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Abstract. For a homogeneous spaceX (not necessarily principal) of a connected algebraic group
G (not necessarily linear) over a number field k, we prove a theorem of strong approximation for
the adelic points of X in the Brauer–Manin set. Namely, for an adelic point x of X orthogonal
to a certain subgroup (which may contain transcendental elements) of the Brauer group Br.X/
of X with respect to the Manin pairing, we prove a strong approximation property for x away
from a finite set S of places of k. Our result extends a result of Harari for torsors of semiabelian
varieties and a result of Colliot-Thélène and Xu for homogeneous spaces of simply connected
semisimple groups, and our proof uses those results.
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0. Introduction

Let k be a number field. We denote by � the set of all places of k, by �1 the set
of all infinite (archimedean) places of k, by �r the set of all real places of k, and
by �f the set of all finite (nonarchimedean) places of k. For a finite set S � �, we
set kS WD Q

v2S kv , where kv denotes the completion of k at v. We write k1 for
k�1

. We denote by A the ring of adèles of k and by AS the ring of adèles without
S -components. We have A D AS � kS . If S D �1, we denote by Af WD A�1

the ring of finite adèles. If X is a k-variety, we have X.kS / D Q
v2S X.kv/ and

X.A/ D X.AS / �X.kS /. In particular X.A/ D X.Af / �X.k1/.
Let X be a smooth geometrically integral k-variety over a field k of characteris-

tic 0. Let Br.X/ WD H 2
ét.X;Gm/ denote the cohomological Brauer group of X . We

set Br1.X/ WD kerŒBr.X/! Br.X �k Nk/�, where Nk is an algebraic closure of k.

�The first-named author was partially supported by the Israel Science Foundation (grant No. 807/07) and by
the Hermann Minkowski Center for Geometry.
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Recall that when k is a number field, there exists a canonical pairing (the Manin
pairing)

Br.X/ �X.A/! Q=Z; b; x 7! hb; xi; (1)

see [10], Section 3.1, or [40], Section 5.2. This pairing is additive in b 2 Br.X/
and continuous in x 2 X.A/. If x 2 X.k/ � X.A/ or b comes from Br.k/, then
hb; xi D 0.

For a subgroup B � Br.X/ we denote by X.A/B the set of points of x 2 X.A/
orthogonal to B with respect to the Manin pairing. We have

X.k/ � X.A/Br.X/ � X.A/B :
One can ask whether any point x D .xv/ 2 X.A/ which is orthogonal to Br.X/ can
be approximated in a certain sense by k-rational points.

In this paper we consider the case whenX is a homogeneous space of a connected
algebraick-groupG (not necessarily linear) with connected geometric stabilizers. For
such anX and x D .xv/ 2 X.A/Br1.X/ it was proved in [7], Appendix, Theorem A.1,
that our X has a k-point and that x can be approximated by k-points in the sense
of weak approximation. We used a result of Harari [21] on the Manin obstruction
to weak approximation for principal homogeneous spaces of semiabelian varieties.
Here, using a result of recent Harari’s paper [22] on the Manin obstruction to strong
approximation for principal homogeneous spaces of semiabelian varieties together
with a recent result of Colliot-Thélène and Xu [11] on strong approximation for
homogeneous spaces of simply connected groups, we prove a theorem on strong
approximation for our x.

For a connected k-group G we write Gabvar for the biggest quotient of G which
is an abelian variety, and we write Gsc for the “simply connected semisimple part of
G”, see 1.1 below for details.

Theorem 0.1. Let G be a connected algebraic group (not necessarily linear) over a
number field k. Let X WD HnG be a right homogeneous space of G, where H is a
connected k-subgroup ofG. Assume that the Tate–Shafarevich group of the maximal
abelian variety quotient Gabvar of G is finite. Let S � �1 be a finite set of places of
k containing all archimedean places. We assume that Gsc.k/ is dense in Gsc.AS /.
Let x D .xv/ 2 X.A/ be a point orthogonal to Br.X/ with respect to the Manin
pairing. Then for any open neighbourhood US of the projection xS of x to X.AS /
there exists a rational point x0 2 X.k/ whose diagonal image in X.AS / lies in US .
Moreover, we can ensure that for each archimedean place v, the points x0 and xv lie
in the same connected component of X.kv/.

Recall that Gsc.k/ is dense in Gsc.AS / if and only if for every k-simple factor
Gsc
i of Gsc the group Gsc

i .kS / is noncompact (a theorem of Kneser and Platonov, cf.
[36], Theorem 7.12).
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Theorem 0.1 extends a result of Harari ([22], Theorem 4) and a result of Colliot-
Thélène and Xu ([11], Theorem 3.7 (b)).

In Theorem 0.1 we assume that our adelic point x is orthogonal to the whole
Brauer group Br.X/. Actually it is sufficient to require that x were orthogonal to a
certain subgroup Br1.X;G/ � Br.X/. In general this subgroup Br1.X;G/ contains
transcendental elements (i.e. is not contained in Br1.X/). Note that Theorem 0.1 with
Br1.X/ instead of Br.X/ would be false, see Counter-example 1.6 below. However
this theorem still holds with Br1.X/ instead of Br.X/, if S contains at least one
nonarchimedean place:

Theorem 0.2. Let G be a connected algebraic group (not necessarily linear) over
a number field k. Let X WD HnG be a right homogeneous space of G, where H
is a connected k-subgroup of G. Assume that the Tate–Shafarevich group of the
maximal abelian variety quotient Gabvar of G is finite. Let S � �1 be a finite set
of places of k containing all archimedean places and at least one nonarchimedean
place. We assume that Gsc.k/ is dense in Gsc.AS /. Let x D .xv/ 2 X.A/ be a
point orthogonal to Br1.X/ with respect to the Manin pairing. Then for any open
neighbourhood US of the projection xS of x to X.AS / there exists a rational point
x0 2 X.k/ whose diagonal image in X.AS / lies in US . Moreover, we can ensure
that for each archimedean place v, the points x0 and xv lie in the same connected
component of X.kv/.

Remark 0.3. Let X be a right homogeneous space of a connected group k-group G
over a number field k such that the stabilizers of the geometric points are connected.
By [7], TheoremA.1, if there existsx 2 X.A/which is orthogonal to Br1.X/, then the
variety X must have a k-point, hence X D HnG, whereH is a connected subgroup
of G. Therefore we could reformulate Theorems 0.1, 0.2, 1.4 and 1.7 for a general
homogeneous space X of G (without assuming that X is of the form X D HnG).

Our proof is somewhat similar to that of TheoremA.1 of [7]. We use the reductions
and constructions of Subsections 3.1 and 3.3 of [7] in order to reduce the assertion to
the case whenX is a k-torsor under a semiabelian variety (treated by Harari [22]) and
to the case whenX is a homogeneous space of a simply connected semisimple group
with connected geometric stabilizers (the Hasse principle was proved in [4]; for strong
approximation, see Theorem 6.1 below, which is actually due to Colliot-Thélène and
Xu [11]).
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1. Main results

1.1. Let G be a connected algebraic group (not necessarily linear) over a field k of
characteristic 0. Then G fits into a canonical short exact sequence

1! G lin ! G ! Gabvar ! 1;

where G lin is a connected linear k-group and Gabvar is an abelian variety over k. We
use the following notation:

Gu is the unipotent radical of G lin;

Gred WD G lin=Gu, it is a reductive k-group;

Gss is the commutator subgroup of Gred, it is a semisimple k-group;

Gsc is the universal covering ofGss, it is a simply connected semisimple k-group;

G tor WD Gred=Gss, it is a k-torus;

Gssu WD Ker.G lin ! G tor/, it is an extension of Gss by Gu;

Gsab WD .G=Gu/=Gss, it is a semiabelian variety over k, it fits into a short exact
sequence

1! G tor ! Gsab ! Gabvar ! 1:

We define the group Gscu as the fibre product Gscu WD Gsc �Gred G lin, it fits into
an exact sequence

1! Gu ! Gscu ! Gsc ! 1:

We have a canonical homomorphism Gscu ! G lin ! G.

1.2. Let X be a smooth geometrically integral k-variety. We write xX for X �k Nk,
where Nk is a fixed algebraic closure of k. Recall that Br.X/ is the cohomological
Brauer group of X and that Br1.X/ D kerŒBr.X/ ! Br. xX/�. We set Bra.X/ WD
cokerŒBr.k/ ! Br1.X/�. If x0 2 X.k/ is a k-point of X , we set Brx0

.X/ WD
kerŒx�

0 W Br.X/! Br.k/� and Br1;x0
.X/ WD kerŒx�

0 W Br1.X/! Br.k/�. We have a
canonical isomorphism Br1;x0

.X/ �!� Bra.X/.
Let X D HnG be a homogeneous space of a connected k-group G. Let x0 2

X.k/. Consider the map �x0
W G ! X; g 7! x0:g, it induces a homomorphism

��
x0
W Br.X/! Br.G/. Consider the commutative diagram

Br.X/
��

x0 ��

��

Br.G/

��
Br. xX/

��

x0 �� Br. xG/ .

Let Br1.X;G/ denote the kernel of any of the two equal composed homomorphisms
Br.X/! Br. xG/. In other words, Br1.X;G/ is the subgroup of elements b 2 Br.X/
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such that ��
x0
.b/ 2 Br1.G/. We show in Lemma 4.4 below, that Br1.X;G/ does not

depend on x0. Let

Br1;x0
.X;G/ WD kerŒx�

0 W Br1.X;G/! Br.k/�

D fb 2 Br.X/ j ��
x0
.b/ 2 Br1;e.G/g:

It is easy to see that the structure mapX ! Spec .k/ induces an embedding Br.k/ ,!
Br1.X;G/ (because X has a k-point) and that Br1.X;G/ D Br1;x0

.X;G/C Br.k/.
It follows that an adelic point x 2 X.A/ is orthogonal to Br1.X;G/ with respect to
the Manin pairing if and only if it is orthogonal to Br1;x0

.X;G/.

1.3. Let X be a smooth geometrically integral k-variety over a number field k. We
denote by X.A/� the set X.Af / �Q

v2�1
�0.X.kv//, where �0.X.kv// is the set

of connected components ofX.kv/. The setX.A/� has a natural topology, which we
call the adelic topology. We have a canonical continuous map X.A/ ! X.A/� and
a canonical embedding X.k/ ,! X.A/�. The pairing (1) of the Introduction induces
a pairing

Br.X/ �X.A/� ! Q=Z: (2)

For a subgroup B � Br.X/ we denote by .X.A/�/B the set of points of x 2 X.A/�
orthogonal to B with respect to the Manin pairing.

Let X be a homogeneous space of a connected k-group G. Then G.A/ acts on
X.A/ and on X.A/�.

Main Theorem 1.4. Let G be a connected algebraic group (not necessarily linear)
over a number field k. Let X WD HnG be a right homogeneous space of G, where
H is a connected k-subgroup of G. Assume that the Tate–Shafarevich group of the
maximal abelian variety quotient Gabvar of G is finite. Let S � �1 be a finite set of
places of k containing all archimedean places. We assume that Gsc.k/ is dense in
Gsc.AS /. Set Sf WD S \�f D S X�1. Then the set .X.A/�/Br1.X;G/ coincides
with the closure of the set X.k/:Gscu.kSf

/ in X.A/� for the adelic topology.

Remark 1.5. If x 2 X.A/� is not orthogonal to Br1.X;G/, we regard it as an
obstruction to strong approximation for x (this is the Manin obstruction to strong
approximation from the title of the paper). Indeed, then by the trivial part of Main
Theorem 1.4 the point x does not belong to the closure ofX.k/:Gscu.kSf

/. We inter-
pret the nontrivial part of this theorem as an assertion that under certain assumptions
the Manin obstruction is the only obstruction to strong approximation for x and for its
projection xS 2 X.AS /. Indeed, if there is no Manin obstruction, i.e. x is orthogonal
to Br1.X;G/, then by the nontrivial part of Main Theorem 1.4 the point x belongs to
the closure ofX.k/:Gscu.kSf

/, and its projection xS 2 X.AS / belongs to the closure
of X.k/ in X.AS /.
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1.6. Counter-example with Br1.X/ instead of Br.X/. Above we stated the main
theorem about the Manin obstruction related to the subgroup Br1.X;G/ � Br.X/.
We are interested also in the algebraic Manin obstruction, that is, the obstruction
coming from the subgroup Br1.X/ � Br.X/. We can easily see that in general the
algebraic Manin obstruction is not the only obstruction to strong approximation.

First we notice that in general Br1.X/ ¤ Br1.X;G/. Indeed, assume that G is
semisimple and simply connected and thatH is connected semisimple but not simply
connected. In particular, H fits into an exact sequence

1! �H ! H sc ! H ! 1;

where �H is finite and abelian. Consider X WD HnG. Then we know by [38],
Proposition 6.9 (iv), that the groups Pic.G/ and Br1;e.G/ are trivial. By [11],
Proposition 2.10 (ii), we have a canonical isomorphism Pic.H/ Š Brx0

.X/, where
x0 2 X.k/ is the image of e 2 G.k/. Since H is semisimple, by the exact se-
quence in [38], Lemma 6.9 (i), we know that the map Pic.H/ ! Pic. xH/ is injec-
tive, therefore any non-trivial element of Brx0

.X/ is a transcendental element of
Br.X/, i.e. is not killed in Br. xX/. We see that Br1;x0

.X/ D 0, hence Bra.X/ D
0. In addition, Proposition 2.6 (iii) in [11] (or the corollary in the introduction of
[18]) implies that Br. xG/ D 0, hence Br1;x0

.X;G/ D Brx0
.X/. Therefore in this

case Br1.X/=Br.k/ D Bra.X/ D 0, while Br1.X;G/=Br.k/ Š Br1;x0
.X;G/ Š

Pic.H/ Šb�H .k/. We see that Br1.X;G/ 6� Br1.X/ if b�H .k/ ¤ 0.
An explicit example is given by H D SOn � SLn D G for n � 3. In this case

�H D �2 and b�H .k/ D Z=2Z ¤ 0, hence Br1.X;G/ 6� Br1.X/. We take k to be a
totally imaginary number field, e.g. k D Q.i/. Take S D �1, then AS D Af . We
show that in this case the algebraic Manin obstruction is not the only obstruction to
strong approximation away from S .

We may and shall identify X WD HnG with the variety of symmetric n � n-
matrices T with determinant 1. Then an element ofX.A/ can be written as .Tv/v2�,
where Tv is a symmetric n�n-matrix with determinant 1 over kv . Let "v.Tv/ 2 f˙1g
denote the Hasse invariant of the quadratic form defined by Tv (see for instance [33],
p. 167, before Example 63:14). Note that for v 2 �1 we have kv Š C, hence
"v.Tv/ D 1. For T f 2 X.Af / set

"f .T f / D
Y

v2�f

"v.Tv/;

then "f is a continuous function on X.Af / with values˙1. For T0 2 X.k/ we have

"f .T0/ D
Y

v2�f

"v.T0/ D
Y

v2�f

"v.T0/
Y

v2�1

"v.T0/ D
Y

v2�
"v.T0/ D 1;

because for all v 2 �1 we have "v.T0/ D 1, and because by [33], Theorem 72:1, the
last product equals 1. Since "f is a continuous function, for anyT f D .Tv/ 2 X.Af /
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lying in the closure of X.k/ we have "f .T f / D 1. We show below that there exists
U f 2 X.Af / with "f .U f / D �1.

