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Spherical pairs over close local fields
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Abstract. Extending results of [Kaz86] to the relative case, we relate harmonic analysis over
some spherical spaces G.F /=H.F /, where F is a field of positive characteristic, to harmonic
analysis over the spherical spaces G.E/=H.E/, where E is a suitably chosen field of charac-
teristic 0.

We apply our results to show that the pair .GLnC1.F /;GLn.F // is a strong Gelfand pair
for all local fields of arbitrary characteristic, and that the pair .GLnCk.F /;GLn.F /�GLk.F //
is a Gelfand pair for local fields of any characteristic different from 2. We also give a criterion
for finite generation of the space ofK-invariant compactly supported functions onG.E/=H.E/
as a module over the Hecke algebra.
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0. Introduction

Local fields of positive characteristic can be approximated by local fields of charac-
teristic zero. If F and E are local fields, we say that they are m-close if OF =P

m
F Š

OE=P
m
E , whereOF ; OE are the rings of integers of F and E, and PF ;PE are their

maximal ideals. For example, Fp..t// is m-close to Qp. m
p
p/. More generally, for

any local field F of positive characteristic p and any m there exists a (sufficiently
ramified) extension of Qp that is m-close to F .
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Let G be a reductive group defined over Z. For any local field F and conductor
` 2 Z�0, the Hecke algebra H`.G.F // is finitely generated and finitely presented.
Based on this fact, Kazhdan showed in [Kaz86] that for any ` there existsm � ` such
that the algebras H`.G.F // and H`.G.E// are isomorphic for anym-close fields F
andE. This allows one to transfer certain results in representation theory of reductive
groups from local fields of zero characteristic to local fields of positive characteristic.

In this paper we investigate a relative version of this technique. Let G be a
reductive group andH be a spherical subgroup. Suppose for simplicity that both are
defined over Z.

In the first part of the paper we consider the space �.G.F /=H.F //K of compactly
supported functions on G.F /=H.F / which are invariant with respect to a compact
open subgroup K. We prove under certain assumption on the pair .G;H/ that this
space is finitely generated (and hence finitely presented) over the Hecke algebra
HK.G.F //.

Theorem A (see Theorem 2.19). Let F be a (non-Archimedean) local field. Let
G be a reductive group and H < G be an algebraic subgroup both defined over
F . Suppose that for any parabolic subgroup P � G, there is a finite number of
double cosets P.F / n G.F /=H.F /. Suppose also that for any irreducible smooth
representation � of G.F / we have

dim HomH.F /.�jH.F /;C/ < 1: (1)

Then for any compact open subgroup K < G.F /, the space �.G.F /=H.F //K is a
finitely generated module over the Hecke algebra HK.G.F //.

Assumption (1) is rather weak in light of the results of [Del], [SV]. In particular,
it holds for all symmetric pairs over fields of characteristic different from 2. One
can easily show that the converse is also true. Namely, that if �.G.F /=H.F //K is a
finitely generated module over the Hecke algebra HK.G.F // for any compact open
subgroup K < G.F /, then (1) holds.

Remark. Theorem A implies that, if dim HomH.F /.�jH.F /;C/ is finite, then it is
bounded on every Bernstein component.

In the second part of the paper we introduce the notion of a uniform spherical pair
and prove for them the following analog of Kazhdan’s theorem.

Theorem B (see Theorem 3.12). Let H < G be reductive groups defined over Z.
Suppose that the pair .G;H/ is uniform spherical.

Then for any l there exists n such that for any n-close local fields F and E, the
module �.G.F /=H.F //K`.F / over the algebra H`.G.F // is isomorphic to the mod-
ule �.G.E/=H.E//K`.E/ over the algebra H`.G.E//, where we identify H`.G.F //

and H`.G.E// using Kazhdan’s isomorphism.
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This implies the following corollary.

Corollary C. Let .G;H/ be a uniform spherical pair of reductive groups defined
over Z. Suppose that

� For any local field F , and any parabolic subgroup P � G, there is a finite
number of double cosets P.F / nG.F /=H.F /.

� For any local field F of characteristic zero the pair .G.F /;H.F // is a Gelfand
pair, i.e. for any irreducible smooth representation � of G.F / we have

dim HomH.F /.�jH.F /;C/ � 1:

Then for any local field F the pair .G.F /;H.F // is a Gelfand pair.

We prove stronger versions of the last two results, where we do not require the
groups to be defined over Z. See §3 for more details.

Remark. In a similar way one can deduce an analogous corollary for cuspidal rep-
resentations. Namely, suppose that the first two conditions of the last corollary hold
and the third condition holds for all cuspidal representations �. Then for any local
field F the pair .G.F /;H.F // is a cuspidal Gelfand pair: for any irreducible smooth
cuspidal representation � of G.F / we have

dim HomH.F /.�jH.F /;C/ � 1:

Remark. Originally, we included in the formulation of Theorem B an extra condition:
we demanded that the module �.G.F /=H.F //K`.F / is finitely generated over the
Hecke algebra H`.G.F // for any F and l . This was our original motivation for
Theorem A. Later we realized that this condition just follows from the definition of
uniform spherical pair. However, we think that Theorem A and the technique we use
in its proof have importance of their own.

In the last part of the paper we apply our technique to show that .GLnC1;GLn/

is a strong Gelfand pair over any local field and .GLnCk;GLn � GLk/ is a Gelfand
pair over any local field of odd characteristic.

Theorem D. Let F be any local field. Then .GLnC1.F /;GLn.F // is a strong
Gelfand pair, i.e. for any irreducible smooth representations � of GLnC1.F / and �
of GLn.F / we have

dim HomGLn.F /.�; �/ � 1:

Remark. Recently, Henniart suggested a direct proof of this result, by generalizing
the techniques of the proof in characteristic 0, rather than using it as a black box.
This proof is not published yet.
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Theorem E. Let F be any local field. Suppose that char F ¤ 2. Then

.GLnCk.F /;GLn.F / � GLk.F //

is a Gelfand pair.

We deduce these theorems from the zero characteristic case, which was proven in
[AGRS] and [JR96] respectively. The proofs in [AGRS] and [JR96] cannot be directly
adapted to the case of positive characteristic since they rely on Jordan decomposition
which is problematic in positive characteristic, local fields of positive characteristic
being non-perfect.

Remark. In [AGS08], a special case of Theorem D was proven for all local fields;
namely the case when � is one-dimensional.

Remark. In [AG09a] and (independently) in [SZ], an analog of Theorem D was
proven for Archimedean local fields. In [AG09b], an analog of Theorem E was
proven for Archimedean local fields.

0.1. Structure of the paper. In Section 1 we introduce notation and give some
general preliminaries.

In Section 2 we prove Theorem A.
In Subsection 2.1 we collect a few general facts for the proof. One is a criterion,

due to Bernstein, for finite generation of the space of K-invariant vectors in a repre-
sentation of a reductive group G; the other facts concern homologies of l-groups. In
Subsection 2.2 we prove the main inductive step in the proof of Theorem A, and in
Subsection 2.3 we prove Theorem A. Subsection 2.4 is devoted to the proofs of some
facts about the homologies of l-groups.

In Section 3 we prove Theorem B and derive Corollary C.
In Subsection 3.1 we introduce the notion of uniform spherical pair. In Subsec-

tion 3.2 we prove the theorem and the corollary.
We provide applications of our results in Section 4. In Subsection 4.1 we prove

that the pair .GLnCk;GLn � GLk/ satisfies the assumptions of Corollary C over fields
of characteristic different from 2. In Subsections 4.3 and 4.2 we prove that the pair
.GLnC1 � GLn; �GLn/ satisfies the assumptions of Corollary C. These facts imply
Theorems D and E.
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1. Preliminaries and notation

Definition 1.1. A local field is a locally compact complete non-discrete topological
field. In this paper we will consider only non-Archimedean local fields. All such
fields have discrete valuations.

Remark 1.2. Any local field of characteristic zero and residue characteristic p is a
finite extension of the field Qp of p-adic numbers and any local field of characteristic
p is a finite extension of the field Fp..t// of formal Laurent series over the field with
p elements.

Notation 1.3. For a local field F we denote by valF its valuation, by OF the ring
of integers and by PF its unique maximal ideal. For an algebraic group G defined
overOF we denote byK`.G; F / the kernel of the (surjective) morphism G.OF / !
G.OF =P

`
F /. If ` > 0 then we call K`.G; F / the `-th congruence subgroup.

We will use the terminology of l-spaces and l-groups introduced in [BZ76]. An
l-space is a locally compact second countable totally disconnected topological space,
an l-group is a l-space with a continuous group structure. For further background on
l-spaces, l-groups and their representations we refer the reader to [BZ76].

Notation 1.4. LetG be an l-group. Denote by M.G/ the category of smooth complex
representations of G.

Define the functor of coinvariants CIG W M.G/ ! Vect by

CIG.V / WD V=.Spanfv � gv j v 2 V; g 2 Gg/:
Sometimes we will also write VG WD CIG.V /.

Notation 1.5. For an l-space X we denote by �.X/ the space of locally constant
compactly supported complex valued functions onX . If X is an analytic variety over
a non-Archimedean local field, we denote by M.X/ the space of locally constant
compactly supported measures on X .

Notation 1.6. For an l-group G and an open compact subgroup K we denote by
H .G;K/ or HK.G/ the Hecke algebra of G w.r.t. K, i.e. the algebra of compactly
supported measures on G that are invariant w.r.t. both left and right multiplication
by K.

For a local field F and a reductive group G defined over OF we will also write
H`.G.F // WD HK`.G/.G.F //.
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Notation 1.7. By a reductive group over a ring R, we mean a smooth group scheme
over Spec.R/ all of whose geometric fibers are reductive and connected.

