good setting). The problem of constructing bounded complete null
holomorphic curves in C3 has been solved in [AL2].

Finally, Theorem I provides weakly complete conformal maximal immersions in
the Lorentz–Minkowski 3-spacetime R3

1 with singularities and prescribed spacelike
or timelike coordinate functions (the notion of weakly complete maximal surface
with singularities was defined in [UY]). See Corollary 4.6 for more details.

In a forthcoming paper [AL2], the authors will extend these results to the nonori-
entable setting.

2. Preliminaries

For a topological surfaceM , we will denote as @.M/ the one dimensional topological
manifold determined by the boundary points of M . Given S � M , Sı and xS will
denote the interior and the closure of S inM , respectively. A Riemann surfaceM is
said to be open if it is non-compact and @.M/ D ;.

Remark 2.1. In the sequel N will denote a fixed but arbitrary open Riemann surface,
W � N an open connected subset of finite topology, and S � W a compact set.

For a proper subsetM of N we will denote by�0.M/ as the space of holomorphic
1-forms on an open neighborhood of S in N , whereas��

0.M/ will denote the space
of complex 1-forms � of type .1; 0/ that are continuous on M and holomorphic on
M ı. As usual, a 1-form � onM is said to be of type .1; 0/ if for any conformal chart
.U; z/ in N , � jU \M D h.z/dz for some function h W U \M ! C.

Definition 2.2 (Admissible set). A compact subset S � W is said to be admissible
in W if and only if:

� W �S has no bounded components inW (by definition, a connected component
V of W � S is said to be bounded in W if xV \W is compact, where xV is the
closure of V in N ),
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� MS WD Sı consists of a finite collection of pairwise disjoint compact regions in
W with C0 boundary,

� CS WD S � MS consists of a finite collection of pairwise disjoint analytical
Jordan arcs (recall that a compact Jordan arc in N is said to be analytical if it is
contained in an open analytical Jordan arc in N ), and

� any component˛ ofCS with an endpointP 2 MS admits an analytical extension
ˇ in W such that the unique component of ˇ � ˛ with endpoint P lies in MS .

Observe that if S is admissible in N then it is admissible in W as well, but the
contrary is in general false.

With the previous notation, a function f W S ! C defined on an admissible set S
in W is said to be smooth if f jMS

admits a smooth extension f0 to an open domain
V � W containing MS , and for any component ˛ of CS and any open analytical
Jordan arc ˇ in W containing ˛, f admits an smooth extension fˇ to ˇ satisfying
that fˇ jV \ˇ D f0jV \ˇ .

Likewise, a 1-form � 2 ��
0.S/ is said to be smooth if, for any closed conformal

disk .U; z/ onW such that S \U is admissible inW , �=dz is smooth in the previous
sense.

Given a smooth function f W S ! C holomorphic on Sı, we set df 2 ��
0.S/ as

the smooth 1-form given by df jMS
D d.f jMS

/ and df j˛\U D .f B˛/0.x/dzj˛\U ,
where .U; z D xC iy/ is a conformal chart onW such that ˛\U D z�1.R\z.U //.
Obviously, df j˛.t/ D .f B ˛/0.t/dt for any component ˛ of CS , where t is any
smooth parameter along ˛. A smooth 1-form � 2 ��

0.S/ is said to be exact if � D df

for some smooth f W S ! C holomorphic on Sı, or equivalently if
R

�
� D 0 for all

� 2 H1.S;Z/.
The following lemma and its corollaries will be required to approximate minimal

immersions by immersions defined on larger domains (possibly with higher topology).

Lemma 2.3 ([AL], Approximation Lemma). Let S be an admissible compact set
in W , and ˆ D .�j /j D1;2;3 a smooth triple in ��

0.S/
3, such that

P3
j D1 �

2
j D 0,P3

j D1 j�j j2 never vanishes on S , and ˆjMS
2 �0.MS /

3.
Then it is possible to uniformly approximate ˆ on S by a sequence fˆn D

.�j;n/j D1;2;3gn2N in �0.W /
3 satisfying

(i)
P3

j D1 �
2
j;n D 0,

(ii)
P3

j D1 j�j;nj2 never vanishes on W and

(iii) ˆn �ˆ is exact on S , for all n 2 N.