Fix v0 2 �f . Let Uv0
2 X.kv0

/ be a symmetric matrix with determinant 1 with
"v0
.Uv0

/ D �1 (there exists such a symmetric matrix, see [33], Theorem 63:22). For
v 2 �f X fv0g set Uv WD diag.1; : : : ; 1/ 2 X.kv/, then "v.Uv/ D 1. We obtain an
element U f D .Uv/v2�f

2 X.Af / with "f .U f / D �1. We see that U f does not
lie in the closure of X.k/ in X.Af /.

It is well known that for our G D SLn and S D �1, the group G.k/ is dense
in G.AS / D G.Af /. We have Br1.X/ D Br.k/, hence all the points of X.A/� D
X.Af / are orthogonal to Br1.X/, in particular our point U f . However, U f does
not lie in the closure of X.k/ in X.Af / D X.AS / D X.A/�.

Of course, our U f is not orthogonal to Br1.X;G/ (otherwise it would lie in the
closure of X.k/ by Main Theorem 1.4). Indeed, consider the map

m W X.Af / D X.A/� �! Hom.Br1.X;G/=Br.k/;Q=Z/ D Z=2Z

induced by the Manin pairing (2) from 1.3. It can be shown that this map coincides
with the map "f W X.Af /! f˙1g under the canonical identification Z=2Z Š f˙1g.
It follows thatm.U f / D 1C2Z 2 Z=2Z, henceU f is not orthogonal to Br1.X;G/.

The above counter-example shows that Main Theorem 1.4 does not hold with
Br1.X/ instead of Br1.X;G/. Nevertheless, we can prove a similar result about the
algebraic Manin obstruction, assuming that S contains at least one nonarchimedean
place.

Theorem 1.7. Let G be a connected algebraic group (not necessarily linear) over a
number field k. Let X WD HnG be a right homogeneous space of G, where H is a
connected k-subgroup ofG. Assume that the Tate–Shafarevich group of the maximal
abelian variety quotient Gabvar of G is finite. Let x 2 X.A/ be an adelic point
orthogonal to Br1X with respect to the Manin pairing. Let S � �1 be a finite set
of places of k containing all archimedean places and at least one nonarchimedean
place v0. We assume that Gsc.k/ is dense in Gsc.AS /. Set S 0

f
WD S X .�1 [ fv0g/.

We write X.Afv0g/� for X.A�1[fv0g/ � Q
v2�1

�0.X.kv//. Then the projection

xfv0g 2 X.Afv0g/� of x lies in the closure of the setX.k/:Gscu.kS 0

f
/ inX.Afv0g/� for

the adelic topology.

Theorem 0.1 follows from Theorem 1.4, and Theorem 0.2 follows from Theo-
rem 1.7.
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2. Sansuc’s exact sequence

2.1. Let k be a field of characteristic 0.
Let � W Y ! X be a (left) torsor under a connected linear k-groupH . We define

Br1.X; Y / to be the following group:

Br1.X; Y / WD fb 2 Br.X/ W ��.b/ 2 Br1.Y /g;
and if y 2 Y.k/, x D �.y/, define Br1;x.X; Y / to be

Br1;x.X; Y / WD kerŒx� W Br1.X; Y /! Br.k/� D fb 2 Br.X/ W ��.b/ 2 Br1;y.Y /g:
We denote by

h ; i W Br.X/ �X.k/! Br.k/ W .b; x/ 7! b.x/

the evaluation map.

2.2. Before recalling the result of Sansuc, we give a few more definitions and nota-
tions. Let A be an abelian category and F W Var=k ! A be a contravariant functor
from the category of k-varieties to A. If X and Y are k-varieties, the projections
pX ; pY W X �k Y ! X; Y induce a morphism in A (see [38], Section 6.b):

F.pX /C F.pY / W F.X/˚ F.Y /! F.X �k Y /
such that

F.pX /C F.pY / D F.pX / B �X C F.pY / B �Y ; (3)

where �X ; �Y are the projections F.X/˚ F.Y /! F.X/; F.Y / and the group law
in the right-hand side is the law in Hom.F.X/˚ F.Y /; F.X �k Y //.

Let m W X �k Y ! Y be a morphism of k-varieties. Assume that the morphism
F.pX /C F.pY / is an isomorphism. We define a map

' W F.Y /! F.X �k Y /! F.X/˚ F.Y /! F.X/

by the formula
' WD �X B .F.pX /C F.pY //�1 B F.m/ (4)

(see [38], (6.4.1)).

Lemma 2.3. Let F W Var=k ! A be a contravariant functor. Let X , Y be two
k-varieties, m W X �k Y ! Y be a k-morphism. Assume that:

� F.Spec.k// D 0.
� F.pX /C F.pY / W F.X/˚ F.Y /! F.X �k Y / is an isomorphism.
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� There exists x 2 X.k/ such that the morphism m.x; :/ W Y ! Y is the identity
of Y .

Then F.m/ D F.pX / B ' C F.pY / W F.Y /! F.X �k Y /.
Proof. Consider the morphism xY W Y ! X �k Y defined by x. Then F.xY / B
F.pX / D 0, since the morphism pX BxY W Y ! X factors through x W Spec.k/! X

and F.Spec.k// D 0. Since pY B xY D idY , we have F.xY / B F.pY / D id, and
the third assumption of the lemma implies that F.xY / B F.m/ D id. Therefore, we
deduce that

F.xY / B .F.pX /C F.pY // D �Y W F.X/˚ F.Y /! F.Y /;

hence

�Y B .F.pX /C F.pY //�1 B F.m/ D F.xY / B F.m/ D idF.Y /: (5)

But by (3) we have

F.m/ D F.pX / B �X B .F.pX /C F.pY //�1 B F.m/
C F.pY / B �Y B .F.pX /C F.pY //�1 B F.m/;

so (4) and (5) give exactly

F.m/ D F.pX / B ' C F.pY /: �

We shall apply those constructions and this lemma to the functorsF D Pic.:/ and
F D Bra.:/ and to the morphismm W H�Y ! Y defined by an action of an algebraic
group H on a variety Y . In this context, those functors satisfy the assumptions of
Lemma 2.3 by [38], Lemma 6.6.

We now recall Sansuc’s result.

Proposition 2.4 ([38], Proposition 6.10). Let k be a field of characteristic zero,H a

connected linear k-group, X a smooth k-variety and � W Y H�! X a torsor underH .
Then we have a functorial exact sequence:

Pic.Y /
'1�! Pic.H/

�0

Y=X����! Br.X/
��

��! Br.Y /
m��p�

Y�����! Br.H � Y /: (6)

Here m W H � Y ! Y denotes the left action of H on Y , pY W H � Y ! Y the
natural projection and �0

Y=X
W Pic.H/ ! Br.X/ is a map defined in the proof of

Proposition 6.10 in [38]. For the definition of the map '1, see (4) or [38], (6.4.1).

Proof. For the part of the exact sequence up to Br.X/
��

���! Br.Y / see [38], Propo-
sition 6.10. Concerning the last map Br.Y / ! Br.H � Y /, it implicitly appears in
Sansuc’s paper in the last term of the exact sequence

0! LH 1.Y=X;Pic/! H 2.X;Gm/
p�! LH 0.Y=X;Br 0/! 0
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(the second sequence of the four short exact sequences on page 45). By definition

LH 0.Y=X;Br 0/ D kerŒBr.Y /
pr�

1
�pr�

2������! Br.Y �X Y /�;
where pri W Y �X Y ! Y denote the two projections. Since Y ! X is a torsor, we
have a canonical isomorphismH �Y ! Y �X Y defined by .h; y/ 7! .m.h; y/; y/.
Sansuc noticed that the maps pr1 and pr2 correspond under this isomorphism to the
maps m and pY , respectively (see [38], the formulas for the faces of the simplicial
system on page 44 before Lemma 6.12). Thus we see that

LH 0.Y=X;Br 0/ D kerŒBr.Y /
m��p�

Y������! Br.H � Y /�:
A computation using the Čech spectral sequence (6.12.0) in [38] shows that the map
Br.X/! Br.Y / defined by the composition

H 2.X;Gm/
p�! LH 0.Y=X;Br 0/ � H 2.Y;Gm/

is the pullback morphism �� W Br.X/ ! Br.Y /. This concludes the proof of the
exactness of (6). �

The exact sequence in the above proposition will be very useful in the following,
but we need another one: we need a version of this exact sequence with the map
�Y=X W Pic.H/! Br.X/, defined in [11] before Proposition 2.3. We recall here the
definition of �Y=X due to Colliot-Thélène and Xu.

2.5. Definition of �Y =X . We use the above notation. Since H is connected, we
have a canonical isomorphism cH W Extck.H;Gm/ Š Pic.H/ (see [8], Corollary 5.7),
where Extck.H;Gm/ is the abelian group of isomorphism classes of central extensions
of k-algebraic groups of H by Gm. Given such an extension

1! Gm ! H1 ! H ! 1

corresponding to an element p 2 Pic.H/, we get a coboundary map in étale coho-
mology

@H1
W H 1.X;H/! H 2.X;Gm/;

see [19], IV.4.2.2. This coboundary map fits in the natural exact sequence of pointed
sets (see [19], Remark IV.4.2.10 )

H 1.X;H1/! H 1.X;H/
@H1���! H 2.X;Gm/ D Br.X/: (7)

The element�Y=X .p/ is defined to be the image of the class ŒY � 2 H 1.X;H/ of the
torsor � W Y ! X by the map @H1

. This construction defines a map

�Y=X W Pic.H/! Br.X/; p 7! @H1
.ŒY �/;
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which is functorial in X and H (this map was denoted by ıtors.Y / in [11]).
We can compare the map �Y=X W Pic.H/ ! Br.X/ with another useful map

˛Y=X W H 1.k; yH/! Br1.X/ defined by the formula

˛Y=X .z/ WD p�
X .z/ [ ŒY � 2 H 2.X;Gm/;

where pX W X ! Spec.k/ is the structure morphism and ŒY � 2 H 1.X;H/.
Recall that we have a canonical map �H W H 1.k; yH/ ! Pic.H/ coming from

Leray’s spectral sequence (see for instance [38], Lemma 6.9).

Lemma 2.6. The following diagram is commutative:

H 1.k; yH/ ˛Y=X ��

�H

��

Br1.X/

��
Pic.H/

�Y=X �� Br.X/ .

Proof. Define Z to be the quotient of Y by the action of H ssu. Then Z ! X is

a torsor under H tor. By functoriality, and using the isomorphism bH tor Š yH , it is
sufficient to prove the commutativity of the following diagram:

H 1.k; bH tor/
˛Z=X ��

�H tor

��

Br1.X/

��
Pic.H/

�Z=X �� Br.X/ .

Consider the groups Extnk.H
tor;Gm/ in the abelian category of fppf-sheaves over

Spec.k/. By [29], Lemmas A.3.1 and A.3.2, we know that the diagram

H 1.k; bH tor/
˛Z=X ��

�0

H tor

��

Br1.X/

��
Ext1k.H

tor;Gm/
�Z=X �� Br.X/

is commutative, where �0
H tor W H 1.k; bH tor/! Ext1k.H

tor;Gm/ is the edge map from
the local to global Ext’s spectral sequence

Hp.k;ExtqNk.
xH tor;Gm Nk// H) ExtpCq

k
.H tor;Gm/

(see [1], V.6.1).
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By [35], Proposition 17.5, there exists a canonical map Ext1k.H
tor;Gm/ !

Extck.H
tor;Gm/. Composing this map with cH tor W Extck.H

tor;Gm/ ! Pic.H tor/

(used in the construction of�Z=X ), we get a map c0
H tor W Ext1k.H

tor;Gm/! Pic.H tor/.
It is now sufficient to prove that the diagram

H 1.k; bH tor/

�H tor
���������������

�0

H tor �� Ext1k.H
tor;Gm/

c0

H tor

��
Pic.H tor/

is commutative.
The natural transformation Hom Nk�groups.

xH tor; . :/ Nk/
��! H 0. xH tor; . :/ Nk/ of func-

tors from the category of fppf-sheaves over Spec.k/ to the category of Gal. Nk=k/-
modules induces a morphism of spectral sequences

.Hp.k;ExtqNk.
xH tor;Gm Nk// H) ExtpCq

k
.H tor;Gm//

����! .Hp.k;H q. xH tor;Gm Nk// H) HpCq.H tor;Gm//

from the local to global Ext’s spectral sequence to Leray’s spectral sequence. This
morphism implies that the induced diagram between edge maps

H 1.k; bH tor/
�0

H tor ��

�H tor
���������������

Ext1k.H
tor;Gm/

�0

��
Pic.H tor/

is commutative. We need to prove that the map �0 induced by � coincides with the
map c0

H tor W Extc1.H
tor;Gm/! Pic.H tor/. Let

0! Gmk ! I ! Q! 0

be an exact sequence of fppf-sheaves on Spec.k/ such that I is injective. Then the
long exact sequences associated to the functors H 0.H tor; :/ and Homk.H

tor; :/ give
rise to the following commutative diagram

Homk.H
tor;Q/=Homk.A; I / ��

Š
��

H 0.H tor;Q/=H 0.H tor; I /

Š
��

Ext1k.H
tor;Gm/

�0 �� H 1.H tor;Gm/ ,

where the vertical maps are the coboundary maps and the horizontal ones are induced
by � . With this diagram, it is clear that the image by �0 of a given group extension is
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the same as the image of this extension by the map c0
H tor , which concludes the proof.

�

Remark 2.7. In particular, if H D T is a k-torus, then the map �T W H 1.k; yT / Š�!
Pic.T / is an isomorphism, and we see that the map �Y=X coincides with the map
˛Y=X W H 1.k; yT /! Br1.X/ defined by z 7! p�

X .z/ [ ŒY �.
The goal of the following theorem is to give an equivalent of Sansuc’s exact

sequence (6) with the map�0
Y=X

replaced by the map�Y=X . It will be very important
in the following.

Theorem 2.8. Let k be a field of characteristic zero. Let H a connected linear k-

group,X a smooth k-variety and � W Y H�! X a (left) torsor underH . Then we have
a commutative diagram with exact rows, functorial in .X; Y; �;H/:

Pic.Y /
'1 �� Pic.H/

�Y=X �� Br.X/ ��

�� Br.Y /
m��p�

Y �� Br.H � Y /

Pic.Y /
'1 �� Pic.H/

�Y=X �� Br1.X; Y /
��

��

�X

��

Br1.Y /
'2 ��

�Y

��

Bra.H/ .

