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Configuration spaces of rings and wickets
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Abstract. The main result in this paper is that the space of all smooth links in R3 isotopic to
the trivial link of n components has the same homotopy type as its finite-dimensional subspace
consisting of configurations of n unlinked Euclidean circles (the ‘rings’ in the title). There is also
an analogous result for spaces of arcs in upper half-space, with circles replaced by semicircles
(the ‘wickets’ in the title). A key part of the proofs is a procedure for greatly reducing the
complexity of tangled configurations of rings and wickets. This leads to simple methods for
computing presentations for the fundamental groups of these spaces of rings and wickets as well
as various interesting subspaces. The wicket spaces are also shown to be aspherical.
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1. Introduction

The classical braid group Bn can be defined as the fundamental group of the space of
all configurations of n distinct points in R2. In this paper we consider a 3-dimensional
analog which we call the ring group Rn. This is the fundamental group of the space
Rn of all configurations of n disjoint pairwise unlinked circles, or rings, in R3, where
we mean the word ‘circle’ in the strict Euclidean sense. It is not immediately apparent
that Rn is path-connected, but in Section 2 we recall a simple geometric argument
from [FS] that proves this. In particular, this says that configurations of n pairwise
unlinked circles form the trivial link of n components.

The ring groupRn turns out to be closely related to several other groups that have
been studied before in a variety of contexts under different names. This connection
arises from one of our main technical results:

Theorem 1. The inclusion of Rn into the space Ln of all smooth trivial links of n
components in R3 is a homotopy equivalence.

ThusRn is isomorphic to the group �1Ln first studied in the 1962 thesis of Dahm
[D], who identified it with a certain subgroup of the automorphism group of a free
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group on n generators, subsequently called the symmetric automorphism group [Mc],
[C]. A finite-index subgroup of this group is the ‘braid-permutation group’ of [FRR].
Other references are [G], [BL], [R], [BMMM], [JMM], [BWC].

We will show that the group Rn is generated by three families of elements �i ,
�i , and �i defined as follows. If we place the n rings in a standard position in the
yz-plane with centers along the y-axis, then there are two generators �i and �i that
permute the i th and .iC1/st rings by passing the i th ring either through the .iC1/st
ring or around it, respectively, as in Figure 1.

iii i C 1i C 1

�i �i �i

Figure 1. The generators �i , �i , and �i .

The generator �i reverses the orientation of the i th ring by rotating it 180 degrees
around its vertical axis of symmetry. It is not hard to see that �i has order two in Rn.
We will show that the �i ’s generate a subgroup of Rn isomorphic to the braid group
Bn and the �i ’s generate a subgroup isomorphic to the symmetric group †n.

Parallel rings. The space Rn has a number of interesting subspaces. The first of
these we single out is the ‘untwisted ring space’URn consisting of all configurations
of rings lying in planes parallel to a fixed plane, say the yz-plane. The loops of
configurations giving the generators �i and �i lie in this subspace. We will show that
the untwisted ring group URn D �1 URn is generated by the �i ’s and �i ’s, and that
the map URn ! Rn induced by the inclusion URn ,! Rn is injective, so URn can
be identified with the subgroup ofRn generated by the �i ’s and �i ’s. We will also see
thatURn can be described as the fundamental group of the 2n-sheeted covering space
of Rn consisting of configurations of oriented rings, soURn has index 2n inRn. The
�i ’s generate a complementary subgroup isomorphic to Zn

2 , but neither this subgroup
nor URn is normal in Rn.

Intermediate between URn and Rn is the space VRn of configurations of rings
lying in vertical planes, perpendicular to the xy-plane. The group VRn D �1VRn

is also generated by the �i ’s, �i ’s, and �i ’s, but the �i ’s have infinite order in VRn.

Wickets. Another interesting subspace of Rn consists of configurations of rings,
each of which is vertical and is cut into two equal halves by the xy-plane. The upper
halves of these rings can be thought of as wickets, as in the game of croquet, in
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upper half-space R3C, and this subspace of Rn can be identified with the space Wn

of all configurations of n disjoint wickets in R3C. The condition of being pairwise
unlinked is automatically satisfied for vertical rings that are bisected by the xy-plane.
In analogy to Theorem 1, one can compare Wn with the space An of configurations of
n disjoint smooth unknotted and unlinked arcs in R3C with endpoints on @R3C D R2.
Here ‘unknotted and unlinked’ means ‘isotopic to the standard configuration of n
disjoint wickets’.

Theorem 2. The inclusion Wn ,! An is a homotopy equivalence.

In fact, we will prove a common generalization of this result and Theorem 1 that
involves configurations of both rings and wickets.

We call the group �1Wn the wicket group Wn. It too is generated by the �i ’s,
�i ’s, and �i ’s. The �i ’s again generate a subgroup isomorphic toBn, but the �i ’s now
generate a subgroup that is isomorphic to Bn rather than †n. The �i ’s have infinite
order just as they do in VRn. There is also an untwisted wicket group UWn D
�1 UWn where UWn D Wn \ URn. We show that UWn is generated by the �i ’s
and �i ’s, and that the map UWn ! Wn induced by inclusion is injective, so UWn

can be identified with the subgroup of Wn generated by the �i ’s and �i ’s.
When defining URn, VRn, Wn, and UWn as fundamental groups we did not

mention basepoints, and this is justified by the fact that URn, VRn, Wn, and UWn

are all connected, by the same argument that shows that Rn is connected.

Summarizing, we have the following commutative diagram relating the various
ring and wicket groups:

UWn
�� ��

��

��

URn
��

��

��

����
��

��
��

��
�

Wn
�� �� VRn

�� �� Rn

The two vertical maps are injective and correspond to adjoining the generators �i . We
will show that the two maps from the first column to the second column are quotient
maps obtained by adding the relations �2

i D 1, and the lower right horizontal map is
the quotient map adding the relations �2

i D 1.

Presentations. In Section 3, we will derive finite presentations for all five of the
groups in the diagram above, with the �i ’s, �i ’s, and �i ’s as generators. The relations
that hold for all five groups are the usual braid relations among the �i ’s and �i ’s
separately, together with certain braid-like relations combining �i ’s and �i ’s, and for
the groups in the second row there are relations describing how the �i ’s interact with
the other generators. For the three ring groups there are also the relations �2

i D 1,
and in Rn the relations �2

i D 1 are added.
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For URn the presentation was known previously [FRR], [BWC] using one of the
more classical definitions of this group. A presentation for Wn was derived in [T1],
using its interpretation as �1An, after generators had been found earlier in [H4].

Asphericity. The space of configurations of n distinct points in R2 is aspherical,
with trivial higher homotopy groups, but this is no longer true for the ring spaces Rn,
URn, and VRn. This is because the groups Rn, URn, and VRn contain torsion,
the subgroup†n generated by the �i ’s, so anyK.�; 1/ complex for these groups has
to be infinite dimensional, but the spaces Rn, URn, and VRn are smooth finite-
dimensional manifolds, hence finite-dimensional CW complexes (as are Wn and
UWn). The situation is better for the wicket spaces:

Theorem 3. The spaces Wn and UWn are aspherical.

In particular, this implies that Wn and UWn are torsionfree. The proof of this
theorem in Section 5 is more difficult than the proof of the corresponding result for
configurations of points in R2, as it uses Theorem 2 as well as some results from
3-manifold theory.

Wicket groups as subgroups of braid groups. There is a natural homomorphism
Wn ! B2n induced by the map which associates to each configuration of n wickets
the 2n endpoints of these wickets, a configuration of 2n points in R2. For example,
the generators �i and �i give rise to the two braids shown in Figure 2.

i

i

i

i i C 1

i C 1

i C 1

i C 1

�i

�i

Figure 2

It is a classical fact, whose proof we recall in Section 5, that this homomorphism
Wn ! B2n is injective. This gives an alternative way of looking atWn as ‘braids’ of
n ribbons, where certain intersections of ribbons are permitted, intersections that are
known in knot theory as ribbon intersections.

Pure versions. Just as the braid group Bn has a pure braid subgroup PBn, so do the
five groups in the earlier commutative diagram have ‘pure’ subgroups, the kernels
of natural homomorphisms to †n measuring how loops of configurations permute
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the rings or wickets. As in the braid case, these pure ring and wicket groups are the
fundamental groups of the corresponding configuration spaces of ordered n-tuples
of rings or wickets. The full ring group Rn is the semidirect product of the pure
untwisted ring group PURn and the signed permutation group †ṅ . For the wicket
group Wn there is a weaker result, a nonsplit short exact sequence 0 ! PUWn !
Wn ! †Z

n ! 0 where †Z
n is the semidirect product of †n and Zn.

Our simple geometric method for finding presentations of the five ‘impure’ ring
and wicket groups also gives presentations for the pure versions of the ring groupsRn,
URn, and VRn, but not for the pure wicket groups. In the case of the pure untwisted
ring groupPURn the presentation was originally found in [Mc]. It has generators ˛ij

in which all rings except the i th ring are stationary and the i th ring is pulled through
the j th ring and back to its initial position without passing through any other rings,
for each pair i ¤ j .

Rings of unequal sizes. The subgroup of PURn generated by the ˛ij with i < j

has been studied in [CPVW]. We show that this ‘upper triangular pure untwisted
ring group’ is the fundamental group of the subspace UR<

n of URn consisting of
configurations of rings of unequal diameters. The sizes of the rings then provide a
canonical ordering of the rings, hence loops in this space give elements ofPURn, and
we show the resulting homomorphism �1 UR<

n ! PURn is injective with image
the subgroup generated by the ˛ij with i < j .