2. Finite generation of Hecke modules

The goal of this section is to prove Theorem A.
In this section F is a fixed (non-Archimedean) local field of arbitrary character-

istic. All the algebraic groups and algebraic varieties that we consider in this section
are defined over F . In particular, reductive means reductive over F .

For the reader’s convenience, we now give an overview of the argument. In
Lemma 2.10 we present a criterion, due to Bernstein, for the finite generation of spaces
of K-invariants. The proof of the criterion uses the theory of Bernstein Center. This
condition is given in terms of all parabolic subgroups of G. We directly prove this
condition when the parabolic isG (this is Step 1 in the proof of Theorem A). The case
of general parabolic is reduced to the case where the parabolic isG. For this, the main
step is to show that the assumptions of the theorem imply similar assumptions for the
Levi components of the parabolic subgroups of G. This is proved in Lemma 2.16 by
stratifying the space G.F /=P.F / according to the H.F /-orbits inside it.

In the proof of this lemma we use two homological tools: Lemma 2.11 which
gives a criterion for finite dimensionality of the first homology of a representation and
Lemma 2.12 which connects the homologies of a representation and of its induction.

2.1. Preliminaries

Notation 2.1. For l-groupsH < G we denote by indG
H W M.H/ ! M.G/ the com-

pactly supported induction functor and by IndG
H W M.H/ ! M.G/ the full induction

functor.

Definition 2.2. Let G be a reductive group, let P < G be a parabolic subgroup with
unipotent radical U , and let M WD P=U . Such M is called a Levi subquotient of
G. Note that every representation of M.F / can be considered as a representation of
P.F / using the quotient morphism P � M . Define:

(1) The Jacquet functor

rGM W M.G.F // ! M.M.F //

by rGM .�/ WD .�jP.F //U.F /.

(2) The parabolic induction functor

iGM W M.M.F // ! M.G.F //

by iGM .�/ WD indG.F /

P.F /
.�/.
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Note that iGM is right adjoint to rGM . A representation � ofG.F / is called cuspidal
if rGM .�/ D 0 for any Levi subquotient M of G.

Definition 2.3. Let G be an l-group. A smooth representation V of G is called
compact if for any v 2 V and � 2 zV the matrix coefficient function defined by
mv;�.g/ WD �.gv/ is a compactly supported function on G.

Theorem 2.4 (Bernstein–Zelevinsky). Let G be an l-group. Then any compact
representation of G is a projective object in the category M.G/.

Definition 2.5. Let G be a reductive group.
(i) Denote by G1 the preimage in G.F / of the maximal compact subgroup of

G.F /=ŒG;G�.F /.
(ii) Let G0 WD G1Z.G.F //.
(iii) A complex character of G.F / is called unramified if it is trivial on G1. We

denote the set of all unramified characters by ‰G . Note that G.F /=G1 is a lattice
and therefore we can identify ‰G with .C�/n. This defines a structure of algebraic
variety on ‰G .

(iv) For any smooth representation � of G.F / we write ‰.�/ WD indG
G1
.�jG1/.

Note that‰.�/ ' �˝O.‰G/;whereG.F / acts only on the first factor, but this action
depends on the second factor. This identification gives a structure of O.‰G/-module
on ‰.�/.

Remark 2.6. The definition of unramified characters above is not the standard one,
but it is more convenient for our purposes.

Theorem 2.7 (Harish-Chandra). Let G be a reductive group and V be a cuspidal
representation of G.F /. Then V jG1 is a compact representation of G1.

Corollary 2.8. Let G be a reductive group and � be a cuspidal representation of
G.F /. Then

(i) �jG1 is a projective object in the category M.G1/.

(ii) ‰.�/ is a projective object in the category M.G.F //.

Proof. (i) is clear.
(ii) Note that

HomG.‰.�/; �/ Š HomG=G1.O.‰M /;HomG1.�; �//;

for any representation � . Therefore the functor � 7! HomG.‰.�/; �/ is a composi-
tion of two exact functors and hence is exact. �
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Definition 2.9. Let G be a reductive group and K < G.F / be a compact open
subgroup. Let

M.G;K/ WD fV 2 M.G.F // jV is generated by V Kg
and

M.G;K/? WD fV 2 M.G.F / jV K D 0g:
We call K a splitting subgroup if the category M.G.F // is the direct sum of the
categories M.G;K/ and M.G;K/?, and M.G;K/ Š M.HK.G//. Recall that an
abelian category A is a direct sum of two abelian subcategories B and C , if every
object of A is isomorphic to a direct sum of an object in B and an object in C , and,
furthermore, that there are no non-trivial morphisms between objects of B and C .

We will use the following statements from Bernstein’s theory on the center of
the category M.G/. Let P < G be a parabolic subgroup and M be the reductive
quotient of P .

(1) The set of splitting subgroups defines a basis at 1 for the topology ofG.F /. IfG
splits overOF then, for any large enough `, the congruence subgroupK`.G; F /

is splitting.

(2) Let xP denote the parabolic subgroup of G opposite to P . Furthermore, let
NrGM W M.G.F // ! M.M.F // denote the Jacquet functor defined using xP .
Then NrGM is right adjoint to iGM . In particular, iGM maps projective objects
to projective ones and hence for any irreducible cuspidal representation � of
M.F /, iGM .‰.�// is a projective object of M.G.F //.

(3) Denote by M� the subcategory of M.G.F // generated by iGM .‰.�//. Then

M.G;K/ D
M

.M;�/2BK

M�;

where BK is some finite set of pairs consisting of a Levi subquotient of G and
its cuspidal representation. Moreover, for any Levi subquotient M < G and
a cuspidal representation � of M.F / such that M� � M.G;K/ there exist
.M 0; �0/ 2 BK such that M� D M�0 .

(4) End.iGM .‰.�/// is finitely generated over O.‰/which is finitely generated over
the center of the ring End.iGM .‰.�///. The center of the ring End.iGM .‰.�///

is equal to the center Z.M�/ of the category M�.

For statement (1) see e.g. [Ber84], pp. 15–16, and §2 in [vD]. For statement (2) see
[Ber87] or [Bus01], Theorem 3. For statements (3), (4) see [Ber84], Propositions 2.10,
2.11.

We now present a criterion, due to Bernstein, for finite generation of the space
V K , consisting of vectors in a representation V that are invariant with respect to a
compact open subgroup K.
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Lemma 2.10. Let V be a smooth representation of G.F /. Suppose that for any
parabolic P < G and any irreducible cuspidal representation � ofM.F / (whereM
denotes the reductive quotient ofP ), HomG.F /.iGM .‰.�//; V / is a finitely generated
module over O.‰M /. Then V K is a finitely generated module over Z.HK.G.F ///,
for any compact open subgroup K < G.F /.

Proof. Step 1. Proof for the case when K is splitting and V D iGM .‰.�// for some
Levi subquotientM ofG and an irreducible cuspidal representation � ofM.F /:LetP
denote the parabolic subgroup that definesM andU denote its unipotent radical. Let
KM WD K=.U.F / \K/ < M.F /. If V K D 0 there is nothing to prove. Otherwise
M� is a direct summand of M.G;K/. Now

V K D ‰.�/KM D �KM ˝ O.‰/:

Hence V K is finitely generated over Z.M�/. Hence V K is finitely generated over
Z.M.G;K// D Z.HK.G//.

Step 2. Proof for the case when K is splitting and V 2 M� for some Levi
subquotient M < G and an irreducible cuspidal representation � of M.F /.

Let
� W iGM .‰.�//˝ Hom.iGM .‰.�//; V / � V

be the natural epimorphism. We are given that Hom.iGM .‰.�//; V / is finitely gen-
erated over O.‰/. Hence it is finitely generated over Z.M.�//. Choose some
generators ˛1; : : : ; ˛n 2 Hom.iGM .‰.�//. Let

 W iGM .‰.�//
n ,! iGM .‰.�//˝ Hom.iGM .‰.�//; V /

be the corresponding morphism. Im.�B / isZ.M.�//-invariant and hence coincides
with Im.�/. Hence � B is onto. The statement now follows from the previous step.

Step 3. Proof for the case whenK is splitting. LetW < V be the subrepresentation
generated by V K . By definition W 2 M.G;K/ and hence W D Ln

iD1Wi where
Wi 2 M�i for some �i . The lemma now follows from the previous step.

Step 4. General case. LetK 0 be a splitting subgroup s.t.K 0 < K. Let v1; : : : ; vn 2
V K0

be the generators ofV K0

overZ.HK0.G.F /// given by the previous step. Define
wi WD eKvi 2 V K where eK 2 HK.G.F // is the normalized Haar measure ofK:Let
us show that wi generate V K over Z.HK.G.F ///. Let x 2 V K . We can represent
x as a sum

P
hivi , where hi 2 Z.HK0.G.F ///. Now

x D eKx D
X

eKhivi D
X

eKeKhivi D
X

eKhieKvi

D
X

eKhieKeKvi D
X

eKhieKwi : �

Finally, in this subsection, we state two facts about homologies of l-groups. The
proofs and relevant definitions are in Subsection 2.4.
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Lemma 2.11. Let G be an algebraic group and U be its unipotent radical. Let � be
an irreducible cuspidal representation of .G=U /.F /. We treat � as a representation
of G.F / with trivial action of U.F /.

Let H < G be an algebraic subgroup. Suppose that the space of coinvariants
�H.F / is finite dimensional. Then dim H1.H.F /; �/ < 1:

We will also use the following version of Shapiro’s lemma.