�

��

(8)

Here m W H � Y ! Y denotes the left action of H on Y , the homomorphism
�Y=X W Pic.H/ ! Br.X/ is the map of [11], see 2.5 above, the homomorphisms
'1 and '2 are defined in [38] (6.4.1) (or see (4)), the homomorphisms 	X and 	Y are
the inclusion maps, and the injective homomorphism 
 is given as the composite of
the following natural injective maps:

Bra.H/! Bra.H/˚ Br1.Y /
Š��! Br1.H � Y / ,! Br.H � Y /:

In particular, if Y.k/ ¤ ; and y 2 Y.k/, x D �.y/, then the maps 'i are induced
by the map iy W H ! Y defined by h 7! h:y, and we have an exact sequence

Pic.Y /
i�y��! Pic.H/

�Y=X����! Br1;x.X; Y /
��

��! Br1;y.Y /
i�y��! Br1;e.H/: (9)

Remark 2.9. Recall that the exact sequences (8) and (9) can be extended to the left
by

0! kŒX��=k� ! kŒY ��=k� ! yH.k/! Pic.X/! Pic.Y /

(see [38], Proposition 6.10).

Corollary 2.10. Let k be a field of characteristic zero. Let T be a k-torus, X a

smooth k-variety and � W Y T�! X a (left) torsor under T . Then we have an exact
sequence

Pic.Y /
'1�! Pic.T /

�Y=X����! Br1.X/
��

��! Br1.Y /
'2�! Bra.T /:
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Proof. It is a direct application of Theorem 2.8, using Pic. xT / D 0. �

Remark 2.11. This corollary compares the algebraic Brauer groups of X and Y .
Concerning the transcendental part of those groups, Theorem 2.8 can be used to
study the injectivity of the map Br.X/ ! Br.Y /. We cannot describe easily the
image of this map in general. However, Harari and Skorobogatov studied this map
in particular cases (universal torsors for instance): see [23], Theorems 1.6 and 1.7.

Corollary 2.12 (cf. [38], Corollary 6.11). Let

1! G0 i��! G
j��! G00 ! 1

be an exact sequence of connected algebraic groups over a field k of characteristic
zero. Assume thatG0 is linear. Then there is a commutative diagram with exact rows

Pic.G/ i� �� Pic.G0/
�G=G00

�� Br.G00/ j�

�� Br.G/
m��p�

G �� Br.G0 �G/

Pic.G/ i� �� Pic.G0/
�G=G00

�� Br1;e.G00; G/ j�

��

�00

��

Br1;e.G/
i� ��

�

��

Br1;e.G0/ .

�

��

(10)
Here pG W G0 � G ! G is the projection map, the map m W G0 � G ! G is defined
by m.g0; g/ WD i.g0/:g (where the product denotes the group law in G), 	00 and 	 are
the inclusion homomorphisms, and the injective homomorphism 
 is defined as in
Theorem 2.8.

If the homomorphism Pic. xG/! Pic.SG0/ is surjective (e.g. when G0 is a k-torus,
or when G0ss is simply connected, or when all the three groups G0, G and G00 are
linear), then Br1;e.G00; G/ D Br1;e.G00/, and we have a commutative diagram with
exact rows:

Pic.G/ i� �� Pic.G0/
�G=G00

�� Br.G00/ j�

�� Br.G/
m��p�

G �� Br.G0 �G/

Pic.G/ i� �� Pic.G0/
�G=G00

�� Br1;e.G00/ j�

��

�00

��

Br1;e.G/
i� ��

�

��

Br1;e.G0/ .

�

��

(11)

Proof. The short exact sequence of algebraic groups defines a structure of (left) G00-
torsor under G0 on G (G0 acts on G by left translations). Now from the diagram
with exact rows (8) we obtain diagram (10), which differs from diagram (11) by the
middle term in the bottom row.

From diagram (8) we obtain an exact sequence

Pic. xG/ i
�

�! Pic.SG0/
�G=G00�����! Br.G00/

j�

�! Br. xG/: (12)
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If the homomorphism i� W Pic. xG/! Pic.SG0/ is surjective, then the homomorphism
j � W Br.G00/! Br. xG/ is injective, hence Br1;e.G00; G/ D Br1;e.G00/, and we obtain
diagram (11) from diagram (10).

If G0 is a k-torus or if G0ss is simply connected, then Pic.SG0/ D 0, and the
homomorphism Pic. xG/ ! Pic.SG0/ is clearly surjective. If all the three groups G0,
G and G00 are linear, then again the homomorphism Pic. xG/! Pic.SG0/ is surjective,
see [38], proof of Corollary 6.11, p. 44. �

For the proof of Theorem 2.8 we need a crucial lemma.

Lemma 2.13. Let k be a field of characteristic zero. Let H a connected linear

k-group, X a smooth k-variety and � W Y H�! X a (left) torsor under H . Let

� W Z Gm��! Y be a torsor under Gm. Then there exists a central extension of algebraic
k-groups

1! Gm ! H1 ! H ! 1

and a left actionH1�Z ! Z, extending the action of Gm onZ and compatible with
the action ofH on Y . This action makesZ ! X into a torsor underH1. Moreover,
the class of such an extensionH1 in the group Extck.H;Gm/ is uniquely determined,
namely ŒH1� D '1.ŒZ�/ 2 Extck.H;Gm/ D Pic.H/.

Remark 2.14. In [24], Harari and Skorobogatov studied this question of composition
of torsors. Their results (see Theorem 2.2 and Proposition 2.5 in [24]) deal with
torsors under multiplicative groups and not only under Gm as here, but they require
additional assumptions concerning the type of the torsor and on invertible functions
on the varieties. Those additional assumptions are not satisfied in our context.

Proof. Let pH W H �Y ! H and pY W H �Y ! Y denote the two projections. Let

1! Gm ! H1 ! H ! 1

be a central extension such that its class in Extck.H;Gm/ D Pic.H/ is exactly'1.ŒZ�/.
In this setting, Lemma 2.3 implies that

m�ŒZ� D p�
H ŒH1�C p�

Y ŒZ�: (13)

Formula (13) means that the push-forward of the torsor

H1 �Z Gm�Gm������! H � Y
by the group law homomorphism Gm�Gm ! Gm is isomorphic (as aH �Y -torsor
under Gm) to the pullback m�Z of the torsor Z ! Y by the map m W H � Y ! Y .
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In particular, we get the following commutative diagram:

H1 �Z
m0

���
� � � � �

	
Gm ��

Gm�Gm ��









 m�Z ��

Gm

��

Z

Gm

��
H � Y m �� Y

(14)

where m0 is defined to be the composite of the two upper horizontal maps. The
situation is very similar to that in the proof of Theorem 5.6 in [8]: the map m0 fits
into commutative diagram (14) and for all t1; t2 2 Gm and all h1 2 H1, z 2 Z, we
have

m0.t1:h1; t2:z/ D t1t2:m0.h1; z/: (15)

We want to use m0 to define a group action of H1 on Z. Formula (15) implies that
the morphismm0.e; :/ W z 7! m0.e; z/ is an automorphism of the Y -torsor Z, and we
can define a map m00 W H1 �Z ! Z to be the composition

m00 WD m0.e; :/�1 Bm0 W H1 �Z ! Z:

Then we get a commutative diagram

H1 �Z m00

��

����

Z

��
H � Y m �� Y ,

(16)

where the map m00 still satisfies formula (15) and now, for all z 2 Z, we have

m00.e; z/ D z: (17)

We wish to prove that m00 is a left group action of H1 on Z.
Since m W H � Y ! Y is a left action, we have

�.m00.h1h2; z// D �.m00.h1; m00.h2; z/// for h1; h2 2 H1; z 2 Z;
where � W Z ! Y is the canonical map. Since � W Z ! Y is a torsor under Gm, there
is a canonical map

Z �Y Z ! Gm; .z1; z2/ 7! z1z
�1
2 :

We obtain a morphism of k-varieties

' W H1 �H1 �Z ! Gm; .h1; h2; z/ 7! 'z.h1; h2/;
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such that

m00.h1h2; z/ D 'z.h1; h2/:m00.h1; m00.h2; z// for h1; h2 2 H1; z 2 Z:
Then (17) implies that

'z.h; e/ D 1 and 'z.e; h/ D 1:
By Rosenlicht’s lemma (see [37], Theorem 3, see also [38], Lemma 6.5), the map '
has to be trivial, i.e. 'z.h1; h2/ D 1 for all z, h1, h2. Therefore we have

m00.h1h2; z/ D m00.h1; m00.h2; z//: (18)

Formulas (17) and (18) show thatm00 is a left group action ofH1 onZ. Sincem00
satisfies (15), we have for t 2 Gm; z 2 Z

m00.te; z/ D t:m00.e; z/ D t:z;
hence the action m00 extends the action of Gm on Z. From diagram (16) with m00
instead of m0 we see that the action m00 induces the action m of H on Y .

Consider the following commutative diagram (see (16)):

H1 �k Z 	Z ��

��

Z �X Z

��
H �k Y 	Y �� Y �X Y ,

(19)

where �Z.h1; z/ WD .m00.h1; z/; z/, �Y .h; y/ WD .m.h; y/; y/, and the unnamed
morphisms are the natural ones. Since Y ! X is a torsor under H , the morphism
�Y is an isomorphism. The group Gm �Gm acts on H1 �k Z via .t1; t2/:.h1; z/ WD
.t1h1; t2:z/, making H1 �k Z ! H �k Y into a torsor under Gm �Gm. We define
an action of Gm �Gm on Z �X Z by

.t1; t2/:.z1; z2/ WD ..t1t2/:z1; t2:z2/;
thenZ�X Z ! Y �X Y is a torsor under Gm�Gm. By formula (15) the map �Z in
(19) is a morphism of torsors under Gm �Gm compatible with the isomorphism �Y
of k-varieties. Therefore the map �Z is an isomorphism of k-varieties, which proves
that the action m00 makes Z ! X into a torsor under H1.

Let us prove the uniqueness of the class of the extension H1. If H2 is a central
extension of H that satisfies the conditions of the lemma, then the analogues of
diagram (16) and formula (15) with H2 instead of H1 define an isomorphism of
H � Y -torsors under Gm between the push-forward of H2 � Z by the morphism
Gm �Gm ! Gm and the torsor m�Z. Therefore, we get

m�ŒZ� D p�
H ŒH2�C p�

Y ŒZ�:
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Comparing with (13), we see that p�
H ŒH2� D p�

H ŒH1�. Since p�
H C p�

Y W Pic.H/˚
Pic.Y /! Pic.H �Y / is an isomorphism, we see thatp�

H W Pic.H/! Pic.H �Y / is
an embedding, hence ŒH2� D ŒH1�, which completes the proof of Lemma 2.13. �

2.15. Proof ofTheorem2.8: top rowof the diagram. First we prove that the top row
in diagram (8) is a complex. Let p 2 Pic.Y / and let us prove that�Y=X .'1.p// D 0.
Let Z ! Y be a torsor under Gm such that ŒZ� D p 2 Pic.Y /. Let p0 WD '1.p/ 2
Pic.H/, and 1 ! Gm ! H1 ! H ! 1 be a central extension of H by Gm cor-
responding to p0 via the isomorphism Extck.H;Gm/ Š Pic.H/. Then �Y=X .p0/
is equal (by definition) to @H1

.ŒY �/ 2 H 2.X;Gm/, where @H1
W H 1.X;H/ !

H 2.X;Gm/ is the coboundary map coming from the extension H1, and ŒY � is the
class of the torsor Y ! X in H 1.X;H/.

Lemma 2.13 implies that the class ŒY � 2 H 1.X;H/ is in the image of the map
H 1.X;H1/! H 1.X;H/. From exact sequence (7) we see that the class @H1

.ŒY �/

is trivial in H 2.X;Gm/, i.e. �Y=X .p0/ D @H1
.ŒY �/ D 0 2 H 2.X;Gm/, hence

Pic.Y /
j�

�! Pic.H/
�Y=X����! Br.X/ is a complex.

Let p 2 Pic.H/, and let us prove that ��.�Y=X .p// D 0. The element p
corresponds to the class of an extension 1 ! Gm ! H1 ! H ! 1, and we have
�Y=X .p/ D @H1

.ŒY �/. We have a commutative diagram

H 1.X;H/
@H1 ��

��

��

H 2.X;Gm/

��

��
H 1.Y;H/

@H1 �� H 2.Y;Gm/

so that ��.�Y=X .p// D ��.@H1
.ŒY �// D @H1

.��ŒY �/. The torsor ��ŒY � is trivial in
the set H 1.Y;H/, hence ��.�Y=X .p// D 0. Consequently the top row of diagram
(8) is a complex.

Let us prove that the top row of diagram (8) is exact. For the exactness at the term
Br.Y /, see Proposition 2.4. So it remains to prove the exactness of the top row at
Pic.H/ and at Br.X/.

Let p 2 Pic.H/ be such that �Y=X .p/ D 0. Such a p corresponds to the class

of an extension 1 ! Gm ! H1
q�! H ! 1 such that @H1

.ŒY �/ D 0. From exact

sequence (7) we see that there exists an X -torsor Z
H1��! X under H1, with an H1-

equivariant map Z ! Y , making Z ! Y into a torsor under Gm. Then by the
uniqueness part of Lemma 2.13 we know that the class ofZ ! Y in Pic.Y /maps to
the class of H1 in Pic.H/, i.e. '1.ŒZ�/ D p, which proves the exactness of the top
row of diagram (8) at Pic.H/.

Let us now prove the exactness of the top row of (8) at Br.X/.
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Assume first that the k-variety X is quasi-projective. Let A 2 Br.X/ such that
��A D 0 2 Br.Y /. By a theorem of Gabber also proven by de Jong (see [12]),
we know that there exists a positive integer n and an X -torsor Z ! X under PGLn
such that �A is the image of the class ofZ inH 1.X;PGLn/ by the coboundary map

H 1.X;PGLn/
@GLn���! H 2.X;Gm/. Let W denote the product Y �X Z. From the

commutative diagram with exact rows

H 1.X;GLn/

��

�� H 1.X;PGLn/

��

�� Br.X/

��

��
H 1.Y;GLn/ �� H 1.Y;PGLn/ �� Br.Y /

we see that the assumption ��A D 0 implies that the torsorW
PGLn���! Y is dominated

by some Y -torsor under GLn, i.e. there exists a torsor V
GLn��! Y and a morphism of

Y -torsors V ! W compatible with the quotient morphism GLn ! PGLn. We have
the following picture:

Y

H

��

W
PGLn

��

H

��

V
Gm

��

GLn

		

X Z .
PGLn

��

SinceW ! X is a torsor under the connected linear groupH �PGLn, we can apply
Lemma 2.13 to get a central extension

1! Gm ! L! H � PGLn ! 1 (20)

and a structure of X -torsor under L on V ! X , compatible with the action of
H �PGLn onW . In particular, the natural injections ofH and PGLn intoH �PGLn
define two central extensions obtained by pulling back the extension (20):

1! Gm ! LH ! H ! 1; (21)

1! Gm ! LPGLn
! PGLn ! 1: (22)

Since PGLn acts trivially on Y , the action ofLPGLn
(as a subgroup ofL) on V defines

a commutative diagram

LPGLn
� V 	V ��

��

V �Y V

��
PGLn �W 	W �� W �Y W
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where �V .l; v/ WD .l:v; v/, �W .p;w/ WD .p:w;w/, and the vertical maps are the
natural ones. We see easily that �V is an isomorphism, hence V ! Y is a torsor
under LPGLn

. This action of LPGLn
extends the action of Gm on V above W , and is

compatible with the action of PGLn onW above Y via the extension (22) and the map
V ! W . Therefore, the unicity result in Lemma 2.13 implies that exact sequence
(22) is equivalent to the usual extension 1 ! Gm ! GLn ! PGLn ! 1, and in
particular that @LPGLn

.ŒZ�/ D @GLn
.ŒZ�/ 2 H 2.X;Gm/.