Passing to the 3-sphere. In Section 6, we also obtain similar results for configura-
tions of circles in S3 and wickets in a ball. In the latter case wickets can be viewed
as geodesics in hyperbolic 3-space, and the configuration space of disjoint wickets
is a subspace of the space of configurations of disjoint geodesics, a dense subspace
having the same homotopy type as the larger space. (A pair of disjoint geodesics can
have an endpoint in common, so the two spaces are not identical.)

Complexity of configurations. A key step in proving these results is a process for
simplifying configurations of rings in Rn. General configurations in Rn can be quite
complicated, with all the rings tightly packed together. This happens already in the
subspace Wn where the unlinking condition is automatic. One can take an arbitrary
finite set of wickets, possibly intersecting in very complicated ways and tightly packed
together, and then with a small random perturbation remove all the intersections to
produce a configuration in Wn. The goal of the simplification process is to produce
configurations in which each circle is surrounded by a region in which it is much
larger than all other circles that intersect the region. This region, or ‘microcosm’,
is by definition a closed ball of double the radius of the circle, and with the same
center. We define the complexity of a configuration of circles C1; : : : ; Cn of radii
r1; : : : ; rn to be the maximum of the ratios ri=rj � 1 for the pairs of circles Ci ; Cj

whose microcosms intersect. If none of the microcosms intersect, the complexity is
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defined to be 0. If we let Rc
n be the subspace of Rn consisting of configurations of

complexity less than c, then the simplification process will show that the inclusion of
Rc

n into Rn is a homotopy equivalence for any c > 0.
Configurations of small complexity can be thought of not only on the small scale

of microcosms, but also in large-scale astronomical terms. When the microcosms of
two circles intersect, one can think of the smaller circle as a ring-shaped planet with
the larger circle as its ring-shaped sun. There can be several such planets in each solar
system, each planet can have its own system of moons, the moons can have their own
‘moonlets’, and so on. The solar systems can form galaxies, etc.

The process of deforming Rn into Rc
n is an elaboration on the argument for

showing Rn is path-connected by shrinking all circles simultaneously in a canonical
way. If one starts with a configuration which is in general position in the sense that no
circle has its center on the disk bounded by another circle, then this shrinking process
produces a configuration of circles lying in disjoint balls. This suffices to show Rn

is path-connected, but to capture its full homotopy type one cannot restrict attention
to configurations that are in general position. We deal with general configurations by
combining shrinking with a pushing process that is realized by extending shrinkings
of circles to ambient isotopies. This is explained in detail in Section 2 of the paper.

Configurations of spheres and disks. The proof of Theorems 1 and 2, that the in-
clusions Rn ,! Ln and Wn ,! An are homotopy equivalences, uses the complexity
reduction result described above, and it also involves a shift in focus from codimen-
sion two objects to codimension one objects, embedded spheres and disks, which are
generally more tractable. In Section 4 we use a parametrized disjunction technique to
create the necessary configurations of spheres and disks, then we use the analogs of
Theorems 1 and 2 for spheres and disks to improve configurations of smooth spheres
and disks to round spheres and disks. This relies ultimately on the proof of the Smale
Conjecture in [H1], as does the final step of turning smooth circles and arcs into round
circles and arcs. The spheres and disks are introduced to reduce the problem from
configurations of many circles and arcs to configurations of at most one circle or arc
in each complementary region of a configuration of spheres and disks.

Dimension. The paper concludes with a brief discussion in Section 7 of some el-
ementary things that can be said about the homological dimension of the ring and
wicket groups.

2. Reducing complexity

One way to define the topology on Rn is in terms of its covering space consisting
of ordered n-tuples of disjoint oriented circles in R3. This covering space can be
identified with an open subset in R6n by assigning to each circle its centerpoint
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together with a vector orthogonal to the plane of the circle, of length equal to the
radius of the circle and oriented according to the orientation of the circle via some
rule like the right-hand rule. Ignoring ordering and orientations of circles amounts to
factoring out the free action of the signed permutation group on this space. Thus we
see that Rn has a finite-sheeted covering space which is an open set in R6n, and so
Rn itself is an open manifold of dimension 6n. By similar reasoning one sees that
the subspaces VRn, URn, Wn, and UWn of Rn are submanifolds of dimensions
5n, 4n, 4n, and 3n, respectively.

Let us recall the definition of complexity from the introduction. If C is a con-
figuration in Rn consisting of disjoint circles C1; : : : ; Cn, let Bi be the closed ball
containingCi having the same center and double the radius. (There is nothing special
about the factor of 2 here, and any other number greater than 1 could be used instead.)
Then the complexity of the configuration C is the maximum of the ratios ri=rj � 1

of the radii of the pairs of circles Ci , Cj in C such that Bi \ Bj is nonempty, with
the complexity defined to be 0 if no Bi ’s intersect. We remark that complexity, as a
function Rn ! Œ0; 1�, is upper semicontinuous, meaning that small perturbations of a
configuration C cannot produce large increases in the complexity. They can however
produce large decreases if two circles Ci , Cj whose balls Bi , Bj intersect in a single
point are perturbed so that Bi and Bj become disjoint.

Define Rc
n to be the subspace of Rn consisting of configurations of complexity

less than c. This is an open subset of Rn.

Theorem 2.1. The inclusion Rc
n ,! Rn is a homotopy equivalence for each c > 0.

The same is true for the subspaces URc
n ,! URn, VRc

n ,! VRn, Wc
n ,! Wn,

and UWc
n ,! UWn.

In preparation for the proof there are some preliminary things to be said. First we
describe the argument from [FS], Lemma 3.2, for showing that Rn is connected. Each
configuration of disjoint circles in R3 bounds a unique configuration of hemispheres
in R4C orthogonal to R3. The claim is that these hemispheres will be disjoint when
each pair of circles is unlinked. To see this, think of R4C as the upper halfspace
model of hyperbolic 4-space, with the hemispheres as hyperbolic planes. If two such
planes intersect, they do so either in a single point or in a hyperbolic line, but the
latter possibility is ruled out by the disjointness of the original collection of circles.
Switching to the ball model of hyperbolic space, the point of intersection of two
hyperbolic planes can be moved to the center of the ball by a hyperbolic isometry,
so the planes become Euclidean planes through the origin. Any pair of transverse
planes through the origin can be deformed through such planes to be orthogonal.
Once the planes are orthogonal it is obvious that their boundary circles are linked
in the boundary sphere S3. Thus unlinked circles in R3 bound disjoint hemispheres
in R4C.
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For a configuration of circles in R3 bounding disjoint hemispheres in R4C, consider
what happens when one intersects the configuration of hemispheres with the hyper-
planes R3

u D R3 �fug for u � 0. As u increases, each circle shrinks to its centerpoint
and disappears. Let us call this the canonical shrinking of the configuration.

A given configuration of circles can be perturbed so that no centerpoint of one
circle lies on the disk bounded by another circle. Then if we perform the canonical
shrinking of the configuration, we can stop the shrinking of each circle just before it
shrinks to a point and keep it at a small size so that no other shrinking circles will
bump into it. In this way the given circle configuration can be shrunk until the disks
bounded by the circles are all disjoint. This says that the configuration of circles
forms the trivial link, and it makes clear that the space Rn is path-connected.

When dealing with a k-parameter family of circle configurations, however, one
cannot avoid configurations where one circle has center lying in the disk bounded by
another circle. If the latter circle is larger than the first, the two circles would then
collide if we stop the shrinking of the smaller circle just before it disappears. Our
strategy to avoid such collisions will still be to stop the canonical shrinking of each
circle just before it disappears, and thereafter shrink it at a slower rate so that it does
not disappear, but we also allow it to be pushed by ‘air cushions’ surrounding larger
circles as they shrink, so that the smaller circle never intersects the larger circles.

The pushing will be achieved by an inductive process that relies on extending
isotopies of circles to ambient isotopies of R3, so let us recall the standard procedure
in differential topology for extending isotopies of submanifolds to ambient isotopies.
An isotopy of a submanifold N of a manifold M is a level-preserving embedding
F W N � I ,! M � I . This has a tangent vector field given by the velocity vectors
of the paths t 7! F.x; t/. The second coordinate of this vector field is equal to 1,
and we extend it to a vector field on M � I with the same property by damping
off the first coordinate to 0 as one moves away from F.N � I / in a small tubular
neighborhood ofF.N �I /. Then the flow lines of this extended vector field define the
extended isotopy. This also works with I replaced by Œ0;1/ as will be the case in our
situation. The manifold M will be R3, and we can choose the tubular neighborhood
of the submanifold F.N � Œ0;1// to be an �.t/-neighborhood of F.N �ftg/ in each
level R3 � ftg.

Proof of Theorem 2.1. There will be two main steps in the proof. The first will be
to construct the modification of the canonical shrinking of an arbitrary configuration
in Rn. The second step will then be to show how to make this modification depend
continuously on the initial configuration.

