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Knots with small rational genus

Danny Calegari and Cameron Gordon

Abstract. If K is a rationally null-homologous knot in a 3-manifold M , the rational genus of
K is the infimum of ��.S/=2p over all embedded orientable surfaces S in the complement of
K whose boundary wraps p times around K for some p (hereafter: S is a p-Seifert surface
for K). Knots with very small rational genus can be constructed by “generic” Dehn filling,
and are therefore extremely plentiful. In this paper we show that knots with rational genus less
than 1=402 are all geometric – i.e. they may be isotoped into a special form with respect to
the geometric decomposition of M – and give a complete classification. Our arguments are a
mixture of hyperbolic geometry, combinatorics, and a careful study of the interaction of small
p-Seifert surfaces with essential subsurfaces in M of non-negative Euler characteristic.
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1. Introduction

Let K be an oriented knot in a 3-manifold M . If K is null-homologous, it bounds
an embedded oriented surface S , called a Seifert surface. The least genus of such
a surface is called the genus of K, and is denoted by g.K/. More generally, define
the rational genus of K, denoted by kKk, to be the infimum of ��.S/=2p over
all embedded orientable surfaces S in the complement of K without disk or sphere
components, whose boundary wraps p times around K for some p (a precise definition
is given in §2).

Largely because of an approach to the Berge conjecture via Knot Floer Homology,
there has been recent interest in the question of finding knots in 3-manifolds with the
property that they are the unique knot in their homology class with least rational
genus. Since Knot Floer Homology detects the Thurston norm, and therefore the
rational genus of a knot (see Ozsváth–Szabó [18]) such knots have the property that
they are characterized by their Knot Floer Homology, and one can study such knots
and surgeries on them using the surgery exact sequence. For example, the unknot in
S3 is the unique knot of genus 0, and various families of so-called “simple knots”
in lens spaces are the unique knots of minimal rational genus in their respective
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homology classes (see Baker [2], Hedden [15] or Rasmussen [19]). Other authors,
e.g. [3], have studied rational linking number, and its relation to contact geometry.

One way to produce knots of small rational genus is by surgery. For example, let
K 0 be a non-trivial knot in S3, and let M be the 3-manifold obtained by p=q surgery
on K 0. Let K in M be the core of the surgery solid torus. Then ŒK� has order p in
H1.M/, and kKk � g.K 0/=p � 1=2p where g.K 0/ denotes the (ordinary) genus of
K 0, since the boundary of a Seifert surface for K 0 wraps p times around K in the
surgered manifold. For more detailed examples, see §2.4.

The purpose of this paper is firstly to initiate a systematic study of rational genus
and some of its properties, and secondly to demonstrate that there is a universal
positive constant such that knots in 3-manifolds with rational genus bounded above by
this constant can be completely classified. The precise statement of this classification,
and the best estimate for the relevant constant, falls into several cases depending on
the geometric decomposition of M .

In the generic (i.e. hyperbolic) case, the strategy is to deduce information about
K in two steps:

L1-homology �! homotopy �! isotopy:

An estimate for the rational genus of K is really an estimate of the L1-norm of a cer-
tain relative homology class; such an estimate can be reinterpreted dually in terms of
bounded cohomology. Low-dimensional bounded cohomology in hyperbolic man-
ifolds is related to geometry (at the level of �1) by the methods of Calegari [7].
Homotopy information is promoted to isotopy information by drilling and filling, us-
ing uniform geometric estimates due to Hodgson–Kerckhoff [16], and Gauss–Bonnet.
One interesting technical aspect of the argument is that it involves finding a CAT.�1/

representative of a surface in the complement of the cone locus of a hyperbolic cone
manifold. Such a surface can be found either by the PL wrapping technique of Soma
[25], or the shrinkwrapping technique of Calegari–Gabai [9].

The organization of the paper is as follows. §2 introduces definitions, proves
some basic lemmas, and ends with several subsections enumerating examples. §3
introduces and develops the tools that power our combinatorial arguments (which
apply especially to knots with non-hyperbolic complements). §4 treats knots with
hyperbolic complements, and the arguments are more geometric and analytic. Finally,
§5 assembles all this material, and contains the main theorems and their proofs.

1.1. Statement of results. The classification of knots with (sufficiently) small ratio-
nal genus falls into several cases, depending on the prime and geometric decomposi-
tion of M . These theorems are proved in §5, and reproduced here for the convenience
of the reader.

Reducible Theorem (5.1). Let K be a knot in a reducible manifold M . Then either

(1) kKk � 1=12; or
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(2) there is a decomposition M D M 0#M 00, K � M 0 and either

(a) M 0 is irreducible, or

(b) .M 0; K/ D .RP 3; RP 1/#.RP 3; RP 1/.

Lens Theorem (5.2). Let K be a knot in a lens space M . Then either

(1) kKk � 1=24; or

(2) K lies on a Heegaard torus in M ; or

(3) M is of the form L.4k; 2k � 1/ and K lies on a Klein bottle in M as a non-
separating orientation-preserving curve.

Hyperbolic Theorem (5.9). Let K be a knot in a closed hyperbolic 3-manifold M .
Then either

(1) kKk � 1=402; or

(2) K is trivial; or

(3) K is isotopic to a cable of the core of a Margulis tube.

Small SFS Theorem (5.10). Let M be an atoroidal Seifert fiber space over S2 with
three exceptional fibers and let K be a knot in M . Then either

(1) kKk � 1=402; or

(2) K is trivial; or

(3) K is a cable of an exceptional Seifert fiber of M ; or

(4) M is a prism manifold and K is a fiber in the Seifert fiber structure of M over
RP 2 with at most one exceptional fiber.

Toroidal Theorem (5.19). Let M be a closed, irreducible, toroidal 3-manifold, and
let K be a knot in M . Then either

(1) kKk � 1=402; or

(2) K is trivial; or

(3) K is contained in a hyperbolic piece N of the JSJ decomposition of M and is
isotopic either to a cable of a core of a Margulis tube or into a component of
@N ; or

(4) K is contained in a Seifert fiber piece N of the JSJ decomposition of M and
either

(A) K is isotopic to an ordinary fiber or a cable of an exceptional fiber or into
@N , or

(B) N contains a copy Q of the twisted S1 bundle over the Möbius band and
K is contained in Q as a fiber in this bundle structure;
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or

(5) M is a T 2-bundle over S1 with Anosov monodromy and K is contained in a
fiber.

The subsections §2.4 and §2.5 discuss constructions giving rise to eight families
of examples of knots with arbitrarily small rational genus, illustrating that all the
possibilities listed in the classification theorems really do occur.

1.2. Acknowledgements. The first author would like to thank Matthew Hedden
and Jake Rasmussen for interesting and stimulating talks they gave at Caltech in
2007, which were the inspiration for this paper. He would also like to thank Marty
Scharlemann andYoav Rieck for useful conversations about thin position. The second
author would like to thank Constance Leidy and Peter Oszváth for useful comments.
Danny Calegari was partially supported by NSF grant DMS 0707130.

2. p-Seifert surfaces

This section standardizes definitions, proves some basic facts about rational genus,
and describes how to construct examples of knots with small rational genus, illustrat-
ing the significance of the cases we enumerate in our classification theorems.

2.1. Definitions. We formalize definitions in this section. Throughout, all 3-mani-
folds considered will be compact, connected and orientable. A knot K in a 3-manifold
M is a tamely embedded S1. If K is null-homologous in M , a Seifert surface for K

is a connected embedded two-sided surface S in M with @S D K. The genus of K

is the least genus of a Seifert surface.
This can be generalized as follows. By analogy with the Thurston norm on

H2.M/, we adopt the following notation:

Notation 2.1. If S is a compact, orientable connected surface, define ��.S/ WD
min.0; �.S//. If S is a compact, orientable surface with components Si , define
��.S/ D P

i ��.Si /. Denote �.S/ D ���.S/=2.

Remark 2.2. The normalizing factor of 2 in the denominator of � reflects the fact that
Euler characteristic is “almost” �2 times genus for a surface with a bounded number
of boundary components.

Definition 2.3. Let K be a knot in a 3-manifold M , with regular neighborhood N.K/.
If p is a positive integer, a p-Seifert surface for K is a compact, oriented surface S

embedded in M � int N.K/ such that S \ @N.K/ D @S , and Œ@S� D pŒK� 2



Vol. 88 (2013) Knots with small rational genus 89

H1.N.K// (for some choice of orientation on K). In this case we define the norm,
or rational genus of K by

kKk D inf
S

�.S/=p

where the infimum is taken over all p and all p-Seifert surfaces S for K.

A p-Seifert surface S for K can be extended into N.K/ to give a map S !
M which is an embedding on int S and whose restriction @S ! K is a (possibly
disconnected) covering map of degree p. We will regard a p-Seifert surface for K as
a singular surface in M in this way in §4.

Remark 2.4. A knot K has a p-Seifert surface for some p if and only if ŒK� has
finite order in H1.M/.

Definition 2.5. A p-Seifert surface is good if it satisfies the following properties:

(1) S is connected.

(2) S is incompressible in M � int N.K/.

(3) @S consists of q parallel, coherently oriented copies of an essential simple
closed curve � on @N.K/ that represents r times a generator of H1.N.K//,
where qr D p.

Lemma 2.6. Let S be a p-Seifert surface for K. Then there is a good p0-Seifert
surface S 0 for K satisfying

�.S/=p � �.S 0/=p0:

Proof. Boundary components of S that are inessential in @N.K/ may be capped off
with disks, and closed components of S may be discarded; neither of these operations
increases � or changes p. If some component of S is a disk D, then D is a good
p0-Seifert surface for K for some p0, and �.D/ and kKk are both zero. Hence we may
assume that every component Si of S satisfies �.Si / D ��.Si /, and has non-empty
boundary, each component of which is an essential curve in @N.K/.

Since a p-Seifert surface is embedded, the components of @S are all parallel
in @N.K/, and are therefore all isotopic (though a priori they might have opposite
orientations). Let S be a p-Seifert surface for K, and suppose there are a pair of
adjacent components of @S on @N.K/ that are oppositely oriented. Tubing this pair
of components does not affect �.S/ or p, so without loss of generality we may assume
that all components are coherently oriented.

If S is compressible in M � int N.K/ then compressing it along a disk gives
a surface S 0 with @S 0 D @S and �.S 0/ � �.S/. So we may assume that S is
incompressible.
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It remains to show that we can take S to be connected. Suppose S is the disjoint
union of S1 and S2, where @Si consists of qi copies of �, and each qi > 0. Then we
estimate

�.S/

p
D �.S/

qr
D �.S1/ C �.S2/

.q1 C q2/r
� min

²
�.S1/

q1r
;
�.S2/

q2r

³
: �

It will be important in the sequel to consider surfaces in manifolds M that meet
@M .

Definition 2.7. A relativep-Seifert surfaceF for a knot K in M is an oriented surface,
properly embedded in M � int N.K/ such that Œ@F \@N.K/� D pŒK� 2 H1.N.K//.

The definition of good extends to relative p-Seifert surfaces, and Lemma 2.6
generalizes to such surfaces as well and with the same proof, so in the sequel we
assume all our p-Seifert surfaces, relative or otherwise, are good.

Notation 2.8. In the sequel, we write X WD M � int N.K/.

2.2. Thurston norm. A basic reference for this section is Thurston’s paper [26].
If K is a knot in a closed 3-manifold M , then X is a compact 3-manifold with

torus boundary, and as is well-known, the kernel of the inclusion map

H1.@X I Q/ ! H1.X I Q/

is 1-dimensional, and denoted L. Consequently, the kernel of

H1.@X I Z/ ! H1.X I Z/

is isomorphic to Z, and is generated by a single element mŒ��, where Œ�� is primitive
in H1.@X I Z/, and Œ�� is represented by a simple loop � � @X which represents r

times a generator of H1.N.K// (this is the same � as before).
Let @�1L denote the subspace of H2.X; @X I Q/ that is the preimage of L under

the connecting homomorphism in rational homology. If S is a p-Seifert surface for
K, then p D qr where mjq, and ŒS� 2 @�1L. Consider the affine rational subspace
@�1Œ��=r � @�1L. The multiple ŒS�=p 2 @�1Œ��=r , and �.S/=p D kSkT =2p where
k � kT denotes the Thurston norm of a surface. Hence, by the definition of rational
genus and of Thurston norm, we obtain the following formula:

Lemma 2.9. There is an equality

kKk D inf
A2@�1Œ��=r

kAkT =2

where kAkT denotes the Thurston norm of the (rational) homology class A.
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Since k � kT is a convex, non-negative, piecewise rational linear function on
H2.X; @X I R/, the infimum of k � kT =2 is achieved (on some rational subpolyhe-
dron) on the rational affine subspace @�1Œ��=r . Consequently, we have:

Proposition 2.10. Let K be a knot. The rational genus kKk is equal to �.S/=p for
some p-Seifert surface S and some p. Therefore kKk is rational. Moreover, there is
an algorithm to find S and compute kKk.