Consider the direct product of the exact sequences (21) and (22):

1! Gm �Gm ! LH � LPGLn
! H � PGLn ! 1:

Define the morphism � W LH �LPGLn
! L by �.l; l 0/ WD l:l 0, where the product is

taken inside the groupL. By definition ofLH andLPGLn
, we see that the image of the

commutator morphism c W LH � LPGLn
! L defined by c.l; l 0/ WD l:l 0:l�1:l 0�1 is

contained in the central subgroup Gm of L. Therefore, since c.e; l 0/ D c.l; e/ D 1,
Rosenlicht’s lemma implies that c.l; l 0/ D 1 for all .l; l 0/ 2 LH �LPGLn

. Hence the
morphism � is a group homomorphism, and the following diagram is commutative
with exact rows:

1 �� Gm �Gm
��

m

��

LH � LPGLn
��




��

H � PGLn �� 1

1 �� Gm
�� L �� H � PGLn �� 1 ,

where m W Gm � Gm ! Gm is the group law. Therefore we get a commutative
diagram of coboundary maps

H 1.X;H/ �H 1.X;PGLn/
@LH

�@LPGLn �� H 2.X;Gm/ �H 2.X;Gm/

H 1.X;H � PGLn/

Š

��

@LH �LPGLn �� H 2.X;Gm �Gm/

Š

��

m

��
H 1.X;H � PGLn/

@L �� H 2.X;Gm/ .

In particular, this diagram implies that

@L.ŒW �/ D @LH
.ŒY �/C @LPGLn

.ŒZ�/

in H 2.X;Gm/. Since W
H�PGLn������! X is dominated by the X -torsor V

L�! X , we
know that @L.ŒW �/ D 0, therefore the above formula implies that

@LH
.ŒY �/ D �@LPGLn

.ŒZ�/ D A 2 Br.X/;
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i.e. A D �Y=X .ŒLH �/, with ŒLH � 2 Extck.H;Gm/ Š Pic.H/. Hence the first row of
diagram (8) is exact under the assumption that X is quasi-projective.

Let us now deduce the general case: X is not supposed to be quasi-projective
anymore. By Nagata’s theorem (see [32]) we know that there exists a proper k-
variety Z and an open immersion of k-varieties X ! Z. By Chow’s lemma (see
[15], II.5.6.1 and II.5.6.2, or [39], Chapter VI, §2.1), there exists a projective k-
variety Z0 and a projective, surjective birational morphism Z0 ! Z. Moreover,
using Hironaka’s resolution of singularities (see [27], see also [3] and [17]), there
exists a smooth projective k-variety zZ and a birational morphism zZ ! Z0. Define
X 0 to be the fibred product X 0 WD zZ �Z X . Then X 0 is a open subvariety of zZ,
hence X 0 is a smooth quasi-projective k-variety, and the natural map X 0 ! X is a
birational morphism. Define Y 0 to be the product Y �X X 0. By the quasi-projective
case, we know that in the commutative diagram

Pic.H/
�Y 0=X0

�� Br.X 0/ �� Br.Y 0/

Pic.H/
�Y=X �� Br.X/

��

�� Br.Y /

��

(23)

the first row is exact. Since the map X 0 ! X is a birational morphism, we have a
commutative diagram

Br.X/ ��

��

Br.X 0/

��
Br.k.X// Š �� Br.k.X 0// ,

where the bottom horizontal arrow is an isomorphism. Since both X and X 0 are
smooth, by [20], II, Corollary 1.8, the vertical arrows are injective. It follows that the
homomorphism Br.X/! Br.X 0/ is injective. Now a diagram chase in diagram (23)
proves the exactness of the second row in that diagram. This completes the proof of
the exactness of the top row of diagram (8). �

2.16. Proof of Theorem 2.8: the commutativity of the diagram and the exactness
of its bottomrow. It is clear that all the squares of diagram (8) are commutative except
maybe the rightmost square.

By Lemma 2.3, we have for all ˇY 2 Br1.Y /,

m�ˇY D p�
H'2.ˇY /C p�

Y ˇY in Br1.H � Y /: (24)

This formula implies immediately that the rightmost square of diagram (8) commutes,
hence this diagram is commutative.
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Since the top row of (8) is exact, and the diagram (8) is commutative, it is easy to
conclude that the bottom row of (8) is exact. �

2.17. Proof of Theorem 2.8: exact sequence (9). We consider the following dia-
gram:

Pic.Y /
i�y �� Pic.H/

�Y=X �� Br1;x.X; Y /
��

��

��

Br1;y.Y /
i�y ��

��

Br1;e.H/

Š
��

Pic.Y /
'1 �� Pic.H/

�Y=X �� Br1.X; Y /
��

�� Br1.Y /
'2 �� Bra.H/ .

(25)
In this diagram the second row is the second row of diagram (8), hence it is exact. In
the first row, Br1;x.X; Y / is a subgroup of Br1.X; Y / and Br1;y.Y / is a subgroup of
Br1.Y /. We easily check that all the arrows in the first row are well-defined.

This diagram is commutative: for the first and the last squares it is a consequence
of Lemma 6.4 of [38], and for the two central squares it is clear. We know that the
second row of this diagram is exact. Since all the vertical arrows are injective, we
see that the first row is a complex. An easy diagram chase shows that the first row is
also exact, i.e. sequence (9) is exact. �

3. Compatibility

In this section we use Theorem 2.8 to get a compatibility result between the evaluation
map and the action of a linear group. We begin with a lemma:

Lemma 3.1. Let k be a field of characteristic 0 andX ,X 0 be two smooth k-varieties.

Let � W Y H�! X and � 0 W Y 0 H 0

��! X 0 be two (left) torsors under connected linear k-
groupsH andH 0. The map Y � Y 0 ! X �X 0 is naturally a torsor underH �H 0.
Assume that SY 0 is rational and that Y 0.k/ ¤ ;. Let y0 2 Y 0.k/ and x0 WD � 0.y0/.
Then the homomorphism

p�
X C p�

X 0 W Br1.X; Y /˚ Br1;x0.X 0; Y 0/! Br1.X �X 0; Y � Y 0/

is well-defined and is an isomorphism.

Proof. Consider the three exact sequences associated to the torsorsY ! X ,Y 0 ! X 0
and Y �Y 0 ! X�X 0 (see Theorem 2.8). We get the following commutative diagram
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with exact rows:

Pic.Y /˚ Pic.Y 0/ ��

p�

Y
Cp�

Y 0

��

Pic.H/˚ Pic.H 0/ ��

p�

H
Cp�

H 0

��

Br1.X; Y /˚ Br1;x0.X 0; Y 0/

p�

X
Cp�

X0

��
Pic.Y � Y 0/ �� Pic.H �H 0/ �� Br1.X �X 0; Y � Y 0/

�� Br1.Y /˚ Br1;y0.Y 0/ ��

p�

Y
Cp�

Y 0

��

Bra.H/˚ Br1;e.H 0/

p�

H
Cp�

H 0

��
�� Br1.Y � Y 0/ �� Bra.H �H 0/ .

The two first and the two last vertical arrows are isomorphisms by [38], Lemma 6.6,
hence the five lemma implies that the central vertical arrow is an isomorphism. �

Corollary 3.2. If in Lemma 3.1 we also have Y.k/ ¤ ;, y 2 Y.k/ and x D �.y/,
then the homomorphism

p�
X C p�

X 0 W Br1;x.X; Y /˚ Br1;x0.X 0; Y 0/ �! Br1;.x;x0/.X �X 0; Y � Y 0/

is an isomorphism.

Lemma 3.3 (Compatibility). Let k be a field of characteristic 0. Let � W Y ! X be
a (left) torsor under a connected linear k-groupH . Let G be a connected algebraic
k-group, acting on the right on Y and X such that � is G-equivariant. Assume
that Y is Nk-rational and Y.k/ ¤ ; and let y0 2 Y.k/, x0 D �.y0/. Then for any
b 2 Br1;x0

.X; Y /; x 2 X.k/; g 2 G.k/ we have

b.x:g/ D b.x/C ��.b/.y0:g/:

Proof. We consider two torsors: � W Y H�! X and � 0 D id W G ! G. Let mX W X �
G ! X and mY W Y � G ! Y denote the actions of G. Since mY .y; e/ D y, we
see that if b 2 Bry.X; Y /, then m�

Xb 2 Br.y;e/.X � G; Y � G/. By functoriality of
the evaluation map, we have a commutative diagram

Br1;.x0;e/.X �G; Y �G/ � .X �G/.k/
D

��

ev �� Br.k/

Br1;x0
.X; Y /˚ Br1;e.G/ � .X.k/ �G.k//
p�

X
Cp�

G

��

ev0

�� Br.k/
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where the first pairing is the evaluation map on X �G and the second one is the sum
of the evaluation maps on X and on G, i.e.

ev0..B; C /; .x; g// WD B.x/CC.g/ 2 Br.k/ for B 2 Br1;x0
.X; Y /; C 2 Br1;e.G/:

By Corollary 3.2 the left vertical morphism p�
X C p�

G is an isomorphism. Therefore
we get two natural projections:

�X W Br1;.x0;e/.X �G; Y �G/! Br1;x0
.X; Y /

and

�G W Br1;.x0;e/.X �G; Y �G/! Br1;e.G/:

Hence for allD 2 Br1;.x0;e/.X�G; Y �G/, we getD D p�
X .�X .D//Cp�

G.�G.D//,
and so, by the commutativity of the diagram, for all .x; g/ 2 X.k/ �G.k/ we have

D..x; g// D �X .D/.x/C �G.D/.g/:
For g D e 2 G.k/, this formula implies that

D..x; e// D �X .D/.x/
because �G.D/.e/ D 0. So, for b 2 Br1;x0

.X; Y /, g 2 G.k/ and x 2 X.k/, we
have

b.x:g/ D .m�b/..x; g//
D �X .m�b/.x/C �G.m�b/.g/
D .m�b/..x; e//C �G.m�b/.g/

where we write m for mX . Since .m�b/..x; e// D b.m.x; e// D b.x/ by functori-
ality, we have

b.x:g/ D b.x/C �G.m�b/.g/: (26)

In the case x D x0 D �.y0/ we obtain

.��b/.y0:g/ D b.�.y0/:g/ D b.�.y0//C �G.m�b/.g/ D �G.m�b/.g/; (27)

since b.�.y0// D b.x0/ D 0. Consequently, (26) and (27) give the expected formula,
that is:

b.x:g/ D b.x/C .��b/.y0:g/: �

Corollary 3.4. LetX WD HnG be a right homogeneous space of a connected linear
k-group G over a field k of characteristic 0, where H � G is a connected linear
k-subgroup. Then for all b 2 Br1;x0

.X;G/; x 2 X.k/; g 2 G.k/ we have

b.x:g/ D b.x/C ��b.g/;

where � W G ! X is the quotient map and x0 D �.e/.
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Proof. We take Y D G, y0 D e 2 G.k/, and x0 D �.y0/ D �.e/ in Lemma 3.3,
then Br1;x0

.X; Y / D Br1;x0
.X;G/ and ��b.y0:g/ D ��b.g/. �

Corollary 3.5. Let k be a number field. LetX WD HnG be a homogeneous space of
a connected linear k-group G, whereH � G is a connected linear k-subgroup. Let
h ; i denote the Manin pairing

Br.X/ �X.A/! Q=Z:

Let b 2 Br1;x0
.X;G/; x 2 X.A/; g 2 G.A/. Then

hb; x:gi D hb; xi C h��.b/; gi;
where � W G ! X is the quotient map and x0 D �.e/.
Corollary 3.6. Let k, G, H and X be as in Corollary 3.5. Let ' W G0 ! G be
a homomorphism of k-groups, where G0 is a simply connected k-group. Let b 2
Br1;x0

.X;G/; x 2 X.A/; g0 2 G0.A/. Then

hb; x:'.g0/i D hb; xi:
Proof. By Corollary 3.5 we have

hb; x:'.g0/i D hb; xi C h��.b/; '.g0/i:
By functoriality we have

h��.b/; '.g0/i D h'���.b/; g0i:
Since b 2 Br1;x0

.X;G/, we have ��b 2 Br1;e.G/ and '���b 2 Br1;e.G0/ D 0.
Thus '���b D 0, hence h��.b/; '.g0/i D 0, and the corollary follows. �

4. Some lemmas

For an abelian group A we write AD WD Hom.A;Q=Z/.

Lemma 4.1. Let P be a quasi-trivial k-torus over a number field k. Then the
canonical map � W P.A/! Bra.P /

D induced by the Manin pairing is surjective.

Proof. We have Bra.P / D H 2.k; yP /, see [38], Lemma 6.9 (ii). By [38], (8.11.2),
the map

� W P.A/! Bra.P /
D D H 2.k; yP /D

is given by the canonical pairing

P.A/ �H 2.k; yP /! Q=Z:
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Consider the map � from the Tate–Poitou exact sequence

.P.A/�/^

���! H 2.k; yP /D ! H 1.k; P /; (28)

see [25], Theorem 5.6 or [14], Theorem 6.3. By .P.A/�/^ we mean the completion
of P.A/� for the topology of open subgroups of finite index. Then the map � is
induced by �. Since P is a quasi-trivial torus, we have H 1.k; P / D 0, and we see
from (28) that the map � is surjective. But by [22], Lemma 4, im� D im �. Thus �
is surjective. �

Lemma 4.2. Let X be a right homogeneous space (not necessarily principal) of a
connected k-group G over a number field k. Let N � G be a connected normal
k-subgroup. Set Y WD X=N , and let � W X ! Y be the canonical map. Then the
induced map X.A/! Y.A/ is open.

Note that the geometric quotientX=N exists in the category of k-varieties by [5],
Lemma 3.1.