Recall that a 1-form � 2 ��
0.S/ is said to be uniformly approximated on S by

1-forms in �0.W /, if there exists f�ngn2N � �0.W / such that f �n��
dz

gn2N ! 0

uniformly on S \ U , for any conformal closed disc .U; dz/ on W .
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Corollary 2.4 ([AL], Corollary 4.8). The sequence fˆn D .�j;n/j D1;2;3gn2N in the
above lemma can be obtained such that �3;n D �3 for all n 2 N, provided that �3

extends holomorphically to W and never vanishes on CS .

Corollary 2.5. The sequence fˆn D .�j;n/j D1;2;3gn2N obtained in Lemma 2.3 can
be chosen such that �3;n never vanishes onW , for all n 2 N, provided that �3 never
vanishes on S .

Remark 2.6. Although Corollary 2.5 is not explicitly stated in [AL], it can be deduced
from the proof of the Approximation Lemma in [AL]. Indeed, the 1-form �3;n is
defined as �3;n D efn n, where fn is a holomorphic function on W , and  n 2
�0.W / never vanishes on W provided that �3 does in S , n 2 N.

2.1. Minimal surfaces. As remarked in Section 1, the coordinates functions of a
conformal minimal immersion X D .X1; X2; X3/ W W ! R3 are harmonic. If we
denote @ as the global complex operator given by @jU D @

@z
dz for any conformal

chart .U; z/ on W , then the corresponding 1-forms �j D @Xj , j D 1; 2; 3, are
holomorphic on W . Moreover, X and its pull-back metric are given by

X D Re
Z
.�1; �2; �3/; (2.1)

and

ds2
X D

3X
kD1

j�kj2 (2.2)

respectively. As a consequence, the triple ˆ D .�1; �2; �3/ satisfies the following
properties:

(i) �k have no real periods, k D 1; 2; 3,

(ii)
P3

kD1 �
2
k

D 0,

(iii) �k , k D 1; 2; 3, have no common zeroes.

Conversely, given a vectorial holomorphic 1-formˆ D .�1; �2; �3/ onW satisfying
(i) to (iii), then (2.1) determines a conformal minimal immersion X W W ! R3.

The triple ˆ is said to be the Weierstrass representation of X . A remarkable
fact is that the stereographic projection of the Gauss map of X is the (meromorphic)
function g D �3

�1�i�2
. In particular, the poles and zeros of g coincide with the zeros

of �3 with the same order (see [Os2]).
The flux of X along a closed curve � in W is defined as pX .�/ D R

�
�.s/ds,

where s is the arclength parameter of � and �.s/ is the conormal vector of X at �.s/
(i.e., the unique vector such that fdX.� 0.s//; �.s/g is an orthonormal positive basis
of the tangent plane of X at �.s/). It is easy to check that pX .�/ D Im

R
�
@X and

that the flux map pX W H1.M;Z/ ! R3 is a group morphism.
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As we will deal with admissible sets, a suitable notion for minimal immersions on
admissible sets will be required. This is the aim of the following definitions.

Let S be a admissible subset inW andX W S ! R3 a smooth map such thatX jCS

is regular, (i.e., X j˛ is a regular curve for all ˛ � CS ). By a smooth normal field
alongCS respect toX we mean a field$ W CS ! R3 such that, for any analytical arc
˛ � CS ,$ B˛ is smooth, unitary and orthogonal to .X B˛/0,$ extends smoothly to
any open analytical arc ˇ in W containing ˛, and $ is tangent to X on ˇ \ S . The
normal field $ is said to be orientable respect to X if for any component ˛ � CS

with endpoints P1, P2 2 @.MS /, and for any arclength parameter s along X j˛ , the
basis Bi D f.X j˛/0.si /;$.si /g of the tangent plane of X jMS

at Pi , i D 1; 2, are
both positive or negative, where si is the value of s for which ˛.si / D Pi , i D 1; 2.

Definition 2.7. Given a proper subset M � N , we denote by M.M/ the space
of maps X W M ! R3 extending as a conformal minimal immersion to an open
neighborhood of M in N . On the other hand, for an admissible set S in W we call
M�.S/ as the space of marked immersions X$ WD .X;$/, where

(1) X W S ! R3 is a smooth map,

(2) X jMS
2 M.MS /,

(3) X jCS
is regular, and

(4) $ is an orientable smooth normal field along CS respect to X .