Lemma 2.12. Let G be an l-group that acts transitively on an l-space X . Let F be
a G-equivariant sheaf over X . Choose a point x 2 X , let Fx denote the stalk of F

at x and let Gx denote the stabilizer of x. Then

Hi .G;F .X// D Hi .Gx;Fx/:

2.2. Descent of finite multiplicity

Definition 2.13. We call a pair .G;H/ consisting of a reductive group G and an
algebraic subgroup H an F -spherical pair if for any parabolic subgroup P � G,
there is a finite number of double cosets in P.F / nG.F /=H.F /.
Remark 2.14. If char F D 0 and G is quasi-split over F then .G;H/ is an F -
spherical pair if and only if it is a spherical pair of algebraic groups. However, we do
not know whether this is true if char F > 0.

Notation 2.15. Let G be a reductive group and H be a subgroup. Let P < G be
a parabolic subgroup and M be its Levi quotient. We denote by HM the image of
H \ P under the projection P � M .

The following lemma is the main step in the proof of Theorem A

Lemma 2.16. Let .G;H/ be an F -spherical pair. Let P < G be a parabolic
subgroup andM be its Levi quotient. Then

(i) .M;HM / is also an F -spherical pair.
(ii) Suppose also that for any smooth irreducible representation � of G.F / we

have
dim HomH.F /.�jH.F /;C/ < 1:

Then for any irreducible cuspidal representation 	 ofM.F / we have

dim HomHM .F /.	 jHM .F /;C/ < 1:

Remark 2.17. One can show that the converse of (ii) is also true. Namely, if
dim HomHM .F /.	 jHM .F /;C/ < 1 for any irreducible cuspidal representation 	
of M.F / for any Levi subquotient M then dim HomH.F /.�jH.F /;C/ < 1 for any
smooth irreducible representation � of G.F /. We will not prove this since we will
not use this.
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We will need the following lemma.

Lemma 2.18. LetM be an l-group and V be a smooth representation ofM . Let 0 D
F 0V � � � � � F n�1V � F nV D V be a finite filtration of V by subrepresentations.
Suppose that for any i , either

dim.F iV=F i�1V /M D 1
or

both dim.F iV=F i�1V /M < 1 and dim H1.M; .F
iV=F i�1V // < 1:

Suppose also that dim VM < 1. Then dim.F iV=F i�1V /M < 1 for any i .

Proof. We prove by a decreasing induction on i that dim.F iV /M < 1, and, there-
fore, dim.F iV=F i�1V /M < 1. Consider the short exact sequence

0 ! F i�1V ! F iV ! F iV=F i�1V ! 0;

and the corresponding long exact sequence

� � � ! H1.M; .F
iV=F i�1V // ! .F i�1V /M

! .F iV /M ! .F iV=F i�1V /M ! 0:

In this sequence dim H1.M; .F
iV=F i�1V // < 1 and dim.F iV /M < 1, and hence

dim.F i�1V /M < 1. �

Now we are ready to prove Lemma 2.16.

Proof of Lemma 2.16. (i) is trivial.
(ii) Let P < G be a parabolic subgroup, M be the Levi quotient of P and let �

be a cuspidal representation of M.F /. We know that dim.iGM�/H.F / < 1 and we
have to show that dim �HM .F / < 1.

Let � denote the natural G.F /-equivariant locally constant sheaf of complex
vector spaces on G.F /=P.F / such that iGM� Š �.G.F /=P.F /;�/. Let Yj de-
note the H.F / orbits on G.F /=P.F /. We know that there exists a natural filtra-
tion on �.G.F /=P.F /;�/jH.F / with associated graded components isomorphic to
�.Yj ;�j /, where �j are H.F /- equivariant sheaves on Yj corresponding to �. For
any j choose a representative yj 2 Yj . Do it in such a way that there exists j0 such
that yj0 D Œ1�. Let Pj WD Gyj and Mj be its Levi quotient. Note that Pj0 D P

and Mj0 D M . Let �j be the stalk of �j at the point yj . Clearly �j is a cuspidal
irreducible representation ofMj .F / and �j0 D �. By Shapiro’s lemma (Lemma 2.12)

Hi .H.F /; �.Yj ;�j // Š Hi ..H \ Pj /.F /; �j /:

By Lemma 2.11 either dim H0..H \ Pj /.F /; �j / D 1 or both dim H0..H \
Pj /.F /; �j / < 1 and dim H1..H \ Pj /.F /; �j / < 1. Hence by Lemma 2.18
dim H0..H \ Pj /.F /; �j / < 1 and hence dim �HM .F / < 1. �
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2.3. Proof of Theorem A. In this subsection we prove Theorem A. Let us remind
its formulation.

Theorem 2.19. Let .G;H/ be an F -spherical pair. Suppose that for any irreducible
smooth representation � of G.F / we have

dim HomH.F /.�jH.F /;C/ < 1: (2)

Then for any compact open subgroup K < G.F /, �.G.F /=H.F //K is a finitely
generated module over the Hecke algebra HK.G.F //.

Remark 2.20. Conjecturally, any F -spherical pair satisfies the condition (2). In
[Del] and in [SV] this is proven for wide classes of spherical pairs, which include all
symmetric pairs over fields of characteristic different from 2.

We will need several lemmas and definitions.

Lemma 2.21. Let .G;H/ be anF -spherical pair, and let zH D H.F /Z.G.F //\G1.
Suppose that for any smooth (respectively cuspidal) irreducible representation � of
G.F / we have dim HomH.F /.�jH.F /;C/ < 1. Then for any smooth (respectively
cuspidal) irreducible representation � ofG.F / and for every character Q
 of zH whose
restriction toH.F / \G1 is trivial, we have

dim Hom zH .�j zH ; Q
/ < 1:

Proof. Let � be a smooth (respectively cuspidal) irreducible representation ofG.F /,
and let Q
 be a character of zH whose restriction to H.F / \G1 is trivial.

Hom zH
�
�j zH ; Q
�

D Hom.H.F /Z.G.F ///\G0

�
�j.H.F /Z.G.F ///\G0 ; Ind.H.F /Z.G.F ///\G0

zH Q

�
:

Since
H.F /Z.G.F // \G0 D zHZ.G.F // \G0 D zHZ.G.F //;

the subspace of Ind.H.F /Z.G.F ///\G0
zH Q
 that transforms under Z.G.F // according

to the central character of � is at most one dimensional. If this subspace is trivial,
then the lemma is clear. Otherwise, denote it by � . Since H.F / \ G1 is normal in
H.F /Z.G.F //, we get that the restriction of Ind.H.F /Z.G.F ///\G0

zH Q
 toH.F /\G1

is trivial, and hence that � jH.F /\G1 is trivial. Hence Hom zH .�j zH ; Q
/ is equal to

Hom.H.F /Z.G.F ///\G0

�
�j.H.F /Z.G.F ///\G0 ; �

�
D HomH.F /\G0

�
�jH.F /\G0 ; � jH.F /\G0

�
D HomH.F /

�
�jH.F /; IndH.F /

H.F /\G0
� jH.F /\G0

�
:
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AsH.F /=H.F /\G0 is finite and abelian, the representation IndH.F /

H.F /\G0
� jH.F /\G0

is a finite direct sum of characters of H.F /, the restrictions of all to H.F /\G1 are
trivial. Any character � of H.F / whose restriction to H.F / \ G1 is trivial can be
extended to a character of G.F /, because H.F /=.H.F / \ G1/ is a sub-lattice of
G.F /=G1. Denoting the extension by ‚, we get that

HomH.F /

�
�jH.F /; �

� D HomH.F /

�
.�˝‚�1/jH.F /;C

�
;

but � ˝ ‚�1 is again smooth (respectively cuspidal) irreducible representation of
G.F /, so this last space is finite-dimensional. �

Lemma2.22. LetAbea commutative unitalNoetherianalgebrawithout zero divisors
and let K be its field of fractions. Let KN be the space of all sequences of elements
of K. Let V be a finite dimensional subspace of KN and let M WD V \ AN . Then
M is finitely generated.

Proof. Since A does not have zero divisors, M injects into KN . There is a number
n such that the projection of V to Kf1;:::ng is injective. Therefore, M injects into
Af1;:::ng, and, since A is Noetherian, M is finitely generated. �

Lemma 2.23. Let M be an l-group, let L � M be a closed subgroup, and let
L0 � L be an open normal subgroup of L such that L=L0 is a lattice. Let � be a
smooth representation ofM of countable dimension. Suppose that for any character

 of L whose restriction to L0 is trivial we have

dim HomL.�jL; 
/ < 1:

Consider HomL0.�; �.L=L0// as a representation of L, where L acts by

..hf /.x//.Œy�/ D .f .x//.Œyh�/:

Then this representation is finitely generated.

Proof. By assumption, the action ofL on HomL0.�; �.L=L0// factors throughL=L0.
Since L=L0 is discrete, �.L=L0/ is the group algebra CŒL=L0�. We want to show
that HomL0.�;CŒL=L0�/ is a finitely generated module over CŒL=L0�.

Let C.L=L0/ be the fraction field of CŒL=L0�. Choosing a countable basis for
the vector space of �, we can identify any C-linear map from � to CŒL=L0� with an
element of CŒL=L0�N . Moreover, the condition that the map intertwines the action
of L=L0 translates into a collection of linear equations that the tuple in CŒL=L0�N
should satisfy. Hence, HomL0.�;CŒL=L0�/ is the intersection of the C.L=L0/-vector
space HomL0.�;C.L=L0// and CŒL=L0�N . By Lemma 2.22, it suffices to prove that
HomL0.�;C.L=L0// is finite dimensional over C.L=L0/.
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Since L0 is separable, and � is smooth and of countable dimension, there are
only countably many linear equations defining HomL0.�;C.L=L0//; denote them by
�1; �2; : : : 2 �

C.L=L0/N
��

. Choose a countable subfield K � C that contains all
the coefficients of the elements of C.L=L0/ that appear in any of the �i ’s. If we
define W as the K.L=L0/-linear subspace of K.L=L0/N defined by the �i ’s, then
HomL0.�;C.L=L0//DW˝K.L=L0/C.L=L

0/, so dimC.L=L0/ HomL0.�;C.L=L0//D
dimK.L=L0/W .

