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Abstract. Let A be a finitely generated associative algebra over an algebraically closed field
k, and consider the variety modd

A.k/ of A-module structures on kd . In case A is of finite
representation type, equations defining the closure xOM are known for M 2 modd

A.k/; they
are given by rank conditions on suitable matrices associated with M . We study the schemes
CM defined by such rank conditions for modules over arbitraryA, comparing them with similar
schemes defined for representations of quivers and obtaining results on singularities. One of our
main theorems is a description of the ideal of xOM for a representation M of a quiver of type
An, a result Lakshmibai and Magyar established for the equioriented quiver of type An in [12].
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1. Introduction

Throughout the paper, k denotes an algebraically closed field of arbitrary character-
istic. By abuse of notation, a k-scheme X and its functor of points, i.e. the functor
from the category of commutative k-algebras to the category of sets sending X to the
set of morphisms Spec.R/! X, will be denoted by the same symbol. Any scheme
X considered in the paper will be of finite type over k. In fact, X.k/ can be viewed
as the set of closed points of the scheme X.

Let d 2 N. We denote by Md the k-scheme of d � d -matrices and by GLd the
group k-scheme of invertible d�d -matrices. LetA be a finitely generated associative
k-algebra with a unit. The module scheme moddA can be easily described in terms of
its functor of points

moddA.R/ D Homk-alg..A;Md .R//:
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The name is justified by the fact that moddA.k/ can be identified with the set of A-
module structures on the vector space kd . The scheme moddA is affine and of finite
type over k, so its coordinate ring kŒmoddA� is a finitely generated (commutative)
k-algebra. The group scheme GLd acts on moddA via

.g ? M/.a/ D g �M.a/ � g�1:

Given M 2 moddA.k/, we denote its GLd .k/-orbit by OM . If we view the points of
moddA.k/ as d -dimensionalA-modules, then OM consists of all modules in moddA.k/
isomorphic to M . By abuse of notation, we treat OM and its closure xOM as reduced
subschemes of moddA .

It is an open problem to describe the ideal of xOM or even to exhibit polynomials
having xOM as their zero set. We now present some polynomials vanishing on xOM .
GivenN 2 moddA and a p � q-matrix a D .ai;j / with coefficients in A we define the
pd � qd -matrix

N.a/ D
0
@N.a1;1/ � � � N.a1;q/

: : : : : : : : : : : : : : : : : : : : : :

N.ap;1/ � � � N.ap;q/

1
A ;

and then any point N 2 xOM satisfies the condition

rkN.a/ � rkM.a/;

which means that all minors of size 1C rkM.a/ of the matrix N.a/ vanish. These
minors can be interpreted as elements of the coordinate algebrakŒmoddA� (see Section 3
for details). Let �M be the ideal in kŒmoddA� generated by such minors, where a varies
over the set of all matrices with coefficients in A. Then CM D Spec.kŒmoddA�=�M /
is a closed GLd -subscheme of moddA containing xOM .

When A is a finite dimensional algebra, these rank conditions are directly related
to the so-called Hom-order considered extensively before, for instance in [4], [5],
[13], [15]. In fact, if M;N 2 moddA.k/, M �hom N if and only if N 2 CM .k/.
It is known that .CM /red D xOM in special cases, e.g. if A is a representation-finite
algebra [15] or a tame concealed algebra [4]. However, .CM /red strictly contains
xOM in general; the first example is due to Carlson [13]. Moreover, CM need not be
reduced even if .CM /red D xOM . This occurs already for the algebra A D kŒx�=.x2/
of dual numbers and dimension d D 2 (see Example 3.7 for details).

Our goal in this article is to study the scheme CM in its own right. We now roughly
describe the content of every section.

In Section 2 we define rank ideals and present tools used later. The definition of
the scheme CM is given in Section 3, along with a reduction of the set of matrices a
to be considered. In fact, a p � q-matrix a with coefficients in A yields a morphism
�a W Ap ! Aq , and two matrices a and a0 yield the same rank conditions if �a and
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�a0 have isomorphic cokernels. In Section 4, we define analogous rank schemes for
quiver representations and use them in Section 5 to extend Bongartz’ results on a
geometric version of the Morita equivalence to rank schemes.

In [12], Lakshmibai and Magyar proved a result which turns out to be equivalent
to the following (see Section 4): If M is a representation of an equioriented Dynkin
quiver of type A, then CM D .CM /red D xOM . In [17], the second author introduced
so-called hom-controlled exact functors. This tool allowed him to show that some
types of singularities in orbit closures of modules over two different algebras coincide.
In Section 6 we study hom-controlled exact functors for rank schemes, and we obtain
one of our main results, a generalization of the result above to representations of
Dynkin quivers of type A, not necessarily equioriented (see Theorem 6.4). Thus the
ideal defining xOM is now known for Dynkin quivers of type A; it is an open question
whether this result can be generalized to representations of arbitrary Dynkin quivers.

The main advantage of the scheme CM over xOM is that its tangent space at some
N 2 xOM has a module theoretic interpretation; we will explain this in Section 7 and
use it in Section 8 to study the regularity of CM at N . Under the assumption that the
algebra is representation-finite, we will characterize the singular locus of CM . The
motivation is that the knowledge of the singular locus for CM helps to describe the
singular locus for the orbit closure xOM . We will show in a forthcoming paper that in
fact both loci coincide if M is a nilpotent representation of an oriented cycle.

Acknowledgements. We would like to thank the Swiss Science Foundation for its
support. This article was written while the second author was visiting the University
of Berne; he also gratefully acknowledges support from the Research Grant No. N
N201 269135 of the Polish Ministry of Science and High Education.

2. Rank ideals

Throughout the sectionR denotes a commutative ring. Let Mp�q be the affine scheme
of p � q-matrices, and fix U 2 Mp�q.R/ and t 2 f1; : : : ;min.p; q/g. Following
[7], 1.B, we denote by It .U / the ideal in R generated by the minors of U of size t .
It will be convenient to define I0.U / D R and It .U / D 0 for t > min.p; q/. Thus
we have

R D I0.U / � I1.U / � I2.U / � � � � :
We first collect a few properties of It .U /.

Lemma 2.1. Let U 2Mp�q.R/ and V 2Mq�r.R/. Then

It .UV / � It .U / \ It .V /:
Proof. Recall that, given a matrix W 2Mp0�q0.R/ and the corresponding R-homo-
morphism U W Rq0 ! Rp

0

, the entries of the matrix of the R-homomorphism
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ƒt .U / W ƒt .Rq0

/ ! ƒt .Rp
0

/ with respect to the standard bases are just the t � t -
minors of W . For two subsets K � f1; : : : ; p0g, L � f1; : : : ; q0g of the same
cardinality, we denote the minor ofW corresponding to rows inK and columns in L
by WK;L. Using the functoriality of ƒt , we obtain

det.UV /K;N D
X
L

detUK;L det VL;N

for any two subsetsK � f1; : : : ; pg,N � f1; : : : ; rg of cardinality t , whereL ranges
over all subsets of f1; : : : ; qg of cardinality t . Our claim follows. �

Lemma 2.2. Let U , V and W be matrices with coefficients in R, where U and W
are invertible and of a size that the product UVW exists. Then It .UV W / D It .V /.
Proof. Apply Lemma 2.1 to V 0 D UVW and to V D U�1V 0W �1. �

We leave the proof of the next lemma to the reader. Given two matrices U and V
we set U ˚ V D �

U 0
0 V

�
.

Lemma 2.3. We have It .U ˚ V / DPt
iD0 Ii .U /It�i .V /. In particular, if V is the

identity matrix of size s � t , then It .U ˚ V / D It�s.U /.