We will endow M.M/ (resp. M�.S/) with the C0 topology of the uniform con-
vergence on compact subsets of M (resp. uniform convergence of maps and normal
fields on S ).

The notions of Weierstrass data and flux map can be also extended to immersions
in M�.S/. Indeed, given X$ 2 M�.S/, let @X$ D . O�j /j D1;2;3 be the complex
vectorial 1-form on S given by @X$ WD @.X jMS

/, and for any component ˛ of CS ,
@X$ WD dX.˛0.s// C i$.s/, where s is the arclength parameter of X j˛ such that
fdX.˛0.s0//;$.s0/g is positive provided that ˛.s0/ 2 @.MS /.

The triple ŷ WD @X$ will be called the generalized Weierstrass data ofX$ . It is
clear that ŷ 2 ��

0.S/
3 and is smooth. Notice also that

P3
j D1

O�2
j D 0,

P3
j D1 j O�j j2

never vanishes on S and Real. O�j / is an exact real 1-form on S , j D 1; 2; 3, hence

we also have X.P / D X.Q/C Real
R P

Q
. O�j /j D1;2;3, P , Q 2 S . In particular, since

X jMS
2 M.MS / then .�j /j D1;2;3 WD . O�j jMS

/j D1;2;3 are the Weierstrass data of
X jMS

.
The group homomorphism

pX$
W H1.S;Z/ ! R3; pX$

.�/ D Im
Z

�

@X$ ;
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is said to be the generalized flux map of X$ . Obviously, pX$Y
D pY jH1.S;Z/

provided thatX D Y jS and$Y is the conormal field of Y 2 M.W / along any curve
in CS .

3. The completeness lemma

Given a compact subset M � N and a map X D .X1; X2; X3/ W M ! R3, we

denote kXk WD maxM

˚� P3
j D1X

2
j

�1=2�
as the maximum norm of X on M .

The following lemma concentrates most of the technical computations required
in the proof of the main result of this paper.

Lemma 3.1. Let U , V be two compact regions in N such that U � V ı and V ı �U
has no bounded components in V ı. Consider a non-constant harmonic function
h W V ! R, an immersion X D .X1; X2; X3/ 2 M.U / and a group morphism
p W H1.V;Z/ ! R3 such that X3 D hjU , pX D pjH1.U;Z/ and the third coordinate
of p.�/ is Im

R
�
@h, for all � 2 H1.V;Z/.

Then, for any P0 2 U and � > 0, there exists Y D .Y1; Y2; Y3/ 2 M.V /

satisfying the following:

(i) kY �Xk < � on U ,

(ii) Y3 D h,

(iii) pY D p and

(iv) distY .P0; @.V // > 1=�.

Here distY denotes the distance on V in the intrinsic metric of the immersion Y .

Proof. We will prove this lemma by induction on (minus) the Euler characteristic of
V ı �U (recall that, since we are assuming that V ı �U has no bounded components
in V ı, then �.V ı �U/ � 0). The induction process is enclosed in the following two
claims.

Claim 3.2. The lemma holds if �.V ı � U/ D 0.

Proof. The argument we use now is analogous to the one employed in Lemma 1 of
[AF]. WriteV ı�U D Sk

j D1Aj , whereAj are pairwise disjoint open annuli. On each
component Aj we define the following labyrinth of compact sets. Let zj W Aj ! C
be a conformal parametrization, and consider a compact regionCj � Aj such thatCj

contains no zeros of @h, zj .Cj / is a compact annulus of radii rj and Rj , where rj <
Rj , and zj .Cj / contains the homology of zj .Aj /. Write �3 D @X3 D fj .zj /dzj ,
with jfj j > 0 on Cj . Let � be a positive constant with

� < minfjfj .P /j j P 2 Cj ; j D 1; : : : ; kg:
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Fix a natural number N (to be specified later) such that 2=N < minfRj � rj j j D
1; : : : ; kg. For any n 2 f1; : : : ; 2N 2g, consider the compact set in Cj :

Kj;n D
²
p 2 Aj j sn C 1

4N 3
� jzj .p/j � sn�1 � 1

4N 3
;