Step 1. Modifying the canonical shrinking. For a configuration C in Rn consisting
of circles C1; : : : ; Cn, let C 1 be the union of the largest circles in C , let C 2 be
the union of the next-largest circles, and so on. Let u be the time parameter in the
canonical shrinking of C , and let u D ui be the time when the circles of C i shrink
to their centerpoints, so u1 > u2 > � � � . Note that all the circles in C i have distinct
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centerpoints since two circles with the same center and radius must intersect. The
canonical shrinking defines an isotopyˆu.C

i / for u < ui . Our aim is to truncate this
at a value u D u0

i slightly less than ui , then extend this truncated isotopy to values
of u greater than u0

i . The new extended isotopy ˆu.C
i / will move each circle Cj of

C i through circles parallel to itself, so ˆu.Cj / will be determined by specifying the
centerpoint cj .u/ and the radius rj .u/ ofˆu.Cj /. The center cj .u/ is the centerpoint
of Cj for u � u0

i since this point does not move during the canonical shrinking, and
we will in fact have cj .u/ equal to this same point for u � ui , not just u � u0

i . For
the function rj .u/, the canonical shrinking specifies this for u � u0

i , and it will be
chosen to be a positive decreasing function of u for u > u0

i .

The extended isotopy ˆu.C
i / will be constructed by induction on i . For i D 1

and Cj a circle of C 1 we let cj .u/ be constant for all u, and we let rj .u/ be any
decreasing function r1.u/ of u for u > u0

1 where u0
1 is chosen close enough to u1

so that the microcosms of all the circles of ˆu0
1
.C 1/ are disjoint. Such a u0

1 exists

since the centerpoints of the circles of C 1 are distinct. The microcosms of the circles
of ˆu.C

1/ will then remain disjoint for all u > u0
1. To finish the first step of the

induction we extend the isotopy ˆu.C
1/ to an ambient isotopy ˆ1

u W R3 ! R3 by
the general procedure described earlier, with ˆ1

0 the identity.

For a circle Cj of C 2 with centerpoint cj we let cj .u/ be constant for u �
u2 and then we let it move via the isotopy ˆ1

u. In formulas this means cj .u/ D
ˆ1

u.ˆ
1
u2
/�1.cj /. This will in fact be constant for u slightly greater than u2 as well

as for u � u2. Since ˆ1
u is an ambient isotopy, cj .u/ will be disjoint from ˆu.C

1/

and from ck.u/ for other circles Ck of C 2 for all u. This implies that if we choose
u0

2 close enough to u2 and we choose the function r2.u/ giving the radius of the
circles of ˆu.C

2/ small enough, then these circles will be disjoint from ˆu.C
1/ for

all u and will have disjoint microcosms for u > u0
2. We can also make r2.u/ small

enough so that the ratio r2.u/=r1.u/ goes to 0 with increasing u. The second step
of the induction is completed by extending the isotopies ˆu.C

1/ and ˆu.C
2/ to an

ambient isotopy ˆ2
u starting with ˆ2

0 the identity.

Subsequent induction steps are similar. For example, at the next stage, for a circle
Cj of C 3 with centerpoint cj we let cj .u/move according to the isotopyˆ2

u, and we
choose u0

3 close enough to u3 and r3.u/ small enough so that the resulting circles
of ˆu.C

3/ are disjoint from ˆu.C
1/ and ˆu.C

2/ for all u and the microcosms of
the circles of ˆu.C

3/ are disjoint for u > u0
3. Also we make r3.u/ small enough

so that the ratio r3.u/=r2.u/ goes to 0 with increasing u. We can also assume that
r3.u/=r2.u/ < r2.u/=r1.u/, and inductively that r iC1.u/=r i .u/ < r i .u/=r i�1.u/

for all i .

When the induction process is finished we have a path ˆu.C / in Rn, defined
for each C 2 Rn. It is clear that the complexity of ˆu.C / approaches 0 as u
goes to 1 since the circles of ˆu.C

i / have disjoint microcosms for large u and the
ratios r iC1.u/=r i .u/ approach 0. We claim that the complexity of ˆu.C / decreases
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monotonically (in the weak sense) as u increases. To see this, consider two circles of
C , sayC1 andC2. If they are in the sameC i , they have the same radius throughout the
isotopyˆu, and their centers are stationary untilu D ui , after which their microcosms
remain disjoint, so their contribution to the complexity decreases monotonically,
being either 0 for all u or 1 for a while and then 0. If C1 and C2 belong to different
C i ’s, with C1 in C i1 and C2 in C i2 for i1 > i2, the ratio of their radii approaches 0
monotonically, so the only way they could contribute to a non-monotonic complexity
would be for their microcosms to bump into each other at a certain time u after having
been disjoint shortly before this time. For this to happen, both ˆu.C1/ and ˆu.C2/

would have to be within the microcosm of some larger circle ˆu.C3/ in C i3 for
some i3 < i2. In this case the pair ˆu.C2/, ˆu.C3/ would be contributing a larger
number to the complexity than the pair ˆu.C1/, ˆu.C2/, so the collision between
the microcosms of the latter pair would not be causing an increase in the overall
complexity.

Step 2. The modification process for parametrized families. To show that the in-
clusion Rc

n ,! Rn is a homotopy equivalence for c > 0 it suffices to show that
the relative homotopy groups �k.Rn;R

c
n/ are zero for all k, since both spaces are

smooth manifolds and hence CW complexes. Thus it suffices to deform a given a map
.Dk; @Dk/ ! .Rn;R

c
n/, t 7! Ct , through such maps to a map with image in Rc

n.
This would follow if we could add a parameter t 2 Dk to our previous construction
of the deformationˆu. However, there is a problem with doing this directly because
the relative sizes of the circles in a family of configurations Ct 2 Rn can change
with varying t , so the sequence of induction steps in the construction of the desired
deformation ˆtu could change with t . What we will do instead is concatenate initial
segments of deformations ˆtu over different regions in Dk to produce a new family
of deformations ‰tu.

As a preliminary step, note that choosing an ordering of the circles of the configu-
ration Ct for one value of t gives an ordering for all t since the parameter domainDk

is simply-connected. Thus we can label the circles as C t
1 ; : : : ; C

t
n. The radius of C t

i

varies continuously with t , and we can approximate these radius functions arbitrar-
ily closely by piecewise linear functions of t , close enough so that they correspond
to a deformation of the family Ct , staying in the open set Rc

n over @Dk . Thus we
may assume the radius functions are piecewise linear. This means we can triangulate
Dk so that the radius functions are linear on simplices. After a subdivision of this
triangulation, we can assume that on the interior of each simplex the ordering of the
circles C t

i according to size is constant, and as one passes to faces of a simplex all
that happens to this ordering is that some inequalities among sizes become equalities.

We will construct the final deformations ‰tu by a second induction, where the
inductive step is to extend‰tu from a neighborhood of the p-skeleton of the triangu-
lation of Dk to a neighborhood of the .p C 1/-skeleton. More specifically, we will
construct continuous functions  0 �  1 � � � � �  k from Dk to Œ0;1/ such that
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the inductive step consists of extending ‰tu from being defined for 0 � u �  p.t/

to being defined for 0 � u �  pC1.t/. The functions  p will satisfy:

(a)  p D 0 outside some neighborhood Np of the p-skeleton.

(b) ‰tu.Ct / lies in Rc
n for u D  p.t/ when t lies in a smaller neighborhood N 0

p of
the p-skeleton.

(c)  p D  pC1 D � � � D  k in N 0
p .

The ordering of the circles of Ct according to size will be preserved during the
deformation ‰tu.

For the induction step of extending ‰tu over a p-simplex � , let � 0 be a slightly
smaller copy of � lying in the interior of � and with boundary in the interior ofN 0

p�1.
As t varies over � 0 the size ordering of the circles of Ct is constant. For each t in
� 0 we apply the earlier inductive procedure to construct a deformation ˆtu, starting
with the family ‰tu.Ct / for u D  p�1.t/. This can be done continuously in t 2 � 0
since the various choices in the construction can be made to vary continuously with t .
These choices are: the numbers u0

i .t/ < ui .t/, the radius functions r i .t; u/, and the
isotopy extensions ˆi

tu. The construction of ˆtu works in fact in a neighborhood
of � 0 in Dk by extending the functions u0

i .t/ and r i .t; u/ and the isotopy extensions
ˆi

tu to nearby t values. As t moves off � 0 the size ordering in Ct may vary, as some
size equalities become inequalities, but we still use the same decomposition of Ct

into the subsets C i
t , and we choose the functions r i .t; u/ so that for each t in the

neighborhood, this size ordering is preserved throughout the deformation ˆtu. To
finish the induction step we choose  p by requiring  p �  p�1 to have support in a
neighborhood of � 0 and to have large enough values in a smaller neighborhood of � 0
so that ˆtu.Ct / lies in Rc

n for t in this smaller neighborhood and u �  p.t/. Then
we extend the previously defined ‰tu.Ct / for u 2 Œ0;  p�1.t/� by defining it to be
equal to ˆtu.Ct / for u 2 Œ p�1.t/;  p.t/�.

This finishes the proof for the inclusion Rc
n ,! Rn. Since the deformations ˆtu

take circles to parallel circles, the proof also applies for the inclusions URc
n ,! URn

and VRc
n ,! VRn. For the inclusions Wc

n ,! Wn and UWc
n ,! UWn, observe

that in the case of configurations of wickets, the extended isotopies ˆi
tu take the

xy-plane to itself so they take wickets to wickets. �

Remarks on the proof of Theorem 2.1. We can strengthen the proof slightly to
give a deformation of the given family Ct to a family which not only has small
complexity but has the additional property that the microcosm around each circle is
disjoint from all larger circles. This can be achieved by choosing the radius function
r i .u/ sufficiently small at each stage of the construction of the deformations ˆu.
In the later part of the proof when ‰tu is constructed from truncated deformations
ˆtu, initial segments of canonical shrinkings are also inserted, and these preserve the
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additional property since smaller circles shrink faster than larger circles during the
canonical shrinking.