Proof. If v is a nonarchimedean place of k, we denote by Ov the ring of integers of
kv , and by 
v the residue field of Ov . For an Ov-schemeZv we set zZv WD Zv�Ov


v .
Since the morphism � is smooth, the map X.kv/! Y.kv/ is open for any place

v of k.
Let S be a finite set of places of k containing all the archimedean places. Write

OS for the ring of elements of k that are integral outside S . Taking S sufficiently
large, we can assume that G and N extend to smooth group schemes G and N over
Spec.OS /, and that X and Y extend to homogeneous spaces X of G and Y of G=N

over Spec.OS / such that Y D X=N . In particular, the reduction zNv WD N �OS 
v
is connected for v … S .

Let v … S and let yv 2 Y.Ov/. Set Xyv
WD X �Y Spec.Ov/, the morphisms

being given by � and by yv W Spec .Ov/! Y. It is an Ov-scheme. Then its reduction
eXyv

is a homogeneous space of the connected 
v-group zNv over the finite field 
v .
By Lang’s theorem ([31], Theorem 2) eXyv

has a 
v-point. By Hensel’s lemma Xyv

has an Ov-point. This means that yv 2 �.X.Ov//. Thus �.X.Ov// D Y.Ov/ for
all v … S . It follows that the map X.A/! Y.A/ is open. �

4.3. Let X D HnG be a homogeneous space of a connected k-group G. Let
x1 2 X.k/. Consider the map �x1

W G ! X; g 7! x1:g, it induces a homomorphism
��
x1
W Br.X/! Br.G/. Let Br1.X;G/x1

denote the subgroup of elements b 2 Br.X/
such that ��

x1
.b/ 2 Br1.G/. The following lemma shows that Br1.X;G/x1

does
not depend on x1, so we may write Br1.X;G/ instead of Br1.X;G/x1

. Note that
Br1.X;G/ D Br1;x1

.X;G/C Br.k/.

Lemma 4.4. The subgroup Br1.X;G/x1
� Br.X/ does not depend on x1.
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Proof. We have a commutative diagram

Br.X/=Br.k/

��

��

x1 �� Br.G/=Br.k/

��
Br. xX/

x��

x1 �� Br. xG/ .

We see that it suffices to prove that the kernel of x��
x1

does not depend on x1.

Now if x2 2 X.k/ is another k-point, then x2 D x1:g for some g 2 G. Nk/, hence

x�x2
.g0/ D x2:g0 D x1:gg0 D x�x1

.gg0/ D .x�x1
B lg/.g0/;

where lg denotes the left translation on xG by g. Thus

x��
x2
D l�g B x��

x1
:

Since lg is an isomorphism of the underlying variety of xG, we see that l�g W Br. xG/!
Br. xG/ is an isomorphism, hence ker x��

x2
D ker x��

x1
, which proves the lemma. �

Lemma 4.5. Let X be a right homogeneous space of a unipotent k-group U over a
field k of characteristic 0. Then X.k/ is non-empty and is one orbit of U.k/.

Proof. By [5], Lemma 3.2 (i), X.k/ ¤ ;. Let x 2 X.k/, H WD Stab.x/, then H is
unipotent, hence H 1.k;H/ D 1, and therefore X.k/ D x:U.k/. �

Corollary 4.6. LetX be a right homogeneous space of a unipotent R-groupU . Then
X.R/ is non-empty and connected.

Proof. Since U.R/ is connected and X.R/ D x:U.R/, we conclude that X.R/ is
connected. �

Lemma 4.7. Let G be a unipotent k-group over a number field k. Let X be a right
homogeneous space of G. Let S � � be any non-empty finite set of places. Then
X.k/ is non-empty and dense in X.AS /.

Proof. By [5], Lemma 3.2 (i), X.k/ is non-empty. Let x0 2 X.k/, and let H � G
denote the stabilizer of x0 in G. We have X D HnG.

Set g D Lie.G/. Since g is a vector space and S ¤ ;, by the classical strong
approximation theorem g is dense in g ˝k AS . Since char.k/ D 0, we have the
exponential map g! G, which is an isomorphism of k-varieties. We see that G.k/
is dense inG.AS /. It follows that x0G.k/ is dense in x0G.AS /. SinceH is unipotent,
we have H 1.kv;H/ D 0 for any v 2 �, and therefore x0G.kv/ D X.kv/ for any v.
It follows that x0G.AS / D X.AS / (we use Lang’s theorem and Hensel’s lemma).
Thus x0G.k/ is dense in X.AS /, and X.k/ is dense in X.AS /. �
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5. Brauer group

We are grateful to A. N. Skorobogatov, E. Shustin, and T. Ekedahl for helping us to
prove Theorem 5.1 below.

Theorem 5.1. LetX be a smooth irreducible algebraic variety over an algebraically
closed field k of characteristic 0. Let G be a connected algebraic group (not neces-
sarily linear) defined over k, acting on X . Then G.k/ acts on Br.X/ trivially.

Proof. We write H i for H i
ét (étale cohomology). The Kummer exact sequence

1! �n ! Gm
n���! Gm ! 1

of multiplication by n gives rise to a surjective map

H 2.X;�n/ � Br.X/n;

where Br.X/n denotes the group of elements of order dividing n in Br.X/. Since
every element of Br.X/ is torsion (because Br.X/ embeds in Br.k.X//, cf. [20], II,
Corollary 1.8), it is enough to prove the following Theorem 5.2. �

Theorem 5.2. LetX be a smooth irreducible algebraic variety over an algebraically
closed field k (of any characteristic). Let G be a connected algebraic group (not
necessarily linear) defined over k, acting on X . Let A be a finite abelian group of
order invertible in k. Then G.k/ acts onH i

ét.X;A/ trivially for all i .

Proof in characteristic 0. By the Lefschetz principle, we may assume that k D C.
Letg 2 G.C/. We must prove thatg acts trivially on the Betti cohomologyH i

B.X;A/.
Since G is connected, the group G.C/ is connected, hence we can connect g with
the unit element e 2 G.C/ by a path. We see that the automorphism of X

g� W X ! X; x 7! x:g

is homotopic to the identity automorphism

e� W X ! X; x 7! x:

It follows that g� acts on H i
B.X;A/ as e�, i.e. trivially. �

To prove Theorem 5.2 in any characteristic, we need two lemmas.

Lemma 5.3. Let X , Y be smooth algebraic varieties over an algebraically closed
field k (of any characteristic). LetA be a finite abelian group of order invertible in k.
Consider the projection pY W X � Y ! Y . Then the higher direct image Ri .pY /�A
in the étale topology is the pullback of the abelian group H i .X;A/ considered as a
sheaf on Spec.k/.
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Proof. Consider the commutative diagram

X �k Y pX ��

pY

��

X

sX

��
Y

sY �� Spec .k/ ,

here X �k Y is the fibre product of X and Y with respect to the structure morphisms
sX and sY . ClearlyRi .sX /�A is the constant sheaf on Spec .k/ with stalkH i .X;A/.
By [13], Th. finitude, Theorem 1.9 (ii), the sheaf Ri .pY /�A on Y is the pullback of
the constant sheaf Ri .sX /�A on Spec .k/ along the morphism sY W Y ! Spec .k/,
which concludes the proof. �

Let y 2 Y.k/. It defines a canonical morphism fy W X ! X �k Y such that

pX B fy D idX and pY B fy D y B sX W X ! Y:

Lemma 5.4. LetX , Y be two smooth algebraic varieties over an algebraically closed
field k (of any characteristic). Let A be a finite abelian group of order invertible in
k. For a closed point y 2 Y consider the map fy W X ! X � Y defined above. If Y
is irreducible, then the map

f �
y W H i .X � Y;A/! H i .X;A/

does not depend on y.

Proof. Let � 2 H i .X � Y;A/. Then � defines a global section �.�/ of the sheaf
Ri .pY /�A (via compatible local sections U 7! �jX�U 2 H i .X � U;A/ of the
corresponding presheaf, for all étale open subsets U ! Y ). By Lemma 5.3 the sheaf
Ri .pY /�A is a constant sheaf with stalk H i .X;A/. It is easy to see that

f �
y .�/ D �.�/.y/ 2 H i .X;A/:

Since Y is irreducible, it is connected, hence the global section �.�/ of the constant
sheafRi .pY /�A on Y is constant, and therefore �.�/.y/ does not depend on y. Thus
f �
y .�/ does not depend on y. �

Proof of Theorem 5.2 in any characteristic. Consider the map

m W X �G ! X; .x; g/ 7! x:g

(the action). Let � 2 H i .X;A/. Set � D m�� 2 H i .X � G;A/. For a k-point
g 2 G.k/ consider the map fg W X ! X � G defined by x 7! .x; g/, as above.
Since x:g D m.x; g/ D m.fg.x//, we have

g�� D f �
g m

� � D f �
g � 2 H i .X;A/:

By Lemma 5.4 f �
g � does not depend on g. Thus g�� does not depend on g. This

means that G.k/ acts on H i .X;A/ trivially. �
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6. Homogeneous spaces of simply connected groups

In the proof of the main theorem we shall need a result about strong approximation
in homogeneous spaces of semisimple simply connected groups with connected sta-
bilizers. If X D HnG is such a homogeneous space, since G is semisimple and
simply connected, the group Br. xG/ is trivial (see [18], corollary in the Introduction),
hence Br1;x0

.X;G/ D Brx0
.X/.

Theorem 6.1 (Colliot-Thélène and Xu). Let G be a semisimple simply connected
k-group over a number field k, and let H � G be a connected subgroup. Set
X WD HnG. Let S be a non-empty finite set of places of k such that G.k/ is
dense in G.AS /. Then the set of points x 2 X.A/ such that hb; xi D 0 for all
b 2 Br1;x0

.X;G/ D Brx0
.X/ coincides with the closure of the set X.k/:G.kS / in

X.A/ for the adelic topology.

Proof. This is very close to a result of Colliot-Thélène and Xu, see [11], Theo-
rem 3.7 (b). Since their result is not stated in these terms in [11], we give here a proof
of Theorem 6.1, following their argument.

We prove the nontrivial inclusion of the theorem. Let x 2 X.A/ be orthogonal
to Brx0

.X/. Then by [11], Theorem 3.3, there exists x1 2 X.k/ and g 2 G.A/ such
that x D x1:g. Let UX � X.A/ be an open neighbourhood of x. Clearly there
exists an open neighbourhood UG � G.A/ of g such that for any g0 2 UG we have
x1:g

0 2 UX . By assumptionG.k/ is dense inG.AS /, henceG.k/:G.kS / is dense in
G.A/. It follows that there exist g0 2 G.k/ and gS 2 G.kS / such that g0gS 2 UG ,
then x1:g0:gS 2 UX . Set x2 D x1:g0, then x2 2 X.k/ and x2:gS 2 UX . Thus x
lies in the closure of the setX.k/:G.kS / inX.A/ for the adelic topology. This proves
the nontrivial inclusion.

We prove the trivial inclusion. Letx1 2 X.k/,gS 2 G.kS / andb 2 Br1;x0
.X;G/.

Clearly we have hb; x1i D 0. By Corollary 3.6 we have hb; x1:gS i D hb; x1i D 0. By
Lemma 6.2 below we have hb; xi D 0 for any x in the closure of the setX.k/:G.kS /.

�

Lemma 6.2. Let X be a smooth geometrically integral variety over a number field
k. Let b 2 Br.X/. Then the function

X.A/! Q=Z W x 7! hb; xi
is locally constant in x for the adelic topology in X.A/.

Proof. Arguing as in [38], Proof of Lemma 6.2, we can reduce our lemma to the
local case. In other words, it is enough to prove that for any completion kv of k the
function

�b W X.kv/! Br.kv/ W x 7! b.x/
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is locally constant in x. This follows from non-published results from the thesis of
Antoine Ducros, cf. [16], Part II, Propositions (0.31) and (0.33).

Since those results of Ducros are not published, we give another proof of this
fact. We are grateful to J.-L. Colliot-Thélène and to the referee for this proof. Let
x 2 X.kv/. The problem is local, so we can replace X by an affine open subset
containing x. From now on, X is assumed to be affine over kv .

To show that the map �b is locally constant around x, we may replace b by
b � b.x/ 2 Br.X/. Now we have b.x/ D 0 and we want to prove that �b is zero in
a topological neighbourhood of x.

SinceX is a smooth affinekv-variety, by a result by Hoobler (see [28], Corollary 1)
there exists a class � 2 H 1.X;PGLn/ such that b is the image of � by the usual
coboundary map. The class � is represented by an X -torsor f W Y ! X under
PGLn.

For x0 2 X.kv/ let �.x0/ 2 H 1.kv;PGLn/ denote the image of � under the map
.x0/� W H 1.X;PGLn/! H 1.kv;PGLn/. Consider the exact sequence

1 D H 1.kv;GLn/! H 1.kv;PGLn/
����! Br.kv/:

It is clear that b.x0/ D �.�.x0//. From the exact sequence we see that b.x0/ D 0 if
and only if �.x0/ D 1. On the other hand, clearly �.x0/ is the class of the kv-torsor
f �1.x0/ under PGLn. It follows that b.x0/ D 0 if and only if f �1.x0/ contains a
kv-point, i.e. x0 D f .y/ for some y 2 Y.kv/. Hence the set of points x0 2 X.kv/
such that b.x0/ D 0 is exactly the subset f .Y.kv// ofX.kv/. We now conclude by the
implicit function theorem: since f W Y ! X is a smooth morphism of kv-schemes,
the image f .Y.kv// is an open subset of X.kv/. Therefore, �b is zero on the open
neighbourhood f .Y.kv// of x, which concludes the proof. �

7. Proof of the main theorem

Throughout this section we consider X D HnG satisfying the assumptions of The-
orem 1.4. Let x 2 X.A/ be an adelic point, we write x D .xf ; x1/, where
xf 2 X.Af /; x1 2 X.k1/. Let S be a finite set of places of k containing all
archimedean places, and we set Sf WD S \�f . Let U

f
X � X.Af / be an open neigh-

bourhood of xf . For v 2 �1, we set UX;v to be the connected component of xv in
X.kv/. We set UX;1 WD Q

v2�1
UX;v , then UX;1 is the connected component of

x1 in X.k1/. We set

UX WD U
f
X �UX;1 � X.A/

and

U0
X WD UX :G

scu.kSf
/ D UX :G

scu.kS / D U0f
X �U0

X;1;
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where U0f
X D U

f
X :G

scu.kSf
/ and U0

X;1 D UX;1 D UX;1:Gscu.k1/ (because
Gscu.k1/ is a connected topological group, see [34], Theorem 5.2.3). Then UX

and U0
X are open neighbourhoods of x in X.A/. We say that UX is the special

neighbourhood of x defined by U
f
X .

For the sake of the argument it will be convenient to introduce Property (PS ) of a
pair .X;G/:

For any point x 2 X.A/ orthogonal to Br1.X;G/, and for any open neigh-
bourhood U

f
X of xf , the set X.k/:Gscu.kS / \ UX (or equivalently the set

X.k/ \ U0
X , or equivalently the set X.k/:Gscu.kSf

/ \ UX ) is non-empty,

where UX is the special neighbourhood of x defined by U
f
X .

(PS )

The nontrivial part of Theorem 1.4 precisely says that property (PS ) holds for any
X , G and S as in the theorem.