1

N 2
� arg..�1/nzj .p// � 2	 � 1

N 2

³
;

where sn WD Rj � n=N 3. Then, define

Kj D
2N 2[
nD1

Kj;n and K D
k[

j D1

Kj :

Define ˆ 2 �0.U [ K/3 by

ˆjU D @X; ˆjK D
�
1

2

�
1

M
�M

�
�3;

i

2

�
1

M
CM

�
�3; �3

�
;

where M > 2N 4 is a constant.
By Corollary 2.4 applied to S D U [K ,ˆ, and an open tubular neighborhood of

V , we can infer the existence of‰ 2 �0.V /
3 giving rise to a well-defined conformal

minimal immersion Y D .Y1; Y2; Y3/ 2 M.V / fulfilling (i), (ii) and (iii), and whose
metric ds2

Y satisfies

ds2
Y >

1

4

�
1

M
CM

�2

�2jdzj j2 > N 8�2jdzj j2 on Kj ; j D 1; : : : ; k: (3.1)

To finish the claim it remains to check (iv). Taking into account that ds2
Y �

j�3j2 > �2jdzj j2 on Cj , and (3.1), it is not hard to check that there exists a positive
constant 
j depending neither on � nor N such that

lengthds2
Y
.˛/ > 
j � � �N

for any ˛ curve in Cj joining the two components of @.Cj /. Thus, we can choose N
large enough such that 
j � � � N > 1=� for any j D 1; : : : ; k. In particular, (iv) is
achieved. �

Claim 3.3. Let n > 0. Assume that the lemma holds if ��.V ı � U/ < n. Then it
also holds for ��.V ı � U/ D n.

Proof. Since ��.V ı � U/ > 0, there exists O� 2 H1.V;Z/� H1.U;Z/ intersecting
V ı �U ı in a Jordan arc � with endpointsP1; P2 2 @.U / and otherwise disjoint from
@.U /, and such that S WD U [ � is an admissible set in an open tubular neighborhood
W of V in N . Moreover, we take O� such that @h never vanishes on � .
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Take F$ 2 M�.S/, F D .F1; F2; F3/, satisfying F jU D X , F3 D hjS , the third
coordinate of @F$ is @hjS , and pF$

. O�/ D p. O�/.
By Corollary 2.4 applied to the (generalized) Weierstrass data of F$ , S and W ,

we obtain a compact tubular neighborhood W 0 of S in V ı and Z D .Z1; Z2; Z3/ 2
M.W 0/ such that kZ �Xk < �=2 on U , pZ D pjH1.W 0;Z/, and Z3 D hjW 0 . Since
��.V ı �W 0/ < n, the induction hypothesis applied toZ and �=2 gives the existence
of an immersion Y satisfying the conclusion of the lemma. �

The proof is done. �

4. Main results

In this section we prove the results stated in the introduction and obtain some corol-
laries.

Theorem 4.1. Let h W N ! R be a non-constant harmonic function and let
p W H1.N ;Z/ ! R3 be a group morphism such that the third coordinate of p.�/
coincides with Im

R
�
@h, for all � 2 H1.N ;Z/.

Then there exists a complete conformal minimal immersion

X D .X1; X2; X3/ W N ! R3

with X3 D h and pX D p.

Proof. Consider an exhaustive sequence fVngn2N � N of compact regions such that
V1 is simply connected, Vn�1 � V ı

n , and V ı
n � Vn�1 has no bounded components in

V ı
n , n � 2.

LetY1 2 M.V1/ be the conformal minimal immersion with Weierstrass data given
by �3 D .@h/jV1

and g D �3=dz, where z is a conformal parameter on V1.
Fix a point P0 2 V ı

1 , and apply recursively Lemma 3.1 to obtain a sequence
fYngn2N , Yn 2 M.Vn/ satisfying that:

a) jjYn � Yn�1jj < 1=n2 on Vn�1,

b) distYn
.P0; @.Vn// > n

2,

c) pYn
D pjH1.Vn;Z/, and

d) the third coordinate function of Yn coincides with hjVn
,

for all n 2 N. Here distYn
denotes the distance on Vn in the intrinsic metric of the

immersion Yn. Since N D S
n2N Vn, property a) gives that fYngn2N converges

to a harmonic limit map X D .X1; X2; X3/ W N ! R3 uniformly on compact sets
(Harnack’s theorem). Moreover, from Hurwitz’ theorem and the fact that @Yn never
vanishes we infer that either X degenerates on a point or has no branch points.
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From d) follows X3 D h which is non-constant and so the first possibility can not
occur. On the other hand, properties b) and c) give that X is complete and pX D p,
respectively. �

Any open Riemann surface carries regular harmonic functions, that is to say,
harmonic functions with never vanishing differential. As a consequence, any open
Riemann surface admits a conformal complete minimal immersion in R3 whose
Gauss map misses two antipodal values. For completeness we include a detailed
proof of all these facts based in Corollary 2.5.