The proof also works for the configuration space WRm;n consisting of configu-
rations of m wickets and n rings in R3C, all the wickets and rings being disjoint and
pairwise unlinked, and with the rings disjoint from the xy-plane. Thus WRm;0 is
Wm, and it is easy to see that WR0;n and Rn are homeomorphic, although they are
not identical since one consists of configurations in R3C and the other of configura-
tions in R3. Namely, both contain the space of configurations of rings for which the
minimum z-value of all the rings is 1, and WR0;n is the product of this subspace with
.0;1/ while Rn is the product of this subspace with R. In each case the projection
onto the first factor is given by vertically translating configurations to make their
minimum z-value 1, and projection onto the second factor is by taking the minimum
z-value of a configuration.

A further enhancement. A slight variation on the technique used to prove the
theorem will be used to prove the following result:

Proposition 2.2. The natural maps URn ! Rn, URn ! VRn, and UWn ! Wn

induced by the inclusions URn ,! Rn, URn ,! VRn, and UWn ,! Wn are
injective.

Proof. Consider first the case of URn ! Rn. Let P URn and P Rn be the “pure”
versions of URn and Rn, the covering spaces of URn and Rn obtained by ordering
the rings, so that URn and Rn are the quotients of P URn and P Rn with the action
of the symmetric group†n factored out. It will suffice to show injectivity of the map
�1P URn ! �1P Rn induced by the inclusion P URn ,! P Rn.

By associating to each ring in R3 the line through the origin orthogonal to the plane
containing the ring we obtain a map P Rn ! .RP2/n whose fibers over points in the
diagonal of .RP2/n are copies of P URn. Let us suppose for the moment that this
map is a fibration. It has a section, obtained by choosing a standard configuration of
rings lying in disjoint balls and taking all possible rotations of these rings about their
centers. The existence of the section would then imply that the long exact sequence
of homotopy groups breaks up into split short exact sequences, so in particular there
would be a short exact sequence

0 ! �1 P URn ! �1P Rn ! �1.RP2/n ! 0

which would give the desired injectivity.
We will make this into a valid argument by showing the weaker result that the

projection P Rn ! .RP2/n is a quasifibration. Recall that a map p W E ! B is
a quasifibration if p� W �i .E; p

�1.b/; e/ ! �i .B; b/ is an isomorphism for each
b 2 B , e 2 p�1.b/, and i � 0. Thus a quasifibration has a long exact sequence of
homotopy groups just like for a fibration. The standard argument for showing that a
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map p W E ! B with the homotopy lifting property for maps of disksDk , k � 0, has
an associated long exact sequence of homotopy groups in fact proceeds by showing
that the quasifibration property is satisfied; see for example Theorem 4.41 in [H3].
This argument generalizes easily to a slightly weaker version of the homotopy lifting
property, which asserts the existence of a lift, not of a given homotopyDk � I ! B ,
but of some reparametrization of this homotopy, obtained by composition with a
map Dk � I ! Dk � I of the form .x; t/ 7! .x; gx.t// for a family of maps
gx W .I; 0; 1/ ! .I; 0; 1/. (Note that gx is canonically homotopic to the identity by
the standard linear homotopy.) We will use this generalization below.

To show that the projection P Rn ! .RP2/n is a quasifibration, the key obser-
vation is that we can enhance the construction of the deformations ˆtu by not only
shrinking the rings and moving their centers, but also rotating the rings according
to any deformation of the planes that contain them, provided that we delay the start
of these deformations to the time u D u1.t/. At the inductive step when ˆi

tu is
constructed for the rings of C i

t for u � ui .t/, these rings lie in microcosms that are
disjoint from each other and from the larger rings for which ˆtu has already been
constructed, so they can be rotated arbitrarily about their centers, starting at time
u D u1.t/.

With this elaboration on the construction of ˆtu we construct the deformations
‰tu as before. First we deform a given mapDk ! P Rn to make the radii of the rings
piecewise linear functions of the parameter t 2 Dk . Then we proceed by induction
over the skeleta of the triangulation of Dk . Prior to the induction step of extending
over p-simplices, the deformation ‰tu for u �  p�1.t/ will include some initial
segment of a given deformation of the planes of the rings of Ct , reparametrized by
the insertion of pauses. Then we constructˆtu as in the preceding paragraph, starting
with ‰tu.Ct / for u D  p�1.t/. Thus the deformation of the planes containing the
rings pauses for a time before continuing with the given deformation. At the end of
the induction step we choose the function  p and truncate ˆtu, which can truncate
the deformation of the planes containing the rings, so that they pause once more in
the next stage of the induction. It is no longer necessary to choose  p large enough
to make ‰tu.Ct / lie in Rc

n for u D  p.t/ if t is near the p-skeleton. Instead, we
only need it large enough to allow time to carry out the deformation of the planes of
the rings.

At the end of the induction process we have a deformation‰tu such that the planes
of the rings vary by a reparametrization of the given deformation of these planes. The
parameter u varies over an interval Œ0;  k.t/� but we can rescale to make this Œ0; 1�.
This finishes the proof that the projection P Rn ! .RP2/n is a quasifibration, and
hence the proof that URn ! Rn is injective.

Since the injection URn ! Rn factors through VRn it follows that URn ! VRn

is also injective. For UWn ! Wn we can use the same quasifibration argument as
in the first case, the only difference being that .RP2/n is replaced by .RP1/n, an
n-dimensional torus. �
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Another result stated in the introduction can be proved using the same method:

Proposition 2.3. The natural map from URn to the covering space RC
n of Rn

consisting of configurations of oriented rings induces an isomorphism �1 URn !
�1RC

n .

Proof. The arguments in the preceding proof work equally well with oriented rings,
the only difference being that RP2 is replaced by S2. Since this is simply-connected,
the previous short exact sequence of fundamental groups for the quasifibration reduces
to an isomorphism �1 URn ! �1RC

n . �

In the proof of Proposition 2.2 we constructed a short exact sequence

0 ! PURn ! PRn ! Zn
2 ! 0

with a splitting obtained by rotating the rings within disjoint balls. This sequence
embeds in a larger split short exact sequence

0 ! PURn ! Rn ! †ṅ ! 0

where†ṅ is the signed permutation group, the semidirect product of†n and Zn
2 . The

homomorphism Rn ! †ṅ assigns to each loop in Rn the permutation of the rings
that it effects, as well as the changes of orientations of the rings. The sequence splits
since†ṅ is the fundamental group of the subspace of Rn consisting of configurations
of rings contained in disjoint balls. This short exact sequence maps to another split
exact sequence

0 ! PRn ! Rn ! †n ! 0

which in turn contains the split exact sequence

0 ! PURn ! URn ! †n ! 0

where splittings of these last two sequences can be obtained from the subspaces of
configurations of rings contained in disjoint balls and parallel to a fixed plane.

The same arguments give analogous sequences with VRn in place ofRn and with
the Z2’s replaced by Z’s and †ṅ replaced by †Z

n , the semidirect product of †n and
Zn.

For wicket groups there are similar short exact sequences obtained in the same
way, but the only one that splits is the one not involving †n, namely

0 ! PUWn ! PWn ! Zn ! 0

with the splitting obtained as before. The sequences involving†n cannot split because
the wicket groups are torsionfree since the wicket spaces are aspherical, as will be
shown later.
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3. Presentations

In this section we use the results in the preceding section to obtain finite presentations
of ring and wicket groups. First an elementary result:

Proposition 3.1. The elements �i of UWn generate a subgroup isomorphic to the
braid group Bn, and so also do the elements �i .

Proof. Let us take UWn to be the subspace of Wn consisting of configurations
of wickets lying in planes perpendicular to the x-axis. Sending each wicket to its
endpoint with largery-coordinate defines a map UWn ! Cn where Cn is the space of
configurations of n distinct points in R2, so Bn D �1Cn. The restriction of this map
to the subspace UW�

n of UWn consisting of configurations of wickets having disjoint
projections to the xy-plane is a homotopy equivalence since wickets in configurations
in UW�

n can be shrunk to be arbitrarily small. The maps UW�
n ,! UWn ! Cn

induce homomorphisms Bn ! Wn ! Bn whose composition is the identity. The
image of the first homomorphism is generated by the �i ’s, so this subgroup of Wn is
isomorphic to Bn.

The argument for �i ’s is similar using the subspace UW�
n of UWn consisting

of configurations of wickets, each of which is symmetric with respect to reflection
across the xz-plane. Wickets with this symmetry property are determined by their
endpoints in the upper half of R2, so UW�

n can be identified with Cn viewed as the
space of configurations of n points in the upper half of R2. �

These arguments do not work withURn in place ofUWn, but the �i ’s still generate
a copy of Bn in URn as we will show in Proposition 4.2. The �i ’s, on the other hand,
generate a copy of†n in URn since they have order 2 and satisfy the braid relations,
so the canonical map URn ! †n has a section.

Now we determine a presentation for UWn by a straightforward elaboration of
the standard procedure for computing a presentation for Bn using general position
arguments.