3. Definition and first properties of CM

Let A be a finitely generated associative k-algebra and d 2 N. The coordinate
algebra kŒmoddA� can be constructed as follows: Choosing generators a1; : : : ; ar of
Awe obtain an isomorphism ofAwith the quotient of a free k-algebra khx1; : : : ; xri
by a two-sided ideal J . We consider rd2 independent variables xli;j , l � r , i; j � d ,

arranged into r matrices Xl D .xli;j / of size d � d . Then kŒmoddA� is the quotient

of the polynomial algebra kŒxli;j � by the ideal generated by the entries of the d � d -

matrices �.X1; : : : ; Xr/, � 2 J . Let XdA be the element in moddA.kŒmoddA�/ defined
by the equalitiesX.al/ D xXl for l � r . We callXdA a universal module in moddA , as it
satisfies the following universal property: For any commutative k-algebraR and any
element N 2 moddA.R/ there is a unique algebra homomorphism ' W kŒmoddA�! R

such that N D moddA.'/.X
d
A /.

The coordinate algebra kŒMp�q� is the polynomial algebra kŒyi;j � with i � p,
j � q. We denote by V r

p�q � Mp�q the closed subscheme of “matrices of rank at
most r” defined by the ideal IrC1.Y / � kŒMp�q� forY D .yi;j / 2Mp�q.kŒMp�q�/.

Let a D .ai;j / be a p � q matrix with coefficients in A. The assignment

N 7! N.a/ D
0
@N.a1;1/ � � � N.a1;q/

: : : : : : : : : : : : : : : : : : : : : :

N.ap;1/ � � � N.ap;q/

1
A
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leads to a regular morphism ‚a W moddA ! Mpd�qd . For an A-module M 2
moddA.k/, we set

CM;a D ‚�1
a .V

rkM.a/
pd�qd /:

Note that CM;a D Spec.kŒmoddA�=�M;a/, where �M;a D I1CrkM.a/.X
d
A .a// �

kŒmoddA�.

Lemma 3.1. The subscheme CM;a � moddA is stable under GLd .

Proof. Fix a commutative k-algebra R. We need to show that N 2 CM;a.R/ and
g 2 GLd .R/ implies g � N 2 CM;a.R/, or equivalently that all r � r-minors of
.g � N/.a/ vanish, where r D 1 C rkM.a/. But Ir.g � N.a// D Ir.N.a// by
Lemma 2.2 as

.g �N/.a/ D

0
BB@
g 0 � � � 0

0 g � � � 0

: : : : : : : : : : : : :

0 0 � � � g

1
CCA �N.a/ �

0
BB@
g�1 0 � � � 0

0 g�1 � � � 0

: : : : : : : : : : : : : : : : : : : :

0 0 � � � g�1

1
CCA :

�

We define the rank scheme associated to M as

CM D
\

CM;a;

where a ranges over all p � q-matrices with coefficients in A for all p and q. Thus
CM is the closed GLd -subscheme of moddA defined by �M D P

�M;a. Note that
isomorphic modules define the same rank scheme.

Sending a 2 A to the A-homomorphism �a W A ! A, �a.b/ D b � a defines a
bijection from A to HomA.A;A/. Given a p � q-matrix a D .ai;j / with coefficients
in A, we define an A-homomorphism

�a W Ap
.�aj;i

/

�����! Aq:

This gives a bijection between the set of p � q-matrices with coefficients in A and
the space HomA.Ap; Aq/. Moreover, for a q � s-matrix b with coefficients in A we
get

�a�b D �b B �a:
Lemma 3.2. Let a0 and a00 be two matrices with coefficients in A. If the cokernels
Coker.�a0/ and Coker.�a00/ are A-isomorphic then �M;a0 D �M;a00 .

As a consequence, we obtain a well defined scheme CM;L for any finitely presented
A-module L by choosing a presentation

Ap
�a�! Aq �! L �! 0
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and setting CM;L D CM;a. Note that CM DT
CM;L, whereL ranges over represen-

tatives of all isomorphism classes of finitely presented A-modules.

Proof of the lemma. Let a0 and a00 be two matrices with coefficients in A of sizes
p1 � q1 and p2 � q2, respectively. Setting f1 D �a0 and f2 D �a00 we obtain two
A-homomorphisms

Ap1
f1�! Aq1 and Ap2

f2�! Aq2 :

We assume that there is an A-isomorphism � W Coker.f1/ ! Coker.f2/. We claim
that there are matrices b and c with coefficients in A such that�

a0 0

0 1dq2

�
D b �

�
1dq1

0

0 a00
�
� c:

Using the property that free A-modules are projective we obtain the following com-
mutative diagram with exact rows

Ap1
f1 ��

h

��

Aq1
g1 ��

h0

��

Coker.f1/ ��

' �

��

0

Ap2
f2 ��

l

��

Aq2
g2 ��

l 0

��

Coker.f2/ ��

' ��1

��

0

Ap1
f1 �� Aq1

g1 �� Coker.f1/ �� 0 .

In particular,
h0f1 D f2h; l 0f2 D f1l; (3.1)

and g1l 0h0 D g1. The latter implies that Im.1 � l 0h0/ is contained in Im.f1/, and
consequently 1 � l 0h0 factors through f1. From this, and by symmetry, we get two
A-homomorphisms 'i W Aqi ! Api , i D 1; 2, such that

l 0h0 C f1'1 D 1Aq1 and h0l 0 C f2'2 D 1Aq2 : (3.2)

We conclude from (3.1) and (3.2) that�
f1 0

0 1Aq2

�
D

�
f1'1 �l 0
h0 1Aq2

�
�
�
1Aq1 0

0 f2

�
�
�
f1 l 0
�h '2

�
:

We get the claim by choosing matrices b and c such that

�b D
�
f1 l 0
�h '2

�
and �c D

�
f1'1 �l 0
h0 1Aq2

�
:
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Let X D XdA be a universal module for moddA . The claim implies that

�
X.a0/ 0

0 1dq2

�
D X.b/ �

�
1dq1

0

0 X.a00/

�
�X.c/:

By Lemmas 2.1 and 2.3, we know that

It�dq2
.X.a0// D It

�
X.a0/ 0

0 1dq2

�
� It

�
1dq1

0

0 X.a00/

�
D It�dq1

.X.a00//:

for any t 	 q1d; q2d . Applying the functor HomA.�;M/ we obtain the exact
sequences

0! HomA.Coker.f1/;M/! HomA.A
q1 ;M/

HomA.�a0 ;M/���������! HomA.A
p1 ;M/;

0! HomA.Coker.f2/;M/! HomA.A
q2 ;M/

HomA.�a00 ;M/���������! HomA.A
p2 ;M/:

Let w D dimk HomA.Coker.f1/;M/ D dimk HomA.Coker.f2/;M/. Identifying
the space HomA.As;M/ with kds , s 2 N, we get

HomA.�a0 ;M/ DM.a0/ and HomA.�a00 ;M/ DM.a00/:

Consequently,

rk.M.a0// D dq1 � w; rk.M.a00// D dq2 � w

and

�M;a0 D I1Cdq1�w.X.a0// � I1Cdq2�w.X.a00// D �M;a00 :

In a similar way we prove the reverse inclusion, which finishes the proof. �

Lemma 3.3. For finitely presentedA-modulesL1 andL2, we have that �M;L1˚L2
�

�M;L1
C �M;L2

.

Proof. We fix matrices a0 and a00 with coefficients in A such that the cokernels of
�a0 and �a00 are isomorphic to L1 and L2, respectively. Let r1 D rk.M.a0// and
r2 D rk.M.a00//, and set X D XdA . Using the fact that

R D I0.U / � I1.U / � I2.U / � � � �
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for any matrix U with coefficients in a commutative ring R, we get from Lemma 2.3

�M;L1˚L2
D �M;a0˚a00 D I1Cr1Cr2.X.a0/˚X.a00//

D
1Cr1Cr2X
tD0

It .X.a
0// � I1Cr1Cr2�t .X.a00//

�
r1X
tD0

I1Cr1Cr2�t .X.a00//C
1Cr1Cr2X
tD1Cr1

It .X.a
0//

D I1Cr2.X.a00//C I1Cr1.X.a0// D �M;a00 C �M;a0

D �M;L1
C �M;L2

: �

Let L be a finitely presented A-module. Then the space HomA.L;M/ is finite
dimensional, and we choose a basis f1; : : : ; fs . We denote by LM the kernel of the
map

L
.f1;:::;fs/

t

�������!M s:

Note that LM does not depend on the choice of the basis f1; : : : ; fs .