Proof. There is a (straightforward) algorithm to compute the Thurston norm, de-
scribed in [26], and to find a norm-minimizing surface in any integral class (note that
such a surface can be taken to be normal relative to a fixed triangulation, and therefore
may be found by linear programming in normal surface space). �

Although Proposition 2.10 is included for completeness, it is not essential for the
remainder of the paper, and it is generally good enough in the sequel to work with a
p-Seifert surface that comes close to realizing kKk.

The first thing one wants to know about an invariant is when it vanishes.

Theorem 2.11. Let K be a knot in a 3-manifold M . Then kKk D 0 if and only if
either

(1) K bounds a disk in M ; or

(2) K is the core of a genus 1 Heegaard splitting of a lens space summand of M ; or

(3) K is the fiber of multiplicity r in a Seifert fiber subspace of M whose base
orbifold is a Möbius band with one orbifold point of order r � 1.

Proof. Suppose kKk D 0. Then by Lemma 2.6 and Proposition 2.10, K has a good
p-Seifert surface with ��.S/ D 0, i.e. S is a disk or annulus.

First assume S is a disk. If p D 1 we have conclusion (1). If p > 1 then a regular
neighborhood of N.K/[S is a punctured lens space with fundamental group Z=pZ,
with K as a core of a genus 1 Heegaard splitting.

If S is an annulus, note that both boundary components of S wrap with the same
orientation r times around K. A regular neighborhood of N.K/ [ S evidently has
the desired structure. �

Remark 2.12. Since M is orientable, the total space of the Seifert fiber subspace
in bullet (3) of Theorem 2.11 is orientable; i.e. it is a twisted S1 bundle over an
orbifold Möbius band. There is no suggestion that it is essential in M . The situation
described in (3) arises in case (2) (b) of Theorem 5.1, case (3) of Theorem 5.2, case
(4) of Theorem 5.10, and case (4) (B) of Theorem 5.19.

Under suitable homological conditions on M and K, the analysis simplifies con-
siderably:
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Lemma 2.13. Let K be a knot in a Q-homology 3-sphere and let S be a connected
p-Seifert surface for K. Then p is the order of ŒK� in H1.M/.

Proof. Since M is a Q-homology sphere, H2.X/ D 0 and hence the boundary map
H2.X; @X/ ! H1.@X/ is injective, with image ker.H1.@X/ ! H1.X// Š Z. Let
x be a generator of H2.X; @X/. Then the image of x under the composition

H2.X; @X/ ! H1.@X/ ! H1.N.K// Š Z

is p0, say, the order of ŒK� in H1.M/. Let S be a connected p-Seifert surface for K.
Then ŒS� D kx and p D kp0 for some k > 0. But since S is connected, k D 1 by
Lemma 1 of [26]. �

If K is a knot in a homology 3-sphere, the (ordinary) genus of K, denoted by
g.K/, is the minimal genus of any Seifert surface for K. Lemma 2.13 reduces the
study of rational genus to that of the usual genus in homology spheres:

Corollary 2.14. If K is a knot in a homology 3-sphere then

kKk D
8<
:

0; if g.K/ D 0;

g.K/ � 1=2; if g.K/ > 0.

Proof. By Lemma 2.13, kKk D �.S/, where S is a minimal genus Seifert surface
for K. If S is a disk, kKk D g.K/ D 0. Otherwise, �.S/ D .2g.S/ � 1/=2 D
g.S/ � 1=2. �

The following lemma will allow us to construct knots in 3-manifolds with arbi-
trarily small (non-zero) rational genus.

Lemma 2.15. Let K 0 be a knot in a homology 3-sphere M 0. Let M be the manifold
obtained by m=n-Dehn surgery on K 0, where m > 0, and let K � M be the core of
the surgery solid torus. Then kKk D kK 0k=m.

Proof. Note that ŒK� has order m in H1.M/ D Z=mZ.
Let S be a good p-Seifert surface for K in M such that kKk D �.S/=p. The

restriction of S to M � K D M 0 � K 0 extends to a good p0-Seifert surface for
K 0 (which by abuse of notation we call S ) where p0 D p=m. By the proof of
Lemma 2.13, p0 D 1 and S is a Seifert surface for K 0 in M 0. Conversely a Seifert
surface for K 0 can also be thought of as a good m-Seifert surface for K. Therefore
kK 0k D �.S/ and p D m. Hence kKk D kK 0k=m. �
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2.3. Connect sums. We now examine the behavior of rational genus under con-
nected sum. In this context it is convenient to say that a knot K in M is p-trivial if it
has a p-Seifert surface that is a disk. If p D 1 then K bounds a disk, and is trivial.
If p > 1 then K is the core of a genus 1 Heegaard splitting of a lens space summand
of M with fundamental group Z=pZ.

Remark 2.16. If K is p-trivial for some p then clearly @N.K/ is compressible in X .
Conversely, a compressing disk for @N.K/ in X is either a p-Seifert surface for K,
for some p � 1, or has boundary a meridian of K, in which case K is isotopic to
S1 � fpointg in some S1 � S2 summand of M . So for rationally null-homologous
knots, being p-trivial for some p is equivalent to @N.K/ being compressible in X .

Theorem 2.17. Let K1 and K2 be knots in 3-manifolds M1 and M2. Then

(1) if K1 is p1-trivial and K2 is trivial then K1 # K2 is p1-trivial;

(2)

kK1 # K2k D

8̂̂ˆ̂̂̂̂<
ˆ̂̂̂̂ˆ̂:

kK1k C kK2k C 1

2
if K1 and K2 are not p-trivial for any pI

kK1k C 1

2
� 1

2p2

if K2 is p2-trivial, K1 is not p-trivial for any pI
1

2
� .p1 C p2/

2p1p2

if Ki is pi -trivial, pi � 2, i D 1; 2:

Remark 2.18. The first case in bullet (2) says that for knots that are not p-trivial for
any p, the quantity kKk C 1

2
is additive under connected sum, and is the analog of

the additivity of genus for knots in S3; see Corollary 2.14.

Remark 2.19. Theorem 2.17 has an analog in the theory of stable commutator length
(see Definition 4.1); compare with the Product formula (Theorem 2.93) from [8].

Remark 2.20. Note that K is 2-trivial if and only if K is contained in an RP 3

summand as RP 1. Also, it follows from Theorem 2.17 that if K D K1 # K2 with
K1 and K2 non-trivial, then kKk D 0 if and only if K1 and K2 are 2-trivial, i.e. K

is contained in an RP 3 # RP 3 summand as RP 1 # RP 1. This is a special case of
Theorem 2.11 (3), with r D 1.

Proof of Theorem 2.17. Let Si � Mi be a good pi -Seifert surface for Ki with
kKik D �.Si /=pi , i D 1; 2. Then we may construct a p1p2-Seifert surface S

for K D K1 # K2 in M1 # M2 by taking p2 copies of S1 and p1 copies of S2 and
joining them along p1p2 arcs. We have

�.S/ D p2�.S1/ C p1�.S2/ � p1p2: (2.3.1)
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Conversely, let S be a good p-Seifert surface for K D K1 # K2 with kKk D �.S/=p.
Suppose @S has q components, each having intersection number r with a meridian
of K. Let A be the annulus in X D M1 # M2 � int N.K/ that realizes the connected
sum decomposition. By an isotopy of S we may assume that each component of @S

meets each component of @A in r points, and that S \A is a disjoint union of arcs and
simple closed curves. Since the boundary components of S are oriented coherently
on @N.K/, each arc must have one endpoint on each component of @A. It follows
that any simple closed curve of intersection is inessential in A, and therefore in S ,
and so these can be removed by performing surgery on S and discarding the resulting
2-spheres. Hence we may assume that S \ A consists of qr D p essential arcs in A.
Cutting S along these arcs gives p-Seifert surfaces S1, S2 for K1, K2 in M1, M2.
Note that

�.S/ D �.S1/ C �.S2/ � p: (2.3.2)

To prove part (1), note that if S1 and S2 are disks and p2 D 1 then the p1-Seifert
surface for K1 # K2 in (2.3.1) is a disk.

To prove (2), first suppose that K1 and K2 are not p-trivial (for any p). Then the
surfaces S1 and S2 in (2.3.1) and (2.3.2) have no disk components, and from (2.3.1)
we get

�.S/ D p2�.S1/ C p1�.S2/ C p1p2=2;

and hence

kKk � �.S/=p1p2 D �.S1/=p1 C �.S2/=p2 C 1

2

D kK1k C kK2k C 1

2
:

(2.3.3)

Similarly, (2.3.2) gives

�.S/ D �.S1/ C �.S2/ C p=2;

and hence

kKk D �.S/=p D �.S1/=p C �.S2/=p C 1

2

� kK1k C kK2k C 1

2
:

(2.3.4)

Together, (2.3.3) and (2.3.4) give the first assertion in part (2) of the theorem.
Second, suppose K2 is p2-trivial and K1 is not p-trivial for any p. Then in (2.3.1)

S2 is a disk while �.S1/ � 0. Hence �.S/ � 0, and we get

kKk � �.S/=p1p2 D �.S1/=p1 � 1

2p2

C 1

2

D kK1k � 1

2p2

C 1

2
:

(2.3.5)
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In (2.3.2), since K1 is not p-trivial for any p, no component of S1 is a disk. Hence
�.S1/ D ��.S1/=2, �.S1/ � 0, and �.S/ � 0. Let S2 have d2 disk components.
Then �.S2/ � d2 and

d2p2 � p: (2.3.6)

Now

kKk D �.S/=p D ��.S/=2p

� ��.S1/=2p � d2

2p
C 1

2

� kK1k � d2

2p
C 1

2
:

(2.3.7)

Comparing (2.3.7) with (2.3.5) we get

d2

2p
� 1

2p2

; i.e. d2p2 � p:

By (2.3.6), this gives d2p2 D p and (2.3.5) is an equality.
Finally, suppose that Ki is pi -trivial, pi � 2, i D 1; 2. In (2.3.1), S1 and S2 are

disks, and
�.S/ D p1 C p2 � p1p2 � 0:

Hence

kKk � �.S/=p1p2 D p1p2 � .p1 C p2/

2p1p2

D 1

2
� .p1 C p2/

2p1p2

:

(2.3.8)

Now consider (2.3.2), and let Si have di disk components, i D 1; 2. Note that

dipi � p; i D 1; 2I (2.3.9)

in particular, since pi � 2, di � p=2, i D 1; 2. It follows that

�.S/ � d1 C d2 � p � 0:

Therefore

kKk D �.S/=p D ��.S/=2p

� 1

2
� .d1 C d2/

2p
:

(2.3.10)

Comparing (2.3.10) with (2.3.8) gives

d1

p
C d2

p
� 1

p1

C 1

p2

:

On the other hand, by (2.3.9) we have di=p � 1=pi , i D 1; 2, and hence (2.3.8) is
an equality, as desired. �
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2.4. Examples of knots with small rational genus. We use Lemma 2.15 to con-
struct examples of knots K in 3-manifolds M with arbitrarily small (but non-zero)
rational genus. These examples illustrate cases from our main classification theo-
rems, to be proved in §4 and §5, especially case (2) of Theorem 4.8, case (2) of
Theorem 5.2, case (3) of Corollary 5.9, case (3) of Theorem 5.10, and cases (3) and
(4) of Theorem 5.19. We recall the notation �.�; �/ for the minimal number of points
of intersection (i.e. the homological intersection number) of two unoriented isotopy
classes of simple essential loops on a torus; in co-ordinates, �.a=b; c=d/ D jad�bcj.
CaseA. (M is hyperbolic and K is the core of a Margulis tube.) Let K 0 be a hyperbolic
knot in S3. Let M be the result of m=n-Dehn surgery on K 0, m > 0, and let K be the
core of the surgery solid torus. By Lemma 2.15, kKk D kK 0k=m ! 0 as m ! 1.
Also, for m sufficiently large M is hyperbolic and K is a geodesic in M whose length
! 0 as m ! 1.

Case B. (M is a lens space and K lies on a genus 1 Heegaard surface for M .) Let
.M; K/ be as in Case A above, but with K 0 a .u; v/-torus knot in S3, where u; v > 1.
If d D �.m=n; uv=1/ D jm � nuvj D 1 then M is a lens space, and one sees
that K lies on a Heegaard torus in M . By choosing m large enough we can make
kKk D kK 0k=m arbitrarily small.