Proposition 3.2. The group UWn has a presentation with generators the elements
�i and �i for i D 1; : : : ; n � 1 and with the following relations:

Œ�i ; �j � D Œ�i ; �j � D Œ�i ; �j � D 1 if ji � j j > 1,
�i�iC1�i D �iC1�i�iC1, �i�iC1�i D �iC1�i�iC1,

�i�iC1�i D �iC1�i�iC1, �i�iC1�i D �iC1�i�iC1, �i�iC1�i D �iC1�i�iC1.

Proof. We again take UWn to consist of configurations of wickets lying in planes per-
pendicular to the x-axis. Let UW0

n be the open dense subspace of UWn consisting of
configurations of wickets all lying in distinct planes. This subspace is homeomorphic
to R3n, so it is contractible. The complement of UW0

n decomposes into a disjoint
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union of connected manifold strata, determined by which subsets of wickets lie in
the same planes and how these wickets are nested in these planes. Each stratum is
homeomorphic to a Euclidean space of the appropriate dimension. The codimension
one strata are formed by configurations with exactly two wickets lying in the same
plane. These form a codimension one submanifold UW1

n of UWn defined locally
by equating the x-coordinates of two wickets. The codimension two strata, forming
a codimension two submanifold UW2

n, consist of configurations where either two
disjoint pairs of wickets lie in coinciding planes, or three wickets lie in a single plane.

To find generators forUWn consider a loop in UWn. By general position this can
be pushed off all strata of codimension 2 and greater until it lies in UW0

n [UW1
n, and

we may assume it is transverse to UW1
n, crossing it finitely many times. Each such

crossing corresponds to a generator �i or �i or its inverse. Since the strata of UW1
n

are contractible, they have trivial normal bundles and we can distinguish between
the directions of crossing these strata. Since UW0

n is contractible, it follows that the
given loop in UWn is homotopic to a product of �i ’s and �i ’s and their inverses, so
these elements generate UWn.

To find a complete set of relations among these generators, consider a homotopy
in UWn between two loops of the type just considered. General position allows us
to push this homotopy off strata of codimension greater than 2, and we can make it
transverse to strata of UW2

n and UW1
n. Let us examine what happens near points

where the homotopy crosses UW2
n. For strata of UW2

n where two disjoint pairs of
wickets lie in coinciding planes we just have simple commuting relations: �i and �i

commute with �j and �j if ji � j j > 1. More interesting are the relations arising
from three wickets lying in the same plane. Here there are five cases according to
how the projections of the wickets to the xy-plane intersect. The three projections
can be completely disjoint, completely nested, or some combination of disjoint and
nested, as indicated in the first column of Figure 3, where for visual clarity we have
perturbed the overlapping projections of the three wickets so that they appear to be
disjoint.

A small loop around the codimension 2 stratum crosses codimension 1 strata six
times since the local picture is like the intersection of the three planes x D y, x D z,
and y D z in R3. One can view the resulting relation as an equation between two
ways of going halfway around the codimension 2 stratum. The starting and ending
points of the two ways are shown in the second column of Figure 3. The relation
itself is written in the next column, and the final column shows the braid picture of
the relation, using the endpoint map UWn ! B2n. �

Proposition 3.3. A presentation for URn is obtained from the presentation for UWn

in the preceding proposition by adding the relations �2
i D 1.

Note that the relations �i�iC1�i D �iC1�i�iC1 and �i�iC1�i D �iC1�i�iC1 in
the presentation for UWn become equivalent if �i and �iC1 have order 2, so either
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�i�iC1�i D �iC1�i�iC1

�i�iC1�i D �iC1�i�iC1

�i�iC1�i D �iC1�i�iC1

�i�iC1�i D �iC1�i�iC1

�i�iC1�i D �iC1�i�iC1

Figure 3. Relations in UWn.

relation can be omitted from the presentation for URn. The geometric explanation
for this is that the third and fourth configurations in Figure 3 are obviously equivalent
when we are dealing with rings rather than wickets.

Proof. The argument is similar to that for UWn. We take URn to consist of the
configurations of rings lying in planes parallel to the xz-plane. Strata here are defined
just as for UWn according to the coincidences among these planes. The only essential
difference is that now not all strata are contractible. A codimension one stratum where
two planes coincide and the two rings in this plane are not nested has the homotopy
type of a circle. Crossing this stratum corresponds to a generator �i . The normal
bundle of this stratum is nontrivial, which means that we cannot distinguish between
�i and ��1

i , or in other words, we have the relation �2
i D 1. An alternative way to

proceed would be to subdivide this stratum into two contractible codimension one
strata separated by a codimension two stratum, the configurations where the centers
of the two rings in this plane have the same projection to the xy-plane. A small loop
around this codimension two stratum would give the relation �2

i D 1. Using either
approach we conclude that adding the relations �2

i D 1 to the earlier presentation for
UWn gives a presentation for URn. �

Next we turn to the pure untwisted ring group PURn. Recall the elements ˛ij

passing the i th ring through the j th ring and back to its initial position, for i ¤ j .
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Proposition 3.4. The group PURn has a presentation with generators the elements
˛ij for 1 � i; j � n, i ¤ j , and relations

˛ij˛k` D ˛k`˛ij ; ˛ik j̨k D j̨k˛ik; ˛ij˛ik j̨k D j̨k˛ik˛ij

where distinct symbols for subscripts denote subscripts that are distinct numbers.

Using the second relation, the third relation can be restated as saying that j̨k

commutes with ˛ij˛ik .

Proof. The group PURn is the fundamental group of the covering space P URn

of URn in which the rings are numbered. Let P UR0
n be the subspace of P URn

consisting of configurations in which no circles are nested within the planes that
contain them. We claim that P UR0

n is simply-connected. To see this, consider the
projection of P UR0

n to the space of ordered n-tuples of distinct points in R3 sending
a configuration of circles to the configuration of its centerpoints. This projection
has a section, sending a configuration of points to the configuration of circles of
radius equal to one-quarter of the minimum distance between the points. Further,
P UR0

n deformation retracts to the image of this section by first shrinking the circles
whose radius is too large, then expanding the circles whose radius is too small.
Since the space of point configurations is simply-connected (by a standard induction
argument involving fibrations obtained by forgetting one of the points), it follows that
�1 P UR0

n D 0.
Let P UR1

n be obtained from P UR0
n by adjoining the codimension-one strata, the

configurations having exactly one circle nested inside another. The map�1 P UR1
n !

�1 P URn is surjective, so we see thatPURn is generated by the elements˛ij . To ob-
tain the relations we adjoin the codimension-two strata, where two circles are nested.
If these occur in two different planes we have commutation relations˛ij˛k` D ˛k`˛ij .
If the two occurrences of nested circles occur in the same plane we have either the
second or the fifth configuration in Figure 3. The fifth configuration gives another
commutation relation ˛ik j̨k D j̨k˛ik . The second configuration gives a relation
˛ij˛ik j̨k D j̨k˛ik˛ij . �

This argument does not immediately extend to the groups PUWn since the space
P UW0

n corresponding to P UR0
n is not simply-connected. Its fundamental group is

the pure braid groupPBn, so in principle it should be possible to extend a presentation
for PBn to a presentation for PUWn by adjoining the generators ˛ij corresponding
to the codimension-one strata as before, and then figuring out the relations that cor-
respond to the codimension-two strata.

The argument in the preceding proof does however work to prove the following:

Proposition 3.5. For the subspace UR<
n of URn consisting of configurations of

rings of unequal size, there is a presentation for �1 UR<
n with generators the ˛ij ’s
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with i < j and with relations the same relations as in the preceding proposition,
restricted to these generators.

Proof. By ordering rings according to size we obtain an embedding UR<
n ,!

P URn. The argument is then similar to the one for P URn. A small adjustment is
needed in showing the subspace of unnested configurations has the homotopy type
of the space of ordered point configurations; this we leave to the reader. �

Proposition 3.6. A presentation for the group Wn is obtained from the earlier pre-
sentation for UWn by adding the generators �i for 1 � i � n and the following
relations:

�
�i ; �j

� D 1 for i ¤ j ,
�
�i ; �j

� D 1 and
�
�i ; �j

� D 1 for j ¤ i; i C 1,

�"
i �

�
i D �

�
i �

"
iC1 and �"

iC1�
�
i D �

�
i �

"
i for "; � D ˙1,

�"
i �i D �i�

"
iC1 and �"

iC1�i D ��"
i ��1

i �"
i �

"
i for " D ˙1,

�"
i �

�1
i D ��"

i �i�
"
i �

"
iC1 and �"

iC1�
�1
i D ��1

i �"
i for " D ˙1.

The relations in the last three lines are highly redundant. For example, two of the
eight relations in the third-to-last line imply the other six.

Proof. It is not difficult to verify that the relations listed in the statement hold. These
relations guarantee that any product of �i ’s, �i ’s, and �i ’s can be rearranged as a
product ut where u is a product of �i ’s and �i ’s and t is a product of �i ’s.

To verify that the �i ’s, �i ’s, and �i ’s generateWn note first that for a given x 2 Wn

there exists a product s of �i ’s such that sx is in the subgroup PWn. As we saw
at the end of the preceding section, PWn is a semidirect product of PUWn and the
subgroup Zn generated by the �i ’s. Thus sx D ut for some u 2 PUWn and t a
product of �i ’s. Since u is in PUWn it is in UWn and can therefore be written as
a product of �i ’s and �i ’s since we know these generate UWn. This implies that
x D s�1ut is a product of �i ’s, �i ’s, and �i ’s, so these elements generate Wn.