Lemma 3.4. Using the above notation, we have �M;L � �M;L=LM
.

Proof. As there is an injective A-homomorphism from L=LM to M s , the module
L=LM is finite dimensional and thus finitely presented, as A is finitely generated.
We may choose presentations of L and of L=LM for which there is a commutative
diagram

Ap
�a ��

�b

��

Aq �� L ��

��

0

At
�c �� Aq �� L=LM �� 0

with exact rows.
From �a D �c B �b we see that a D b B c. Note that the injection from L=LM

to M s induces an isomorphism from HomA.L=LM ;M/ to HomA.L;M/ and thus
rk.M.a// D rk.M.c//. By Lemma 2.1 we conclude that

�M;L D �M;a D I1CrkM.a/.X
d
A .a//

D I1CrkM.a/.X
d
A .b/ BXdA .c//

� I1CrkM.c/.X
d
A .c// D �M;c

D �M;L=LM
: �

Next we study the behavior of rank schemes under an algebra homomorphism
' W A ! B . For a p � q-matrix a D .ai;j / with coefficients in A, we denote
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the corresponding p � q-matrix with coefficients in B by '.a/ D .'.ai;j //. Any
B-module can be considered as an A-module via '; we will write AM for the A-
module corresponding to the B-module BM . In addition, ' induces a regular GLd -
morphism 'd W moddB ! moddA defined by Œ'd .N /�.a/ D N.'.a//, which is a
closed immersion if ' is surjective. If d D dimkM , then 'd .O

BM / D O
AM , and

consequently xO
BM � .'d /�1. xOAM /. A similar result holds for rank schemes.

Lemma 3.5. Let ' W A ! B be an algebra homomorphism and let M belong to
moddB.k/. Then

C
BM � .'d /�1.CAM /:

If ' is surjective, the above inclusion is an equality.

Proof. Note that ‚'.a/ D ‚a B 'd and BM.'.a// D AM.a/ for a B-module BM ,
and thus C

BM;'.a/ D .'d /�1.CAM;.a//. �

The algebraB DA=AnnM is finite dimensional, being a subalgebra of Endk.M/.
By the above lemma, we can work over the finite dimensional algebraB D A=AnnM
instead of A and consider M as a B-module. For a finite dimensional algebra, any
finitely presented module is isomorphic to a direct sum of indecomposables, and we
obtain the following consequence.

Corollary 3.6. Let A be finite dimensional, and let L be a complete set of pair-
wise non-isomorphic indecomposable A-modules which can be embedded into finite
powers ofM . Then

�M D
X
L2L

�M;L:

We construct CM on a simple but instructive example.

Example 3.7. Let A D kŒ"� ' kŒx�=.x2/ be the algebra of dual numbers and
M W A ! M2.k/ be the unique algebra homomorphism satisfying M."/ D �

0 0
1 0

�
,

so that the corresponding module is isomorphic to AA. Choosing " as a generator of
A, we identify the coordinate algebra kŒmod2A� with

kŒx1;1; x1;2; x2;1; x2;2�=
�
entries of

� x1;1 x1;2
x2;1 x2;2

�2 �
:

The set L considered in the previous corollary consists of two modules: M and
its one-dimensional simple submodule denoted by S . In fact, any indecomposable
A-module is isomorphic to either M or S , so the algebra A is representation finite
and therefore .CM /red D xOM , as mentioned in the introduction. Since M is free as
an A-module, we have a free presentation 0 D A0 ! A1 ! M ! 0 giving us no

condition, i.e. �M;M D 0. Thus choosing a free presentation A1
�."/��! A1 ! S ! 0
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and denoting by Nxi;j the residue class of xi;j in the coordinate algebra kŒmod2A�, we
get

�M D �M;S D I1CrkM."/

� Nx1;1 Nx1;2

Nx2;1 Nx2;2

	
D I2

� Nx1;1 Nx1;2

Nx2;1 Nx2;2

	
D

�
det

� Nx1;1 Nx1;2

Nx2;1 Nx2;2

	 	
:

Obviously the trace of
� Nx1;1 Nx1;2

Nx2;1 Nx2;2

	
does not belong to �M (but its third power does),

so the ideal �M is not radical and CM is not reduced.

4. Rank schemes for representations of quivers

We first recall the classical definition of the representation space of a quiver with
relations for a given dimension vector, acted upon by a product of general linear
groups, and then view this space as the k-points of an affine scheme with the action
of a group scheme.

Let Q D .Q0;Q1; s; t/ be a finite quiver, i.e. a finite set Q0 of vertices and a
finite set Q1 of arrows ˛ W s˛ ! t˛, where s˛ and t˛ denote the starting and the
terminating vertex of ˛, respectively. A representation of Q over k is a collection
.X.i/I i 2 Q0/ of finite dimensional k-vector spaces together with a collection
.X.˛/ W X.s˛/ ! X.t˛/I ˛ 2 Q1/ of k-linear maps. A morphism f W X ! Y

between two representations is a collection .f .i/ W X.i/ ! Y.i// of k-linear maps
such that

f .t˛/ BX.˛/ D Y.˛/ B f .s˛/ for all ˛ 2 Q1:
The dimension vector of a representation X of Q is the vector

dimX D .dimX.i// 2 NQ0 :

We denote the category of representations of Q by rep.Q/, and for any vector d D
.di / 2 NQ0 ,

repd
Q.k/ D

Y
˛2Q1

Mdt˛�ds˛
.k/

is the affine space of representations X of Q with X.i/ D kdi , i 2 Q0. The group

GLd .k/ D
Y
i2Q0

GLdi
.k/

acts on repd
Q.k/ by

..gi / ? X/.˛/ D gt˛ BX.˛/ B g�1
s˛ :

Note that the GLd .k/-orbit of X , denoted by OX , consists of the representations Y
in repd

Q.k/ which are isomorphic to X .
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Let kQ denote the path algebra of Q: The paths in Q form a k-basis of kQ,
and two paths are multiplied by juxtaposing them if possible and they have product 0
otherwise. In each vertex i ofQ we have the trivial path "i of length zero. Note that

1kQ D
X
i2Q0

"i

is a decomposition of 1 into a sum of pairwise orthogonal idempotents and that
"i � kQ � "j is the vector subspace consisting of the linear combinations ! of paths
starting from vertex j and terminating at i . We will write s.!/ D j and t .!/ D i .
For any representationX 2 repd

Q.k/ the di�dj -matrixX.!/ is defined in the obvious
way. If J is a two-sided ideal of kQ, one can restrict the category rep.Q/ to the full
subcategory rep.Q; J / consisting of the representations annihilated by J . The pair
.Q; J / is called a bound quiver if J is an admissible ideal, i.e. .kQC/N � J �
.kQC/2 for some N 	 2, where kQC stands for the ideal in kQ spanned by the
paths of positive length.

The affine scheme repd
Q is defined as

repd
Q D

Y
˛2Q1

Mdt˛�ds˛

and has the polynomial ring
kŒrepd

Q� D kŒx˛kl �
as its coordinate ring, where ˛ ranges over Q1, k over f1; : : : ; dt˛g, and l over
f1; : : : ; ds˛g. A universal representation Xd

Q is given by Xd
Q.˛/ D .x˛kl/. The group

scheme
GLd D

Y
i2Q0

GLdi

acts on repd
Q by the same formula as above. If J is an ideal in kQ, the closed GLd -

subscheme repd
Q;J is defined by the vanishing ofXd

Q.!/ for any ! 2 "i �J �"j , where
i , j vary over the set Q0.