Case C. (M is a Seifert fiber space and K is an ordinary or exceptional fiber.) By
taking d > 1 in Case B above, M becomes a Seifert fiber space with base orbifold
S2 with three cone points of orders u; v and d , and K is the exceptional fiber of
multiplicity d .

More generally, let M 0 be a Seifert fibered homology 3-sphere, with base S2 and
k � 3 exceptional fibers. Let K 0 be an ordinary fiber, and let a=b be the slope of
the fiber on @X 0, where X 0 D M 0 � int N.K 0/. Let M be m=n-Dehn surgery on K 0,
and K the core of the surgery solid torus. Let d D �.a=b; m=n/ D jan � bmj. If
d D 1, then M is a Seifert fiber space over S2 with k exceptional fibers, and K is
an ordinary fiber. If d > 1, then M is a Seifert fiber space over S2 with .k C 1/

exceptional fibers, and K is an exceptional fiber of multiplicity d . By Lemma 2.15,
kKk D kK 0k=m, and in both cases this can be made arbitrarily small by taking m

sufficiently large.

Case D. (M is hyperbolic and K is a non-trivial cable of the core of a Margulis tube.)
Let K0 be a hyperbolic knot in S3. Fix coprime integers p; q > 1, and let k be any
positive integer. Then kq2 and .1Ckpq/ are coprime, so there exist integers a; b such
that akq2 � b.1 C kpq/ D 1. Let M be the manifold obtained by .�kq2=b/-Dehn
surgery on K0, and let K 0 � M be the core of the surgery. Let X0 be the exterior
of K0; then M D X0 [ V where V is a tubular neighborhood of K 0. Let �0; 	0

(resp. �; 	) be a canonical meridian-longitude pair of generators for H1.@X0/ (resp.
H1.@V /). Let f W @V ! @X0 be the gluing homeomorphism. We can choose f so
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that with respect to the above bases f� W H1.@V / ! H1.@X0/ is given by the matrix

A D
 

kq2 �.1 C kpq/

�b a

!
:

Then

A�1 D
 

a 1 C kpq

b kq2

!

in particular, under the gluing the longitude 	0 on @X0 is identified with a curve of
slope .1 C kpq/=kq2 on @V .

Let K � int V be the .p; q/-cable of K 0, the core of V . Then X D M �
int N.K/ D X0 [ .V � int N.K// D X0 [ C , where C is a .p; q/-cable space (see
[13], §3). There exists a planar surface P � C with one boundary component on
@V , with slope .1 C kpq/=kq2, and q boundary components on @N.K/, with slope
.1 C kpq/=k (see Lemma 3.1 in [13]). Let S0 be a Seifert surface for K0, and define
S D P [ S0, glued along @S0 D P \ @V . Since each of the q components of
S \ @N.K/ has intersection number k with the meridian of K, it follows that S is a
qk-Seifert surface for K. Therefore kKk � �.S/=qk D .�.S0/ C .q � 1/=2/=qk,
which goes to 0 as k goes to infinity. Also, for k sufficiently large, M is hyperbolic
and K 0 is the core of a Margulis tube in M .

Case E. (M is a Seifert fiber space and K is a cable of an exceptional fiber but not
a fiber.) Repeat the construction in Case D above, but with K0 a .u; v/-torus knot.
Then M is a Seifert fiber space and K 0 is a fiber of multiplicity �.�kq2=b; uv=1/ D
jkq2 C buvj, which we can arrange to be > 1. Then K is the .p; q/-cable of an
exceptional fiber. On the other hand it is easy to see that K can be a fiber in the
Seifert fibration of M for at most one value of k.

Case F. (M is toroidal and K lies in a torus in the JSJ decomposition of M .) Let
K1; K2 be non-trivial knots in S3, and let K 0 D K1 # K2. Let M be the manifold
obtained by m-surgery on K 0 for some m > 0, and let K be the core of the surgery
solid torus. By Lemma 2.15 kKk D kK 0k=m; thus kKk is non-zero but can be made
arbitrarily small by taking m sufficiently large.

Let Xi D S3 � int N.Ki / be the exterior of Ki , i D 1; 2; then X D S3 �
int N.K 0/ D X1 [A X2 where A is a meridional annulus in @Xi , i D 1; 2. Let V

be the surgery solid torus. Note that the boundary slope of A on @X (the meridian
of K 0) intersects the meridian of V once. It follows that X1 [ V Š X1, and so
M D .X1 [ X2/ [ V Š X1 [T X2, where T D @X1 D @X2. Also K, the core of
V , is isotopic into T .

If, for example, we take K1 to be hyperbolic and K2 to be either hyperbolic or a
torus knot, then T is the unique torus in the JSJ decomposition of M . Note also that
in the second case K is not a Seifert fiber in X2. If we take Ki to be the .pi ; qi / torus
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knot, i D 1; 2, and m ¤ p1q1 C p2q2, then again T is the unique JSJ torus in M ,
and K is not a Seifert fiber of either X1 or X2.

Further examples are given in the next subsection.

2.5. Torus bundles. In this section we analyze the case where M is a T 2-bundle
over S1 and K is an essential simple closed curve in a fiber. It turns out that this
gives further examples of knots with arbitrarily small rational genus, which need to
be taken account of in the statement of Theorem 5.19.

Let f W T 2 ! T 2 be an orientation preserving diffeomorphism, and let Mf be
the mapping torus of f , obtained from T 2 � I by identifying .x; 0/ with .f .x/; 1/

for all x 2 T 2. If we choose a basis for H1.T 2/, the automorphism f� of H1.T 2/

induced by f is represented by a matrix Af 2 SL.2; Z/; the diffeomorphism type
of Mf depends only on the conjugacy class of Af in GL.2; Z/. Let K in Mf be an
essential simple closed curve in a fiber. If trace f� ¤ 2 then det.Af � I / ¤ 0, and
so every such K has finite order in H1.Mf /. If trace f� D 2 then Af is conjugate
in GL.2; Z/ to

�
1 p
0 1

�
for some p � 0. If p D 0 then Mf D T 3 and no K has finite

order in H1.Mf /, so in the sequel we shall always assume that f� ¤ Id. If p � 1

then there is a unique K with finite order .D p/ in H1.Mf /.
Let a and b be oriented simple closed curves in T 2 meeting transversely in a single

point, such that K is the image in Mf of the curve a � f1=2g � T 2 � I . Thinking of
T 2�I as .a�b/�I D a�.b�I / shows that .T 2�I; K/ D .S1�A2; S1�fpointg/,
and therefore T 2 � I � int N.K/ Š S1 � P 2, where P 2 is a pair of pants. Let the
boundary components of P 2 be B0, B1 and C , where S1 � Bi D Ti D T 2 � fig,
i D 0; 1, and S1 � C D @N.K/. Let b0, b1, c be the homology classes of B0, B1

and C , respectively, oriented so that Œ@P 2� D b0 � b1 C c, and so that b0 and b1 map
to the class b above in H1.T 2 � I / (we will abuse notation by not distinguishing
between a; b and their classes in H1.T 2/).

We now wish to describe certain horizontal surfaces in S1 � P 2. Consider the
homomorphism H1.P 2/ ! Z defined by b0 7! `0, b1 7! `1 (so c 7! `1 � `0),
where `0 and `1 are arbitrary integers. Composing with the Hurewicz map we get
a homomorphism �1.P 2/ ! Z, which is induced by a map � W P 2 ! S1. Let m

be an integer � 1 and let 
 W S1 ! S1 be the connected covering of degree m. Let
F ! P 2 be the Z=mZ covering corresponding to the composition of �� with the
quotient map Z ! Z=mZ. This covering is the pull-back of 
 under the map � , in
other words we have a commutative diagram

F
p1����! S1

p2

??y ??y�

P 2 ����!
�

S1
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where F is identified with the subset f.x; y/ W 
.x/ D �.y/g of S1 � P 2, and p1

and p2 are the restrictions of the projections of S1 � P 2 onto the factors.
Consider the ordered bases .a; b0/, .a; b1/ and .a; c/ for H1.T0/, H1.T1/ and

H1.@N.K//, respectively. Let QB0, QB1, QC be the respective inverse images in @F of
B0, B1 and C . Since the coverings QBi ! Bi , i D 0; 1, and QC ! C have degree m,
we have

Œ QBi � D `ia C mbi ; i D 0; 1;

Œ QC � D `a C mc where ` D `1 � `0:
(2.5.1)

In particular, if ` ¤ 0 then F is a relative j`j-Seifert surface for K in T 2 � I .

Let f� be represented with respect to the basis .a; b/ by
�

˛ ˇ
� ı

�
2 SL.2; Z/.

Assume for the moment that we are not in the case � D 0, ˛ D ı D �1. Then we
can choose `0 and m � 1 such that

�`0 C .ı � 1/m D 0; (2.5.2)

and define
`1 D ˛`0 C ˇmI (2.5.3)

so
` D .˛ � 1/`0 C ˇm: (2.5.4)

Then
�

˛ ˇ
� ı

� �
`0
m

� D �
`1
m

�
, which implies that we may isotope f so that f . QB0/ D

QB1, and hence F becomes an orientable surface S in Mf . If trace f� ¤ 2 then
(2.5.2) and (2.5.4) imply that ` ¤ 0, and so S is an j`j-Seifert surface for K. Since
�.S/ D �.F / D m�.P 2/ D �m, we get

kKk � m=2j`j: (2.5.5)

We note that if trace f� ¤ 2 and � ¤ 0, it follows easily from (2.5.2) and (2.5.4) that

m=` D �=.trace f� � 2/: (2.5.6)

In the case trace f� D 2, Af is conjugate to
�

1 p
0 1

�
, p � 1, where the first element

of the corresponding ordered basis for H1.T 2/ is represented by the unique K that

has finite order in H1.Mf /. Thus
�

˛ ˇ
� ı

�
D �

1 p
0 1

�
, and in (2.5.2) we choose `0 D 0,

m D 1, giving ` D `1 D p.
The above discussion shows that unless � D 0 and trace f� D �2, any K in a

fiber of Mf having finite order in H1.Mf / has an j`j-Seifert surface, ` ¤ 0, such
that the corresponding surface F in T 2 � I � int N.K/ D S1 � P 2 is horizontal (i.e.
transverse to the S1 fibers), and (2.5.5) holds.

It remains to discuss the case � D 0, trace f� D �2, i.e. where our matrix is��1 ˇ
0 �1

�
. Let Ai be a vertical annulus in S1 � P 2 with one boundary component on
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each of Ti and @N.K/, i D 0; 1. Since f�.a/ D �a, A0 and A1 glue up to give an
annulus A in Mf � int N.K/ whose boundary components are coherently oriented
on @N.K/. Hence kKk D 0.

Finally, we show that the inequality (2.5.5) is an equality. Let S be a good p-
Seifert surface for K in Mf such that kKk D �.S/=p. Let T � Mf be the fiber that
is the image of T 2 � @I ; note that K \ T D ;. Isotoping S to minimize the number
of components of S \ T we get a relative p-Seifert surface F for K in T 2 � I that
is essential in T 2 � I � int N.K/ D S1 � P 2. Therefore F is either horizontal or
vertical.

First we dispose of the vertical case. Here F must consist of either a single annulus
with both boundary components on @N.K/, or two annuli, one running from @N.K/ to
T0 and the other from @N.K/ to T1. In the first case, Œ@S� D Œ@F � D 0 2 H1.@N.K//,
a contradiction. In the second case, we also get Œ@S� D 0 2 H1.@N.K// unless
f�.a/ D �a, in which case A0 and A1 glue up to give an annulus A in Mf �int N.K/

that is a 2-Seifert surface for K, implying that kKk D 0. This is precisely the case
� D 0, trace f� D �2 discussed above.

Now suppose F is horizontal. Then the restriction to F of p2 W S1 � P 2 ! P 2

is a covering projection, of degree m � 1, say. Then, with the same notation as
used earlier, we see that (2.5.1) must hold, and the subsequent discussion shows
that (2.5.2) holds for some `0, that p D j`j where ` D `1 � `0, and thence that
kKk D �.S/=j`j D m=2j`j.

The following theorem summarizes our conclusions.

Theorem 2.21. Let Mf be a T 2-bundle over S1 with monodromy f not isotopic to
the identity, and let K be an essential simple closed curve in a fiber.

(1) If trace f� D 2 then there is a unique K that has finite order in H1.Mf /, and
kKk D 1=2p where f� is represented by the matrix

�
1 p
0 1

�
, p � 1.

(2) If trace f� ¤ 2 then every K has finite order in H1.Mf /, and

kKk D j�=2.trace f� � 2/j

where f� is represented by the matrix
�

˛ ˇ
� ı

�
with respect to an ordered basis

of H1.T 2/ whose first member is ŒK�.