Since L=L0 is a lattice generated by, say, g1; : : : ; gn, we get that K.L=L0/ D
K.t˙1

1 ; : : : ; t˙1
n / D K.t1; : : : ; tn/. Choosing elements �1; : : : ; �n 2 C such that

tr:degK.K.�1; : : : ; �n// D n, we get an injection � of K.L=L0/ into C. As before,
we get that if we denote the C-vector subspace of CN cut by the equations �.�i /

by U , then dimK.L=L0/W D dimC U . However, U is isomorphic to HomL0.�; 
/,
where 
 is the character of L=L0 such that 
.gi / D �i . By assumption, this last
vector space is finite dimensional. �

Now we are ready to prove Theorem 2.19.

Proof of Theorem 2.19. By Lemma 2.10 it is enough to show that for any parabolic
P < G and any irreducible cuspidal representation � of M.F / (where M denotes
the Levi quotient of P ), Hom.iGM .‰.�//; �.G.F /=H.F /// is a finitely generated
module over O.‰M /.

Step 1. Proof for the case P D G.
We have

HomG.F /.iGM .‰.�//; �.G.F /=H.F /// D HomG.F /.‰.�/; �.G.F /=H.F ///

D HomG1.�; �.G.F /=H.F ///:

Here we consider the space HomG1.�; �.G.F /=H.F /// with the natural action of
G. Note that G1 acts trivially and hence this action gives rise to an action of G=G1,
which gives the O.‰G/ - module structure.

Now consider the subspace

V WD HomG1.�; �.G
1=.H.F / \G1/// � HomG1.�; �.G.F /=H.F ///:

It generates HomG1.�; �.G.F /=H.F /// as a representation of G.F /, and therefore
also as an O.‰G/ - module. Note that V is H.F / invariant. Therefore it is enough
to show that V is finitely generated over H.F /: Write H 0 WD H.F / \ G1 and
H 00 WD .H.F /Z.G.F /// \G1. Note that

�.G1=H 0/ Š indG1

H 00.�.H
00=H 0// � IndG1

H 00.�.H
00=H 0//:

Therefore V is canonically embedded into HomH 00.�; �.H 00=H 0//. The action ofH
on V is naturally extended to an action … on HomH 00.�; �.H 00=H 0// by

..….h/.f //.v//.Œk�/ D f .h�1v/.Œh�1kh�/:
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Let „ be the action of H 00 on HomH 00.�; �.H 00=H 0// as described in Lemma 2.23,
i.e.

..„.h/.f //.v//.Œk�/ D f .v/.Œkh�/:

By Lemmas 2.23 and 2.21 it is enough to show that for any h 2 H 00 there exist an
h0 2 H and a scalar ˛ s.t.

„.h/ D ˛….h0/:
In order to show this let us decompose h to a product h D zh0 where h0 2 H and
z 2 Z.G.F //. Now

..„.h/.f //.v//.Œk�/ D f .v/.Œkh�/ D f .h�1v/.Œh�1kh�/

D f .h
0�1z�1v/.Œh

0�1kh0�/ D f̨ .h0�1v/.Œh
0�1kh0�/

D ˛..….h0/.f //.v//.Œk�/;

where ˛ is the scalar with which z�1 acts on �.

Step 2. Proof in the general case.

HomG.F /.iGM .‰.�//; �.G.F /=H.F ///

D HomM.F /.‰.�/; NrMG.�.G.F /=H.F ////

D HomM.F /.‰.�/; ..�.G.F /=H.F ///j xP .F // xU .F //;

where xU is the unipotent radical of xP , the parabolic opposite to P . Let fYign
iD1

be the orbits of xP .F / on G.F /=H.F /. We know that there exists a filtration on
.�.G.F /=H.F ///j xP .F / such that the associated graded components are isomorphic
to �.Yi /. Consider the corresponding filtration on ..�.G.F /=H.F ///j xP .F // xU .F /.
Let Vi be the associated graded components of this filtration. We have a natural
surjection �.Yi / xU � Vi . In order to prove that

HomM.F /.‰.�/; ..�.G.F /=H.F ///j xP .F // xU .F //

is finitely generated it is enough to prove that HomM.F /.‰.�/; Vi / is finitely gener-
ated. Since ‰.�/ is a projective object of M.M.F // (by Corollary 2.8), it is enough
to show that HomM.F /.‰.�/; �.Yi / xU .F // is finitely generated. LetZi WD xU.F /nYi .
It is easy to see thatZi Š M.F /=..Hi /M .F //, whereHi is some conjugation ofH .

Now the assertion follows from the previous step using Lemma 2.16. �

2.4. Homologies of l -groups. The goal of this subsection is to prove Lemma 2.11
and Lemma 2.12.

We start with some generalities on abelian categories.

Definition 2.24. Let C be an abelian category. We call a family of objects A � Ob.C/
generating family if for any object X 2 Ob.C/ there exists an object Y 2 A and an
epimorphism Y � X .
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Definition 2.25. Let C and D be abelian categories and let F W C ! D be a right-
exact additive functor. A family of objects A � Ob.C/ is called F -adapted if it
is generating, closed under direct sums and for any exact sequence 0 ! A1 ! A2

! � � � with Ai 2 A, the sequence 0 ! F .A1/ ! F .A2/ ! � � � is also exact.
For example, a generating, closed under direct sums system consisting of projec-

tive objects is F -adapted for any right-exact functor F . For an l-groupG the system
of objects consisting of direct sums of copies of �.G/ is an example of such system.

The following results are well known.

Theorem 2.26. Let C and D be abelian categories and F W C ! D be a right-exact
additive functor. Suppose that there exists an F -adapted family A � Ob.C/. Then
F has derived functors.

Lemma 2.27. Let A, B and C be abelian categories. Let F W A ! B and G W B !
C be right-exact additive functors. Suppose that both F and G have derived functors.

(i) Suppose that F is exact. Suppose also that there exists a class E � Ob.A/
which is G B F -adapted and such that F .X/ is G -acyclic for any X 2 E . Then the
functors Li .G B F / and LiG B F are isomorphic.

(ii) Suppose that there exists a class E � Ob.A/ which is G B F -adapted and
F -adapted and such that F .X/ is G -acyclic for any X 2 E . Let Y 2 A be an
F -acyclic object. Then Li .G B F /.Y / is (naturally) isomorphic to LiG .F .Y //.

(iii) Suppose that G is exact. Suppose that there exists a class E � Ob.A/ which
is G B F -adapted and F -adapted. Then the functors Li .G B F / and G B LiF are
isomorphic.

Definition 2.28. Let G be an l-group. For any smooth representation V of G let
Hi .G; V / WD Li CIG.V /. Recall that CIG denotes the coinvariants functor.

Proof of Lemma 2.12. Note that F .X/ D indG
Gx

Fx . Note also that indG
Gx

is an exact
functor, and CIGx D CIG B indG

Gx
. The lemma follows now from Lemma 2.27 (i).

�

Lemma 2.29. Let L be a lattice. Let V be a linear space. Let L act on V by a
character. Then

H1.L; V / D H0.L; V /˝C .L˝Z C/:

The proof of this lemma is straightforward.

Lemma 2.30. Let L be an l-group and L0 < L be a subgroup. Then:

(i) For any representation V of L we have

Hi .L
0; V / D LiF .V /;



Vol. 87 (2012) Spherical pairs over close local fields 945

where F W M.L/ ! Vect is the functor defined by F .V / D VL0 .

(ii) Suppose that L0 is normal. Let F 0 W M.L/ ! M.L=L0/ be the functor
defined by F 0.V / D VL0 . Then for any representation V of L we have Hi .L

0; V / D
LiF 0.V /:

Proof. (i) Consider the restriction functor ResL
L0 W M.L/ ! M.L0/. Note that it is

exact. Consider also the functor G W M.L0/ ! Vect defined by G .�/ WD �L0 . Note
that F D G B ResL

L0 . The assertion follows now from Lemma 2.27 (i) using the fact
that �.L/ is a projective object in M.L0/.

(ii) follows from (i) in a similar way, but using part (iii) of Lemma 2.27 instead
part (i). �

Lemma 2.31. Let G be a reductive group andH < G be a subgroup. Consider the
functor

F W M.G.F // ! M.H.F /=.H.F / \G1// defined by F .V / D VH.F /\G1 :

Then any finitely generated cuspidal representation of G.F / is an F -acyclic object.

Proof. Consider the restriction functors

ResH.F /=.H.F /\G1/
1 W M.H.F /=.H.F / \G1// ! Vect

and
ResG.F /

G1
W M.G.F // ! M.G1/:

Note that they are exact. Consider also the functor G W M.G1/ ! Vect defined by

G .�/ WD �G1\H.F /. Let E WD G BResG.F /

G1
. Note that E D ResH.F /=.H.F /\G1/

1 B F .

M.G.F //
F ��

E

���������������������

ResG.F/
G1

��

M.H.F /=.H.F /\G1//

ResH.F/\G
1

1

��
M.G1/

G �� Vect

Let � be a cuspidal finitely generated representation of G.F /. By Corollary 2.8,
ResG.F /

G1
.�/ is projective and hence G -acyclic. Hence by Lemma 2.27 (ii) � is E-

acyclic. Hence by Lemma 2.27 (iii) � is F -acyclic. �

Lemma 2.32. Let L be an l-group and L0 < L be a normal subgroup. Suppose that
Hi .L

0;C/ D 0 for all i > 0. Let � be a representation ofL=L0. Denote by Ext.�/ the
natural representation of L obtained from �. Then Hi .L=L

0; �/ D Hi .L;Ext.�//.
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Proof. Consider the coinvariants functors E W M.L/ ! Vect and F W M.L=L0/ !
Vect defined by E.V / WD VL and F .V / WD VL=L0 . Note that F D E B Ext and Ext
is exact. By Shapiro’s lemma (Lemma 2.12), �.L=L0/ is acyclic with respect to both
E and F . The lemma follows now from Lemma 2.27 (ii). �

Remark 2.33. Recall that if L0 D N.F / where N is a unipotent algebraic group,
then Hi .L

0/ D 0 for all i > 0.