Now we are ready to define the rank subscheme CM of repd
Q associated with a

representation M 2 repd
Q.k/: Let p; q 2 N, consider two sequences .u1; : : : ; up/

and .v1; : : : ; vq/ of vertices inQ0 and a p� q-matrix ! D .!i;j / such that each !i;j
belongs to "ui

� kQ � "vj
. The assignment

N 7! N.!/ D
0
@N.!1;1/ � � � N.!1;q/

: : : : : : : : : : : : : : : : : : : : : :

N.!p;1/ � � � N.!p;q/

1
A

leads to a regular morphism

‚! W repd
Q !Mp0�q0 ;
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where p0 DP
dui

and q0 DP
dvj

. We keep track in !i;j of the vertices vj and ui
even if !i;j D 0. For M 2 repd

Q.k/, ‚!.M/ is a p0 � q0-matrix with coefficients in
k. We set

CM;! D ‚�1
! .V

rk‚!.M/

p0�q0 /; CM D
\

CM;! ;

where ! ranges over all possible matrices of paths with all possible sets of starting
and terminating vertices. Note that CM;! D Spec.kŒrepd

Q�=�M;!/, where �M;! �
kŒrepd

Q� is the ideal generated by all minors of size 1 C rk‚!.M/ of the matrix

‚!.X
d
Q/, and that CM D Spec.kŒrepd

Q�=�M /, where �M DP
�M;! . We leave the

necessary adjustments for quivers with relations to the reader.
All results presented before in the context of module scheme have a corresponding

version in terms of representations of bound quivers .Q; J /. The main difference is
that instead of finitely generated free presentations of modules we consider projective
presentations of representations using the projectives .kQ=J / � "i , i 2 Q0. In
particular, if Q is an equioriented Dynkin quiver of type An,

Q W 1 ˛1��! 2
˛2��! � � � ˛n�1����! n;

J D 0, !j;i D j̨�1 j̨�2 � � �˛i and M is a representation in repd
Q.k/, then

�M D
X

1�i<j�n
�M;.!j;i / D

X
1�i<j�n

I1Crk.M.!j;i //.X
d
Q.!j;i //:

Thus �M is exactly the ideal generated by determinantal conditions as considered by
Lakshmibai and Magyar in [12]. Therefore we can reformulate their main result as
follows:

Theorem 4.1. Let M be a representation in repd
Q.k/, where Q is an equioriented

Dynkin quiver of type A. Then the ideal �M is radical and CM D xOM .

5. A geometric version of Morita equivalence for rank schemes

The purpose of this section is to relate rank schemes for quiver representations to
rank schemes for modules over algebras.

Let A be a finite dimensional algebra, and let S1; : : : ; Ss be representatives for
the isomorphism classes of simple A-modules. The Grothendieck group K0.A/ can
be identified with Zs , and the dimension vector dimN 2 Zs of a finite dimensional
A-module N is the vector

dimN D .d1; : : : ; ds/ 2 K0.A/;
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where dl is the multiplicity of Sl in any composition series for N . If el 2 A is a
primitive idempotent such that Ael is a projective cover for Sl , we have

dl D dimk HomA.Ae
l ; N / D rkN.el/:

By [9] or Lemma 1 of [3], there is a connected component modd
A of the scheme

moddA , characterized by the fact that

modd
A.k/ D fN 2 moddA.k/ W dimN D dg

for any vector d D .d1; : : : ; ds/ 2 Ns .

Lemma 5.1. ForM 2 modd
A.k/ we have CM � modd

A .

Proof. As modd
A is a connected component in moddA , it suffices to show that CM .k/ �

modd
A.k/. Let N 2 CM .k/, and set dimN D d 0 D .d 0

1; : : : ; d
0
s/. Considering the

ideal IM;.el /, where .el/ is the 1 � 1-matrix having the idempotent defined above as
its entry, we get that

d 0
l D rk.N.el// � dl D rkM.el/;

for l D 1; : : : ; s. But

d D dimkM D
sX
lD1

dl dimk Sl D dimk N D
sX
lD1

d 0
l dimk Sl ;

and thus d 0 D d . �

Let B be a maximal semisimple subalgebra of A. We know that

B '
sY
lD1

Mnl
.k/;

where we set nl D dimk Sl . Denote by eli;j , l D 1; : : : ; s, i; j D 1; : : : ; nl the

canonical basis of B , and set e D Ps
lD1 el1;1. Then eAe is a basic algebra Morita

equivalent to A. There is a quiver Q with the set of vertices f1; : : : ; sg together with
an admissible ideal J in kQ and an algebra isomorphism ˆ W eAe ! kQ=J such
that ˆ.el1;1/ D "l C J .

The inclusion' W B ! Aofk-algebras induces a regular morphism'd W moddA !
moddB , which restricts to a regular GLd -equivariant morphism p W modd

A ! modd
B .

Bongartz showed in [3] that the fiber of some special elementE 2 modd
B is isomorphic

to repd
Q;J . In fact, he proved that p is a fiber bundle with fiber p�1E. We now recall
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his construction and describe explicitly a closed immersion � W repd
Q;J ! modd

A

which is an isomorphism onto p�1E. First we need some more notation.
Recall that d DPs

lD1 nldl . According to the decomposition

1A D
X
l�s

X
i�nl

eli;i

into a sum of primitive orthogonal idempotents, we subdivide a d �d -matrixW first
into s2 “large” blocks, the block W l 0;l 00 being of size nl 0dl 0 � nl 00dl 00 , l 0; l 00 � s, and
then we subdivide each block W l 0;l 00 into nl 0nl 00 blocks, the block W l 0;l 00

i;j being of
size dl 0 � dl 00 ; i � nl 0 , j � nl 00 . In order to handle these blocks we introduce the
obvious injective scheme morphisms

�
l 0;l 00

i;j W Mdl0 �dl00
!Md ; l 0; l 00 � s; i � nl 0 ; j � nl 00 :

We define a subfunctor E of modd
B by E.R/.eli;j / D �

l;l
i;j .1nl

/ for a commutative
k-algebra R, where 1n denotes the identity matrix in Mn.R/. So E is a closed point
of the scheme modd

B . Using the decomposition of an element a 2 A,

a D
� X
l 0�s

X
i�nl0

el
0

i;i

	
�a�

� X
l 00�s

X
j�nl00

el
00

j;j

	
D

X
l 0;l 00�s

X
i�nl0

X
j�nl00

el
0

i;1 �.el
0

1;i �a�el
00

j;1/�el
00

1;j ;

and the fact that el
0

1;i � a � el
00

j;1 belongs to eAe, we define the scheme morphism

� W repd
Q;J ! modd

A ; .�N /.a/ D
X
l 0;l 00�s

X
i�nl0

X
j�nl00

�
l 0;l 00

i;j .N.ˆ.el
0

1;i � a � el
00

j;1///:

Then � is an isomorphism onto p�1.E/. Note that if we view elements of repd
Q;J .k/

and modd
A.k/ as representations and modules, respectively, then the map

�.k/ W repd
Q;J .k/! modd

A.k/

is in accordance with an equivalence between the category of representations of
.Q; J / and the category of A-modules.

Proposition 5.2. With the above notations we have

��1.C�M / D CM � repd
Q;J

for anyM 2 repd
Q;J .k/.