We see immediately from Theorem 2.21 that knots in fibers of torus bundles
provide additional examples of knots with arbitrarily small rational genus. These
examples are relevant to Theorem 5.19, cases (4) and (5). We now describe this in
more detail, continuing the list in §2.4.

Case G. (M is a Seifert fiber space with no exceptional fibers and K is a fiber.) Let
M be Mf where trace f� D 2, as in part (1) of Theorem 2.21. Then M can also be
described as an S1-bundle over T 2 with Euler number p, and K is a fiber. We remark
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that M has a Nil geometric structure (see [24] pp. 467–470). By taking p large we
can make kKk D 1=2p arbitrarily small.

Case H. (M is a T 2-bundle over S1 with Anosov monodromy and K lies in a fiber.)
Let M be Mf with jtrace f�j > 2, so the monodromy f isAnosov. Note that M has a
Sol geometric structure (see [24], pp. 470–472). It is clear from the formula in part (2)
of Theorem 2.21 that we can choose M and K so that kKk is arbitrarily small. For

example, choose any matrix
�

˛ ˇ
� ı

�
2 SL.2; Z/ with � ¤ 0 and let fn W T 2 ! T 2 be

given by the matrix
�

1 n
0 1

� �
˛ ˇ
� ı

�
D
�

˛Cn� ˇCnı
� ı

�
with respect to some basis .a; b/,

say. Let Mn be the corresponding T 2-bundle and let Kn be the knot in a fiber such
that ŒKn� D a. Then kKnk D j�=2.˛ C ı C n� � 2/j ! 0 as n ! 1.

Remark 2.22. It follows from Theorem 2.21 that if we are not in Case G or Case H,
i.e. if trace f� D �2 or jtrace f�j � 1, then either kKk D 0 or kKk � 1=8.

2.6. Knots in vertical tori in Seifertfiber spaces. In this section we analyze relative
p-Seifert surfaces for knots that lie in essential vertical tori in Seifert fiber spaces.
First we have the following lemma.

Lemma 2.23. Let M be a Seifert fiber space with non-empty boundary and let
� W M ! B be the projection of M onto its base orbifold B. Let F be a horizontal
surface in M and let k be the degree of the induced branched covering �jF W F ! B.
If �.F / < 0 then �.F / � �k=6.

Proof. Let q1; : : : ; qn be the multiplicities of the exceptional fibers of M . Then (see
for example [14], §2.1)

�.F / D k

�
�.B/ �

nX
iD1

�
1 � 1

qi

��
:

Since �.F / < 0, the maximal value of the expression in parentheses is attained when
�.B/ D 1, n D 2, q1 D 2, q2 D 3, which gives the value �1=6. �

Proposition 2.24. Let M be a Seifert fiber space, T a vertical essential torus in M ,
K an essential simple closed curve in T , and F a relative p-Seifert surface for K.
Then either

(1) ���.F / � p=6; or

(2) K is an ordinary fiber in the Seifert fibration of M ; or

(3) M contains a submanifold Q that is a twisted S1-bundle over the Möbius band
and K is a fiber in Q.
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Note that if (3) holds but (2) does not then the Seifert fibration of Q induced from
M is the one with base orbifold a disk with two cone points of order 2.

Proof. Let T 2 � I be a regular neighborhood of T D T 2 � f1=2g. First suppose
that T separates M . Then M D X0 [ T 2 � I [ X1, where Ti D T 2 � fig is a
component of @Xi , i D 0; 1. Let N.K/ be a regular neighborhood of K in T 2 � I

and let Y D T 2 � I � int N.K/. Then X D M � int N.K/ D X0 [ Y [ X1. Let
F be a good relative p-Seifert surface for K in M . Let Fi D F \ Xi , i D 0; 1,
and G D F \ Y . We may assume that F0, F1 and G are essential in X0, X1 and
Y respectively. The Seifert fibration of M induces Seifert fiber structures on X0 and
X1, with base orbifolds B0 and B1, say. Recall from §2.5 that Y Š S1 � P 2 where
P 2 is a pair of pants.

Note that Fi is horizontal or vertical in Xi , i D 0; 1, and G is horizontal or vertical
in Y Š S1 � P 2. Write @iFi D @Fi \ Ti D @G \ Ti D @iG, i D 0; 1.

Case I. G is vertical. Since a vertical annulus in Y that has both its boundary com-
ponents on @N.K/ has these boundary components oriented oppositely on @N.K/,
and since F is good, it follows that G consists of p parallel copies of an annulus with
one boundary component on @N.K/ and the other on (say) T0, F1 D ;, and F0 is
connected.

Subcase (a). �.F0/ < 0. Then F0 is horizontal in X0. Since @0F0 has p components
the index of the covering F0 ! B0 is at least p. Therefore, by Lemma 2.23,
�.F / D �.F0/ � �p=6.

Subcase (b). �.F0/ D 0. Then F0 is an annulus. First suppose that @0F0 has a
single component. If F0 is horizontal then X0 Š F0 � S1 Š T0 � I , contradicting
the assumption that T is essential in M . If F0 is vertical then K is an ordinary fiber
in the Seifert fibration of M .

If @0F0 has two components then F is an annulus with both boundary components
on @N.K/ and by Theorem 2.11 K is contained in a submanifold N of M where N

is a Seifert fiber space over the Möbius band with at most one orbifold point of order
r � 1 and K is a fiber of multiplicity r . If r > 1 then, since the Seifert fibration of
N is unique, K is an exceptional fiber in M . But this contradicts the fact that K is
contained in a vertical torus. Hence r D 1 and we have conclusion (3).

This completes the proof in Case I.

Case II. G is horizontal. Here we will adopt the notation of §2.5. Let m be the index
of the covering G ! P 2; so �.G/ D �m. Also we have

Œ@iFi � D Œ@iG� D `ia C mbi ; i D 0; 1;

Œ@G \ N.K/� D .`1 � `0/a C mc;

where p D j`1 � `0j.
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Let 'i be the Seifert fiber of M on Ti , i D 0; 1. Then Œ'i � D ˛a C ˇbi , say,
i D 0; 1. If ˇ D 0 then ŒK� D Œ'i � so K is an ordinary fiber in the Seifert fibration
of M . We will therefore assume that ˇ ¤ 0.

If Fi is horizontal in Xi , let ki denote the index of the associated covering Fi !
Bi , i D 0; 1. Then ki D j@iFi � 'i j D j.`ia C mbi / � .˛a C ˇbi /j D jˇ`i � ˛mj,
where � denotes algebraic intersection number.

Sublemma 2.25. (1) If both F0 and F1 are horizontal then k0 C k1 � p.

(2) If Fi is horizontal and �.Fi / D 0 then ki � m.

(3) If F0 is horizontal and F1 is vertical then k0 � p.

Proof. (1) k0 C k1 D jˇ`0 � ˛mj C jˇ`1 � ˛mj � jˇj j`1 � `0j D jˇjp � p.
(2) Here Fi consists of parallel copies of a horizontal annulus A in Xi . If A

has one boundary component on Ti and one on @M then Xi Š A � S1 Š Ti � I ,
contradicting the assumption that T is essential in M . Also, since the components
of @iG are coherently oriented on Ti the same holds for @iFi . It follows that A

is non-separating and Bi is a disk with two cone points of order 2. In particular
each boundary component of A has intersection number 1 with the Seifert fiber 'i .
Therefore ki D j@iFi � 'i j is the number of components of @iFi D @iG, which is
� m since G is an m-fold covering of P 2.

(3) If F1 is vertical then Œ@1F1� D `1a C mb1 D sŒ'1� D s.˛a C ˇb1/ where s

is the number of components of @1F1 D @1G. Hence s � m. Now

sk0 D j@0F0 � s'0j
D .`0a C mb0/ � .`1a C mb0/

D mj`1 � `0j D mp:

Therefore k0 D mp=s � p. �

We now complete the proof of Proposition 2.24 in Case II.
First note that F0 and F1 cannot both be vertical, for then we would have `0 D `1

and hence p D 0.

Subcase (a). F0 and F1 horizontal. If �.F0/; �.F1/ < 0 then

j�.F /j D j�.F0/j C j�.F1/j C j�.G/j
� .k0 C k1/=6 C m; by Lemma 2.23

� p=6 C m; by Sublemma 2.25 (1)

> p=6:
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If �.F0/ D 0 and �.F1/ < 0 then k0 � m by Sublemma 2.25 (2), and hence
k1 � p � m by Sublemma 2.25 (1). Therefore

j�.F /j D j�.F1/j C j�.G/j
� k1=6 C m

� .p � m/=6 C m > p=6:

Finally, if �.F0/ D �.F1/ D 0, then by Sublemma 2.25 parts (1) and (2), we have
p � k0 C k1 � 2m. Hence

j�.F /j D j�.G/j D m � p=2:

Subcase (b). F0 horizontal, F1 vertical. If �.F0/ < 0 then

j�.F /j D j�.F0/j C j�.G/j
� k0=6 C m

� p=6 C m; by Sublemma 2.25 (3)

> p=6:

If �.F0/ D 0 then by Sublemma 2.25 (2) k0 � m, while by Sublemma 2.25 (3)
k0 � p. Hence j�.F /j D j�.G/j D m � p.

This completes the proof of Proposition 2.24 when T separates M .
If T is non-separating, let � W M ! B be the projection from M to its base

orbifold B. Let N be a regular neighborhood of either the union of the exceptional
fibers of M or, if M is closed and has no exceptional fibers, an ordinary fiber. Let
M0 D M � int N , with corresponding base orbifold B0. Then M0 is an S1-bundle
over B0 and T D ��1.C / for some non-separating orientation-preserving simple
closed curve C in B0. Now H1.T / has basis '; � , where ' is the class of the S1-fiber
of M0 and ��.�/ D ŒC � 2 H1.B0/. Therefore ŒK� D r' C s� for some pair of
relatively prime integers r; s.

Isotoping F to be transverse to the core of the components of N , let F0 D F \M0.
Then F0 defines a homology of pK into @M0. Therefore, considering the map
�� W H1.M0; @M0/ ! H1.B0; @B0/, we have 0 D ��.pŒK�/ D psŒC �. Since C

is orientation-preserving and non-separating, ŒC � has infinite order in H1.B0; @B0/,
and so we conclude that s D 0. Therefore K is an ordinary fiber in the Seifert fibration
of M . �

3. Graphs

Several of our arguments concern the interaction between a relative p-Seifert surface
F for a knot K in M , and another surface yG properly embedded in M . Such
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arguments are handled in a uniform manner, by making the surfaces intersect as
simply as possible, and then by analyzing cases depending on the combinatorics of
this intersection. The arguments in this section are mostly combinatorial.

3.1. Graphs on surfaces. Fix the following notation. Let K denote a knot in M ,
let F be a good relative p-Seifert surface for K, and let yG be a properly embedded
surface in M (usually a Heegaard surface, or an essential surface; usually of low
complexity). Under such a circumstance, we perform the following procedure.

Isotop N.K/ so that it meets yG in n meridian disks, and let G D yG \ X , so that
F and G are both proper surfaces in X . After an isotopy, we may assume that F and
G meet transversely in a finite disjoint union of circles and properly embedded arcs
and that each of the q components of @F \ @N.K/ meets each of the n components
of @G \ @N.K/ in r points, with notation as in Definition 2.5.

Formally cap off the components of @F \ @N.K/ with disks to obtain a surface
yF (note: if F is an honest p-Seifert surface, then yF is closed. Otherwise, @ yF D
@F \ @M ). The intersection F \ G determines graphs �F and �G in yF and yG
respectively, where the vertices of �F (resp. the vertices of �G) correspond to the
disks of yF � F (resp. the disks of yG � G) and the edges correspond to the arc
components of F \ G with at least one endpoint on @N.K/. We distinguish between
two kinds of edges of �F and �G : interior edges, which have both endpoints on
@N.K/ (i.e. at the vertices), and boundary edges, which have one endpoint on @N.K/,
and the other on @ yF D F \ @M or @ yG D G \ @M .

Choose orientations on F , G and X . This induces orientations on @F , @G and
@X , and an arc of F \ G joins points of intersection of @F with @G of opposite sign.