We start proving Theorem 1.4. The structure of the proof is somewhat similar to
that of Theorem A.1 of [7].

7.1. First reduction. We reduce Theorem 1.4 to the case Gu D 1. Let X and G be
as in the theorem. We represent G as an extension

1! G lin ! G ! Gabvar ! 1;

where G lin is a connected linear algebraic k-group and Gabvar is an abelian variety
over k. We use the notation of 1.1. Set G0 WD G=Gu, Y WD X=Gu. We have a
canonical epimorphism ' W G ! G0 and a canonical smooth '-equivariant morphism
 W X ! Y . We have G0lin D G lin=Gu, hence G0u D 1. We have G0abvar D Gabvar,
hence X.G0abvar

/ is finite.
Assume that the pair .Y;G0/ has Property (PS ). We prove that the pair .X;G/

has this property. Let x 2 X.A/ be a point orthogonal to Br1.X;G/. Set y WD
 .x/ 2 Y.A/. By functoriality, y is orthogonal to Br1.Y;G0/. Let U

f
X be as in

(PS ), and let UX , U0
X be the special neighbourhoods of x defined by U

f
X . Note that

U0
X D U0

X
f �UX;1, where U0

X
f is an open subset of X.Af /. Indeed, Gscu.kv/ is

connected for all v 2 �1 (see [34], Theorem 5.2.3).
Set U

f
Y WD  .U

f
X / � Y.Af /, UY WD  .UX / � Y.A/ and U0

Y WD  .U0
X / �

Y.A/. SinceGu is connected, by Lemma 4.2 U
f
Y is open in Y.Af / and UY and U0

Y

are open in Y.A/. Set UY;v WD  .UX;v/. By [7], Lemma A.2, for each v 2 �1 the
set UY;v is the connected component of yv in Y.kv/. Set

UY;1 WD
Y

v2�1

UY;v:
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We have UY D U
f
Y �UY;1. We see that UY is the special neighbourhood of y

defined by U
f
Y . From the split exact sequence

1! Gu ! Gscu ! G0sc ! 1;

we see that the map Gscu.kS / ! G0sc
.kS / is surjective. Note that G0scu D G0sc. It

follows that

U0
Y D UY :G

scu.kS / D UY :G
0sc
.kS / D UY :G

0scu
.kS /:

Since the pair .Y;G0/ has Property (PS ), there exists a k-point y0 2 Y.k/ \U0
Y .

LetXy0
denote the fibre ofX over y0. It is a homogeneous space of the unipotent

group Gu. By Lemma 4.7, Xy0
.k/ ¤ ; and Xy0

has the strong approximation
property away from �1: the set Xy0

.k/ is dense in Xy0
.Af /. Consider the set

Vf WD Xy0
.Af / \ U0f

X . By Corollary 4.6, for any v 2 �1 the set Xy0
.kv/

is connected, and by Lemma 4.5, Xy0
.kv/ is one orbit under Gu.kv/. Set V WD

Vf �Xy0
.k1/.

Let v 2 �1. We show that Xy0
.kv/ � UX;v . Since y0 2 U0

Y D  .U0
X /,

there exists a point xv 2 UX;v such that y0 D  .xv/. Clearly xv 2 Xy0
.kv/. Since

Xy0
.kv/ is one orbit under Gu.kv/, we see that Xy0

.kv/ D xv:G
u.kv/ � UX;v ,

because Gu.kv/ is a connected group. Thus Xy0
.k1/ � UX;1 and V � U

0f
X �

UX;1 D U0
X , hence V � Xy0

.A/ \U0
X .

Since y0 2  .U0
X /, the set V is non-empty. Since by Lemma 4.7Xy0

.k/ is dense
in Xy0

.Af /, there is a point x0 2 Xy0
.k/ \ V . Clearly x0 2 X.k/ \ U0

X . Thus
the pair .X;G/ has Property (PS ). We see that in the proof of Theorem 1.4 we may
assume that Gu D 1.

7.2. Second reduction. By [7], Proposition 3.1 we may regardX as a homogeneous
space of another connected groupG0 such thatG0u D f1g,G0ss is semisimple simply
connected, and the stabilizers of the geometric points of X in G0 are linear and
connected. We have G0sc D Gsc, hence G0scu D Gscu (because Gscu D Gsc and
G0scu D G0sc). It follows from the construction in the proof of Proposition 3.1 of
[7] that there is a surjective homomorphism Gabvar ! G0abvar. Since by assumption
X.Gabvar/ is finite, we obtain from [7], Lemma A.3 that X.G0abvar

/ is finite.
Let us prove that if a point x 2 X.A/ is orthogonal to Br1.X;G/, then it is

orthogonal to Br1.X;G0/. More precisely, we prove that Br1.X;G0/ is a subgroup
of Br1.X;G/.

By construction (see [7], proof of Proposition 3.1), there is an exact sequence of
connected algebraic groups

1! S ! G0 q�! G1 ! 1;
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whereG1 is the quotient ofG by the central subgroupZ.G/\H and S is a k-torus.
Consider the following natural commutative diagram

X

1 �� S �� G0

� 0



���������� q �� G1 ��

�1

��

1 ,

G

p

��

�

��

where the maps � , � 0 and �1 are the natural quotient maps. From this diagram, we
deduce the following one, where the second line is exact (see the top row of diagram
(11)):

Br.X/

��

1

��

��

��

� 0�



��
��

��
��

��
�

0 D Pic. xS/ �� Br. SG1/

p�

��

q�

�� Br.SG0/ .

Br. xG/

Therefore, the injectivity of the map q� W Br. SG1/ ! Br.SG0/ implies that the nat-
ural inclusion Br1;x0

.X;G1/ � Br1;x0
.X;G0/ is an equality. And by functoriality

Br1;x0
.X;G1/ is a subgroup of Br1;x0

.X;G/.
Thus Br1;x0

.X;G0/ D Br1;x0
.X;G1/ is a subgroup of Br1;x0

.X;G/. It fol-
lows that if a point x 2 X.A/ is orthogonal to Br1.X;G/, then it is orthogonal to
Br1.X;G0/.

Thus if Theorem 1.4 holds for the pair .X;G0/, then it holds for .X;G/. We
see that we may assume in the proof of Theorem 1.4 that G lin is reductive, Gss is
simply connected, and the stabilizers of the geometric points ofX inG are linear and
connected.

Now in order to prove Theorem 1.4 it is enough to prove the following Theo-
rem 7.3.

Theorem 7.3. Let k be a number field, G a connected k-group, and X WD HnG a
homogeneous space of G with connected stabilizerH . Assume:
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(i) Gu D f1g,
(ii) H � G lin, i.e.H is linear,

(iii) Gss is simply connected,

(iv) X.Gabvar/ is finite.

Let S � �1 be a finite set of places of k containing all archimedean places. We
assume that Gsc.k/ is dense in Gsc.AS /. Then the pair .X;G/ has Property (PS ).

The homogeneous space X defines a natural homomorphism H tor ! Gsab. We
first prove a crucial special case of Theorem 7.3.

Proposition 7.4. With the hypotheses of Theorem 7.3, assume that H tor injects into
Gsab (i.e.H \Gss D H ssu), and that the homomorphism Br1;e.Gsab/! Br1;e.H tor/

is surjective. Then the pair .X;G/ has Property (PS ).

Construction 7.5. Set Y WD X=Gss. Then Y is a homogeneous space of the semi-
abelian variety Gsab, hence it is a torsor of some semiabelian variety G0. We have
G0abvar D Gabvar, hence X.G0abvar

/ is finite. We have a canonical smooth morphism
 W X ! Y .

To prove Proposition 7.4 we need a number of lemmas and propositions.

The following proposition is crucial for our proof of Proposition 7.4 by dévissage.

Proposition 7.6. Let G, X be as in Proposition 7.4. Let Y ,  W X ! Y be as in
Construction 7.5. Let x0 2 X.k/, y0 WD  .x0/, Xy0

WD  �1.y0/ D x0:G
ss. Then

the natural pullback homomorphism

i� W Br1;x0
.X;G/! Brx0

.Xy0
/

is surjective.

Note that Br1;x0
.Xy0

; Gss/ D Brx0
.Xy0

/ because Br. xGss/ D 0.

Construction 7.7. Consider the map �x0
W G ! X; g 7! x0:g. This map identifies

X (resp. Xy0
) with a quotient of G (resp. Gss) by a connected subgroup H 0 (resp.

H 0ssu), so we have

X D H 0nG;
and

Xy0
D H 0ssunGss:
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We define a k-variety Z by

Z WD H 0ssunG

and denote by z0 2 Z.k/ the image of e 2 G.k/. We have a commutative diagram
of k-varieties:

1

��

1

��

1

��
1 �� H 0ssu w ��

��


















��

H 0 v ��

h

��

H tor

g

���
�
�
�
�
�
�
�
�
�

j

��

�� 1

1 �� Gss ��

� 0

x0

��

G
p ��

�Z

���
��

��
��

��
�

�x0

��

Gsab

��

�� 1

Z

u

���
��

��
��

��
�

q

����
��

��
��

��

r



����������

Xy0

f

����������� i �� X
 �� Y

��
1

where the first two rows and the last column are exact sequences of connected alge-
braic groups, and the other maps are the natural maps between the different homoge-
neous spaces.

The following two lemmas are versions of exact sequence (9) of Theorem 2.8.

Lemma 7.8. The following sequence is exact:

Br1;e.G
sab/

r�

�! Br1;z0
.Z;G/

f �

��! Brx0
.Xy0

/! 0:

Proof. We use the functoriality of exact sequence (9) of Theorem 2.8 to get the
following commutative diagram with exact columns. Here the second column is the
exact sequence (9) for Z D H 0ssunG and the third column is exact sequence (9)
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applied to Xy0
D H 0ssunGss.

Pic.Gss/ D 0

��
Pic.H 0ssu

/

�G=Z

��

Pic.H 0ssu
/

�Gss=Xy0 Š

��
Br1;e.Gsab/

r�

�� Br1;z0
.Z;G/

f �

��

��

Z

��

Brx0
.Xy0

/

��
Br1;e.Gsab/

p�

�� Br1;e.G/ �� Br1;e.Gss/ D 0:

(29)

We have Pic.Gss/ D 0 and Br1;e.Gss/ D 0 by [38], Lemma 6.9 (iv), because Gss is
simply connected. From the bottom row of diagram (11) of Corollary 2.12 we get an
exact sequence

Br1;e.G
sab/

p�

��! Br1;e.G/
l��! Br1;e.G

ss/;

where l W Gss ! G is the canonical embedding. But Br1;e.Gss/ D 0, therefore the
homomorphism p� W Br1;e.Gsab/ ! Br1;e.G/ is surjective. The composition r B f
being the trivial morphism, the second row of the diagram is a complex. A diagram
chase in diagram (29) proves the exactness of the sequence of the lemma. �

Lemma 7.9. The sequence

Br1;x0
.X;G/

q�

�! Br1;z0
.Z;G/

g�

��! Br1;e.H
tor/

is exact.

Proof. We consider the following diagram, in which the middle column and the last
row are the exact sequences coming from exact sequence (9) of Theorem 2.8, and the
last column is the exact sequence coming from the exact bottom row of diagram (11)
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of Corollary 2.12:

Pic.H 0/

w�

��
Pic.H 0/ w�

��

�G=X

��

Pic.H 0ssu
/

�G=Z

��

Pic.H 0ssu
/

�H 0=H tor

��
Br1;x0

.X;G/
q�

�� Br1;z0
.Z;G/

g�

��

��

Z

��

Br1;e.H tor/

v�

��
Br1;x0

.X;G/
��

x0 �� Br1;e.G/
h�

�� Br1;e.H 0/:

(30)

We prove that the diagram is commutative. In this diagram the two first columns
define a commutative diagram by functoriality, and the second row is a complex. By
construction we have gBv D �Z Bh, hence in the diagram we have v�Bg� D h�B��

Z .
Let us prove the commutativity of the square in the top right-hand corner, i.e. let us
prove that g� B�G=Z D �H 0=H tor . We observe that the following diagram of torsors
under H 0ssu is cartesian:

H 0 v ��

h

��

H tor

g

��
G

�Z �� Z ,

i.e. ��1
Z .H tor/ D H 0. In other words, the H tor-torsor H 0 is the pullback of the

Z-torsor G by the morphism H tor g�! Z. Therefore, if

1! Gm ! H1 ! H 0ssu ! 1

is a central extension representing an element p 2 Pic.H 0ssu
/ via the isomorphism

Extck.H
0ssu
;Gm/ Š Pic.H 0ssu

/, we get a commutative diagram:

H 1.Z;H 0ssu
/

@H1 ��

g�

��

H 2.Z;Gm/

g�

��
H 1.H tor;H 0ssu

/
@H1 �� H 2.H tor;Gm/
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such that g�ŒG� D ŒH 0� in H 1.H tor;H 0ssu
/. We deduce from this diagram that

g�.@H1
.ŒG�// D @H1

.ŒH 0�/ inH 2.H tor;Gm/, i.e. that�H 0=H tor.p/ D g�.�G=Z.p//
in Br.H tor/. Therefore the top right-hand square in diagram (30) is commutative.

Returning to diagram (30), we see that its commutativity and the exactness of the
last two columns and of the last row imply, via an easy diagram chase, that the second
row of (30) is also exact, hence the sequence of the lemma is exact. �

For an alternative proof of Lemma 7.9 we need the following generalization of
Proposition 2.8:

Proposition 7.10. Let k be a field of characteristic zero, and

1! H1 ! G ! H2 ! 1

be an exact sequence of connected linear algebraic groups over k. Let � W Z ! X

and � 0 W Y ! Z be two morphisms of algebraic varieties such that the composite
Y ! X is an X -torsor under G, such that the restriction to H1 of the action of G
on Y defines the structure of a Z-torsor under H1 on Y , and such that Z ! X is a
torsor underH2 via the induced action. Then we have a natural exact sequence

Pic.Z/
'1�! Pic.H2/

�Z=X����! Br1.X; Y /
��

��! Br1.Z; Y /
'0

2�! Br1;e.H2/: (31)

If in addition z 2 Z.k/, we have an exact sequence

Pic.Z/
i�z�! Pic.H2/

�Z=X����! Br1;x.X; Y /
��

��! Br1;z.Z; Y /
i�z�! Br1;e.H2/; (32)

where x 2 X.k/ is the image of z.