Now we are ready to prove Lemma 2.11

Proof of Lemma 2.11. By Lemma 2.32 we can assume that G is reductive.
Let F W M.G.F // ! Vect be the functor defined by F .V / WD VH.F /: Let

G W M.G.F // ! M.H.F /=.H.F / \G1//

be defined by
G .V / WD VH.F /\G1 :

Let
E W M.H.F /=.H.F / \G1// ! Vect

be defined by
E.V / WD VH.F /=.H.F /\G1/:

Clearly, F D E B G . By Lemma 2.31, � is G -acyclic. Hence by Lemma 2.27 (ii),
LiF .�/ D LiE.G .�//.

Consider the coinvariants functors

K W M.H.F /=.H.F / \G1// ! M.H.F /=.H.F / \G0//

and
C W M.H.F /=.H.F / \G0// ! Vect;

defined by K.�/ WD �.H.F /\G0/=.H.F /\G1/ and C.�/ WD �H.F /=.H.F /\G1/. Note
that E D C B K .

M.G.F //
G ��

F

��
M.H.F /=.H.F / \G1//

E

��K �� M.H.F /=.H.F / \G0// C �� Vect

Note that C is exact since the group H.F /=.H.F / \ G1/ is finite. Hence by
Lemma 2.27 (iii), LiE D C B LiK .
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Now, by Lemma 2.30,

Hi .H.F /; �/ D LiF .�/ D LiE.G .�// D C.LiK.G .�///

D C.Hi ..H.F / \G0/=.H.F / \G1/;G .�///:

Hence, by Lemma 2.29, if H0.H.F /; �/ is finite dimensional then H1.H.F /; �/

is finite dimensional. �

3. Uniform spherical pairs

In this section we introduce the notion of uniform spherical pair and prove Theorem B.
We follow the main steps of [Kaz86], where the author constructs an isomorphism

between the Hecke algebras of a reductive group over close enough local fields.
First, he constructs a linear isomorphism between the Hecke algebras, using Cartan
decomposition. Then, he shows that for two given elements of the Hecke algebra
there exists m such that if the fields are m-close then the product of those elements
will be mapped to the product of their images. Then he uses the fact that the Hecke
algebras are finitely generated and finitely presented to deduce the theorem.

Roughly speaking, we call a pairH < G of reductive groups a uniform spherical
pair if it possesses a relative analog of Cartan decomposition, i.e. a “nice” descrip-
tion of the set of double cosets K0.G; F / n G.F /=H.F / which in some sense does
not depend on F . We give the precise definition in the first subsection and prove
Theorem B in the second subsection.

3.1. Definitions. Let R be a complete and smooth local ring, letm denote its maxi-
mal ideal, and let � be an element inm nm2. A good example to keep in mind is the
ring ZpŒŒ���. An .R; �/-local field is a local field F together with an epimorphism
of rings R ! OF , such that the image of � (which we will continue to denote by �)
is a uniformizer. Denote the collection of all .R; �/-local fields by FR;� .

Suppose that G is a reductive group defined and split over R. Let T be a fixed
split torus, and let X�.T / be the coweight lattice of T . For every 
 2 X�.T / and
every .R; �/-local field F , we write �� D 
.�/ 2 T .F / � G.F /. We denote the
subgroup G.OF / by K0.F /, and denote its `’th congruence subgroup by K`.F /.

Definition 3.1. Let F be a local field. Let X � An
OF

be a closed subscheme. For
any x; y 2 X.F /, define the valuative distance between x and y to be valF .x; y/ WD
minfvalF .xi � yi /g. Also, for any x 2 X.F /, define valF .x/ WD minfvalF .xi /g.
The ball of valuative radius ` around a point x inX.F /will be denoted byB.x; `/.F /.

Definition 3.2. Let G be a split reductive group defined over R and let H � G be a
smooth reductive subgroup defined over R. We say that the pair .G;H/ is uniform
spherical if there are
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� an R-split torus T � G,

� an affine embedding G=H ,! An.

� a finite subset X � G.R/=H.R/.

� a subset ‡ � X�.T /,
such that

(1) the map x 7! K0.F /x from �‡X to K0.F /nG.F /=H.F / is onto for every
F 2 FR;� ,

(2) for every x; y 2 �‡X � .G=H/.RŒ��1�/, the closure in G of the RŒ��1�-
scheme

Tx;y WD fg 2 G �Spec.R/ Spec.RŒ��1�/jgx D yg
is smooth over R; we denote this closure by Sx;y ,

(3) for every x 2 �‡X, the valuation valF .x/ does not depend on F 2 FR;� ,

(4) there exists l0 s.t. for any l > l0, for any F 2 FR;� and for every x 2 X and
˛ 2 ‡ we have Kl�

˛Klx D Kl�
˛x.

If G, H are defined over Z, we say that the pair .G;H/ is uniform spherical if,
for every R as above, the pair .G �Spec.Z/ Spec.R/;H �Spec.Z/ Spec.R// is uniform
spherical.

In Section 4 we give two examples of uniform spherical pairs. We will list now
several basic properties of uniform spherical pairs. In light of the recent developments
in the structure theory of symmetric and spherical pairs (e.g. [Del], [SV]), we believe
that the majority of symmetric pairs and many spherical pairs defined over local fields
are specializations of appropriate uniform spherical pairs.

From now and until the end of the section we fix a uniform spherical pair .G;H/.
First note that, since H is smooth, the fibers of G ! G=H are smooth. Hence the
map G ! G=H is smooth.

Lemma 3.3. Let .G;H/ be a uniform spherical pair. Let x; y 2 �‡X. Let F be an
.R; �/-local field. Then

Sx;y.OF / D Tx;y.F / \G.O/:

Proof. The inclusionSx;y.OF / � Tx;y.F /\G.OF / is evident. In order to prove the
other inclusion we have to show that any map  W Spec.OF / ! G �Spec R SpecOF

such that Im. jSpec F / � Tx;y �Spec RŒ��1� SpecF satisfies Im � Sx;y �Spec R

SpecOF .
This holds sinceSx;y�Spec RSpecOF lies in the closure ofTx;y�Spec RŒ��1�SpecF

in G �Spec R SpecOF . �
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Lemma 3.4. If .G;H/ is uniform spherical, then there is a subset � � �‡X such
that, for every F 2 FR;� , the map x 7! K0.F /x is a bijection between � and
K0.F /nG.F /=H.F /.

Proof. It is enough to show that for any F;F 0 2 FR;� and for any x; y 2 �‡X, the
equality K0.F /x D K0.F /y is equivalent to K0.F

0/x D K0.F
0/y.

The scheme Sx;y ˝ OF is smooth over R, and hence it is smooth over OF .
Therefore, it is formally smooth. This implies that the map Sx;y.OF / ! Sx;y.Fq/

is onto and hence fg 2 G.OF /jgx D yg ¤ ; if and only if Sx;y.Fq/ ¤ ;.
Hence, the two equalities K0.F /x D K0.F /y and K0.F

0/x D K0.F
0/y are

equivalent to Sx;y.Fq/ ¤ ;. �

From now until the end of the section we fix � as in the lemma.

Proposition 3.5. If .G;H/ is uniform spherical, then for every x 2 �‡X and every
` 2 N, there is M 2 N such that for every F 2 FR;� , the set K`.F /x contains a
ball of radiusM around x.

Proof. Since, for every ı 2 X�.T / and every ` 2 N, there is n 2 N such that
Kn.F / � �ıK`.F /�

�ı for every F , we can assume that x 2 X. The claim now
follows from the following version of the implicit function theorem.

Lemma 3.6. Let F be a local field. Let X and Y be affine schemes defined over
OF . Let  W X ! Y be a smooth morphism defined over OF . Let x 2 X.OF / and
y WD  .x/. Then  .B.x; `/.F // D B.y; `/.F / for any natural number l .

Proof. The inclusion  .B.x; `/.F // � B.y; `/.F / is clear. We prove the inclusion
 .B.x; `/.F // � B.y; `/.F /.

Case 1: X and Y are affine spaces and  is etale. The proof is standard.

Case 2: X D Am,  is etale: We can assume that Y � AmCn is defined by
f1; : : : ; fn with independent differentials, and that  is the projection. The proof in
this case follows from Case 1 by considering the map F W AmCn ! AmCn given by
F.x1; : : : ; xmCn/ D .x1; : : : ; xm; f1; : : : ; fn/.

Case 3:  is etale: Follows from Case 2 by restriction from the ambient affine
spaces.

Case 4: In general, a smooth morphism is a composition of an etale morphism
and a projection, for which the claim is trivial. �

�

Lemma 3.7. For every 
 2 X�.T / and x 2 �‡X, there is a finite subset B � �‡X
such that ��K0.F /x � S

y2B K0.F /y for all F 2 FR;� .