Number the components of @G \ @N.K/ (equivalently, the vertices of �G) with
the integers 1; 2; : : : ; n in the (cyclic) order they occur along @N.K/. Hereafter
an index means an element of this index set; i.e. an element i 2 f1; : : : ; ng. We
imagine that the vertices of �F and �G are thickened, so that distinct edges end
at distinct “edge-endpoints” on a (thickened) vertex. With this convention, an edge-
endpoint at a vertex of �F is a point of intersection of the corresponding component of
@F \@N.K/ with a component of @G \@N.K/, and we label the edge-endpoint with
the index corresponding to the label on the component of @G \ @N.K/. Notice that
it is the vertices of �G and the edge-endpoints of �F that are labeled with indices.
Since F is good (by hypothesis), all components of @F \ @N.K/ are coherently
oriented on @N.K/, and therefore at each vertex of �F we see the index labels
1; 2; : : : ; n; 1; 2; : : : ; n; : : : repeated r times in (say) anticlockwise order on the edge-
endpoints around the vertex. Notice that if �F and �G have ei interior edges and e@

boundary edges, then 2ei C e@ D pn.

In applications, the surface yG will always be either essential, or a Heegaard
surface. In the former case we will choose n D jK \ yGj to be minimal; and in the
latter case we will put K in thin position.
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Remark 3.1. Thin position for knots in S3 was introduced by Gabai [12], and for
knots in arbitrary 3-manifolds by Rieck [20], [21], and we refer to these references
for details. Technically, a knot is in thin position with respect to a sweepout of a
3-manifold (associated to a Heegaard splitting). The Heegaard surface yG is one of
the nonsingular level sets of this sweepout, chosen depending on F .

Lemma 3.2. With notation and conventions as above, we can arrange that no arc
component of F \ G with both endpoints in @N.K/ is boundary parallel in either F

or G. Equivalently, the graphs �F and �G have no monogon (disk) faces.

Proof. The arguments are standard. Since components of @F are oriented coherently
on @N.K/, every point of intersection of a given component of @G with @F has the
same sign. Hence in particular, every interior edge of �G has endpoints on distinct
vertices of �G , and there are never any complementary monogons.

If there is a monogon complementary to �F then yG can be pushed over such a
monogon by an isotopy, thereby reducing the number of intersections with K; this is
ruled out by hypothesis when yG is essential.

It remains to rule out monogon regions for �F when yG is a Heegaard surface (note
that such monogons may contain interior loops of F \ yG that bound compressing
disks for yG; see footnote 12 on page 635 of [21]). Such a monogon region is
either a high disk or a low disk for yG, in the terminology of [21]. The existence
of disjoint high and low disks at some level violates thinness; Gabai’s argument in
[12] (also see Theorem 6.2 in [21]) shows that for a knot in thin position, some level
set of the sweepout admits neither. Choosing yG to be such a level set, �F has no
monogons. �

Remark 3.3. If F \G has a simple closed curve component that bounds a disk in G,
let � be an innermost such, i.e. � bounds a disk D in G such that F \ .int D/ D ;.
Since F is incompressible in X , the loop � bounds a disk E in F . Surgering F along
D produces a 2-sphere † D E [ D together with a surface F 0 that is essential in
X , has @F 0 D @F , and is homeomorphic to F , and which may be isotoped so that
jF 0 \ Gj < jF \ Gj. If M is irreducible then † bounds a 3-ball and F 0 is isotopic to
F . So in that case we may assume that no simple closed curve component of F \ G

bounds a disk in G.
If yG is essential we will always assume that n D jK \ yGj is minimal over all

essential surfaces yG in M of the given homeomorphism type. This implies that G is
essential in X . Hence by the remarks above, interchanging the roles of F and G, we
may assume that no simple closed curve component of F \ G bounds a disk in F .

Let �F as above be a graph on yF without monogons. If every complementary
region to �F is a bigon, then either yF is a sphere, �F has exactly two vertices, with
parallel interior edges running between them, or yF is a disk, �F has exactly one
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vertex, with parallel boundary edges running from the vertex to the boundary. We
call such a �F a beachball (Figure 1 indicates why), of the first kind and second kind
respectively.

Remark 3.4. If �F is a beachball of the first kind then kKk D 0 and K satisfies
conclusion (3) of Theorem 2.11.

Figure 1. A beachball of the first kind, with 18 complementary bigon regions.

Suppose �F is not a beachball. The reduced graph x�F associated to �F is
obtained from �F by collapsing all bigon regions. More generally, a reduced graph
x� in a surface yF is any graph with no complementary monogon or bigon regions.

Lemma 3.5. Let x� be a reduced graph in yF with Ne edges. Then ��.F / � Ne=3.

Proof. Let Nv be the number of vertices of x� , and Nf the number of complementary disk
faces. Non-disk faces contribute non-positively to Euler characteristic, so �. yF / �
Nv � Ne C Nf . Hence �.F / D �. yF /� Nv � Nf � Ne. Since x� is reduced, it has no monogon
or bigon faces, so 2 Ne � 3 Nf . Hence 3�.F / � 3 Nf � 3 Ne � �Ne. �

Edges in �F that cobound a bigon are said to be parallel. If �F is complicated,
either ��.F / is large by Lemma 3.5, or else there are many parallel edges. The next
lemma discusses the latter possibility. But first we introduce some terminology.

Notation 3.6. An interior edge of �G that joins vertices with index labels i and j

will be called an .i; j /-edge.

Lemma 3.7. If �F contains .mn C 1/ parallel interior edges where m � 1, then
there exists an index k such that

(1) for each index i , the graph �G has 2m edges which are .i; k � i/-edges; and

(2) for some index i0, the graph �G has .2mC1/ edges which are .i0; k�i0/-edges.
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Proof. Since all boundary components of F are oriented coherently on K (one says
the vertices of �F have the same sign), there is some (odd) index k such that the
index labels of any edge in the family are i and k � i (taken mod n). Since the family
contains .mn C 1/ edges, there is an index label i0 that appears .m C 1/ times at
one end of the family, and m times at the other end; this proves the second claim.
Moreover, any index label i appears at least m times at each end, proving the first
claim. �

Every edge of �G is an arc of intersection of F with G, and therefore corresponds
to an edge of �F , and conversely. The next two lemmas control what happens when
there are pairs of edges that are parallel on both graphs simultaneously.

Lemma 3.8. Suppose there are interior edges that are parallel on both �F and �G .
Then .M; K/ D .M 0; K 0/ # .RP 3; RP 1/.

Proof. Since all vertices of �F have the same sign, this follows from the argument in
[13], proof of Proposition 1.3. We observe that this argument is still valid if F \ G

has simple closed curve components. �

Lemma 3.9. Suppose there are boundary edges that are parallel on both �F and
�G . Then K is isotopic into @M .

Proof. By [11], Lemma 2.5.4, such a pair of boundary edges gives an essential annulus
A in X with one boundary component on @M and one on @N.K/, the latter having
intersection number 1 with the meridian of K. Again this argument is valid in the
presence of simple closed curve components of F \ G. This annulus can be used to
define an isotopy of K into @M . �

3.2. Cables, satellites and tori. In the sequel, many arguments will depend on
relativizing to a knot in a simple 3-manifold with boundary (i.e. a submanifold of
M ). In this section, we analyze the most important special cases.

Definition 3.10. Let K be a knot in M , with regular neighborhood N.K/. Let K 0 be
a simple closed curve on @N.K/ that is essential in N.K/. Then we call K 0 a cable
of K.

A knot K 0 contained in N.K/ is called a satellite of K if it is not contained in a
3-ball in N.K/. If ŒK 0� D kŒK� 2 H1.N.K// then k is called the winding number
of the satellite.

Remark 3.11. Note that our definitions of a satellite and of a cable include the trivial
cases where K 0 is isotopic to K in N.K/.



Vol. 88 (2013) Knots with small rational genus 109

Proposition 3.12. Let K0 be a knot in a 3-manifold M whose exterior has incom-
pressible boundary, and let K be a satellite of K0 with winding number k > 0. Then
kKk � kkK0k.

Proof. By the definition of satellite, K is contained in a solid torus V in M whose
core is K0. Let X0 D M � int V . Let S be a good p-Seifert surface for K,
F D S \ .V � int N.K//, and S0 D S \ X0.

If K0 is p-trivial for some p the result is obvious. So we may assume that @V is
incompressible in X0 (see Remark 2.16). Thus @V is incompressible in M � K, and
we may therefore assume that no component of S0 or F is a disk. Hence �.S/ D
�.F / C �.S0/.

In H1.V /, there is equality Œ@S0� D Œ@S� D pŒK� D pkŒK0�. Therefore

kK0k � �.S0/=pk � �.S/=pk:

Since S can be chosen so that �.S/=p is arbitrarily close to kKk, the result follows
(or one can just apply Proposition 2.10). �

Proposition 3.13. Let M be a 3-manifold whose boundary contains a compressible
torus T , and let K be a knot in M such that T is incompressible in M � K. Let F

be a relative p-Seifert surface for K. Then either

(1) ���.F / > p=6; or

(2) K is isotopic into T .

Proof. It is enough to prove the proposition under the assumption that F is good.
Let D be a compressing disk for @M in M , such that D \ N.K/ consists of

n meridian disks of N.K/, with n minimal. By hypothesis, n > 0. Let X D
M � int N.K/ as usual.

Let P D D \ X , a planar surface. By the minimality of n, the surface P

is incompressible in X . Let �F and �P be the intersection graphs in yF and D

respectively. There are two cases to consider.
Case A. (n D 1) In this case, P is an annulus, �F and �P have p edges, and all
edges are boundary edges. In particular, all edges of �P are parallel. If �F has a pair
of parallel edges then K is isotopic into T by the proof of Lemma 3.9. If not, then
either �F is a beachball of the second kind with a single edge, or the reduced graph
x�F is defined and is equal to �F . In the first case the annulus F defines an isotopy
of K into T . In the second case ��.F / � p=3 by Lemma 3.5.

Case B. (n > 1) This case depends on two sublemmas.

Sublemma 3.14. The graph �F contains no family of .bn=2c C 1/ parallel interior
edges.
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Proof. Since all the vertices of �F have the same sign, such a family would contain a
(length 2) Scharlemann cycle (hereafter referred to as an S -cycle) i.e. a configuration
of the form depicted in Figure 2. As in [22], Proposition 4.7, this S -cycle can be

i C 1

i

i

i C 1

Figure 2. An S -cycle.

used to tube and compress D, giving a new compressing disk D0 with @D0 D @D

and jD \ Kj D n � 2, contradicting minimality of n. �

Sublemma 3.15. If �F contains .2n�1/ parallel boundary edges then K is isotopic
into T .

Proof. In a family of .2n�1/ parallel boundary edges, the labels (on the vertex at one
end of the family) cycle through a full set of labels twice, with exactly one exception.
Hence in �P we get a pair of boundary edges at each vertex except (at most) one. Since
D is a disk, a pair of boundary edges together with a common vertex separates D, so
there is an outermost pair with the property that one of the complementary regions
contains no other vertex of �P . But this means that the outermost pair of boundary
edges are in fact parallel, so we obtain a pair of boundary edges that are parallel in
both �F and �P . The desired result now follows from the proof of Lemma 3.9. �

We now complete the proof in Case B. First note that Sublemma 3.14 implies that
�F is not a beachball of the first kind. If �F is a beachball of the second kind then
by Sublemma 3.15 we may assume that p D 1. But then the boundary component of
F that lies on @N.K/ intersects the meridian of K exactly once, and so F defines an
isotopy of K into T . We may therefore suppose that the reduced graph x�F of �F on
yF exists, with, say, Nei interior edges and Ne@ boundary edges. By Sublemma 3.14 each

interior edge of x�F corresponds to at most bn=2c edges of �F , and by Sublemma 3.15
we may assume that each boundary edge of x�F corresponds to at most .2n�2/ edges
of �F . Thus edges of x�F contribute at most n and .2n � 2/ to the sum of valences
at all vertices of �F respectively. Since this total sum is pn, and since n � 2n � 2,
we get Ne D Nei C Ne@ � pn=.2n � 2/ > p=2. The conclusion now follows from
Lemma 3.5. �

Corollary 3.16. Let K0 be a knot in a 3-manifold M that is not m-trivial for any m,
and let K be a non-trivial cable of a non-trivial cable of K0. Then kKk > 1=12.

Proof. Let V be a regular neighborhood of K0 containing K, and let X0 D M �int V .
By the hypothesis on K0, @V is incompressible in X0. Let S be a good p-Seifert
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surface for K in M , such that kKk D �.S/=p, and let F D S \V and S0 D S \X0.
Then F is a relative p-Seifert surface for K in V . Since @V is incompressible
in M � K, we may assume that no component of F or S0 is a disk, and hence
�.S/ D �.F / C �.S0/, giving �.F / � �.S/.

Since K is not a cable of K0, Proposition 3.13, applied to K � V , implies that
��.F / > p=6. Therefore kKk D �.S/=p � �.F /=p > 1=12. �

The next proposition considers knots contained in a neighborhood of a torus.