Proof. As in the end of the proof of Theorem 2.8, we construct the exact sequence
(31) from the top row of diagram (8) applied to the torsor Z ! X :

Pic.Z/
'1�! Pic.H2/

�Z=X����! Br.X/
��

��! Br.Z/
m��p�

Z�����! Br.H2 �Z/: (33)

Define a map '0
2 W Br.Z; Y /! Br1;e.H2/ to be the composition

Br1.Z; Y /
m�

���! Br1.Z �H2; Y �G/
p�

Z
Cp�

H2 ������ Br1;e.H2; G/˚ Br1.Z; Y /
�H2���!Br1;e.H2; G/

where the morphism p�
Z C p�

H2
is an isomorphism by Lemma 3.1, and �H2

is the
projection onto the first factor. Note that Br1;e.H2; G/ D Br1;e.H2/ as a consequence
of the injectivity of the homomorphism Br. SH2/ ! Br. xG/, which comes from the
exactness of the top row of diagram (11) of Corollary 2.12 and the fact that Pic. xG/!
Pic. SH1/ is onto (see [38], Remark 6.11.3).
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Consider the diagram

Br1.Z; Y /
m��p�

Z ��

'0

2

��

Br1.H2 �Z;G � Y /

Br1;e.H2/
iH �� Br1;e.H2/˚ Br1.Z; Y /:

p�

Z
Cp�

H2
Š

��

(34)

This diagram is commutative. Since iH is a canonical embedding, we see that
ker '0

2 D ker.m� � p�
Z/.

We prove that sequence (31) is exact. We use the exactness of (33). We know
from Theorem 2.8 that the map �Z=X W Pic.H2/ ! Br.X/ lands in Br1.X;Z/.
Since Br1.X; Y / � Br1.X;Z/, the map �Z=X W Pic.H2/ ! Br1.X; Y / is defined.
We obtain a commutative diagram with an exact long horizontal line and exact vertical
lines:

0

��

0

��
Br1.X; Y /

��

��

��

Br1.Z; Y /

��
Pic.Z/

'1 �� Pic.H2/
�Z=X ��

�Z=X

�������������
Br.X/ ��

��

��

Br.Z/
m��p�

Z ��

��

Br.H2 �Z/

Br. xY / Br. xY /.
(35)

Now we see immediately that sequence (31) is exact at Pic.H2/ and Br1.X; Y /. Since
ker.m��p�

Z/ D ker '0
2 in diagram (34), it follows from the exactness of (33) at Br.Z/

that sequence (31) is exact at Br1.Z; Y /. Thus (31) is exact, which completes the
proof. �

7.11. Alternative proof of Lemma 7.9. We consider the exact sequence of linear
algebraic groups

1! H 0ssu ! H 0 ! H tor ! 1

and the torsors �Z W G H 0ssu

���! Z and q W Z H tor

���! X . The composition �x0
W G ! X

is naturally a torsor under H 0. Therefore, we can apply Proposition 7.10 to get the
exact sequence

Pic.Z/
g�

��! Pic.H tor/
�Z=X����! Br1;x0

.X;G/
q�

�! Br1;z0
.Z;G/

g�

��! Br1;e.H
tor/;

which concludes the proof. �
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7.12. Proof of Proposition 7.6. We have a commutative diagram

0

Br1;x0
.X;G/

q�

��												
i� �� Brx0

.Xy0
/

������������

Br1;z0
.Z;G/

f �

�������������

g�

�������������

Br1;e.Gsab/

r�

��������������
j�

�� Br1;e.H tor/ �� 0 ,

where the last row is exact by assumption, and the two slanted sequences are also
exact by Lemmas 7.8 and 7.9. A diagram chase shows that the homomorphism

Br1;x0
.X;G/

i��! Brx0
.Xy0

/

is surjective, which completes the proof of Proposition 7.6. �

For the proof of Proposition 7.4 we need three lemmas.

Lemma 7.13. Let G, X be as in Proposition 7.4 and Y WD X=Gss. Let  W X ! Y

be the canonical map. Let x1; x2 2 X.k/, yi WD  .xi /, Xi WD Xyi
.i D 1; 2/. Let

ri W Br1.X;G/=Br.k/ ! Br.Xi /=Br.k/ be the restriction homomorphisms. Then
there exists a canonical isomorphism �1;2 W Br.X1/=Br.k/ ��!� Br.X2/=Br.k/ such
that the following diagram commutes:

Br1.X;G/=Br.k/ id ��

r1

��

Br1.X;G/=Br.k/

r2

��
Br.X1/=Br.k/

�1;2 �� Br.X2/=Br.k/:

(36)

Proof. Choose g 2 G. Nk/ such that x1 D x2:g. Then we have  .x1/ D  .x2/:g,
hence  �1. .x1// D  �1. .x2//:g, thus xX1 D xX2:g. We obtain commutative
diagrams

xX2
g ��

��

��

xX1��

��
xX g �� xX

and

Br. xX/ g�

��

��

Br. xX/

��
Br. xX1/ g�

�� Br. xX2/ .
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By Theorem 5.1 g� W Br. xX/! Br. xX/ is the identity map. Therefore, the follow-
ing diagram

Br.X/=Br.k/ id ��

r1

��

Br.X/=Br.k/

r2

��
Br.X1/=Br.k/

�1;2 ��


1

��

Br.X2/=Br.k/


2

��
Br. xX1/ g�

�� Br. xX2/
is commutative.

Here r1 and r2 are surjective by Proposition 7.6, while �1 and �2 are injective by
Lemma 7.14 below. Clearly we can define the dotted arrow (in a unique way) such
that the diagram with this new arrow will be also commutative. The top square of
this new diagram is the desired diagram (36). �

Lemma 7.14. Let X WD HnG, where G is a simply connected semisimple k-group
over a field k of characteristic 0, and H � G is a connected k-subgroup such that
H tor D 1. Then Br.X/=Br.k/ is finite and the canonical homomorphism

Br.X/=Br.k/! Br. xX/
is injective.

Proof. Let x0 denote the image of e 2 G.k/ in X.k/. We have a canonical isomor-
phism Br.X/=Br.k/ Š Brx0

.X/.
By Theorem 2.8 we have a canonical exact sequence

Pic.G/! Pic.H/! Br1;x0
.X;G/! Br1;e.G/;

where by [38], Lemma 6.9 (iv), we have Pic.G/ D 0 and Br1;e.G/ D 0. Moreover,
by [18] we have Br. xG/ D 0, hence Br1;x0

.X;G/ D Brx0
.X/. We obtain a canonical

isomorphism Brx0
.X/ Š Pic.H/, functorial in k.

We have H D H ssu, hence Pic.H/ Š Pic.H ss/. In the commutative diagram

Br.X/=Br.k/ Š ��

��

Pic.H ss/

��
Br. xX/ Š �� Pic.H ss/

the right vertical arrow is clearly injective, hence so is the left one. �
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Lemma 7.15. Let X WD HnG, whereG is a connected k-group over a number field
k, and H � G is a connected linear k-subgroup. Let M � Br1.X;G/=Br.k/ be a
finite subset. Let y WD .yf ; y1/ 2 X.Af / �X.k1/ D X.A/ be a point orthogonal
toM with respect to the Manin pairing. Let U1 denote the connected component of
y1 in X.k1/. Then there exists an open neighbourhood Uf � X.Af / of yf such
that Uf �U1 is orthogonal toM .

Proof. It is an immediate consequence of Lemma 6.2, using the finiteness ofM . �

7.16. Recall that X D HnG. Let x0 be the image of e 2 G.k/ in X.k/. Set
X0 WD x0:G

ss. By assumption H \ Gss D H ssu. By Lemma 7.14 Br.X0/=Br.k/
is a finite group. By Proposition 7.6 the map Br1.X;G/=Br.k/! Br.X0/=Br.k/ is
surjective. We choose a finite subset M � Br1.X;G/=Br.k/ such that M surjects
onto Br.X0/=Br.k/.

Now let x1 2 X.k/ be any other point. Set X1 WD x1:G
ss. It follows from

Lemma 7.13 that M � Br1.X;G/=Br.k/ surjects onto Br.X1/=Br.k/.

7.17. Proof of Proposition 7.4. Let x 2 X.A/ be orthogonal to Br1;x0
.X;G/. Let

U
f
X be an open neighbourhood of the Af -part xf of x. Let UX be the special

neighbourhood of x defined by U
f
X .

Let M � Br1.X;G/=Br.k/ be as in 7.16. Then x is orthogonal to M . By Lem-
ma 7.15 there exists an open neighbourhood Uf of xf such that the corresponding
special neighbourhood U of x in X.A/ is orthogonal to M . We may assume that
U
f
X � Uf , then UX � U, hence UX is orthogonal to M .

Let Y and  W X ! Y be as in Construction 7.5 (i.e. Y WD X=Gss). Set y WD
 .x/ 2 Y.A/. Since x is orthogonal to Br1;x0

.X;G/, we see by functoriality that
y is orthogonal to Br1;y0

.Y;Gsab/. Clearly there is a semiabelian variety G0 such
that Y is a (trivial) principal homogeneous space of G0. We have a morphism of
pairs .Y;Gsab/! .Y;G0/, hence a homomorphism Br1.Y;G0/! Br1.Y;Gsab/. But
Br1.Y;G0/ D Br1.Y /, hence y is orthogonal to the group Br1.Y /. As in the First
reduction, see 7.1, we define U

f
Y WD  .U

f
X / and we construct the corresponding

special open neighbourhood UY of y. By [7], Lemma A.2, for any v 2 �1 we
have  .UX;v/ D UY;v . We see that  .UX / is an open subset of Y.A/ of the form
Uf � U1, where Uf � Y.Af / is an open subset and U1 D Q

v2�1
UY;v ,

where UY;v � Y.kv/ is the connected component of yv . Then U1 is the connected
component of x1 in X.k1/. Now since Y is a torsor of the semiabelian variety
G0 with finite Tate–Shafarevich group, by [22], Theorem 4, there exists a k-point
y1 2 Y.k/ \  .UX /.

Let Xy1
denote the fibre of X over y1. Consider the set V WD Xy1

.A/ \UX , it
is open in Xy1

.A/. Since y1 2  .UX /, the set V is non-empty: there exists a point
x0 D .x0

v/ 2 V . In particular, Xy1
.kv/ ¤ ; for any v 2 �r . The variety Xy1

is a
homogeneous space ofGss with geometric stabilizer xH\ xGss D xH ssu. The groupGss
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is semisimple simply connected by (iii). The group xH ssu is connected and character-
free, i.e. . xH ssu/tor D 1. By [4], Corollary 7.4, the fact that Xy1

has points in all real
completions of k is enough to ensure that Xy1

has a k-point. Note that Br. xGss/ D 0
by [18], hence Br1.Xy1

; Gss/ D Br.Xy1
/. Since UX is orthogonal toM , we see that

V � UX is orthogonal to M . Since M surjects onto Br.Xy1
/=Br.k/, see 7.16, we

see that V is orthogonal to Br.Xy1
/. By Theorem 6.1 (due to Colliot-Thélène and

Xu) there is a point of the form x1:gS in V , where x1 2 Xy1
.k/ and gS 2 Gss.kS /.

It follows that the set V :Gss.kS / contains a k-point of Xy1
. Clearly V :Gss.kS / �

UX :G
ss.kS /. Thus UX :G

ss.kS / contains a k-point of X , which shows that the pair
.X;G/ has Property (PS ). This completes the proof of Proposition 7.4. �

Let us resume the proof of Theorem 7.3. We need a construction.

Construction 7.18. We follow an idea of a construction in the proof of [7], Theo-
rem 3.5. By Lemma 3 in [9] there exists a coflasque resolution of the torus H tor, i.e.
an exact sequence of k-tori

0! H tor ! P ! Q! 0

where P is a quasi-trivial torus and Q is a coflasque torus. Recall that a torus is
coflasque if for any field extension K=k we have H 1.K; yQ/ D 0, where yQ is the
character group of Q. Consider the k-group F WD G � P . The group H maps
diagonally into F , and we can consider the quotient homogeneous space W WD
HnF of F . There is a natural morphism t W W ! X . We have F abvar D Gabvar,
hence X.F abvar/ is finite. We have a canonical homomorphism H tor ! F sab, and
this homomorphism is clearly injective. Let us prove the following fact, which is
necessary to apply Proposition 7.4 to the homogeneous space W of F .

Lemma 7.19. With the notation of Construction 7.18, the pullback homomorphism

Br1;e.F
sab/! Br1;e.H

tor/

is surjective.

Proof. By definition, we have the following exact commutative diagram:

0

��

0

��
Gsab

��

Gsab

��
0 �� H tor �� F sab D Gsab � P ��

��

S

��

�� 0

0 �� H tor �� P ��

��

Q ��

��

0

0 0

(37)
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where S is defined to be the quotient F sab=H tor and all the maps are the natural
ones. The group S is a semi-abelian variety. By assumption Q is a coflasque torus.
Therefore

H 3.k; yQ/ Š
Y

v real

H 3.kv; yQ/ Š
Y

v real

H 1.kv; yQ/ D 0:

Denote by MF WD Œ0 ! F sab� (resp. MS WD Œ0 ! S�) the 1-motive (in degrees
�1 and 0) associated to the semi-abelian variety F sab (resp. S ), and by MF

� (resp.
MS

�) its Cartier dual (see [25], Section 1, page 97, for the definition of the Cartier
dual of a 1-motive). We call a sequence of 1-motives over k exact if the associated
sequence of complexes of fppf sheaves on Spec.k/ is exact.

Considering diagram (37) as an exact diagram in the category of 1-motives over
k, we get a commutative exact diagram of 1-motives:

0 �� Œ0! H tor� �� MF
��

��

MS

��

�� 0

0 �� Œ0! H tor� �� Œ0! P � �� Œ0! Q� �� 0 .

We can dualize this diagram to get the following commutative diagram of 1-motives:

0 �� Œ yQ! 0� ��

��

Œ yP ! 0� ��

��

ŒbH tor ! 0� �� 0

0 �� MS
� �� MF

� �� ŒbH tor ! 0� �� 0 .

This diagram is exact as a diagram of complexes of fppf sheaves since the 1-motive
Œ0 ! H tor� is associated to a k-torus (see [2], Remark 1.3.4). Hence this exact
diagram induces a commutative exact diagram in hypercohomology:

H 2.k; yP / ��

��

H 2.k; bH tor/ �� H 3.k; yQ/ D 0

��
H 1.k;MF

�/ �� H 2.k; bH tor/ �� H 2.k;MS
�/ .

Therefore the map H 1.k;MF
�/ ! H 2.k; bH tor/ is surjective. But by [26], be-

ginning of Section 4, there are natural maps 	F W H 1.k;MF
�/ ! Br1;e.Gsab/ and

	H tor W H 2.k; bH tor/! Br1;e.H tor/ such that the second map is the canonical isomor-
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phism of [38], Lemma 6.9 (ii). Hence we get a commutative diagram

H 1.k;MF
�/ ��

�F

��

H 2.k; bH tor/

Š �H tor

��
Br1;e.Gsab/ �� Br1;e.H tor/:

Since the top map is surjective, so is the bottom one. �

Let x 2 X.A/ be a point, and assume that x is orthogonal to Br1.X;G/. The
map t W W ! X is a torsor under a quasi-trivial torus, and we want to lift x to some
w 2 W.A/ orthogonal to Br1.W; F /. To do this, we need the following lemma.

Lemma 7.20. With the above notation, the torsor t W W D HnF ! X under the
quasi-trivial torus P induces a canonical exact sequence

0! Br1;x0
.X;G/

t��! Br1;w0
.W; F /

'�! Br1;e.P /;

where x0 is the image of e 2 G.k/ and w0 is the image of e 2 F.k/.