950 A. Aizenbud, N. Avni and D. Gourevitch CMH

Proof. By Lemma 3.4, we can assume that the sets K0.F /�
�x0 for 
 2 ‡ are

disjoint. There is a constant C such that for every F and for every g 2 ��K0.F /�
ı ,

valF .gx0/ � C . Fix F and assume that g 2 K0.F /�
�K0.F /�

ı . From the proof
of Proposition 3.5, it follows that K0.F /gx0 contains a ball whose radius depends
only on 
; ı. Since F is locally compact, there are only finitely many disjoint such
balls in the set fx 2 G.F /=H.F / j valF .x/ � C g, so there are only finitely many
� 2 ‡ such that valF .��x0/ � C . By definition, this finite set, S , does not depend
on the field F . Therefore, ��K0.F /�

ıx0 � S
�2S K0.F /�

�x0. �

Notation 3.8. • Denote by M`.G.F /=H.F // the space of K`.F /-invariant com-
pactly supported measures on G.F /=H.F /.

• For aKl invariant subsetU �G.F /=H.F /we denote by1U 2 M`.G.F /=H.F //

the Haar measure onG.F /=H.F /multiplied by the characteristic function of U and
normalized s.t. its integral is 1: We define in a similar way 1V 2 H`.G; F / for a
Kl -double invariant subset V � G.F /.

Proposition 3.9. If .G;H/ is uniform spherical then M`.G.F /=H.F // is finitely
generated over H`.G; F / for any `.

Proof. As in step 4 of Lemma 2.10, it is enough to prove the assertion for large
enough l . Thus we may assume that for every x 2 X and ˛ 2 ‡ we have
Kl�

˛Klx D Kl�
˛x. Therefore, 1Kl�

˛Kl1Klx D 1Kl�
˛x . Hence for any g 2

K0=Kl we have .g1Kl�
˛Kl /1Klx D 1gKl�

˛x . Now, the elements 1gKl�
˛x span

M`.G.F /=H.F // by condition 1 in definition 3.2. This implies that the elements
1Klx generate M`.G.F /=H.F //. �

3.2. Close local fields

Definition 3.10. Two .R; �/-local fields F;E 2 FR;� , are n-close if there is an
isomorphism �E;F W OF =�

n ! OE=�
n such that the two maps R ! OF !

OF =�
n ! OE=�

n and R ! OE ! OE=�
n coincide. In this case, � is unique.

Theorem3.11 ([Kaz86]). LetF bean .R; �/ localfield. Then, for any`, there existsn
such that, for anyE 2 FR;� , which is n-close toF , there exists a unique isomorphism
ˆH ;` between the algebras H`.G; F / and H`.G;E/ that maps the Haar measure
onK`.F /�

�K`.F / to the Haar measure onK`.E/�
�K`.E/, for every 
 2 X�.T /,

and intertwines the actions of the finite group K0.F /=K`.F /
�F;EŠ K0.E/=K`.E/.

In this section we prove the following refinement of Theorem B from the Intro-
duction:
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Theorem 3.12. Let .G;H/ be a uniform spherical pair. Then, for any ` 2 N and
F 2 FR;� , there exists n such that, for any E 2 FR;� that is n-close to F , there
exists a unique map

M`.G.F /=H.F // ! M`.G.E/=H.E//

which is an isomorphism of modules over the Hecke algebra

H .G.F /;K`.F //
ˆH;`Š H .G.E/;K`.E//

that maps the Haar measure on K`.F /x to the Haar measure on K`.E/x, for every

x 2 � � ��‡ , and intertwines the actions of the finite group K0.F /=K`.F /
�F;EŠ

K0.E/=K`.E/.

For the proof we will need notation and several lemmas.

Notation 3.13. For any valued field F with uniformizer � and any integer m 2 Z,
we denote by resm W F ! F=�mO the projection. Note that the groups �nO are
naturally isomorphic for all n. Hence if two local fields F;E 2 FR;� are n-close,
then for anymwe are given an isomorphism, which we also denote by �F;E between
�m�nOF =�

mOF and �m�nOE=�
mOE , which are subgroups of F=�mOF and

E=�mOE .

Lemma 3.14. Suppose that .G;H/ is a uniform spherical pair, and suppose that
F;E 2 FR;� are `-close. Then for all ı 2 �,

�F;E .StabK0.F /=K`.F /K`.F /ı/ D StabK0.E/=K`.E/K`.E/ı:

Proof. The stabilizer of K`.F /ı in K0=K` is the projection of the stabilizer of ı in
K0 to K0=K`. In other words, it is the image of Sı;ı.OF / in Sı;ı.OF =�

`/. Since
Sı;ı is smooth over R, it is smooth over OF . Hence Sı;ı is formally smooth, and so
this map is onto. The same applies to the stabilizer ofK`.E/ı inK0.E/=K`.E/, but
�F;E .Sı;ı.O=�

`// D Sı;ı.O
0=� 0`/. �

Corollary 3.15. Let ` 2 N. Then, for any F;E 2 FR;� that are `-close, there exists
a unique morphism of vector spaces

ˆM;` W M`.G.F /=H.F // ! M`.G.E/=H.E//

that maps the Haar measure on K`.F /x to the Haar measure on K`.E/x, for ev-

ery x 2 �, and intertwines the actions of the finite group K0.F /=K`.F /
�F;EŠ

K0.E/=K`.E/. Moreover, this morphism is an isomorphism.
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Proof. The uniqueness is evident. By Lemma 3.14 and Lemma 3.4, the map between
K`.F /nG.F /=H.F / and K`.E/nG.E/=H.E/ given by

K`.F /gı 7! K`.E/g
0ı;

where g 2 K0.F / and g0 2 K0.E/ satisfy that �F;E .res`.g// D res`.g
0/, is a

bijection. This bijection gives the required isomorphism. �

Remark 3.16. A similar construction can be applied to the pair .G � G;�G/. In
this case, the main result of [Kaz86] is that the obtained linear map ˆH ;` between
the Hecke algebras H .G.F /;K`.F // and H .G.E/;K`.E// is an isomorphism of
algebras if the fields F and E are close enough.

The following lemma is evident:

Lemma 3.17. Let P.x/ 2 RŒ��1�Œx1; : : : ; xd � be a polynomial. For any natu-
ral numbers M and k, there is N such that, if F;E 2 FR;� are N -close, and
x0 2 ��kOd

F ; y0 2 ��kOd
E satisfy that P.x0/ 2 ��kOF and �F;E .resN .x0// D

resN .y0/, then P.y0/ 2 ��kOE and �F;E .resM .P.x0/// D resM .P.y0//.

Corollary3.18. Suppose that .G;H/ is a uniformspherical pair. Fix an embeddingof
G=H to an affine space Ad . Let 
 2 X�.T /, x 2 �‡X, F 2 FR;� , and k 2 G.OF /.
Choose m such that ��kx 2 ��mOd

F . Then, for every M , there is N � M C m

such that, for anyE 2 FR;� that isN -close to F , and for any k0 2 G.OE / such that
�F;E .resN .k// D resN .k

0/,

��k0x 2 G.E/=H.E/ \ ��mOd
E and �F;E .resM .�

�kx// D resM .�
�k0x/:

Corollary 3.19. Suppose that .G;H/ is a uniform spherical pair. Fix an embedding
of G=H to an affine space Ad . Let m be an integer. For every M , there is N such
that, for any F;E 2 FR;� that are N -close, any x 2 G.F /=H.F / \ ��mOd

F and
any y 2 G.E/=H.E/ \ ��mOd

E , such that �F;E .resN �m.x// D resN �m.y/, we
have ˆM.1KM .F /x/ D 1KM .E/y.

Proof. Let kF 2 G.OF / and ı 2 � such that x D kF ı. By Proposition 3.5, there is
an l such that, for anyL 2 FR;� and any kL 2 G.OL/, we haveKM .L/kLı contains
a ball of radius l .

Using the previous corollary, choose an integer N such that, for any F and E
that are N -close and any kE 2 G.OE /, such that �F;E .resN .kF // D resN .kE /, we
have

kEı 2 .G.E/=H.E// \ ��mOd
E and �F;E .resl.x// D resl.kEı/:
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Choose such kE 2 G.OE / and let z D kEı. Since resl.z/ D �F;E .resl.x// D
resl.y/, we have that z 2 B.y; l/, and hence z 2 KM .E/y. Hence

1KM .E/y D 1KM .E/z D ˆM.1KM .F /x/: �
From the last two corollaries we obtain the following one.

Corollary 3.20. Given ` 2 N, 
 2 X�.T /, and ı 2 �, there is n such that if F;E 2
FR;� are n-close, and gF 2 G.OF /; gE 2 G.OE / satisfy that �F;E .resn.gF // D
resn.gE /, then ˆM;`.1K`.F /�

�gF ı/ D 1K`.E/�
�gEı.

Proposition 3.21. Let F 2 FR;� . Then for every `, and every two elements f 2
H`.F / and v 2 M`.F /, there is n such that, if E 2 FR;� is n-close to F , then
ˆM;`.f � v/ D ˆH ;`.f / �ˆM;`.v/.

Proof. By linearity, we can assume that f D 1K`.F /k1�
�k21K`.F / and that v D

1K`.F /k3ı, where k1; k2; k3 2 K0.F /. Choose N � l big enough such that
��KN .F /�

�� � K`.F /.
Choose k0

i 2 G.OE / such that �F;E .resN .ki // D resN .k
0
i /. Since ˆM;` and

ˆH ;` intertwine left multiplication by 1K`.F /k11K`.F / to left multiplication by
1K`.E/k

0
11K`.E/, we can assume thatk1 D 1 D k0

1. Also, sincek2 normalizesK`.F /,
we can assume that k2 D 1 D k0

2. LetK`.F / D Ss
iD1KN .F /gi be a decomposition

of K`.F / into cosets. Choose g0
i 2 K`.E/ such that �F;E .resN .gi // D resN .g

0
i /.