Proposition 3.17. Let K be a knot in T 2 �I , and let F be a relative p-Seifert surface
for K. Then either

(1) ���.F / � p=3; or

(2) K is isotopic into T 2 � f1=2g.
Proof. We assume F is good.

Put K in thin position with respect to the torus yT WD T 2�f1=2g. Let n D jK\ yT j,
an even integer � 0. If n D 0 the second conclusion holds, so assume n � 2.
Construct �F ; �T without monogons, as in Lemma 3.2. Note that all edges are
interior edges. We require a sublemma.

Sublemma 3.18. �F does not contains a family of .n=2 C 1/ parallel edges.

Proof. Any such family contains an S -cycle. This gives rise to a Möbius band
properly embedded in (say) T 2 � Œ1=2; 1�, which is absurd. �

By Sublemma 3.18, we obtain an estimate Ne � e=.n=2/ D p, where Ne is the
number of edges in the reduced graph x�F . (Note that x�F exists, since otherwise �F

is a beachball of the first kind and K satisfies part (3) of Theorem 2.11. But this would
give a Klein bottle embedded in T 2 � I , which is absurd.) Now apply Lemma 3.5.

�

As a corollary, we deduce the following:

Corollary 3.19. Let T be an incompressible torus in a 3-manifold M , and let K be
a knot in M that lies in a regular neighborhood of T . Let F be a relative p-Seifert
surface for K in M . Then either

(1) ���.F / � p=3; or

(2) K is isotopic into T .

Proof. Let N be a regular neighborhood of T , and define F 0 D F \ N , F 00 D
F \ .M � N /. Since T is incompressible in M we may assume that F 00 has no
disk (or sphere) components. Therefore ���.F / � ���.F 0/, and the result follows
from Proposition 3.17. �
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4. Hyperbolic knots

In this section we consider the case that M �K is hyperbolic; i.e. that K is a hyperbolic
knot. The arguments in this section use more geometry and analysis.

4.1. Stable commutator length

Definition 4.1. Let G be a group, and a an element in ŒG; G�. The commutator length
of a, denoted by cl.a/, is the minimal number of commutators in G whose product
is a, and the stable commutator length, denoted by scl.a/, is the limit

scl.a/ D lim inf
n!1

cl.an/

n
:

From the definition one sees that cl (and therefore also scl) is a characteristic func-
tion, and therefore in particular it is constant on conjugacy classes. The function scl
can be extended to conjugacy classes which represent torsion elements in H1.GI Z/

by the formula scl.a/ D scl.an/=n for any positive integer n.
For an introduction to stable commutator length and its properties, see [4] or [8].
There is a straightforward relationship between (stable) commutator length and

norm, as follows.

Lemma 4.2. Let M be a 3-manifold, and K � M a knot. Let a 2 �1.M/ be an
element in the conjugacy class determined by the free homotopy class of K. Then
scl.a/ � kKk.

Proof. Proposition 2.10 from [8] says that scl.a/ D infS ���.S/=2n where the
infimum is taken over all oriented surfaces S mapping to M with boundary @S

mapping to K with total degree n. If S is a p-Seifert surface for K, collapsing N.K/

to K wraps @S around K with total degree p. The result follows. �

In general, scl.a/ can be smaller than kKk, since the infimum in the geometric
definition of scl.a/ (in the proof of Lemma 4.2) is taken over all surfaces S in M

which bound K, and not just embedded surfaces whose interior is disjoint from K.
In other words, scl.a/ is the best lower bound on kKk which can be estimated from
the homotopy class of K. If kKk is small, then scl.a/ is small and we will deduce
information about the homotopy class of K from this.

4.2. Stable commutator length in hyperbolic 3-manifolds. There are strong in-
teractions between geometry and scl, especially in dimension 3. The most interesting
case is that of hyperbolic geometry, summarized in the following theorem:

Theorem 4.3 ([7], Theorem C). For every 
 > 0 there is a constant ı.
/ > 0 such
that, if M is a complete hyperbolic 3-manifold and a nontrivial a 2 �1.M/ has
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scl.a/ � ı, then either a is parabolic, or otherwise if � is the unique geodesic in the
free homotopy class associated to the conjugacy class of a,

length.�/ � 
:

The dependence of ı on 
 is not proper: in every finite volume hyperbolic 3-
manifold, conjugacy classes a with scl.a/ D 1=2 correspond to arbitrarily long
geodesics. However, if K is a knot with sufficiently small norm in a closed hyperbolic
3-manifold, Theorem 4.3 implies that K is homotopic to a power of the core geodesic
of a Margulis tube, and the length of the geodesic can be bounded from above by a
constant depending on kKk.

In more detail, recall that Margulis showed that in each dimension n, there is a
positive constant 
.n/ so that every geodesic in a closed hyperbolic n-manifold of
length at most 
.n/ is simple, and is contained in an embedded solid tube whose
diameter can be estimated from below by a function of length. The exact value of the
biggest constant 
.n/ with this property is not known when n > 2, so for the sake of
precision, we make the following definition.

Definition 4.4. A Margulis tube in a hyperbolic 3-manifold is an embedded solid
tube of radius at least 0:531 around a simple geodesic (the core of the Margulis tube)
of length at most 0:162286.

The precise choice of constants are somewhat arbitrary, but are chosen to be com-
patible with the estimates obtained by Hodgson–Kerckhoff [16]; see the discussion
in the next subsection.

4.3. Deformation of cone-manifold structure. We have seen in the previous sub-
section that if K is a knot of sufficiently small norm, K is homotopic into the core of
a Margulis tube.

We would like to conclude in fact that K is isotopic to (a cable of) the core of
the tube. To do this we must use the fact that kKk is small, not just scl of the
corresponding conjugacy class in �1.M/. To make use of this fact, we must study
the geometry of M � K. In what follows we make use of some well-known results
from the theory of hyperbolic cone manifolds (with non-singular cone locus). For a
reference see e.g. [6] or [16].

We assume throughout this section that M � K is hyperbolic. Then as Thurston
already showed (see e.g. [27]), for all sufficiently small positive real numbers � , there
exists a hyperbolic cone manifold M� , unique up to isometry, whose underlying
manifold is homeomorphic to M , and whose cone locus is a geodesic in the isotopy
class of K with cone angle equal to � .

The manifolds M� can be deformed (by increasing � ) until one of the following
happens:
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(1) The cone angle can be increased all the way to 2� , and one obtains a complete
hyperbolic structure on M for which K is isotopic to a geodesic.

(2) The volume goes to 0 (and either converges after rescaling to a Euclidean cone
manifold, or the injectivity radius goes to 0 everywhere after rescaling to have
a fixed diameter).

(3) The cone locus bumps into itself (this can only happen for � > �).

In the second or third case we say that the cone manifold structure becomes singular.
Under deformation, the length of the cone geodesic strictly increases. For each � , let
l.�/ denote the length of the cone geodesic isotopic to K in M� , and let R.�/ be the
radius of a maximal open embedded tube around the cone geodesic.

Following Hodgson–Kerckhoff [16] we define

h.R/ WD 3:3957
tanh.R/

cosh.2R/

which is non-negative for positive R, is asymptotic to 0 as R goes to 0 or to 1, and
which has a single maximum value � 1:019675, achieved at r � 0:531.

The following is proved in §5 of [16]:

Theorem 4.5 (Hodgson–Kerckhoff). Let h.R/ be as above. Let l.�/ be the length of
the singular geodesic in M� . Then M� can be deformed (by increasing � ) either until
� D 2� , or until � �l is equal to the maximum of h.R/ (which occurs at approximately
R D 0:531 and is equal to approximately h.0:531/ D hmax D 1:019675) and for all
smaller values of � , the radius of a maximal embedded tube about the cone geodesic
is at least 0:531.

It follows that we can deform M� either all the way to � D 2� with l � 0:162286

and R � 0:531, in which case K is isotopic to the core of a Margulis tube, or else we
can deform M� until � � l D h.0:531/ � 1:019675 for some � < 2� . In the second
case we can estimate l.�/ � 1:019675=2� � 0:162286 and R.�/ � 0:531. In the
next few sections we will obtain a positive lower bound on the rational genus of K

in the second case.

4.4. 1-forms from tubes. Let M� be a cone manifold, with a cone geodesic �

with length l and tube radius R. Let T denote an embedded tube around � whose
radius is R, and let p W T ! � denote radial projection. Let � W � ! R=l � Z be a
parameterization of � so that d� is the length form on � . Pulling back the 1-form d�

by p� defines a 1-form on all of T which, by abuse of notation, we denote by d�.
Let r W T ! Œ0; R� be the function on T which is equal to the radial distance to � .
Define a 1-form ˛ on M� by

˛ D d� � .sinh.R/ � sinh.r//
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on T , and extend it by 0 outside T . Let ˇ be a C 1 function on Œ0; R� taking
the value 1 in a neighborhood of 0 and the value 0 in a neighborhood of R, and
satisfying jˇ0j < 1=.R � 
/ throughout Œ0; R�, for some small fixed 
. Finally define
˛� D ˇ.r/˛. Then the form ˛� is C 1 on M �� , and satisfies kd˛�k � 1C1=.R�
/

pointwise. Moreover, the integral of ˛� along � is l � sinh.R/. For a proof of these
estimates, see Lemma 4.3 from [7].

4.5. Wrapping. Suppose K is a knot of sufficiently small rational genus such that
M �K is hyperbolic. If M is hyperbolic, and K is isotopic to an embedded geodesic,
then K is isotopic to the core of a Margulis tube (whose length may be estimated
from above in terms of kKk, by Theorem 4.3). Otherwise, we can find a hyperbolic
cone manifold structure M� on the underlying topological manifold M , with cone
angle � < 2� along a single cone geodesic in the isotopy class of K, whose length
is at least 0:162286, and is contained in an embedded tube whose radius is at least
0:531. For each 
 > 0, let ˛� be a 1-form constructed as in §4.4. Let S be a good p-
Seifert surface for K in M� realizing kKk, and let S 00 be another (possibly immersed)
surface, homotopic to S rel. boundary, with interior disjoint from K. For each 
,

p � l � sinh.R/ D
Z

@S 00

˛� D
Z

S 00

d˛� � area.S 00/ � .1 C 1=.R � 
//:

Taking 
 ! 0 we obtain an estimate

l � sinh.R/ � R=.R C 1/ � area.S 00/=p: (4.5.1)

By the discussion above, we can estimate

0:03131 � 0:162286 � sinh.0:531/ � 0:531=1:531 � l � sinh.R/ � R=.R C 1/:

We claim that one can find a representative surface S 00 homotopic to S rel. boundary
in M � K, of area at most 
 � 2��.S/ for any 
 > 0. This will imply that kKk �
0:03131=4� � 2:491 � 10�3.

The representative surface S 00 is obtained by wrapping; there are two (essentially
equivalent) methods to construct a “wrapped” surface: the shrinkwrapping method
from [9], and the PL wrapping method from [25]. For technical ease, we use the PL
wrapping method. Roughly speaking, given a surface S in a hyperbolic 3-manifold
and a prescribed family � of geodesics, the PL wrapping technique finds a CAT.�1/

representative in the homotopy class of S , which can be approximated by surfaces
homotopic to S in the complement of � .

Our situation is analogous to, but not strictly equivalent to, the situation in [25] or
[9]. In our context � will be a singular cone geodesic, in the isotopy class of K, in a
cone manifold structure on M ; and the surface S will have boundary wrapping some
number of times around � but interior disjoint from � . In fact, this extra complication
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does not add any difficulty to the argument, and we will obtain the same conclusion –
namely, the existence of a CAT.�1/ surface which can be approximated by surfaces
homotopic to S (rel. boundary) in the complement of � . For the sake of completeness,
we explain the construction in detail.

The key point of the construction is that the universal cover of M �� has a metric
completion which is intrinsically CAT.�1/; this is Lemma 1.2 from [25]. Let N

denote the universal cover of M � � , and xN its metric completion. Notice that xN is
obtained from N by adding geodesics which project to components of � .

Let T be a triangulation of S with all vertices on @S . After an isotopy, we can
assume that the map @S ! � takes all vertices of the triangulation to distinct points
in � .