Proof. The result is a consequence of the following two facts.
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(1) For anyp�q-matrixawith coefficients inA there arep0Cq0 verticesu1; : : : ; up0 ,
v1; : : : ; vq0 ofQ and elements!i 0;j 0 2 "ui0

�kQ=J �"vj 0
yielding!.a/ D .!i 0;j 0/

such that
CM;!.a/ D ��1C�M;a:

(2) For any p0, q0, any vertices u1; : : : ; up0 ; v1; : : : ; vq0 of Q and any elements
!i 0;j 0 2 "ui0

�kQ=J � "vj 0
with ! D .!i 0;j 0/, there is a p0�q0-matrix a.!/with

coefficients in A such that

CM;! D ��1C�M;a.!/:

In order to prove (1) we first construct !.a/ for a 2 A such that N.!.a// D
.�N /.a/ for N 2 repd

Q;J : We set p0 D q0 D n DPs
lD1 nl , choose u.l;i/ D v.l;i/ D

l 2 Q0 for l D 1; : : : ; s; i D 1; : : : ; ns , and set ! D .!.l 0;i/;.l 00;j // with

!.l 0;i/;.l 00;j /.a/ D ˆ.el 01;i � a � el
00

j;1/ 2 "l 0 � kQ=J � "l 00 :
By the definition of �, we have

.�N /.a/ D
X
l 0;l 00�s

X
i�nl0

X
j�nl00

�
l 0;l 00

i;j .N.ˆ.el
0

1;i � a � el
00

j;1/// D N.!.a//:

as desired. For a p � q-matrix a D .ai 0;j 0/ with coefficients in A, we set !.a/ D
.!.ai 0;j 0//. As above, we conclude that

.�N /.a/ D N.!.a//:
In particular, r D 1 C rk.�M/.a/ D 1 C rkM.!.a//. As a consequence we
obtain that, for any commutative k-algebra R, Ir.N.!.a/// D 0 if and only if
Ir..�N /.a// D 0, for any N 2 repd

Q;J .R/, which is equivalent to CM;!.a/.R/ D
.��1C�M;a/.R/.

For the proof of (2), we set a.!/ D .ˆ�1!i 0;j 0/ for ! D .!i 0;j 0/. For any
commutative k-algebraR and anyN 2 repd

Q;J .R/, the only possibly non-zero entries

of the d �d -matrix .�N /.ˆ�1!i 0;j 0/ D �ui0 ;vj 0

1;1 .N.!ui0 ;vj 0
// sit in the small block in

the upper left corner of the big block corresponding to l 0 D ui 0 ; l 00 D vj 0 . Therefore
the rows and the columns of the p0d � q0d -matrix .�N /.a.!// can be permuted in
such a way that the upper left corner becomes N.!/ and all other entries are zero.
In other words, there are invertible matrices, in fact permutation matrices, U and V
such that

U � .�N /.a.!// � V D
�
N.!/ 0

0 0

�
:

Then clearly r D 1C rk.�M/.a.!// D 1C rkM.!/ and by Lemma 2.2 we have

Ir..�N /.a.!/// D Ir
�
N.!/ 0

0 0

�
D Ir.N.!//:
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Therefore Ir.N.!// D 0 if and only if Ir..�N /.a.!/// D 0, and we conclude that
CM;!.R/ D .��1C�M;a.!//.R/. �

Following Hesselink (see (1.7) in [11]) we call two pointed schemes .X; x0/ and
.Y; y0/ smoothly equivalent if there are smooth morphisms f W Z! X, g W Z! Y

sending a point z0 2 Z to x0 and y0, respectively. This is an equivalence relation
and an equivalence class will be denoted by Sing.X; x0/ and called the type of
singularity of X at x0. Assuming Sing.X; x0/ D Sing.Y; y0/, the scheme X is
regular (or reduced, normal, Cohen–Macaulay, respectively) at x0 if and only if the
same is true for the scheme Y at y0 (see [10], Section 17, for more information about
smooth morphisms).

Theorem 5.3. Let � W repd
Q;J ! modd

A be the morphism defined above. Suppose

M and M 0 in repd
Q;J .k/ are such that M 0 belongs to CM .k/. Then �M 0 belongs to

C�M .k/ and

Sing.C�M ; �M
0/ D Sing.CM ;M

0/:

Proof. The orbit map W GLd ! modd
B defined by .g/ D g�E is smooth and in-

duces an isomorphism of schemes GLd =GLd ! modd
B , where GLd DQs

lD1 GLdl

is embedded into GLd via

.g1; : : : ; gs/ 7!
sX
lD1

nlX
iD1

�
l;l
i;i .gl/:

It is not hard to see (compare e.g. [6]) that the diagram

GLd � repd
Q;J

� ��

�

��

modd
A

p

��
GLd

 �� modd
B

' �� GLd =GLd

is a pullback, where� is the projection to the first factor and 	.g;N / D g��N . Note
that 	 is smooth as smoothness is preserved under base change. As 	.k/ is surjective
and thus contains �M 0 in its image, it is enough to show that 	�1C�M D GLd �CM .

A pair .g;N / 2 GLd .R/�C�M .R/ belongs to .	�1C�M /.R/, for a commutative
k-algebra R, if and only if g � �N 2 C�M .R/. As by Lemma 2.2 C�M .R/ is stable
under GLd .R/, this is equivalent to �N 2 C�M .R/, which is in turn equivalent to
.g;N / 2 GLd .R/ � CM .R/ by Proposition 5.2. �
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6. Hom-controlled exact functors

Let' W A! B be a homomorphism of finite dimensional algebras and'� W modB !
modA the induced change of scalars functor. For a B-module M we will use the
notationM D BM and '�.M/ D AM . Thus 'd .O

BM / D O
AM for any moduleM

in moddB.k/.
Following [17], we call an exact functor F W modB ! modA hom-controlled,

if there is a bilinear form � W K0.B/ �K0.B/! Z such that

ŒF U;F V �A � ŒU; V �B D �.dimU;dim V /

for any U; V 2 modB . Here and later on, we abbreviate dimk HomB.U; V / by
ŒU; V �B , for any U; V 2 modB and similarly for A-modules.

Assume now that the functor '� is hom-controlled. It follows from Theorem 1.1
of [17] that the restriction of 'd

xO
BM ! xOAM

is a smooth morphism. The aim of this section is to show this is still true if we replace
the orbit closures by the rank schemes C

BM and C
AM .

Let L be a finite dimensional A-module and t 2 N. We choose a p � q-matrix
a such that Coker.�a/ is A-isomorphic to L. Let moddA;L;t be the closed subscheme

of moddA defined by the ideal I1Cqd�t .XdA .a// in kŒmoddA�. The proof of Lemma 3.2
can easily be generalized to show that this ideal is determined uniquely by t and the
isomorphism class ofL. By .moddA;L;t /

0 we denote the open subscheme of moddA;L;t
whose k-points are the modules N with ŒL;N �A D t .

It has been proved in Section 4 of [17] that 'd restricts to a smooth morphism
from modd

B to .moddA;AB;t /
0 for any d 2 K0.B/, where d is the common dimension

of all modules in modd
B and t D d C �.dimB;d/. We denote by

 W modd
B ! moddA;AB;t

the composition of this morphism with the open immersion into moddA;AB;t , which is
still smooth.

Theorem 6.1. Let ' W A! B be an algebra homomorphism such that '� is a hom-
controlled exact functor and fix M 2 modd

B.k/. Then the morphism  restricts to a
morphism

C
BM ! C

AM ;

which is smooth.

Proof. We know that C
BM is a subscheme of modd

B . Thus the claim will be proved
if we can show that C

AM is a subscheme of moddA;AB;t , where t D d C �.dimB;d/,
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and that  �1.C
AM / D C

BM , or equivalently that

.'d /�1C
AM \modd

B D C
BM :

The first part is easy, because

ŒAB;AM�A D ŒBB;BM�B C �.dimB;dimM/ D t
and consequently, I1Cqd�t .XdA .a// D �

AM;AB , where a is a p � q-matrix with
coefficients in A and with AB D Coker �a. The inclusion C

BM � .'d /�1C
AM \

modd
B follows from Lemma 3.5 and Lemma 5.1. In order to prove the reverse inclusion

we will show that, for any B-module BL, we have

�
BM;BL � kŒmoddB � � .'d /��

AM;AL C �.modd
B/ (6.1)

in kŒmoddB �, where �.modd
B/ is the ideal defining modd

B .
Let L be a finite dimensional B-module. Choosing a finite free presentation of

AL we obtain the exact sequence of A-modules

Ap
�a�! Aq ! AL! 0

for some p; q 	 1 and a p � q-matrix a with coefficients in A. We apply the tensor
functor B ˝A .�/ to get another exact sequence

Bp
�'.a/���! Bq ! B ˝A L! 0:

Using the homomorphism ' we have a left and a right A-module structure on
B , and the functor '� can be identified with the functor AB ˝B .�/ as well as with
HomB.BBA;�/. Observe that

B ˝A L D B ˝A '�.BL/ ' B ˝A B ˝B L D 
˝B L;
where 
 is the B-B-bimodule B ˝A B , and that for any B-module Y we have

HomA.AL;AY / D HomA.AB ˝B L;HomB.BBA;BY //

' HomB.BB ˝A B ˝B L;BY /
D HomB.
˝B L;BY /:

As '� is hom-controlled, we obtain

Œ
˝B L; Y �B � ŒL; Y �B D �.dimL;dim Y /

for any B-module Y .
Let fP1; : : : ; Png be a complete set of pairwise non-isomorphic indecomposable

projective B-modules and Si D Pi= rad.Pi / for i � n. Note that fS1; : : : ; Sng is a
complete set of pairwise non-isomorphic simple B-modules.
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Let si D �.dimL;dimSi / for i � n and PL D L
i P

si
i , and let yi denote the

i -th coordinate of dim Y . Then

ŒPL; Y � D
nX
iD1

si � ŒPi ; Y � D
nX
iD1

�.dimL;dimSi / � yi

D �.dimL;dim.
nM
iD1

S
yi

i // D �.dimL;dim Y /;

and consequently,
Œ
˝B L; Y � D ŒL˚ PL; Y �:

The latter holds for any finite dimensionalB-module Y , hence
˝BL ' L˚PL, by
Auslander’s theorem. This implies that the ideal generated by .'d /��

AM;AL equals
�

BM;B .L˚PL/.
If PL D 0, the inclusion (6.1) clearly holds. Otherwise, choose matrices b0 and

b00 with coefficients in B such that the Coker.�b0/ ' L and Coker.�b00/ ' PL. Let

r1 D rkM.b0/, r2 D rkM.b00/, and set X D Xd
B . Then

�
BM;B .L˚PL/ D I1Cr1Cr2

�
X.b0/ 0

0 X.b00/

�
� I1Cr1.X.b

0// � Ir2.X.b00//;

by Lemma 2.3. Obviously I1Cr1.X.b
0// D �

BM;BL and therefore

�
BM;B .L˚PL/ C �.modd

B/ � �
BM;BL � .Ir2.X.b00//C �.modd

B//:

Thus it suffices to show that

Ir2.X.b
00//C �.modd

B/ D kŒmoddB �:

Let N be a module in moddB.k/. The condition that Ir2.X.b
00// vanishes on N

means ŒPL; N � > ŒPL;M � while �.modd
B/ vanishes on N if and only if dimN D

dimM . Since dimN D dimM implies ŒPL; N � D ŒPL;M �, there exists no point
N on which the ideal Ir2.X.b

00//C �.modd
B/ vanishes. �

Theorem 1.2 in [17] says that

Sing. xOFM ;FM
0/ D Sing. xOM ;M 0/

for a hom-controlled exact functor F , M 2 moddA.k/ andM 0 2 xOM . The proof can
be adapted to rank schemes, yielding the following result. The only slight difficulty
is taken care of by the lemma following the theorem. Recall that if M 0 is a point
of CM .k/, the modules M and M 0 have the same dimension vector, and so do their
images F .M/ and F .M 0/ under an exact functor.
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Theorem 6.2. Let F W modB ! modA be a hom-controlled exact functor and fix
M;M 0 2 modd

B.k/ withM 0 2 xOM . Let e be the common dimension vector of FM

and FM 0. Identifying FM and FM 0 with the corresponding elements in mode
A.k/

we obtain that FM 0 2 CFM and

Sing.CFM ;FM
0/ D Sing.CM ;M

0/:

Lemma 6.3. Let B D C � D be the product of an algebra C with a semisimple
algebra D, both finite dimensional, fix a B-module M D .M1;M2/, and choose
M 0 D .M 0

1;M
0
2/ 2 CM .k/. Then we have

Sing.CM ;M
0/ D Sing.CM1

;M 0
1/:

Proof. The easiest way to see this is to replace the algebras by quivers and relations
using Theorem 5.3. Then we have

CM D CM1
� CM2

; CM 0 D CM 0

1
� CM 0

2
:

As D is semisimple, its quiver consists of some vertices but no arrows, and thus
CM2

D CM 0

2
D fM2g D fM 0

2g. �

The above theorem remains true if modules are replaced by representations of
quivers, by Theorem 5.3. In particular, applying the theorem to the exact functors
constructed in [1] and [2] we may generalize Theorem 4.1 as follows.

Theorem 6.4. LetM be a representation in repd
Q.k/, whereQ is a Dynkin quiver of

type A. Then the ideal �M is radical and CM D xOM .

Let us describe the ideal �M explicitly. We know from Corollary 3.6 that �M DP
�M;L, where L ranges over all indecomposable representations of Q. Suppose

the underlying graph of Q is

1 2 � � � n:

Independently of the orientations of the arrows, an indecomposable L is given by an
interval L D Œl; l 0� in Œ1; n�, for some l � l 0: Each vertex in Œl; l 0� is represented by
k, each arrow between such vertices by the matrix .1/. Denote the full subquiver of
Q with vertex set Œl; l 0� byQŒl;l 0�. We associate with L the sequence l � v1 < � � � <
vq � l 0 of all sources of QŒl;l 0� and the sequence l � 1 � u1 < � � � < up � l 0 C 1
consisting of all sinks in QŒl;l 0� distinct from l; l 0 in addition to´

l � 1 if 1 < l and there is an arrow l � 1 l 2 Q1;
l 0 C 1 if l 0 < n and there is an arrow l 0 ! l 0 C 1 2 Q1:
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For any ui there is either some vj 0 < ui and a path !i;j 0 W vj 0 ! ui in Q or some
vj 00 > ui and a path !i;j 00 W vj 00 ! ui in Q or both, in which case we must have
j 00 D j 0 C 1. The p � q-matrix ! corresponding to L D Œl; l 0� has all its entries 0,
except for those just described.

In the special case

Q D 1
˛1 �� 2 3

˛2�� 4
˛3�� ˛4 �� 5;

the matrices to be considered are�
˛1

�
;

�
˛2

�
;

�
˛3

�
;

�
˛4

�
;�

˛1 ˛2
�
;

�
˛2 B ˛3

�
;

�
˛3
˛4

�
;

�
˛1 ˛2 B ˛3

�
;

�
˛2 B ˛3
˛4

�
;

�
˛1 ˛2 B ˛3
0 ˛4

�
:

7. Tangent spaces

LetN belong to CM .k/. The main aim of this section is to describe the tangent space
TCM ;N in terms of selfextensions of the module N .

The tangent space Tmodd
A
;N can be identified with the space of 1-cocycles

Z1A.N;N /, that is, with the set of k-linear maps Z W A ! Md .k/ with the prop-
erty thatZ.a1a2/ D N.a1/Z.a2/CZ.a1/N.a2/ for any a1; a2 2 A. Note that from
a 1-cocycle Z we obtain a module structure on kd ˚ kd given by�

N Z

0 N

�
.a/ D

�
N.a/ Z.a/

0 N.a/

�

and that the sequence

'.Z/ W 0! N

�
1

0

�
����!