To prove that the relations listed (including those for UWn) define Wn, it will
suffice to show that a word w in the generators that represents the trivial element of
Wn can be reduced to the trivial word by applying the relations. To start, we can use
the relations to rewrite w in the form ut where u is a product of �i ’s and �i ’s (thus
u 2 UWn) and t is a product of �i ’s. Since ut D 1 and the �i ’s do not permute
the wickets, we see that u in fact lies in PUWn. The relation ut D 1 implies that
u D 1 and t D 1 in view of the semidirect product structure on PWn. The relations
for UWn then suffice to reduce u to the trivial word, and the commutation relations
among the �i ’s allow t to be reduced to the trivial word since the relation t D 1 holds
in the group Zn. �
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The same argument works also for VRn and Rn to prove:

Proposition 3.7. Presentations for Rn and VRn are obtained from the presentation
for Wn by adding the relations �2

i D 1 and �2
i D 1 for Rn, or just �2

i D 1 for
VRn. �

Note that the relations involving the �i ’s can be simplified when �i D ��1
i .

4. Rigidifying floppy wickets and rings

Generalizing the spaces An and Ln there is a space ALm;n of smoothly embedded
configurations ofm arcs and n loops in R3C which are unknotted and unlinked, hence
are isotopic to a configuration in WRm;n. We also require the loops to be disjoint
from the xy-plane. Thus ALm;0 D Am, and AL0;n is homeomorphic to Ln by the
same argument that showed that WR0:n is homeomorphic to Rn.

Theorem 4.1. The inclusion WRm;n ,! ALm;n is a homotopy equivalence.

Note that Theorems 1 and 2 in the Introduction follow directly as corollaries of
Theorem 4.1.

Proof. The space WRm;n is a smooth manifold and hence a CW complex, and ALm;n

has the homotopy type of a CW complex, so it will suffice to show that the relative
homotopy groups�k.ALm;n;WRm;n/ vanish. As noted in the remarks following the
proof of Theorem 2.1, the inclusion WRc

m;n ,! WRm;n is a homotopy equivalence
for each c > 0, so it will in fact suffice to deform a given map f W .Dk; @Dk/ !
.ALm;n;WRc

m;n/ through such maps to a map .Dk; @Dk/ ! .WRm;n;WRc
m;n/,

for any convenient choice of c > 0.
Denote the family of arc and loop systems f .t/ by At . We will be interested in

systems St consisting of finitely many disjoint smooth disks and spheres embedded
in R3C � At with St \ @R3C D @St , such that each component of R3C � St contains
at most one component of At . We call such systems separating systems. We assume
that for each component of St there is a connected open set in the parameter domain
Dk such that the component ofSt varies only by isotopy as t ranges over this open set,
and outside the open set the component is deleted from St . If we choose the constant
c in WRc

m;n to be less than 1
2n

then for t 2 @Dk we can choose St to consist of at
least one round hemisphere or sphere in the interior of the microcosm of each wicket
or ring ofAt , lying outside the wicket or ring, concentric with it, and disjoint from all
other wickets and rings of At . By the remarks following the proof of Theorem 2.1,
we can assume that microcosms are disjoint from larger circles (and wickets). This
prescription for St gives a separating system since each hemisphere or sphere chosen
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separates the corresponding wicket or ring from all other wickets or rings of equal
or larger radius. For nearby t in @Dk the hemispheres and spheres of the same radii
remain a separating system, so we obtain in this way a family of separating systems
St consisting of round hemispheres and spheres for all t in @Dk .

There will be three main steps in the proof:

(1) Extend the family of round separating systemsSt over @Dk to smooth separating
systems St for t 2 Dk .

(2) Deform these smooth separating systems to be round spheres and hemispheres
over all of Dk .

(3) Deform At so that it consists of round wickets and rings over all of Dk .

At each step the family At over @Dk will be unchanged.

Step 1. Extending over the disk. There is a fibration Diff.R3C/ ! ALm;n that sends
a diffeomorphism to the image of a standard configuration of arcs and circles under
the diffeomorphism. Using the lifting property of this fibration, we can choose a
separating system for one parameter value t 2 Dk and extend this to a family of
separating systems †t for At that varies only by isotopy as t ranges over all of Dk .
For t 2 @Dk we then have two families of separating systems St and †t , and it will
suffice to construct a family Stu, .t; u/ 2 @Dk � I , which for each u is a separating
system for At , such that St0 D St and St1 D †t . We can then place this family
Stu in a collar neighborhood of @Dk inDk , after first deforming the family At to be
constant on each radial segment in this collar.

First thicken †t to a family †t � Œ�1; 1� of parallel separating systems for At .
Sard’s theorem implies that for each t 2 @Dk there is a slice†t �fsg in this thickening
that is transverse to St . This slice will remain transverse to St for all nearby t as well.
By a compactness argument this means we can choose a finite cover of @Dk by open
sets Ui so that St is transverse to a slice †i D †i .t/ for all t 2 Ui .

For a fixed t 2 Ui consider the standard procedure for surgering St to make it
disjoint from †i . The procedure starts with a component of St \†i , either a circle
or an arc, that cuts off a disk D in †i that contains no other components of St \†i .
UsingD we then surger St to eliminate the given component of St \†i . The process
is then repeated until all components have been eliminated. Note that each surgery
produces a system of disks and spheres that still separates R3C �At into components
each containing at most one component of At .

A convenient way to specify the order in which to perform the sequence of surg-
eries is to imagine the surgeries as taking place during a time interval, and then
surgering an arc or circle at the time given by the area of the disk it cuts off in †i ,
normalized by dividing by the area of †i itself. The only ambiguity inherent in this
prescription occurs if one is surgering the last remaining arc and this arc splits †i

into two disks of equal area. Then one would have to make an arbitrary choice of one
of these disks as the surgery disk.
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We will refine this procedure so that it works more smoothly in our situation.
Thicken St to a family St � Œ�1; 1� of nearby parallel systems, all still transverse to
†i for t 2 Ui . Call this family of parallel systems St . For t 2 Ui , with i fixed for the
moment, we perform surgery on St by gradually cutting through it in a neighborhood
of†i , as shown in Figure 4. Thus we are producing a family Stu for u 2 Œ0; 1�, where

Figure 4

again we use the areas of the surgery disks in†i to tell when to perform the surgeries.
Notice that Stu is allowed to contain finitely many pairs of spheres or disks that
touch along a common subsurface at the instant when these spheres or disks are being
surgered. To specify the surgeries more completely we choose a small neighborhood
†i �.�"i ; "i / of†i in†t �Œ�1; 1�, which we rewrite as†i �R, and we let the surgery
on a component surface of Stu produce two parallel copies of the surgery disk in the
slices †i � f˙1=ug of †i � R. Observe that this prescription for constructing Stu

avoids the ambiguity in choosing one of the two equal-area surgery disks mentioned
earlier since we can now surger using both these disks simultaneously.

To convert the thickened family Stu back into an ordinary family Stu consisting
of finitely many disks and spheres for each .t; u/ we replace each family of parallel
disks or spheres in Stu of nonzero thickness by the central disk or sphere in this
family. Thus this central disk or sphere belongs to Stu for an open set of values of
.t; u/.

As t varies over Ui we now have a family Stu, depending on i . To combine
these families for different values of i , letting t range over all of @Dk rather than just
over Ui , we proceed in the following way. For each i choose a continuous function
'i W Ui ! Œ0; 1� that takes the value 1 near @Ui and the value 0 on an open setVi inside
Ui such that the different Vi ’s still cover Dk . Then construct Stu by delaying the
time when each surgery along†i is performed by the value '.t/. We may assume all
the systems†i are disjoint for fixed t and varying i with t 2 Ui , and the thickenings
†i �.�"i ; "i / are disjoint as well, so the surgeries along different†i ’s are completely
independent of each other.

We have constructed the family Stu for .t; u/ 2 @Dk � Œ0; 1� such that all the
curves of St \†i are surgered away as u goes from 0 to 1=2 for t 2 Vi . We can then
adjoin †i to Stu for .t; u/ 2 Vi � .1=2; 1/, deleting the surgered disks and spheres
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of Stu for u � 3=4. We may assume all the thickenings †i � .�"i ; "i / are disjoint
from the original separating system †t . Then we adjoin †t to Stu for u > 3=4, so
that for u D 1 only †t remains in Stu. This finishes Step 1.

Step 2. Rounding smooth disk and sphere systems. We will use the following result:

Lemma 4.2. The space of systems of finitely many disjoint smooth disks and spheres
in R3C, where the disks have their boundaries in @R3C, deformation retracts onto the
subspace of round disks and spheres.

Proof. We show the relative homotopy groups are zero, which is all we need for the
application of the lemma. Thus we are given a family St , t 2 Dk , of disjoint smooth
disks and spheres that we wish to isotope to round disks and spheres, staying fixed
over @Dk where St is assumed to already consist of round disks and spheres. We can
assume in fact that St consists of round disks and spheres for t in a neighborhood
of @Dk .

First we show how to round the spheres of St by an inductive procedure, starting
with the outermost spheres. We construct families of embeddings of D3 in R3C with
images bounded by the outermost spheres, such that near @Dk these embeddings are
rescaled isometric embeddings. This can be done by first applying isotopy extension
to construct families of embeddings without the condition near @Dk , then deforming
these embeddings to achieve this extra condition using the fact that the inclusion of
O.3/ into Diff.D3/ is a homotopy equivalence, which is a consequence of the Smale
conjecture that Diff.D3 rel @D3/ is contractible, proved in [H1]. We can also arrange
that the embeddings are rescaled isometric embeddings near the center ofD3, just by
differentiability. By restricting these embedding to smaller and smaller concentric
spheres in D3 we can isotope the outermost spheres to be round over all of Dk ,
damping the isotopy down to the identity near @Dk . The non-outermost spheres are
dragged along in this process. Having rounded the outermost spheres in St , we do a
similar construction for the next-outermost spheres, and so on.