The interior of each edge e of T not on @S lifts to an open interval in N whose
closure is a closed interval Qe in xN . Since xN is CAT.�1/, there is a unique geodesic Qe0
in xN with the same endpoints as Qe. This projects to a piecewise geodesic segment e0 in
M with vertices on � (note that the projection e0 does not depend on the choice of the
lift Qe). For each triangle � of T , we can choose lifts Qei of the edges ei which together
span a triangle z� in xN . After replacing each Qei with a geodesic Qe0

i , we straighten z� to
a piecewise linear surface by coning one vertex to the points on the opposite edge; i.e.
if v is the vertex opposite Qe0

1 (say), for each point p on Qe0
1 there is a unique geodesic

in xN from v to p, and the union of these geodesics is a piecewise totally geodesic
disk z�0 spanning the union of the Qe0

i . Let �0 denote the projection of z�0. Then the
union of the �0 is a CAT.�1/ surface S 0 which can be approximated by surfaces
whose interior is disjoint from � , and which are homotopic to S through surfaces
with interior disjoint from � . The approximating surfaces S 00 can be chosen to have
area as close to the area of S 0 as desired; since S 0 is CAT.�1/, by Gauss–Bonnet, we
have area.S 00/ � 
 � 2��.S/, as claimed.

Remark 4.6. The argument in [25] uses extra hypotheses on S , namely that it is
incompressible and 2-incompressible rel. � . In fact, these hypotheses are superfluous
in the case that S has boundary. In fact, even when S is a closed surface, one really
only needs to know that S contains some embedded loop which is covered by a
nondegenerate infinite geodesic in xN .

Remark 4.7. The reader familiar with the construction of pleated surfaces in hyper-
bolic or CAT.�1/ spaces will recognize the similarity with PL wrapping.

In fact, for our applications, it is important to construct surfaces S 00 as above
when M has boundary consisting of tori, and S is a relative p-Seifert surface for K.
There are no extra difficulties in this case. One can proceed by either of two methods.
The easiest is to construct the PL wrapped surface directly. The triangulation of
the relative p-Seifert surface can include vertices on a “cusp” boundary component;
one just needs to observe that semi-infinite rays in xN have geodesic representatives
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(constructed e.g. by taking limits of sequences of geodesic arcs with one endpoint
going to infinity along the ray). Triangles with two vertices on a single “cusp”
boundary component degenerate to a geodesic ray under straightening. The resulting
surface, while non-compact, is complete, and satisfies area � �2��.

Alternately, one can deform the metric in a neighborhood of infinity to make it
CAT.0/, in such a way that each end is foliated as a metric product by Euclidean
totally geodesic tori; such a metric is described explicitly in the proof of Lemma 7.12
in [9]. One obtains a compact PL wrapped surface as above with some boundary
components on � , and some on a fixed family of Euclidean tori, one for each cusp
component of M . The PL wrapped surface so obtained is CAT.0/, and its restriction
to any prescribed compact region of M can be taken to be CAT.�1/; in particular,
we can assume that the surface is CAT.�1/ in the support of the 2-form d˛� , so that
the area of the part of the surface in the support of d˛� is at most �2��.S/, and we
obtain the desired bound on ��.S/.

We have therefore obtained a proof of the following theorem:

Theorem 4.8. Let K be a knot in a 3-manifold M , possibly with boundary consisting
of a union of tori. Suppose M � K is hyperbolic. Then either

(1) kKk � 1=402; or

(2) M is hyperbolic and K is isotopic to the core of a Margulis tube.

Moreover, if F is a relative p-Seifert surface for K in M , then either

(1) �.F /=p � 1=402; or

(2) M is hyperbolic and K is isotopic to the core of a Margulis tube.

4.6. Better estimates. In fact, though the wrapping technique explains in a direct
geometric way the relationship between kKk and the geometry of K in M , one can
obtain better estimates at the cost of appealing to some more refined technology of
Agol and Cao–Meyerhoff (which we treat as a black box). For the benefit of the
reader we include a sketch of a proof of the following:

Proposition 4.9. Let K be a knot in a 3-manifold M . Suppose M � K is hyperbolic.
Then either

(1) kKk � 1=50; or

(2) M is hyperbolic and K is isotopic to the core of a Margulis tube.

Proof. Let S be a p-Seifert surface for K. Let T be a maximal horospherical cusp
torus in M � K; we may regard S as satisfying @S � T . Since S is essential,
Theorem 5.1 from [1] gives j�.S/j � `.@S/=6 where ` denotes Euclidean length
measured on T . Note that `.@S/ D q`.
/, where q is the number of boundary
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components of S , and 
 is the boundary slope. Also, p D q�.
; �/, where �.
; �/

is the geometric intersection number of 
 with the meridian slope �. Hence

j�.S/j=2p � `.@S/=12p D q`.
/=12q�.
; �/ D `.
/=12�.
; �/:

Let A be the area of T . Then by the proof of Theorem 8.1 from [1],

A � `.
/`.�/=�.
; �/:

Hence
j�.S/j=2p � A=12`.�/ � p

A=12`N .�/

where `N .�/ WD `.�/=
p

A is the normalized length of � (see [10]). By [10] one
knows without hypothesis that A � 3:35. If we define

C WD p
3:35=12.7:515/ 	 0:0203 > 1=50

then we conclude

j�.S/j=2p < C implies that `N .�/ � 7:515

and therefore by [10] p. 410 we deduce that M is hyperbolic and K is isotopic to the
core of a Margulis tube (i.e. a geodesic of length � 0:162 with tube radius � 0:531).

�

It is therefore probably safe to replace 1=402 by 1=50 throughout the sequel by
appealing to Proposition 4.9 in place of Theorem 4.8 (it is, however, unlikely that
1=50 is sharp).

5. General knots

We are now in a position to discuss the most general case of a knot K in a closed,
orientable 3-manifold M such that ŒK� has finite order in H1.M/. The discussion is
case-by-case, and depends on the (well-known) prime and JSJ decomposition theo-
rems.

The first step is to consider the interaction of .M; K/ with the essential 2-spheres
in M . Such spheres are treated by the following theorem.

Theorem 5.1. Let K be a knot in a reducible manifold M . Then either

(1) kKk � 1=12; or

(2) there is a decomposition M D M 0 # M 00, K � M 0 and either

(a) M 0 is irreducible, or
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(b) .M 0; K/ D .RP 3; RP 1/ # .RP 3; RP 1/.

Note that in case (2) (b), kKk D 0.

Proof. Let S be a good p-Seifert surface for K.
First assume that M � K is irreducible. Let † be an essential 2-sphere in M ,

chosen so that n D j† \ Kj is minimal. Since ŒK� has finite order in H1.M/, the
algebraic intersection number of K and † is zero; thus n is even and > 0.

Let P be the planar surface † � int N.K/. Let �S , �P be the intersection graphs
in yS and † respectively, defined by the arc components of S \ P .
Case A. (n � 4) An extended S -cycle is a configuration of the form depicted in
Figure 3; i.e. a series of four parallel edges, whose middle pair form an ordinary
S -cycle.

i C 1
i

i
i C 1

Figure 3. An extended S -cycle.

In this context, and with the assumption that n � 4, Lemma 2.3 from [28] says
precisely that �S does not contain an extended S -cycle. Hence �S does not contain
a family of .n=2 C 3/ parallel edges. Let x�S denote the reduced graph of �S . Since
e D pn=2, we can estimate Ne � p.n=2/=.n=2 C 2/ � p=2 (because n � 4), where
Ne denotes the number of edges of x�S . Hence by Lemma 3.5, we have ��.S/ � p=6

and therefore kKk � 1=12.

Case B. (n D 2) Here P is an annulus, so all edges of �P are parallel (i.e. �P is a
beachball).

If �S has a pair of parallel edges, consider an innermost such pair e1; e2, i.e. e1

and e2 cobound a bigon face of �S . The corresponding edges of �P are necessarily
parallel, and it follows that their endpoints, x1 and x2, say, at a given vertex of �P are
diametrically opposite, in the sense that there are the same number of edge-endpoints
in each of the two intervals around the vertex on either side of the pair fx1; x2g; see
Figure 4 in [13]. Therefore �S cannot have three mutually parallel edges.

If �S is a beachball with exactly two edges, the argument in the proof of Propo-
sition 1.3, case (1) from [13] shows that † decomposes .M; K/ as a connected sum
.RP 3; RP 1/ # .RP 3; RP 1/, which we think of as a degenerate case of case (2) (b)
in the statement of the theorem.

We may therefore assume that �S is not a beachball, and that no family of parallel
edges in �S has more than two edges. Consequently the reduced graph x�S exists
and its number of edges Ne � p=2, so Lemma 3.5 gives �.S/ � �p=6, and hence
kKk � 1=12. This completes the analysis when M � K is irreducible.
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If M �K is reducible, we can write M D M 0 #M 00 where K � M 0 and M 0 �K is
irreducible. Let †0 be a 2-sphere in M �K realizing the connected sum decomposition
M � K D .M 0 � K/ # M 00. By surgering S along the curves of intersection S \ †0
we get a p-Seifert surface S 0 for K in M 0, with ���.S 0/ � ���.S/. The theorem
now follows from the argument in the case that M � K is irreducible. �

After Theorem 5.1 we may assume that M is irreducible. Moreover, if M � K

is reducible then K lies in a 3-ball in M and so either kKk � 1=2 or K bounds a
disk (in which case kKk D 0). We therefore assume in the sequel that both M and
M � K are irreducible.

A closed, irreducible 3-manifold M is either S3, a lens space, an atoroidal Seifert
fiber space over S2 with three exceptional fibers, hyperbolic, or toroidal. The next
theorem treats the case that M is a lens space.

Theorem 5.2. Let K be a knot in a lens space M . Then either

(1) kKk � 1=24; or

(2) K lies on a Heegaard torus in M ; or

(3) M is of the form L.4k; 2k � 1/ and K lies on a Klein bottle in M as a non-
separating orientation-preserving curve.

Note that in case (3) we have kKk D 0; this is a special case of Theorem 2.11 (3).

Proof. Let yT be a Heegaard torus in M . Then either (2) holds, or we can put K in
thin position with respect to yT . Assuming the latter, let n D jK \ yT j; so n is even and
� 2. Let S be a good p-Seifert surface for K in M . We then get intersection graphs
�S , �T . Thin position of K and incompressibility of S guarantee by Lemma 3.2 that
�S and �T have no monogon disk faces.

We need a sublemma.

Sublemma 5.3. Suppose there is a pair of edges that are parallel on both �S and
�T . Then M D RP 3, and either

(1) kKk � 3=4; or

(2) .M; K/ D .RP 3; RP 1/.

Proof. By Lemma 3.8 we have .M; K/ D .M 0; K 0/ # .RP 3; RP 1/. Since M is a
lens space we must have M 0 D S3. If K 0 is trivial we have (2). Suppose K 0 is
non-trivial. Then kK 0k � 1=2 and, since RP 1 in RP 3 is 2-trivial, Theorem 2.17
implies that kKk D kK 0k � 1

4
C 1

2
� 3

4
. �
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Note that in case (2) (i.e. .M; K/ D .RP 3; RP 1/) we have kKk D 0.
If �S has .2n C 1/ parallel edges then by Lemma 3.7 bullet (2) there are indices

i0 and k so that �T has 5 edges labeled .i0; k � i0/. Remember that this means that
there are vertices i0 and k � i0 in �T that are joined to each other by at least 5 edges.
On a torus, one can find at most four embedded pairwise non-parallel arcs joining
two points, that are disjoint except at their endpoints. To see this, “engulf” one of
the edges by a disk, and observe that it is equivalent to show that there are at most
three pairwise non-parallel essential embedded loops that intersect each other in one
point; this latter fact can be shown using intersection number. Consequently we can
deduce that two of the .i0; k � i0/-edges must be parallel in yT .

If they are parallel in �T (i.e. if they cobound an embedded complementary bigon)
then there is a pair of edges that are parallel in both graphs, and Sublemma 5.3 applies.
If not, then the disk D in yT realizing the parallelism of the two edges must contain
vertices of �T in its interior. By Lemma 3.7 bullet (1), these vertices come in pairs i ,
k � i , and each pair are joined by 4 edges. An easy innermost argument in the disk
D shows that, for some i , some pair of .i; k � i/ edges are parallel in �T . Hence
again we get edges that are parallel in both graphs.

By Sublemma 5.3 we may therefore suppose that there is no family of .2n C 1/

parallel edges in �S . If �S is not a beachball then the reduced graph x�S exists and
satisfies Ne � e=2n D pn=4n D p=4. Hence ���.S/ � p=12 by Lemma 3.5, giving
kKk � 1=24.

If �S is a beachball then as observed in Remark 3.4, K satisfies conclusion (3)
of Theorem 2.11, i.e. K is the fiber of multiplicity r in a Seifert fiber subspace N of
M whose base orbifold is a Möbius band with one orbifold point, of order r � 1.
Since M is a lens space, M � N is a solid torus, and the meridian of this solid torus
is not the Seifert fiber of N . Hence M is a Seifert fiber space with orbifold RP 2 and
one orbifold point of order k � 1, where k D r if r > 1. Thus M is the lens space
L.4k; 2k � 1/. If r > 1 then K lies on a Heegaard torus in M . If r D 1 then K

satisfies conclusion (3). �

Remark 5.4. The examples in Case B of §2.4 show that for any 
 > 0 there exists a
lens space M and a knot K lying on a Heegaard torus in M with 0 < kKk < 
.