Then

1K`.F / D c

sX
iD1

1KN .F /gi and 1K`.E/ D c

sX
iD1

1KN .E/g
0
i

where c D jK`.F /=KN .F /j D jK`.E/=KN .E/j. Hence

f v D 1K`.F /�
�1K`.F /k3ı D c

sX
iD1

1K`.F /�
�1KN .F /gik3ı

D c

sX
iD1

1K`.F /�
�gik3ı:

and

ˆH ;`.f /ˆM;`.v/ D 1K`.E/�
�1K`.E/k

0
3ı

D c

sX
iD1

1K`.E/�
�1KN .E/gik

0
3ı

D c

sX
iD1

1K`.E/�
�g0

ik
0
3ı:

The proposition follows now from Corollary 3.20. �

Now we are ready to prove Theorem 3.12.
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Proof of Theorem 3.12. We have to show for any ` there exists n such that if F;E 2
FR;� are n-close then the mapˆM;l constructed in Corollary 3.15 is an isomorphism

of modules over H .G.F /;K`.F //
ˆH;`Š H .G.E/;K`.E//.

Since H .G.F /;K`.F // is Noetherian, M`.G.F /=H.F // is generated by a finite
set v1; : : : ; vn satisfying a finite set of relations

P
i fi;j vi D 0. Without loss of

generality we may assume that for any x 2 X the Haar measure on K`.F /x is
contained in the set fvig:

By Proposition 3.21, if E is close enough to F , then ˆM;`.vi / satisfy the above
relations.

Therefore there exists a homomorphism of Hecke modules

ˆ0 W M`.G.F /=H.F // ! M`.G.E/=H.E//

given on the generators vi by ˆ0.vi / WD ˆM;`.vi /.

ˆ0 intertwines the actions of the finite groupK0.F /=K`.F /
�F;EŠ K0.E/=K`.E/.

Therefore, by Corollary 3.15, in order to show thatˆ0 coincides withˆM;` it is enough
to check that ˆ0 maps the normalized Haar measure on K`.F /x to the normalized
Haar measure on K`.E/x for every x 2 �. In order to do this let us decompose
x D �˛x0 where x0 2 X and ˛ 2 ‡: Now, since .G;H/ is uniformly spherical we
have

1Kn.F /x D 1Kn.F /�˛Kn.F /1Kn.F /x0

and
1Kn.E/x D 1Kn.E/�˛Kn.E/1Kn.E/x0 :

Therefore, since ˆ0 is a homomorphism, we have

ˆ0.1Kn.F /x/ D ˆ0.1Kn.F /�˛Kn.F /1Kn.F /x0/

D 1Kn.E/�˛Kn.E/1Kn.E/x0 D 1Kn.F /x :

Hence the linear mapˆM;` W M`.G.F /=H.F // ! M`.G.E/=H.E// is a homo-
morphism of Hecke modules. Since it is a linear isomorphism, it is an isomorphism
of Hecke modules. �

Now we obtain the following generalization of Corollary C:

Corollary 3.22. Let .G;H/ be a uniform spherical pair. Suppose that

� For any F 2 FR;� , the pair .G;H/ is F -spherical.
� For any E 2 FR;� and natural number n, there is a field F 2 FR;� such that
E and F are n-close and the pair .G.F /;H.F // is a Gelfand pair, i.e. for any
irreducible smooth representation � of G.F / we have

dim HomH.F /.�jH.F /;C/ � 1:

Then .G.F /;H.F // is a Gelfand pair for any F 2 FR;� .
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Remark 3.23. Fix a prime power q D pk . Let F be the unramified extension of
Qp of degree k, let W be the ring of integers of F , and let R D W ŒŒ���. Then
FR;� includes all local fields with residue field Fq , and so Corollary 3.22 implies
Corollary C.

Corollary 3.22 follows from Theorem 3.12 and the following lemma.

Lemma 3.24. LetF be a local field andH < G be a pair of reductive groups defined
over F . Suppose thatG is split over F . Then .G.F /;H.F // is a Gelfand pair if and
only if for any large enough l 2 Z>0 and any simple module � over Hl.G.F // we
have

dim HomHl .G.F //.Ml.G.F /=H.F //; �/ � 1:

This lemma follows from statement (1) formulated in Subsection 2.1.

4. Applications

In this section we will prove that the pair .GLnCk.F /;GLn.F / � GLk.F // is a
Gelfand pair for any local field F of characteristic different from 2 and the pair
.GLnC1.F /;GLn.F // is a strong Gelfand pair for any local field F . We use Corol-
lary 3.22 to deduce those results from the characteristic zero case which were proven
in [JR96] and [AGRS] respectively. Let R D W ŒŒ���.

To verify condition (2) in Definition 3.2, we use the following straightforward
lemma:

Lemma 4.1. Let G D .GLn1/R � � � � � .GLnk /R and let C < G ˝R RŒ�
�1� be a

sub-group scheme defined over RŒ��1�. Suppose that C is defined by equations of
the following type:

lX
iD1

�ia	i�
�i D �
 ;

or
lX

iD1

�ia	i�
�i D 0;

where �i D ˙1, a1; : : : ; an2
1

C���Cn2
k

are entries of matrices, 1 � �i � n2
1 C � � � C n2

k

are some indices, and �; 
i are integers. Suppose also that the indices �i are distinct
for all the equations. Then the closure xC of C in G is smooth over R.

To verify condition (4) in Definition 3.2, we use the following straightforward
lemma:
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Lemma 4.2. Suppose that there exists a natural number `0 such that, for any F 2
FR;� and any ` > `0, there is a subgroup P` < K`.G; F / satisfying that for every
x 2 X

(1) For any ˛ 2 ‡ we have �˛P`�
�˛ � K`.

(2) K`x D P`x.

Then condition (4) in Definition 3.2 is satisfied.

In our applications, we use the following to show that the pairs we consider are
F -spherical.

Proposition 4.3. Let F be an infinite field, and consider G D GLn1 � � � � � GLnk

embedded in the standard way inM D Matn1 � � � � � Matnk . Let A;B � G ˝F be
two F -subgroups whose closures inM are affine subspacesMA;MB .

(1) For any x; y 2 G.F /, if the variety f.a; b/ 2 A � Bjaxb D yg is non-empty,
then it has an F -rational point.

(2) If .G;A/ is a spherical pair, then it is also an F -spherical pair.

Proof. (i) Denote the projections G ! GLnj by �j . Assume that x; y 2 G.F /, and

there is a pair . Na; Nb/ 2 .A � B/. xF / such that Nax Nb D y. Let L � MA �MB be the
affine subspace f.˛; ˇ/j˛x D yˇg, defined over F . By assumption, the functions
.˛; ˇ/ 7! det �j .˛/ and .˛; ˇ/ 7! det �j .ˇ/, for j D 1; : : : ; k, are non-zero on
L. xF /. Hence there is .a; b/ 2 L.F / \G, which means that axb�1 D y.

(ii) Applying (1) to A and any parabolic subgroup B � G, any .A�B/. xF /-orbit
in G. xF / contains at most one .A � B/.F /-orbit. Since there are only finitely many
.A � B/. xF /-orbits in G. xF /, the pair .G;A/ is F -spherical. �

4.1. The pair .GLnCk; GLn � GLk/. In this subsection we assume p ¤ 2 and
consider only local fields of characteristic different from 2.

Let G WD .GLnCk/R and H WD .GLn/R � .GLk/R < G be the subgroup of
block matrices. Note thatH is a symmetric subgroup since it consists of fixed points

of conjugation by � D
�

Idk 0
0 �Idn

�
. We prove that .G;H/ is a Gelfand pair using

Corollary C. The pair .G;H/ is a symmetric pair, hence it is a spherical pair and
therefore by Proposition 4.3 it is F -spherical. The second condition of Corollary C
is [JR96, Theorem 1.1]. It remains to prove that .G;H/ is a uniform spherical pair.

Proposition 4.4. The pair .G;H/ is uniform spherical.

Proof. Without loss of generality suppose that n � k. Let X D fx0g, where

x0 WD
0
@Idk 0 Idk

0 Idn�k 0

0 0 Idk

1
AH
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and

‡ D f.�1; : : : ; �k; 0; : : : ; 0/ 2 X�.T / j�1 � � � � � �k � 0g:
To show the first condition we show that every double coset inK0nG=H includes

an element of the form

�
Idk 0 diag.��1 ;:::;��k /
0 Idn�k 0
0 0 Idk

�
s.t. �1 � � � � � �k � 0: Take

any g 2 G. By left multiplication by K0 we can bring it to upper triangular form.

By right multiplication by H we can bring it to a form
�

Idn A
0 Idk

�
. Conjugating by a

matrix
�

k1 0
0 k2

�
2 K0 \H we can replace it by

�
Idn k1Ak�1

2
0 Idk

�
. Hence we can bring

A to be a k-by-.n � k/ block of zero, followed by the a diagonal matrix of the form
diag.�	1 ; : : : ; �	k / s.t. �1 � � � � � �k : Multiplying by an element of K0 of the

form

�
Idk 0 k
0 Idn�k 0
0 0 Idk

�
we can bring A to the desired form.

As for the second condition, we first compute the stabilizer Gx0 of x0 in G. Note
that the coset x0 2 G=H equals

8<
:

0
@g1 g2 h

g3 g4 0

0 0 h

1
A ˇ̌ˇ

�
g1 g2

g3 g4

�
2 .GLn/R; h 2 .GLk/R

9=
;

and 0
@A B C

D E F

G H I

1
A

0
@Idk 0 Idk

0 Idn�k 0

0 0 Idk

1
A D

0
@A B AC C

D E D C F

G H G C I

1
A :

Therefore

Gx0 D
8<
:

0
@g1 g2 h � g1

g3 g4 �g3

0 0 h

1
A ˇ̌ˇ

�
g1 g2

g3 g4

�
2 .GLn/R; h 2 .GLk/R

9=
; :

Hence, for any ı1 D .
1;1; : : : ; 
1;k; 0; : : : ; 0/; ı2 D .
2;1; : : : ; 
2;k; 0; : : : ; 0/ 2 ‡ ,

G.F /��1x0;��2x0

D
8<
:

0
@�

�2g1�
��1 ��2g2 ��2.h � g1/

g3�
��1 g4 �g3

0 0 h

1
A ˇ̌ˇ

�
g1 g2

g3 g4

�
2 .GLn/R; h 2 .GLk/R

9=
;

D
8<
:

0
@A B C

D E F

0 0 I

1
A 2 GLnCk

ˇ̌ˇ D D �F���1 ; C D ��2I � A��1

9=
; :

The second condition of Definition 3.2 follows now from Lemma 4.1.
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As for the third condition, we use the embedding G=H ! G given by g 7!
g�g�1�. It is easy to see that valF .�	x0/ D �1; which is independent of F .