Theorem 4.2. Let p W H1.N ;Z/ ! R3 be a group morphism.
Then there exists a complete conformal minimal immersion X W N ! R3 such

that its meromorphic Gauss map has neither zeros nor poles and pX D p.

Proof. Take fVngn2N � N an exhaustive sequence of compact regions such that
V1 is simply connected, Vn � V ı

nC1, V ı
nC1 � Vn has no bounded components and

�.V ı
nC1 � Vn/ D �1. Let F 2 M.V1/ be a conformal minimal immersion with

Weierstrass data ‰ D . 1;  2;  3/ such that  3 never vanishes on V1.
Fix � > 0. The key step in the proof is the construction of a sequence fYngn2N ,

Yn 2 M.Vn/ with Weierstrass data ˆn D f.�j;n/j D1;2;3g satisfying that:

a) kYn � Yn�1k < �=n2 on Vn�1,

b) pYn
D pjH1.Vn;Z/ and

c) �3;n never vanishes on Vn,

for all n � 2.
Indeed, choose Y1 D F and assume that we have constructed Y1; : : : ; Yn. Then

the immersion YnC1 is defined as follows. Let O� 2 H1.VnC1;Z/ � H1.Vn;Z/
intersectingVnC1�V ı

n in a Jordan arc � with endpointsP1; P2 2 @.Vn/ and otherwise
disjoint from @.Vn/, and such that S WD Vn [ � is an admissible set in an open
tubular neighborhood W of VnC1 in N . Then extend Yn to a marked immersion
Z$ 2 M�.S/ satisfying that pZ$

D pjH1.S;Z/ and the third coordinate of @Z$

never vanishes on � . Applying Corollary 2.5 to the generalized Weierstrass data
of Z$ , S and W , and integrating the resulting 1-forms we get YnC1 2 M.VnC1/

satisfying the desired conditions.
By a), Harnack’s theorem and Hurwitz’theorem, the sequence fYngn2N converges

uniformly on compact sets to a conformal minimal immersionY W N ! R3, provided
that � is small enough. Labelˆ D .�1; �2; �3/ as its Weierstrass data. It is clear that
p D pY , let us check now that �3 never vanishes. Indeed, assume �3 has a zero at a
point in Vn0

, for n0 2 N. Since �3;n never vanishes in Vn0
for all n � n0, then �3

vanishes identically on Vn0
(Hurwitz’ theorem) and so in N . However, from a) we

infer that kY � Y1k � �
P1

nD1 1=n
2 D �	2=6 and so the third coordinate of Y is

non-constant provided that � is small enough, a contradiction.



Vol. 87 (2012) Complete minimal surfaces and harmonic functions 901

Set h W N ! R by h.P / D Re
R P

P0
�3, where P0 is an arbitrary fixed point in N .

Applying Theorem 4.1 toh andpwe obtain a complete conformal minimal immersion
X D .X1; X2; X3/ W N ! R3 such that pX D p and X3 D h. As @X3 D �3 never
vanishes on N then the meromorphic Gauss map of X has neither zeros nor poles,
concluding the proof. �

Open Riemann surfaces carrying non-constant bounded harmonic functions are
hyperbolic, but the reciprocal is false in general. However, in the case of finite topol-
ogy both statements are equivalent. Even more, if N is biholomorphic to a compact
Riemann surface minus a finite collection of at least two pairwise disjoint closed
discs, then there exists proper harmonic maps h W N ! .0; 1/. As a consequence,

Corollary 4.3. Any of the following statements holds:

(a) N carries a non-constant bounded harmonic function if and only if there exists
a conformal complete non-flat minimal immersion of N in a horizontal slab
of R3.