To make the disks round we first make all their boundary circles round following
the same plan as for spheres, using Smale’s theorem that Diff.D2 rel @D2/ is con-
tractible. The rounding of the boundary circles can be done by a deformation of the
family St supported in a neighborhood of @R3C. Having the boundary circles round,
we then deform the disks themselves to the round hemispherical disks spanning the
round boundary circles. This is possible since the fibration obtained by restricting the
disks to their boundaries has contractible fiber, the space of smooth disk systems in
R3C with given boundary circles. For a single disk this is one of the equivalent forms
of the Smale conjecture, and for systems of disks it follows by induction. When we
perform these isotopies of the disks of St , the spheres of St are to be dragged along,
so the proper way to proceed is first to make all the disks round, then make the spheres
round by the procedure described earlier. �
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Now we return to Step 2 of the proof. For each t0 2 Dk the components ofSt vary
only by isotopy as t varies over some neighborhood of t0. Choose a finite number
of these neighborhoods that cover Dk , then triangulate Dk so that each k-simplex
of the triangulation lies in one of these neighborhoods. Over each such k-simplex
we then have the associated set of disks and spheres of St that vary only by isotopy.
Over a face of the simplex we have the union of the sets of disks for the various k-
simplices that contain the face. Let us change notation slightly and call these systems
of surfaces St . (They are subsets of the systems St constructed in Step 1.)

Suppose inductively that we have isotoped the disks and spheres of St to be round
for t in the i -skeleton of the triangulation ofDk , without changing anything over @Dk

where the systems St and At are already round. The possibility i D �1 is allowed,
which will give the start of the induction. For the induction step we apply the lemma
to extend the rounding isotopy of St over each .i C 1/-simplex in the interior of Dk

in turn. The arcs and circles of At are carried along during this deformation of St ,
by isotopy extension. This completes Step 2.

Step 3. Rounding smooth arc and circle systems. Having the components of St round
over all of Dk , we can round the components of At by an inductive procedure as in
Step 2. Over a simplex � of the triangulation of Dk we look at a complementary
region Ct of St . This contains at most one component of At , and we need only look
at the case when there is exactly one component, say ˛t . Consider first the case that
˛t is an arc. The region Ct is bounded by the plane R2 together with some round
disks and spheres of St that can vary by isotopy. Let yCt be obtained from Ct by
filling in the boundary spheres with balls. We can then think of yCt as a region in the
upper half-space model of hyperbolic 3-space bounded by geodesic planes. There is
always a unique round arc ˛0

t in yCt having the same endpoints as ˛t . This means that
the space of round arcs in yCt is the same as the space of pairs of endpoints of smooth
arcs. The map sending each unknotted smooth arc to its endpoints is a fibration, and
it is a homotopy equivalence since its fiber, the space of unknotted arcs with fixed
endpoints, is contractible, by another equivalent form of the Smale conjecture. Since
the fibration is a homotopy equivalence, this implies that we can deform the arcs ˛t

to round arcs over the simplex � , staying fixed over the boundary of � where they are
already round. We can drag the balls of yCt � Ct and everything inside them along
during the isotopy that rounds ˛t . This could destroy the roundness of these balls,
but this problem can be avoided by first shrinking the balls sufficiently small so that
they can stay round during the isotopy.

The other case is that ˛t is a circle. There are then two subcases depending on
whether Ct is of the same type as in the preceding case or Ct is a ball with smaller
disjoint sub-balls removed. In the first subcase the space of round circles in yCt has the
homotopy type of RP 2 since such circles bound unique geodesic disks in yCt and the
space of such disks has this homotopy type. The space of smooth unknotted circles
in yCt also has the homotopy type of RP 2 by the Smale conjecture, so we can deform
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the circles ˛t to be round over � as before, after first shrinking the balls of yCt � Ct .
The other subcase, that Ct is a ball with sub-balls removed, is done in the same way,
using the fact that the space of round circles in a ball has the same homotopy type as
the space of smooth circles, namely RP 2 again.

This finishes the proof of the theorem. �

Further injectivity results. We observed at the beginning of Section 3 that Wn

contains two copies of the braid group Bn, one generated by the �i ’s and the other
generated by the �i ’s. Under the projection Wn ! Rn the copy of Bn generated by
the �i ’s becomes a subgroup †n � Rn, and we can now see that the other copy of
Bn remains unchanged:

Proposition 4.3. The map � W Bn ! Rn sending the standard generators of the braid
group to the elements �i is injective.

Proof. It suffices to show � is injective on the ‘pure’ versions of these groups, the
kernels of the natural maps to †n. The pure braid group fits into a well-known split
short exact sequence

0 ! Fn�1 ! PBn ! PBn�1 ! 0

where Fn�1 is the free group on n � 1 generators and the map PBn ! PBn�1 is
obtained by ignoring the last strand of a pure braid. This short exact sequence maps
to a similar split short exact sequence

0 ! Kn ! PRn ! PRn�1 ! 0

which is part of the long exact sequence of homotopy groups associated to the fibration
which sends an orderedn-tuple of smooth circles forming the trivial link to the ordered
.n � 1/-tuple obtained by ignoring the last circle. The kernel Kn is �1 of the fiber,
the subspace of Ln consisting of configurations with n � 1 of the circles in a fixed
position and the last circle varying. It suffices by induction on n to show that the map
of kernels Fn�1 ! Kn is injective. We do this by constructing a homomorphism
Kn ! Fn�1 such that the composition Fn�1 ! Kn ! Fn�1 is the identity.

The homomorphism Kn ! Fn�1 is obtained by choosing a point in the nth
circle and taking the path it traces out in the complement of the other n � 1 circles
under a loop in the fiber. This path may not be a loop, but it can be completed to a
loop by adjoining an arc in the nth circle. Since the circles are unlinked, the choice
of this arc does not affect the resulting element of Fn�1, the fundamental group of
the complement of the first n � 1 circles. This construction gives a homomorphism
Kn ! Fn�1 such that precomposing withFn�1 ! Kn is obviously the identity. �

The kernel Kn is the product KUn � Z for KUn the kernel of the projection
PURn ! PURn�1. It is shown in [P] that KUn is not finitely presented for n � 3,
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although it is finitely generated, with the generators one might expect, ˛ni and ˛in.
The lack of finite presentability probably means that these kernels do not have nice
geometric interpretations in terms of configuration spaces of circles.

Proposition 4.4. The map UR<
n ! URn is injective.

Proof. This is similar to the preceding proof. The map UR<
n ! UR<

n�1 that ignores
the smallest ring is a quasifibration, as in Section 1, using the canonical shrinking to
first make the smallest ring point-sized. The fundamental group of the fiber is Fn�1

so we get a split short exact sequence

0 ! Fn�1 ! UR<
n ! UR<

n�1 ! 0

which maps to the split short exact sequence

0 ! Kn ! PRn ! PRn�1 ! 0

from the preceding proof. The rest of the argument is the same. �

5. Asphericity

As a warm-up to proving Theorem 3, which states that the spaces Wn and UWn

are aspherical, let us recall a standard sort of argument for showing that the map
Wn ! B2n induced by the map An ! C2n sending a configuration of arcs to the
configuration of its endpoints is injective. We can view An as the space of config-
urations of n disjoint smooth unknotted, unlinked arcs in a ball D3 with endpoints
in a hemisphere D2� of @D3. By restricting diffeomorphisms of D3 fixing the other
hemisphere D2C to the standard configuration A of n arcs we obtain a fibration

Diff.D3; A relD2C/ ! Diff.D3 relD2C/ ! An .1/

where Diff.X; Y relZ/ denotes the space of diffeomorphisms of a manifold X that
leave a submanifold Y setwise invariant and fix a submanifoldZ pointwise. Restrict-
ing everything to D2� gives a map from this fibration to the fibration

Diff.D2�; @A rel @D2�/ ! Diff.D2� rel @D2�/ ! C2n .2/

In each fibration the projection map to the basespace is nullhomotopic by shrink-
ing the support of diffeomorphisms to a smaller ball or disk disjoint from A. Thus
the associated long exact sequences of homotopy groups break up into short exact
sequences. Since �0Diff.D2� rel @D2�/ D 0 and �0Diff.D3 relD2C/ D 0 (the lat-
ter by Cerf’s theorem), we obtain isomorphisms An � �0Diff.D3; A relD2C/ and
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B2n � �0Diff.D2�; @A rel @D2�/. The problem is thus reformulated as showing in-
jectivity of the map

�0Diff.D3; A relD2C/ ! �0Diff.D2�; @A rel @D2�/:

This map is induced by the restriction map from the fiber of the first fibration above
to the fiber of the second fibration. This restriction map is itself a fibration

Diff.D3; A rel @D3/ ! Diff.D3; A relD2C/ ! Diff.D2�; @A rel @D2�/ .3/

so it suffices to show that �0 of the fiber of this fibration is trivial. Note first that a
diffeomorphism f in Diff.D3; A rel @D3/ can be isotoped to be the identity onA, and
f cannot twist the normal bundles of the arcs of A, as one can see by looking at the
induced map on �1.D

3 �A/. Then f can be isotoped rel A[ @D3 to be the identity
in a neighborhood of A, so f can be regarded as a diffeomorphism of a handlebody
fixing the boundary of the handlebody. The space of such diffeomorphisms is path-
connected since any two spanning disks in a handlebody are isotopic rel boundary,
and similarly for collections of disjoint spanning disks, so diffeomorphisms of a
handlebody rel boundary can be isotoped rel boundary to have support in a ball, and
then by Cerf’s theorem they can be isotoped to the identity. (With a little more work
the use of Cerf’s theorem in this argument could be avoided by factoring out the
image of �0Diff.D3 rel @D3/ in the various groups.)