Proof. We first define the map ' of the lemma. The pullback homomorphism:

Br.W /
��

W��! Br.F / sends the subgroup Br1;w0
.W; F / into Br1;e.F /. ButF D G�P ,

hence thanks to [38], Lemma 6.6, we have a natural isomorphism Br1;e.F / Š
Br1;e.G/

L
Br1;e.P /. We compose this map with the second projection

�P W Br1;e.G/˚ Br1;e.P /! Br1;e.P /:

So we define a morphism' WD prP B��
W W Br1;w0

.W; F /! Br1;e.P /. The morphism
t� W Br1;x0

.X;G/! Br1;w0
.W; F / in the lemma is induced by the morphism of pairs

t W .W; F /! .X;G/. By Theorem 2.8 we have an exact sequence

Pic.P /! Br.X/
t��! Br.W /:

The torus P is quasi-trivial, therefore by Lemma 6.9 (ii) of [38], the group Pic.P /
is trivial, so the homomorphism t� W Br.X/ ! Br.W / is injective. In particular,
the homomorphism t� W Br1;x0

.X;G/ ! Br1;w0
.W; F / in Lemma 7.20 is injective.

Therefore, it just remains to prove the exactness of the sequence of the lemma at the
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term Br1;w0
.W; F /. Consider the diagram

Pic.H/
�G=X �� Br1;x0

.X;G/ ��

t�

��

Br1;e.G/ ��

��

Br1;e.H/

Pic.H/
�F=W �� Br1;w0

.W; F / ��

'

��

Br1;e.F / ��

��

Br1;e.H/

Br1;e.P / Br1;e.P /

where the rows come from Theorem 2.8. The commutativity of this diagram is a
consequence of the functoriality of the exact sequences of Theorem 2.8 and of the
definition of the map '. We conclude the proof of the exactness of the second column
of the diagram by an easy diagram chase, using the exactness of the two first rows
and that of the third column (see Corollary 2.12). �

Corollary 7.21. With the above notation, if x 2 X.A/ is orthogonal to Br1.X;G/,
then there exists w 2 W.A/ such that t .w/ D x and w is orthogonal to Br1.W; F /.

Proof. Consider the exact sequence of Lemma 7.20. Taking dual groups, we obtain
the dual exact sequence

Br1;e.P /
D 'D

���! Br1;w0
.W; F /D

t����! Br1;x0
.X;G/D ! 0; (38)

LetmX;G.x/ 2 Br1;x0
.X;G/D denote the homomorphismb 7! hb; xi W Br1;x0

.X;G/

! Q=Z. By assumption mG;X .x/ D 0. We wish to lift x to some w 2 W.A/ such
that mW;F .w/ D 0.

Since H 1.kv; P / D 0 for all v, we can lift x to some point w0 2 W.A/ such that
t .w0/ D x (we use also Lang’s theorem and Hensel’s lemma). Then t�.mW;F .w0// D
mX;G.x/ 2 Br1;x0

.X;G/D . SincemX;G.x/ D 0, we see from (38) thatmW;F .w0/ D
'D.�/ for some � 2 Br1;e.P /D Š Bra.P /

D . Let p 2 P.A/. By Corollary 3.5 we
have

hbW ; w0:pi D hbW ; w0i C h'.bW /; pi
for any bW 2 Br1;w0

.W; F /. This means that

mW;F .w
0:p/ D mW;F .w0/C 'D.mP .p//

But we have seen that mW;F .w0/ D 'D.�/ for some � 2 Bra.P /
D . Now it follows

from Lemma 4.1 that there exists p 2 P.A/ such that mP .p/ D �� . Then

mW;F .w
0:p/ D 'D.�/C 'D.��/ D 0:

We set w WD w0:p 2 W.A/, then mW;F .w/ D 0 and t .w/ D x. �
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7.22. We can now resume the proof of Theorem 7.3. We use Construction 7.18.
Let U

f
X � X.Af / be an open neighbourhood of xf . Let UX � X.A/ be the

corresponding special neighbourhood of x. Set

U
f
W WD t�1.Uf

X / � W.Af /:
For v 2 �1 let UW;v be the connected component of wv in W.kv/, then by [7],
Lemma A.2, we have t .UW;v/ D UX;v . Set UW;1 WD Q

v2�1
UW;v . Set UW WD

U
f
W �UW;1, then UW is the special open neighbourhood ofw defined by U

f
W , and

t .UW / � UX .
The pair .W; F / ofF satisfies the hypotheses of Proposition 7.4 (see Lemma 7.19),

so by that proposition, there is a point w1 2 W.k/ \ UW :F
sc.kS /. Note that

F sc D Gsc. Set x1 WD t .w1/, then x1 2 X.k/ \UX :G
sc.kS /. Thus the pair .X;G/

has Property (PS ).
This completes the proofs of Theorem 7.3 and proves the nontrivial inclusion of

Theorem 1.4, that is, that any element of .X.A/�/Br1.X;G/ lies in the closure of the set
X.k/:Gscu.kSf

/. The argument in the proof of the trivial inclusion of Theorem 6.1
also proves the trivial inclusion of Theorem 1.4, that is, that each element of this
closure is orthogonal to Br1.X;G/. This completes the proof of Main Theorem 1.4.

�

8. The algebraic Manin obstruction

In this section we prove Theorem 1.7 about the algebraic Manin obstruction (“alge-
braic” means coming from Br1.X/). We prove this result without using the result of
Colliot-Thélène and Xu (Theorem 6.1 or [11], Theorem 3.7 (b)).

8.1. Before proving Theorem 1.7, we need to prove a special case – an analogue of
Theorem 6.1. In [6], the first-named author defined, for any connected groupH over
a field k of characteristic 0, a Galois module �1. xH/, an abelian groupH 1

ab.k;H/ and
a canonical abelianization map

ab1 W H 1.k;H/! H 1
ab.k;H/

(see also [8] in any characteristic). These �1. xH/, H 1
ab.k;H/ and ab1 are functorial

in H .
Now let k be a number field. Set � WD Gal. Nk=k/, �v WD Gal. Nkv=kv/. We regard

�v as a subgroup of � .
For v 2 �f we defined in [6], Proposition 4.1 (i), a canonical isomorphism

�v W H 1
ab.kv;H/ ��!� .�1. xH/�v

/tors;
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where�1. xH/�v
denotes the groups of coinvariants of�v in�1. xH/, and . /tors denotes

the torsion subgroup. Here we set �0
v WD �v .

For v 2 �1 we defined in [6], Proposition 4.2, a canonical isomorphism

�v W H 1
ab.kv;H/ ��!� H�1.�v; �1. xH//:

Here we define a homomorphism �0
v as the composition

�0
v W H 1

ab.kv;H/
�v���! H�1.�v; �1. xH// ,! .�1. xH/�v

/tors :

For any v 2 � we define the Kottwitz map ˇv as the composition

ˇv W H 1.kv;H/
ab1

���! H 1
ab.kv;H/

�0

v���! .�1. xH/�v
/tors :

This map ˇv is functorial in H . Note that for v 2 �f the maps ab1 W H 1.kv;H/!
H 1

ab.kv;H/ andˇv are bijections. Thus forv 2 �f we have a canonical and functorial
in H bijection ˇv W H 1.kv;H/ �!� .�1. xH/�v

/tors.
For any v 2 � we define a map �v as the composition

�v W H 1.kv;H/
ˇv���! .�1. xH/�v

/tors
corv���! .�1. xH/�/tors ; (39)

where corv is the obvious corestriction map.
We write

L
vH

1.kv;H/ for the set of families .�v/v2� such that �v D 1 for
almost all v. We define a map

� WD
X

v2�
�v W

M

v2�
H 1.kv;H/! .�1. xH/�/tors :

Proposition 8.2 (Kottwitz [30], Proposition 2.6, see also [6], Theorem 5.15). The
kernel of the map � is equal to the image of the localization map

H 1.k;H/!
M

v

H 1.kv;H/:

Proposition 8.3. Let G be a simply connected k-group over a number field k, and
let H � G be a connected geometrically character-free subgroup (i.e. H tor D 1).
Set X WD HnG. Let S be a finite set of places of k containing at least one nonar-
chimedean place. Then any orbit of G.AS / in X.AS / contains a k-point.

Proof. Write M WD �1. xH/. First we prove that the map

�S D
X

v2S
�v W

Y

v2S
kerŒH 1.kv;H/! H 1.kv; G/�! .M�/tors



50 M. Borovoi and C. Demarche CMH

is surjective. Since H is geometrically character-free, the group M D �1. xH/
is finite, and therefore .M�/tors D M� and .M�v

/tors D M�v
. In this case the

map corv is the canonical map M�v
! M� , which is clearly surjective. Let

w 2 S be a nonarchimedean place, then the map ˇw is bijective. It follows that
the map �w W H 1.kw ;H/ ! M� is surjective (because �w D corw B ˇw ). Since
w is nonarchimedean, we have H 1.kw ; G/ D 1 (because G is simply connected),
hence kerŒH 1.kw ;H/ ! H 1.kw ; G/� D H 1.kw ;H/. It follows that the map
�w W kerŒH 1.kw ;H/ ! H 1.kw ; G/� ! M� is surjective. Now it is clear that the
map �S DP

v2S �v is surjective.
We prove the proposition. We must prove that the localization map

X.k/=G.k/! X.AS /=G.AS /

is surjective. In the language of Galois cohomology, we must prove that the localiza-
tion map

kerŒH 1.k;H/! H 1.k;G/�!
M

v…S
kerŒH 1.kv;H/! H 1.kv; G/�

is surjective.
Let

�S D .�v/ 2
M

v…S
kerŒH 1.kv;H/! H 1.kv; G/�:

Set s WD P
v…S �v.�v/ 2 �1. xH/� . Since the map �S is surjective, there ex-

ists an element �S in the product
Q
v2S kerŒH 1.kv;H/ ! H 1.kv; G/� such thatP

v2S �v.�v/ D �s. Set

� WD .�S ; �S / 2
M

v2�
kerŒH 1.kv;H/! H 1.kv; G/� �

M

v2�
H 1.kv;H/;

then �.�/ D P
v2� �v.�v/ D s C .�s/ D 0. By Proposition 8.2 there exists a

class �0 2 H 1.k;H/ with image � in
L
v2�H 1.kv;H/. Since the Hasse principle

holds for G, we have �0 2 kerŒH 1.k;H/ ! H 1.k;G/�. Since the image of �0 inL
v2�H 1.kv;H/ is .�S ; �S /, we see that the image of �0 in

L
v…S H 1.kv;H/ is

�S . Thus �S lies in the image of kerŒH 1.k;H/! H 1.k;G/�. �

Theorem 8.4. Let G be a simply connected k-group over a number field k, and let
H � G be a connected geometrically character-free subgroup (i.e. H tor D 1). Set
X WD HnG. Let S be a finite set of places of k containing at least one nonar-
chimedean place v0. Assume that Gss.k/ is dense in Gss.AS /. Then X has strong
approximation away from S in the following sense. Let x D .xv/ 2 X.A/ and let
US � X.AS / be any open neighbourhood of the AS -part xS of x. Then there exists
a k-point x0 2 X.k/ \US . Moreover, one can ensure that for v 2 �1 \ S the
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points x0 and xv lie in the same connected component of X.kv/. More precisely,
there exists yv0

2 X.kv0
/ such that the point x0 2 X.A/ defined by x0

v0
WD yv0

and
x0
v WD xv for v ¤ v0 belongs to the closure of the set X.k/:G.kS / in X.A/ for the

adelic topology.

Proof. Set † WD fv0g. We denote by x† 2 X.A†/ and xS 2 x.AS / the corre-
sponding projections of x. By Proposition 8.3 applied to the finite set of places
†, there exists a k-point x0

0 2 X.k/ \ x†:G.A†/. Let yv0
WD .x0

0/v0
2 X.kv0

/

and define x0 2 X.A/ as in the theorem. Then there exists g 2 G.A/ such that
x0
0:g D x0 in X.A/. Let U � X.A/ be an open neighbourhood of x0. Since the orbit
x0
0:G.A/ � X.A/ is open (becauseH is connected) and contains x0, we may assume

that U � x0
0:G.A/.

By assumption G.k/:G.kS / is dense in G.A/. It follows that there exists g0 2
G.k/ and gS 2 G.kS / such that x00 WD x0

0:g0:gS belongs to U. Set x0 WD x0
0:g0 2

X.k/, then x00 D x0:gS . We see that x00 2 X.k/:G.kS /\U. Therefore, we conclude
that x0 lies in the closure of X.k/:G.kS /.

Concerning the infinite places, for v 2 �1\S we have x0 2 xv:G.kv/, because
x0
0 2 xv:G.kv/. Since G is simply connected, the group G.kv/ is connected (see

[34], Theorem 5.2.3), hence the image of x0 in X.kv/ is contained in the connected
component of xv in X.kv/. �

8.5. Proof of Theorem 1.7. To prove this theorem, we can follow the proof of
Theorem 1.4 to make reductions, so that we may assume the following:

(i) Gu D f1g,
(ii) H � G lin, i.e. H is linear,

(iii) Gss is simply connected,

(iv) X.Gabvar/ is finite,

(v) the homomorphism H tor ! Gsab is injective.

Set †0 WD �1 [ fv0g. Let U†0

X � X.A†
0

/ be an open neighbourhood of the

projection x†
0 2 X.A†0

/ of x. Set U
f
X WD U†0

X � X.kv0
/. Let UX be the special

open neighbourhood of x inX.A/ defined by U
f
X . Set Y WD Gsab=H tor, and consider

the canonical morphism  W X ! Y . Set y WD  .x/ 2 Y.A/, then y is orthogonal
to the group Br1.Y / for the Manin pairing. Hence by [22], Theorem 4, there exists
y0 2 Y.k/ \  .UX /. Set Xy0

WD  �1.y0/ � X and V WD Xy0
.A/ \UX . Then

V is open and non-empty since y0 2  .UX /. As in the proof of Proposition 7.4,
we know that Xy0

is a homogeneous space of the semisimple simply connected
group Gss D Gsc, with connected character-free geometric stabilizers, and with a k-
point. Therefore Theorem 8.4 implies that Xy0

.k/:Gsc.kS / \ V ¤ ;. In particular,
the set X.k/:Gsc.kS / \ UX is non-empty. Set S 0 WD S X fv0g, S 0

f
WD S 0 \ �f ,

U
fv0g
X WD U†0

X �UX;1, then it follows that the setX.k/:Gsc.kS 0/\U
fv0g
X � X.Afv0g/
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is non-empty. Since U
fv0g
X :Gsc.kS 0/ D U

fv0g
X :Gsc.kS 0

f
/, we obtain easily that the

set X.k/:Gsc.kS 0

f
/ \U

fv0g
X � X.Afv0g/ is non-empty. This completes the proof of

Theorem 1.7. �
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