�
N Z

0 N

� �
0 1

	
�����! N ! 0

is exact.
The tangent space TON ;N can be identified with the space of 1-coboundaries

B1A.N;N / D fh �N �N �hI h 2Md .k/g. By [9], Proposition 1.1, the map ' induces
an isomorphism, called Voigt’s isomorphism,

Tmodd
A
;N =TON ;N ' Z1A.N;N /=B

1
A.N;N / D Ext1A.N;N /:

Since TON ;N � TCM ;N � Tmodd
A
;N , the tangent space TCM ;N corresponds to a

subspace of Z1A.N;N / containing B1A.N;N /, which we now describe.
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Let F and F 0 be complete sets of pairwise non-isomorphic indecomposable
modules X and X 0 such that ŒN;X� D ŒM;X� and ŒX 0; N � D ŒX 0;M �, respectively.
Set

E.Y;Z/

D ˚
Œ� W 0! Z ! W ! Y ! 0�� 2 Ext1A.Y;Z/I ı� .X/ D 0 for all X 2 F



D ˚

Œ� W 0! Z ! W ! Y ! 0�� 2 Ext1A.Y;Z/I ı0
� .X

0/ D 0 for all X 0 2 F 0
 :
for two A-modules Y;Z, where

ı� .X/ D dimk HomA.Z ˚ Y;X/ � dimk HomA.W;X/;

ı0
� .X

0/ D dimk HomA.X
0; Y ˚Z/ � dimk HomA.X

0; W /:

Note that the pushout or pullback of an exact sequence in E belongs to E again. As
a consequence, E.�;�/ is a k-subfunctor of Ext1A.�;�/.

Proposition 7.1. For N 2 CM .k/, Voigt’s isomorphism restricts to an isomorphism

TCM ;N =TON ;N ' E.N;N /:

The following corollary is an immediate consequence.

Corollary 7.2. Let N be a point of xOM . Then codim.M;N / � dimk E.N;N /, and
equality holds if and only if N is a regular point of CM .

By definition, codim.M;N / D dim OM � dim ON .
We will prove Proposition 7.1 in several steps. We begin by characterizing the

tangent space to the scheme V r
p�q at some matrix N 2 V r

p�q.k/ as a subspace of the
tangent space of Mp�q at N , which we identify with Mp�q.k/.

Lemma 7.3. Fix r � p; q, and choose a matrix N 2 V r
p�q.k/. Then

TVr
p�q ;N

D
´

Mp�q.k/ if rkN < r;®
D 2Mp�q.k/I rk

�
N D
0 N

� D 2r¯ if rkN D r:

Proof. The algebraic group scheme GLp �GLq acts on Mp�q via .g; h/ � N 0 D
g �N 0 �h�1, and we know thatN D g �� 1s 0

0 0

��h�1 for some g 2 GLp.k/; h 2 GLq.k/,
where s D rkN . As the tangent space to V r

p�q at g �N 0 � h�1 is g � TVr
p�q ;N

0 � h�1, it
suffices to prove the claim for N D �

1s 0
0 0

�
.

It is obviously true for s < r . In case s D r , we decompose

D D
�
D11 D12
D21 D22

�
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into blocks; the size of D11 is s � s. A straightforward computation yields that

TVr
p�q ;N

D
n
D D

�
D11 D12

D21 D22

	
I D22 D 0

o
:

But note that

rk

�
N D

0 N

�
D rk

0
BB@
1r 0 D11 D12
0 0 D21 D22
0 0 1r 0

0 0 0 0

1
CCA D 2r C rkD22:

So rk
�
N D
0 N

� D 2r if and only if D22 D 0, and the lemma is established. �

Let a be a p � q-matrix with coefficients in A, set L D Coker �a, and fix N 2
CM;a.k/. Mapping the exact sequence

Ap
�a �� Aq �� L �� 0

to a module N 0 2 modd
0

A .k/ and identifying HomA.A;N 0/ with N 0, we see that

rkN 0.a/C dimk HomA.L;N
0/ D qd 0: (7.1)

Corollary 7.4. Using the notions just introduced, we have that the tangent space
TCM;L;N D TCM;a;N equals

(1) Tmodd
A
;N provided that dimk HomA.L;M/ < dimk HomA.L;N /;

(2)
˚
Z 2 Tmodd

A
;N I dimk HomA.L;

�
N Z
0 N

�
/ D 2 dimk HomA.L;N /



provided that

dimk HomA.L;M/ D dimk HomA.L;N /.

Proof. Remember that
CM;a D ‚�1

a .V
rkM.a/
pd�qd /:

Using (7.1), the corollary is a direct consequence of Lemma 7.3 and the fact that

rk

�
N Z

0 N

�
.a/ D rk

�
N.a/ Z.a/

0 N.a/

�
:

�

Now Proposition 7.1 is easy to prove. Indeed, we have

TCM ;N D
\

TCM;L;N ;

where the intersection is taken over representatives L of all isomorphism classes of
A-modules which are finitely presented, or, by Lemma 3.4, even finite dimensional.
In case dimk HomA.L;M/ < dimk HomA.L;N /, this gives no restriction. The
condition dimk HomA.L;M/ D dimk HomA.L;N / is equivalent to L 2 add F 0 by
definition, and having the equality

dimk HomA
�
L;

�
N Z
0 N

� 	
D 2 dimk HomA.L;N /

for all L 2 add F 0 is equivalent to '.Z/ 2 E.N;N /.
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8. Singular loci

In this last section, we assume A to be representation finite, except for the final
remark and example. All A-modules considered will be finite dimensional, and we
fix M 2 moddA.k/;N 2 xOM . We denote the Auslander–Reiten quiver of A by �A.
In order to study the singularity of CM at N , we need some definitions and some
preliminary results on source and sink maps, also called approximations by some
authors.

We define the shadow � of the degeneration from M to N to be the set of all
meshes in �A which start in a vertex X … F , or equivalently which stop in a vertex
X 0 … F 0; the shadow �� of an exact sequence � of A-modules consists of all meshes
of �A with starting vertex Y with ı� .Y / > 0 or equivalently with ending vertex Y 0
with ı0

� .Y
0/ > 0. We call an exact sequence

� W 0 �� Z �� W �� Y �� 0

fit for .M;N / if its class Œ�� belongs to E.Y;Z/, or equivalently if �� � � or
ı� .X/ D 0 for all X 2 F .

For anA-moduleZ, we call a morphism f W Z ! W a universal morphism from
Z to add F if W 2 add F and any morphism from Z to some W 0 2 add F factors
through f . It is easy to see that universal morphisms from Z to add F exist. Such
a morphism is necessarily injective as all injective indecomposables belong to F . A
universal morphism f W Z ! W is called a source map if any endomorphism ' ofW
for which ' Bf is still universal is invertible. A source map fZ W Z ! WZ is unique
up to isomorphism, and it is characterized by the fact that the morphism WZ ! VZ
in the exact sequence

�Z W 0 �� Z
fZ �� WZ �� VZ �� 0

is radical.
Sink maps from add F 0 to some module Y are defined dually. We will denote the

exact sequence obtained from a sink map W 0
Y ! Y from add F 0 to Y by

� 0
Y W 0 �� UY �� W 0

Y
�� Y �� 0 :

Lemma 8.1. Let Y;Z be A-modules.

(1) The sequences �Z and � 0
Y are fit for .M;N /.

(2) Mapping Y to �Z , we obtain an exact sequence

0! Hom.Y;Z/! Hom.Y;WZ/! Hom.Y; VZ/! E.Y;Z/! 0:

(3) Mapping � 0
Y to Z, we obtain an exact sequence

0! Hom.Y;Z/! Hom.W 0
Y ; Z/! Hom.UY ; Z/! E.Y;Z/! 0:
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(4) We have �� � ��Z
and �� � �� 0

Y
for any exact sequence � with Œ�� 2 E.Y;Z/.

Proof. Statement (1) holds by definition. For (2), note that the pullback of �Z under
any morphism in Hom.Y; VZ/ will still have a splitting pushout under any morphism
from Z to X 2 add F and thus belongs to E.Y;Z/. By the definition of �Z , any
exact sequence � with Œ�� 2 E.Y;Z/ is a pullback of �Z . The proof of (3) is dual,
and (4) follows from (2) and (3) as shadows cannot grow under pushouts nor under
pullbacks. �

As an immediate consequence we obtain the following corollary.

Corollary 8.2. dimk E.Y;Z/ D ı� 0

Y
.Z/ D ı0

�Z
.Y /.

Lemma 8.3. For an A-module X the following properties are equivalent:

(1) X 2 add F ,

(2) E.�; X/ D 0,
(3) E.N;X/ D 0.