Now we prove Theorem 3 by refining this argument to reduce asphericity of Wn

to asphericity of C2n.

Proof. Since Wn is homotopy equivalent to An, we can obtain the result for Wn by
showing that An is aspherical. The total space in the fibration (2) above is contractible
by a theorem of Smale. The total space in the fibration (1) is also contractible, as one
can see from the fibration

Diff.D3 rel @D3/ ! Diff.D3 relD2C/ ! Diff.D2� rel @D2�/

where the base is contractible by Smale’s theorem and the fiber is contractible by the
Smale conjecture [H1]. The fiber of the fibration (3) is also contractible by the follow-
ing argument. Restricting diffeomorphisms in Diff.D3; A rel @D3/ to normal bundles
of the n arcs gives another fibration whose base space is homotopy equivalent to the
space of automorphisms of the normal bundles of these arcs that are the identity at
the endpoints of the arcs. For each arc this is the loopspace of SO.2/, which has con-
tractible components. Components other than the identity component can be ignored
since diffeomorphisms in .D3; A rel @D3/ cannot twist the normal bundles nontriv-
ially, as we saw earlier. Thus from this fibration we can replace .D3; A rel @D3/

by the subspace of diffeomorphisms that are the identity on a neighborhood of the
arcs. This can be identified with group of diffeomorphisms of a handlebody fixing
its boundary. This diffeomorphism group is path-connected as we observed before,
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and it has contractible path-components by [H2]. (The key point is that the space of
spanning disks with fixed boundary is contractible.)

Thus for i � 2 we have isomorphisms

�iAn � �i�1Diff.D3; A relD2C/ � �i�1Diff.D2�; @A rel @D2�/ � �iC2n

so asphericity of An is reduced to asphericity of C2n, which is well-known.
For the case of UWn we can pass to the covering space P UWn obtained by

ordering the wickets, and then use the quasifibration P UWn ! P Wn ! T n from
Section 1, where T n is the n-torus. The associated long exact sequence of homotopy
groups shows that P UWn is aspherical since P Wn and T n are aspherical. �

6. Wickets and rings in a sphere

Instead of wickets in upper halfspace one can consider wickets inside a sphere, circular
arcs in the interior of the sphere that meet the sphere orthogonally at their endpoints.
Configurations of n disjoint wickets of this type form a spherical wicket space �Wn.
An equivalent space is the space of configurations of n disjoint line segments in
a ball that meet the boundary sphere in their endpoints. The equivalence between
the two definitions can be seen by considering two of the models for hyperbolic
3-space, the standard ball model and the projective model. In the ball model the
geodesics are circular arcs orthogonal to the boundary sphere, while in the projective
model they are line segments in the ball with endpoints on the boundary sphere.
The disjointness condition is preserved in going from one model to the other since
intersecting geodesics lie in a common hyperbolic plane in both cases.

The space �Wn is slightly smaller than the space of all configurations of n disjoint
geodesics in hyperbolic 3-space since geodesics do not include their endpoints in the
boundary sphere, so two disjoint geodesics could share a common endpoint on the
boundary sphere. The inclusion of �Wn into this slightly larger space is a homotopy
equivalence, however, as one can see easily in the projective model by shrinking the
ball by a small amount for each configuration (without shrinking the configuration
itself). For example, the ball can be shrunk by one-half of the minimum of the
numbers di , where di is the maximum distance from points on the i th line segment
of a given configuration to the boundary of the ball. Note that this is essentially the
same as the canonical shrinking process considered in Section 1.

Comparing the ball model of hyperbolic 3-space with the upper halfspace model,
we see that Wn can be regarded as the subspace of �Wn consisting of configurations
disjoint from a point 1 in the boundary sphere. The configurations in �Wn that
contain a line to 1 form a codimension 2 submanifold. In terms of the upper halfspace
model, this submanifold is the space of configurations of n � 1 disjoint wickets and
one vertical line disjoint from the wickets. This submanifold is connected, by the
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same argument with canonical shrinking used to show that Wn is connected. From
transversality it follows that the inclusion Wn ,! �Wn induces a surjection on �1

with kernel generated by a small loop linking the codimension 2 submanifold. This
loop can be represented by taking the standard configuration of n wickets in the xz-
plane and dragging the left endpoint of the first wicket around a large circle enclosing
all the other wickets. It would not be hard to write this loop as a word in the generators
�i , �i and �i . Thus �1�Wn has a presentation obtained from the presentation forWn

by adding one extra relation.
There is an analogous space �An of configurations of n disjoint smooth arcs in

a ball with endpoints on the boundary sphere, all these arcs being unknotted and
unlinked.

Proposition 6.1. The inclusion �Wn ,! �An is a homotopy equivalence.

Proof. This can be reduced to the corresponding result for Wn ,! An by considering
some fibrations. Let �W�

N be the space of configurations consisting of n disjoint
wickets in a ball together with a basepoint in the boundary sphere disjoint from the
wickets. Projecting such a configuration onto either the wickets or the basepoint gives
two fibrations

F ! �W�
n ! �Wn; Wn ! �W�

n ! S2:

Here the fiber F in the first fibration is just S2 with 2n points deleted, the endpoints
of a configuration of n wickets. The homotopy lifting property in the first fibration
follows by extending isotopies of configurations of wickets to ambient isotopies then
restricting these to the basepoint. The second fibration is actually a fiber bundle
since the basepoints in a neighborhood of a given basepoint can be obtained via a
continuous family of rotations of S2 applied to the given basepoint, and then these
rotations can be applied to configurations of wickets.

Similarly there are fibrations

F ! �A�
n ! �An; An ! �A�

n ! S2:

The fiber F is the same as before. There are natural maps from the first two fibrations
to the second two fibrations. Applying the five lemma to the induced maps of long
exact sequences of homotopy groups, we see that Wn ,! An being a homotopy
equivalence implies first that this is true also for �W�

n ,! �A�
n and then also for

�Wn ,! �An. �

Similar things can be done for rings as well as wickets. Let �Rn be the space
of configurations of n disjoint pairwise unlinked circles in S3, and let �Ln be the
corresponding analog of Ln, the space of smooth n-component trivial links in S3.

Proposition 6.2. The inclusion �Rn ,! �Ln is a homotopy equivalence.



160 T. E. Brendle and A. Hatcher CMH

Proof. This follows the line of argument in the preceding proof by comparing fibra-
tions, using the space �R�

n of configurations of circles inS3 with a disjoint basepoint,
and its smooth analog �L�

n. �

One can also obtain a presentation for�1�Rn from a presentation forRn by adding
the same relation as was added to get a presentation for �1�Wn. The justification
is the same as before, by using stereographic projection to identify Rn with the
complement of the codimension 2 submanifold of �Rn consisting of configurations
passing through a given point in S3.

7. Remarks on dimension

It is a classical fact that the general position argument for finding a presentation for
Bn can be refined to build a finite CW complex K.Bn; 1/ having a single 0-cell, a
1-cell for each standard generator �i , and a 2-cell for each of the standard relations.
The cells are dual to the strata of the stratification of Cn according to coincidences
of the x-coordinates. Thus the 0-cell corresponds to the unique stratum of maximum
dimension consisting of configurations with distinct x-coordinates, the 1-cells to the
strata of codimension one where exactly two points in a configuration have the same
x-coordinate, and so on. The same procedure works also for UWn to give a finite
CW complex K.UWn; 1/. The dimension of this complex is n � 1, just as for Bn.
For Bn there is a single cell in the top dimension, corresponding to the stratum of
configurations with all n points on one vertical line, but for UWn there are a number
of different strata consisting of configurations of wickets all lying in one plane, so
there are a number of top-dimensional cells. There cannot exist a K.UWn; 1/ of
dimension less than n�1 sinceUWn has a subgroup Zn�1 generated by the elements
˛in for i < n.

For Wn the minimum dimension of a K.Wn; 1/ is 2n � 1. There is a K.Wn; 1/

of this dimension since Wn is a subgroup of B2n, and there cannot be one of lower
dimension sinceWn contains a subgroup Z2n�1, generated by the Zn�1 above and the
�i ’s. It seems likely thatWn should have a finite CW complexK.Wn; 1/ of minimum
dimension, perhaps constructible by extending the general-position constructions
referred to above.

For Rn the virtual cohomological dimension is known to be n � 1 by [C], where
a K.�; 1/ which is a finite CW complex of dimension n � 1 was constructed for
the finite-index subgroup PURn. This K.�; 1/ can be described as the space of
basepointed graphs consisting of n circles touching in a tree-like pattern, forming a
cactus-shaped object. The dimension n � 1 cannot be reduced since PURn again
contains a subgroup Zn�1 generated by the elements ˛in.
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