(b) If N is hyperbolic and of finite topology, then there exists a conformal complete
non-flat minimal immersion of N in a horizontal slab of R3.

(c) If N is biholomorphic to a compact Riemann surface minus a finite collection
of at least two pairwise disjoint closed discs, then N admits a proper conformal
complete non-flat minimal immersion in an open horizontal slab of R3.

In addition, in any case the first two coordinates of the flux map can be prescribed.

Ifh is the real part of a non-constant holomorphic function andp D 0, Theorem 4.1
also gives that:

Corollary 4.4. Any of the following statements holds:

(d) The following assertions are equivalent:

� N carries a non-constant bounded holomorphic function.

� There exists a full� complete null immersion of N in C2 � D.

� There exists a full complete holomorphic immersion of N in C � D.

(e) If N is hyperbolic and of finite topology, then there exists a full complete null
immersion of N in C2 � D and a full complete holomorphic immersion of N

in C � D.

(f) If N admits a proper holomorphic function into the unit disk, then N admits a
full proper complete minimal immersion in C2 �D and a full proper complete
holomorphic immersion in C � D, where D is any simply connected planar
domain (the caseD D C is proved in [AL]).

�A complex curve in Cn is said to be full if it is not contained in a linear complex subspace.
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Remark 4.5. The family of Riemann surfaces involved in item (d) (and so in item (a))
contains examples with any open orientable topological type.

The family of Riemann surfaces concerning item (f) is also very vast. For instance,
it includes all the finitely sheeted ramified coverings of the unit disc.

Although the first statement of the above remark is well known, for completeness
we sketch a proof based on Scheinberg approximation results [Sc]. Let N be an open
Riemann surface, and consider two compact regionsM , V � N such thatM � V ı,
�.V ı � M/ D �1 and V ı � M has no bounded components in V ı. Take also
� > 0 and a non-constant holomorphic function f W M ! D. Consider a Jordan
arc � � V ı � M with endpoints in @.M/ and otherwise disjoint from @.M/ such
that �.V ı � .M [ �// D 0 and V ı � .M [ �/ has no bounded components in V ı.
For simplicity write S D M [ � . Construct a continuous function Of W S ! D with
Of jM D f , and use Scheinberg approximation theorem to find a compact tubular

neighborhood zM of S in V ı and a holomorphic function Qf W zM ! D such that
�.V ı � zM/ D 0 and k Qf � f k < � on M . Applying recursively this argument,
we can find sequences fVngn2N of compact regions in N and holomorphic functions
ffn W Vn ! Dgn2N , such that:

� Vn � V ı
nC1, �.V ı

nC1 � Vn/ D �1, V ı
nC1 � Vn has no bounded components in

V ı
nC1 and N WD S

n2N Vn is homeomorphic to N , and

� kfnC1�fnk < �2�n�1 onVn for all n, where � D maxV1
jf1j�minV1

jf1j > 0.

The sequence ffngn2N converges uniformly on compact subsets of N to a non-
constant bounded holomorphic function u W N ! C. The proof is done.

We finish by proving a Lorentzian version of Theorem 4.1 for weakly com-
plete maximal surfaces in the Lorentz–Minkowski 3-spacetime R3

1 with signature
.�;C;C/. Recall that a conformal maximal immersionX W M ! R3

1 with singular-
ities is said to be weakly complete if the metric

P3
j D1 j�j j2 is complete onM , where

ˆ D .�1; �2; �3/ are the Weierstrass data of X (see [UY]).

Corollary 4.6. Let h W N ! R be a non-constant harmonic function.
Then there exist weakly complete conformal maximal immersions

Y D .Y1; Y2; Y3/ W N ! R3
1

and Z D .Z1; Z2; Z3/ W N ! R3
1 with Y1 D h D Z2.

Proof. Let X D .X1; X2; X3/ W N ! R3 be the immersion in Theorem 4.1 associ-
ated to h and the group morphism p W H1.N ;Z/ ! R3, p.�/ D .0; 0; Im

R
�
@h/ for

all � 2 H1.N ;Z/. LabelingX�
j as the conjugate harmonic function ofXj , j D 1; 2,

then Y D .X3; X
�
2 ; X

�
1 / W N ! R3

1 and Z D .X�
1 ; X3; X2/ W N ! R3

1 satisfy the
conclusion of the corollary. �
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