There is a dual statement characterizing X 0 2 add F 0.

Proof. The implications from (1) to (2) and from (2) to (3) are immediate. In order
to show that (3) implies (1), it is enough to prove the inclusion � � �� 0

N
; in fact

then both shadows coincide as � 0
N is fit for .M;N /. By [16] there is a short exact

sequence

� W 0 �� Z0 �� Z0 ˚M �� N �� 0 :

By the definition of F , we know that �� D � . Therefore Œ�� 2 E.N;Z0/, which
implies that � D �� � �� 0

N
� � by Lemma 8.1 (4). �

Lemma 8.4. The following conditions are equivalent:

(1) UN belongs to add.F 0/,

(2) UY belongs to add.F 0/ for any module Y ,

(3) VN belongs to add.F /,

(4) VZ belongs to add.F / for any module Z.

Proof. Obviously (2) implies (1) and (4) implies (3). Thus, up to duality, it suffices
to show that (1) implies (4). LetZ be a module. AsWZ 2 add F andW 0

N 2 add F 0,
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the exact sequences � 0
N and �Z induce the following commutative diagram with exact

rows and columns:

HomA.W 0
N ; WZ/

��

��

HomA.UN ; WZ/ ��

ˇ

��

0

HomA.W 0
N ; VZ/

˛ ��

��

HomA.UN ; VZ/ ��

��

E.N; VZ/ �� 0

0 E.UN ; Z/ .

As UN belongs to add F 0 by our hypothesis, ˇ is surjective. Then ˛ is surjective as
well, thus E.N; VZ/ D 0, which implies VZ 2 add F by Lemma 8.3. �

We are now ready to give a first characterization of the regularity CM at N .

Proposition 8.5. The scheme CM is regular atN if and only if E.M;M/ D f0g and
one of the equivalent conditions in Lemma 8.4 holds.

Proof. We compute the difference dimk E.N;N / � codim.M;N /. Observe that

codim.M;N / D ı0
M;N .N /C ıM;N .M/:

By Corollary 8.2,

dimk E.N;N / � dimk E.N;M/ D ı� 0

N
.N / � ı� 0

N
.M/

D ı0
M;N .UN ˚N/ � ı0

M;N .W
0
N /

D ı0
M;N .UN ˚N/;

dimk E.N;M/ � dimk E.M;M/ D ı0
�M
.N / � ı0

�M
.M/

D ıM;N .M ˚ VM / � ıM;N .WM /
D ıM;N .M ˚ VM /:

Thus

dimk E.N;N / � codim.M;N / D dimk E.M;M/C ı0
M;N .UN /C ıM;N .VM /:

By Corollary 7.2, the scheme CM is regular at N if and only if E.M;M/ D 0

and ı0
M;N .UN / D ıM;N .VM / D 0. As by Lemma 8.4 ı0

M;N .UN / D 0 forces
ıM;N .VM / D 0, our claim follows. �

Lemma 8.6. Assume that E.M;M/ D 0. Then CM is singular at N if and only if
there exists an indecomposable U such that the sequence

�U W 0! U
fU��! WU

g�! VU ! 0

satisfies the following conditions:
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(1) The representation VU is indecomposable.

(2) The morphism g W WU ! VU is a sink map from add F to VU .

(3) If the mesh stopping at some indecomposable Y belongs to ��U
, then Y … F .

Proof. We first prove that CM is singular atN if these conditions hold. Note that �U
does not split, asU 2 F would imply VU D 0, but VU is indecomposable. Therefore
the mesh stopping at VU belongs to ��U

, and condition (3) implies VU … F . The
claim then follows from Proposition 8.5 as condition (4) in Lemma 8.4 is violated.

In order to show the converse implication, observe that the surjectionWN ! VN
factors through the sink map  W C ! VN from add F to VN . In particular  is
surjective and we obtain the following commutative diagram with exact rows:

�N W 0 �� N ��

��

WN ��

��

VN �� 0

' W 0 �� B �� C
	 �� VN �� 0:

Thus ' is fit for .M;N /, being a pushout of �N . A decomposition of VN into a direct
sum of submodules yields a corresponding decomposition of ' as a direct sum. We
choose a direct summand of ':

� W 0 �� U
f �� W

g �� V �� 0

such that V is indecomposable and does not belong to add.F /. As g is radical, f
is a source map from U to add F . But a source map from a decomposable module
has a decomposable cokernel, and therefore U must be indecomposable and � is
isomorphic to �U .

Finally, suppose the mesh stopping at some indecomposable Y belongs to �� .
Equivalently, we have ı0

�.Y / ¤ 0. If Y belongs to F , any morphism from Y to V
factors through g, and thus ı0

�.Y / D 0, because g is a sink map from add F to V .
Our last claim follows. �

Lemma 8.7. Assume that the algebra A is directed and consider the exact sequence
� from Lemma 8.6. Then codim.W;U ˚ V / D 1.
Proof. Since� is fit for .M;N / andW belongs to add.F /, we have ı�.W / D 0. Since
U andV are indecomposable andA is directed, Ext1A.U; U / D f0g and EndA.V / ' k.
We conclude from the long exact sequences

0! HomA.U; U /! HomA.U;W /! HomA.U; V /! Ext1A.U; U /;

0! HomA.V; U /! HomA.V;W /! HomA.V; V /! E.V; U /! 0

induced by � that ı0
�.U / D 0 and ı0

�.V / D 1. Thus

codim.W;U ˚ V / D ı0
�.U ˚ V /C ı�.W / D 1: �
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We end this section with a few remarks on singularities.

Remark 8.8. For a finitely generated algebra A and M 2 moddA.k/, we have a
chain of inclusions of schemes xOM � .CM /red � CM . Fix N 2 xOM , and let us
compare regularity at N for xOM , .CM /red, and CM . Clearly, if CM is regular at N ,
the subscheme .CM /red will be as well. Remember that in Example 3.7 we have that
.CM /red D xOM and that the tangent space of xOM (and thus of .CM /red) at N is a
proper subspace of TCM ;N . So there might be cases where CM is singular atN while
.CM /red is regular at that point.

As xOM is an irreducible component of .CM /red by Proposition 1 of [4], we have
that regularity of .CM /red at N implies regularity of xOM at N . The following sim-
plified version of Carlson’s example shows that the reverse implication is false.

Example 8.9. Let Q be the quiver

1
˛ ��
ˇ

�� 2

 ��
ı

�� 3

and let J be the ideal generated by ı˛, �ˇ and �˛� ıˇ. Consider the representations

M D k

0
@1
0

1
A

��0
@0
1

1
A

�� k2

�
1 0

	
���

0 1
	�� k ; U� D 0

�
0

	
���

0
	 �� k

�
1

	
���

	
	 �� k ;

and

V� D k

�
�

	
���

1
	 �� k

�
0

	
���

0
	 �� 0 ;

for 	;� 2 k. It is not difficult to see and can be found in [14] that xOM and the
closure of

S
�;�2k GLd .k/ � .U�˚ V�/ are irreducible components of CM and that

they intersect in the closure of
S
�2k GLd .k/ � .U� ˚ V��/, where d D .1; 2; 1/.

So CM is singular at N D U1 ˚ V�1.
On the other hand, a computation shows that the morphism given by

k

0
@x1
x2

1
A

��0
@y1
y2

1
A

�� k2

�
z1 z2

	
���

t1 t2
	�� k 7!

�
x1 x2 y1 y2
�t2 t1 z2 �z1

�
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is an isomorphism from xOM to the variety V1
2�4.k/ of 2� 4-matrices of rank at most

1, which has a single singularity at 0, the image of the semisimple representation.
Hence xOM is regular at N .
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E-mail: gzwara@mat.umk.pl


	Introduction
	Rank ideals
	Definition and first properties of C_M
	Rank schemes for representations of quivers
	A geometric version of Morita equivalence for rank schemes
	Hom-controlled exact functors
	Tangent spaces
	Singular loci 
	References