Let us now prove the last condition using Lemma 4.2. Take l0 D 1 and

P WD
8<
:

0
@Id 0 0

D E F

G H I

1
A 2 GLnCk

9=
; :

Let Pl WD P.F / \ Kl.GLnCk; F /: The first condition of Lemma 4.2 obviously
holds. To show the second condition, we have to show that for any F , any l � 1 and
any g 2 Kl.GLnCk; F / there exist p 2 Pl and h 2 H.F / such that gx0 D pxoh.
In other words, we have to solve the following equation:

0
@Idk C A B Idk C AC C

D Idn�k CE D C F

G H Idk CG C I

1
A

D
0
@Idk 0 Idk

D0 Idn�k CE 0 D0 C F 0
G0 H 0 Idk CG0 C I 0

1
A

0
@Idk C x y 0

z Idk C w 0

0 0 Idk C h

1
A ;

where all the capital letters denote matrices of appropriate sizes with entries in� lOF ,
and the matrices in the left hand side are parameters and matrices in the right hand
side are unknowns.

The solution is given by:

x D A; y D B; z D D; w D E; h D AC C

D0 D 0; E 0 D 0; F 0 D .D C F /.Idk C AC C/�1;

H 0 D .H �G.Idk C A/�1B/.�D.Idk C A/�1B C Idn�k CE/�1

G0 D .G �H 0D/.Idk C A/�1; I 0 D .G C I � A � C/.Idk C AC C/�1 �G0

�

4.2. Structure of the spherical space .GLnC1 � GLn/=� GLn. Consider the em-
bedding � W GLn ,! GLnC1 given by

A 7!
�
1 0

0 A

�
:

Let G D GLnC1.F / � GLn.F / and H D �GLn.F /. The quotient space G=H
is isomorphic to .GLnC1/R via the map .g; h/ 7! g�.h�1/. Under this isomorphism,
the action of G on G=H becomes .g; h/ �X D gX�.h�1/.
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The spaceG=H is spherical. Indeed, letB � G be the Borel subgroup consisting
of pairs .b1; b2/, where b1 is lower triangular and b2 is upper triangular, and let
x0 2 G=H be the point represented by the matrix

x0 D
�
1 e

0 I

�
;

where e is a row vector of 1’s. We claim that Bx0 is open in G=H . Let b be the
Lie algebra of B . It consists of pairs .X; Y / where X is lower triangular and Y is
upper triangular. The infinitesimal action of b on X at x0 is given by .X; Y / 7!
Xx0 � x0d�.Y /. To show that the image is MatnC1, it is enough to show that the
images of the maps X 7! Xx0 and Y 7! x0d�.Y / have trivial intersection. Suppose
that Xx0 D x0d�.Y /. Then X D x0d�.Y /x

�1
0 , i.e.

X D
�
1 e

I

� �
0 0

0 Y

� �
1 �e

I

�
D

�
0 eY

0 Y

�
:

Since X is lower triangular and Y is upper triangular, both have to be diagonal. But
eY D 0 implies that Y D 0, and hence also X D 0. Proposition 4.3 implies that the
pair .G;H/ is F -spherical.

The following describes the quotient G.OF /nG.F /=H.F /.

Lemma 4.5. For every matrix A 2 MatnC1.F / there are k1 2 GLnC1.O/ and
k2 2 GLn.O/ such that

k1A�.k2/ D

0
BBBBB@

�a �b1 �b2 : : : �bn

�c1

�c2

: : :

�cn

1
CCCCCA
; (3)

where the numbers a; bi ; ci satisfy that if i < j then ci � cj � bi � bj � 0 and
b1 � c1.

Proof. Let a be the minimal valuation of an element in the first column ofA. There is
an integral matrix w1 such that the first column of the matrix w1A is �a; 0; 0; : : : ; 0.
Let C be the n � n lower-right sub-matrix of w1A. By Cartan decomposition, there
are integral matrices w2; w3 such that w2Cw

�1
3 is diagonal, and its diagonal entries

are �ci for a non-decreasing sequence ci . Finally, there are integral and diagonal
matrices d1, d2 such that the matrix d1�.w2/w1A�.w

�1
3 /�.d�1

2 / has the form (3).
Suppose that i < j and bi > bj . Then adding the j ’th column to the i ’th column

and subtracting �cj�ci times the i ’th row to the j ’th row, we can change the matrix
(3) so that bi D bj . Similarly, if i < j and bi � bj < ci � cj , then adding �bj�bi�1
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times the i ’th column to the j ’th column, and subtracting �ciCbj�bi�1�cj times the
j ’th row to the i ’th row changes the matrix (3) so that bi becomes smaller in 1.
Finally, if c1 < b1 than adding the second row to the first changes the matrix so that
c1 D b1. �

Let T � G be the torus consisting of pairs .t1; t2/ such that ti are diagonal. The
co-character group of T is the group ZnC1 � Zn. The positive Weyl chamber of T
that is defined by B1 is the set � � X�.T / consisting of pairs .�; �/ such that the
�i ’s are non-decreasing and the �i ’s are non-increasing. Lemma 4.5 implies that the
set f��x0g�2� is a complete set of orbit representatives for G.O/nG.F /=H.F /.

We are ready to prove that .G;H/ is uniform spherical.

Proposition 4.6. The pair ..GLnC1/R � .GLn/R; �.GLn/R/ is uniform spherical.

Proof. Let ‡ � X�.T / be the positive Weyl chamber and let X WD fx0g. By the
above, the first condition of Definition 3.2 holds. As for the second condition, an
easy computation shows that if a; b1; : : : ; bn; c1; : : : ; cn 2 Z, a0; b0

1; : : : ; b
0
n; c

0
1; : : : ;

c0
n 2 Z satisfy the conclusion of Lemma 4.5, and .k1; k2/ 2 G.O/ satisfy that

k1

0
BBBBB@

�a �b1 �b2 : : : �bn

�c1

�c2

: : :

�cn

1
CCCCCA
�.k1/ D

0
BBBBB@

�a0

�b0
1 �b0

2 : : : �b0
n

�c0
1

�c0
2

: : :

�c0
n

1
CCCCCA
;

then a D a0, ci D c0
i , k1 has the form

�
1 B
0 D

�
, where B is a 1 � n matrix and D is

an n � n matrix that satisfy the equations D D �ck2�
�c and B�c D �b � �b0

k2,
where �c denotes the diagonal matrix with entries �c1 ; : : : ; �cn , �b denotes the row
vector with entries �bi , and �b0

denotes the row vector with entries �b0
i . The second

condition of Definition 3.2 holds by Lemma 4.1.
The third condition follows because, using the affine embedding as above, ��x0

has the form (3) and so valF .��x0/ is independent of F .
Finally it is left to verify the last condition. In the following, we will distin-

guish between the `th congruence subgroup in GLnC1.F /, which we denote by
K`.GLnC1.F //, the `th congruence subgroup in GLn.F /, which we denote by
K`.GLn.F //, and the `th congruence subgroup inG D GLnC1.F /�GLn.F /, which
we denote byK`. By Lemma 4.2 it is enough to show that .B \Kl/x0 D Klx0: It is
easy to see that Klx0 D x0 C � l Matn.OF /: Let y 2 x0 C � l Matn.OF /. We have
to show that y 2 .B \Kl/x0. In order to do this let us represent y as a block matrix

y D
�
a b

c D

�
;

1The positive Weyl chamber defined by the Borel B is the subset of co-weights � such that ��B.O/��� �
B.O/
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where a is a scalar andD is n�nmatrix. Using left multiplication by lower triangular
matrix fromKl.GLnC1.F //we may bring y to the form

�
1 b0

0 D0

�
. We can decompose

D0 D LU , where L;U 2 Kl.GLnC1.F // and L is lower triangular and U is upper
triangular. Therefore by action of an element from B \ Kl we may bring y to the
form

�
1 b00

0 Id

�
. Using right multiplication by diagonal matrix from Kl.GLnC1.F //

(with first entry 1) we may bring y to the form
�

1 e
0 D00

�
; where e is a row vector of

1’s andD00 is a diagonal matrix. Finally, using left multiplication by diagonal matrix
from Kl.GLnC1.F // we may bring y to be x0: �

4.3. The pair .GLnC1 � GLn; � GLn/. In this section we prove Theorem D which
states that .GLnC1.F /;GLn.F // is a strong Gelfand pair for any local field F , i.e.
for any irreducible smooth representations � of GLnC1.F / and � of GLn.F / we
have

dim HomGLn.F /.�; �/ � 1:

It is well known (see e.g. [AGRS, section 1]) that this theorem is equivalent to the
statement that .GLnC1.F / � GLn.F /;�GLn.F //, where �GLn is embedded in
GLnC1 � GLn by the map � � Id, is a Gelfand pair.

By Corollary C this statement follows from Proposition 4.6, and the following
theorem:

Theorem 4.7 ([AGRS], Theorem 1). Let F be a local field of characteristic 0. Then
.GLnC1.F /;GLn.F // is a strong Gelfand pair.
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