Remark 5.5. The bound 1=24 in Theorem 5.2 is almost certainly not best possible.
The smallest value of kKk that we know of for a knot K in a lens space not satisfying
(2) or (3) of Theorem 5.2, comes from the following example.

Let K 0 be the .�2; 3; 7/-pretzel knot in S3. Then 19-surgery on K 0 gives a
knot K in the lens space L.19; 7/. By Lemma 2.15, kKk D .g.K 0/ � 1=2/=19 D
.5 � 1=2/=19 D 9=38. Since M � K Š S3 � K 0 is hyperbolic, K does not lie on a
Heegaard torus in M . In fact K 0 is a Berge knot, and so K is 1-bridge in M .

Remark 5.6. Baker has shown in [2] that if K is a knot in a lens space M such
that kKk is realized by a p-Seifert surface S with a single boundary component then
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either K is 1-bridge in M or kKk > 1=4. By the proof of Lemma 2.15, the hypothesis
holds for pairs .M; K/ that come from surgery on a knot in S3 (or any homology
sphere).

Remark 5.7. In our proof of Theorem 5.2, the argument shows that if n > 2 then
�S cannot have .n C 1/ parallel edges. Hence (1) can be improved to kKk � 1=12

if (2) is weakened to say that K is 0- or 1-bridge in M .

The next proposition considers knots in hyperbolic 3-manifolds, possibly with
boundary. The case that the complement of the knot is hyperbolic was already treated
in Theorem 4.8. Here we treat the general case.

Proposition 5.8. Let M be a hyperbolic 3-manifold, possibly with boundary consist-
ing of a union of tori. Let K be a knot in M such that M � K is irreducible, and let
F be a relative p-Seifert surface for K. Then either

(1) �.F /=p � 1=402; or

(2) K is isotopic to a cable of a core of a Margulis tube; or

(3) K is isotopic into @M .

Corollary 5.9. Let K be a knot in a closed hyperbolic 3-manifold M . Then either

(1) kKk � 1=402; or

(2) K is trivial; or

(3) K is isotopic to a cable of the core of a Margulis tube.

Proof of Proposition 5.8. If M � K is hyperbolic then the result follows from The-
orem 4.8. So we may assume that M � K is toroidal.

Since M is hyperbolic, every essential torus in M �K is separating, so there exists
an extremal such torus, i.e. an essential torus T in M � K such that the component
X0 of M cut along T that does not contain K is atoroidal. Let N D M � X0; thus
K is contained in N .

Let F be a good relative p-Seifert surface for K in M , and let F 0 D F \ N ,
F0 D F \ X0. Since T is incompressible in M � K, and M � K is irreducible, we
may assume that no component of F 0 or F0 is a disk. Hence �.F / D �.F 0/ C �.F0/.

Since M is atoroidal, either T compresses in N or N is a product T 2 � I where
T 2 �f0g is a component of @M and T 2 �f1g D T . In the latter case, Proposition 3.17
implies that either �.F / � �.F 0/ � p=6 or K is isotopic into @M .

We may therefore assume that T compresses in N . By Proposition 3.13 either
�.F 0/=p > 1=12 or K is isotopic into T . So we may suppose the latter holds.

First suppose that N is a solid torus. Let K0 be the core of N . Then K is a
non-trivial cable of K0. The exterior of K0 in M is X0, which is atoroidal. Since
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M is hyperbolic X0 cannot be Seifert fibered, and therefore X0 is hyperbolic. By
Proposition 3.12 kKk � 2kK0k. Hence either we have conclusion (1) or jK0j <

1=804, in which case K0 is isotopic to the core of a Margulis tube by Theorem 4.8.
If N is not a solid torus then X0 lies in a 3-ball in M . Since K is isotopic

into T D @X0, K also lies in a 3-ball, contradicting our assumption that M � K is
irreducible. �

It remains to consider toroidal manifolds, and small Seifert fiber spaces. The small
Seifert fiber spaces are treated by the following theorem. Recall that a prism manifold
is a Seifert fiber space M with base S2 and three exceptional fibers of multiplicities
2, 2, n. Then M has another Seifert fiber structure with base RP 2 and at most one
exceptional fiber.

Theorem 5.10. Let M be an atoroidal Seifert fiber space over S2 with three excep-
tional fibers and let K be a knot in M . Then either

(1) kKk � 1=402; or

(2) K is trivial; or

(3) K is a cable of an exceptional Seifert fiber of M ; or

(4) M is a prism manifold and K is a fiber in the Seifert fiber structure of M over
RP 2 with at most one exceptional fiber.

Note that in case (4) we have kKk D 0. This is a special case of assertion (3) in
Theorem 2.11.

Proof. We may assume that X (i.e. M � int N.K/) is irreducible.
If X is hyperbolic then (1) holds by Theorem 4.8.
If X is Seifert fibered then (since M is irreducible) the Seifert fibration of X

extends to M . Thus K is a Seifert fiber of this fibration. If M is not a prism manifold
then the Seifert fiber structure on M is unique and (since an ordinary fiber is a cable
of an exceptional fiber) we have conclusion (3). If M is a prism manifold then the
two possible Seifert fiber structures on M give either (3) or (4).

We may therefore assume that X is toroidal. Since M is irreducible and atoroidal,
every torus in X is separating. As in the proof of Proposition 5.8, let T be an extremal
essential torus in X , so M D X0 [T N where X0 is atoroidal. Again as in the proof
of Proposition 5.8, we may assume that K is isotopic into T , and that N is a solid
torus, with core K0. By Proposition 3.12, kKk � 2kK0k. If M � K0 is hyperbolic,
and (1) does not hold, then kK0k < 1=804 and so M is hyperbolic by Theorem 4.8,
a contradiction.

Hence we may assume that X0 is Seifert fibered. The Seifert fibration of X0

extends to M , so K0 is a fiber in the fibration of M , and K is a non-trivial cable
of K0. Since an ordinary fiber is a non-trivial cable of an exceptional fiber, by
Corollary 3.16 either kKk > 1=12 or K0 is an exceptional fiber. �
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The toroidal case involves several subcases, which are treated in the next few
propositions, culminating in Theorem 5.19.

Proposition 5.11. Let M be an irreducible, toroidal 3-manifold, and let K be a knot
in M such that M � K is irreducible and atoroidal. Let F be a relative p-Seifert
surface for K. Then ���.F / � p=12.

Proof. We may suppose that F is good.
Let yT be an essential torus in M such that n D jK \ yT j is minimal (over all

essential tori in M ). Note that n > 0 since M � K is atoroidal. Also, the existence
of F shows that pŒK� D 0 2 H1.M; @M/, which implies that n is even.

Let T be the punctured torus yT \.M �int N.K// and let �F , �T be the intersection
graphs in yF and yT respectively. Note that all edges are interior edges.

We need some sublemmas.

Sublemma 5.12. If n � 4 then �F contains no family of more than .n=2 C 2/

parallel edges.

Proof. Since all vertices of �F are of the same sign, a family of more than .n=2 C 2/

parallel edges would contain an extended S -cycle. But this is impossible, again by
Lemma 2.3 from [28] (compare with Case A in the proof of Theorem 5.1). �

Sublemma 5.13. If n D 2 then �F contains no family of 5 parallel edges.

Proof. The condition n D 2 implies that �T has 2 vertices. Recall from the proof of
Theorem 5.2 that on a torus one can find at most four embedded pairwise non-parallel
arcs joining two points, that are disjoint except at their endpoints. Consequently if
n D 2 and �F contains a family of 5 parallel edges, at least two of these edges are
also parallel in �T , so Lemma 3.8 implies that M D RP 3, contrary to the assumption
that M is toroidal. �

We now complete the proof of Proposition 5.11. If F is not an annulus, let Ne be
the number of edges in the reduced graph x�F . If n � 4 then Sublemma 5.12 shows
that Ne � pn=.n C 4/ � p=2. If n D 2 Sublemma 5.13 shows that Ne � 2p=8 D p=4.
Hence ���.F / � p=12 by Lemma 3.5.

If F is an annulus then by Theorem 2.11 (3) K is contained as a fiber of multiplicity
r in a Seifert fiber submanifold N of M , where N has base orbifold a Möbius band
with one orbifold point of order r � 1. In particular N �K is toroidal. Since M �K

is atoroidal by hypothesis, @N must be compressible in W D M � N . Since M � K

is irreducible it follows that W is a solid torus, and that the meridian of W is not
identified with a fiber in @N . Hence M � int N.K/ is a Seifert fiber space over the
Möbius band with at most one exceptional fiber (the core of W ). Since this manifold
is atoroidal by hypothesis, the core of W is in fact an ordinary fiber. Then M is a
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Seifert fiber space over RP 2 with at most one exceptional fiber, namely K. But this
contradicts our assumption that M is toroidal. �

Proposition 5.14. Let M be an irreducible 3-manifold containing an essential an-
nulus A. Let K be a knot in M and let F be a good relative p-Seifert surface for K.
Then either

(1) ���.F / � p=6; or

(2) K can be isotoped to be either disjoint from A or to lie in @M ; or

(3) F is an annulus.

Proof. We may assume that F is good. Let X D M � int N.K/.
Isotop K so that n D jK \ Aj is minimal. If n D 0 we are done, so assume in

what follows that n > 0. Let P D A \ X , and let �F , �P be the intersection graphs
in yF and A respectively.

Sublemma 5.15. �F contains no family of .n C 1/ parallel interior edges.

Proof. By Lemma 3.7 bullet (2), �P has 3 .i0; k � i0/-edges for some i0; k. Two
of these must be parallel in A (since the union of any two is an embedded loop, and
there is only one isotopy class of embedded essential loops in an annulus). If they
are parallel in �P then we have interior edges parallel in both graphs and Lemma 3.8
readily gives a contradiction. If not, then the disk D in A realizing the parallelism
must have vertices of �P in its interior. By Lemma 3.7 bullet (1) these vertices come
in pairs i , k � i , each with 2 edges joining them. By taking an innermost such pair
in D we again get a pair of edges that are parallel in both graphs, a contradiction as
before. �

Sublemma 5.16. If �F contains a family of .2n C 1/ parallel boundary edges then
K is isotopic into @M .

Proof. At the vertex end of such a family every label in f1; 2; : : : ; ng appears twice,
and one label appears three times. The three corresponding boundary edges in �P all
share a common vertex; at least two must be parallel in A. If they are parallel in �P ,
we get boundary edges parallel in both graphs, so the result follows from Lemma 3.9.
If not, then the disk D in A realizing the parallelism must have vertices of �P in its
interior. Each such vertex has two boundary edges coming from the given family; an
innermost pair is parallel in both graphs, so we are done by Lemma 3.9. �

We now complete the proof of Proposition 5.14. If F is an annulus we are done.
If not, then the reduced graph x�F exists. Let Nei , Ne@ be the number of interior and
boundary edges of x�F . By Sublemma 5.15 each interior edge of x�F contributes at
most 2n to the sum of the valences of the vertices on �F , and by Sublemma 5.16 we
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may assume that each boundary edge of x�F also contributes at most 2n to this sum.
Hence Ne D Nei C Ne@ � pn=2n D p=2, and the estimate in bullet (1) follows from
Lemma 3.5. �

In the next proposition we consider the orientable Seifert fiber spaces D2.2/,
M 2.0/, A2.1/ and P 2.0/, where F 2.n/ denotes a Seifert fiber space with base surface
F 2 and n exceptional fibers, and D2, M 2, A2, P 2 are the disk, Möbius band, annulus,
and pair of pants, respectively. These, together with S1�D2 and T 2�I , are precisely
the atoroidal Seifert fiber spaces with non-empty boundary.

Remark 5.17. This notation does not uniquely determine the space up to homeo-
morphism, since we do not specify the type of singular fiber.

Proposition 5.18. Let M be an atoroidal Seifert fiber space of the kind D2.2/,
M 2.0/, A2.1/ or P 2.0/, and let K be a knot in M . Let F be a relative p-Seifert
surface for K. Then either

(1) ���.F / � p=6; or

(2) K is isotopic into @M ; or

(3) K is isotopic to a cable of an exceptional Seifert fiber.

Proof. We may assume that F is good and M � K is irreducible.
First assume that F is not an annulus. Let A be an essential annulus in M such

that M cut along A is two fibered solid tori if M D D2.2/, one fibered solid torus
if M D M 2.0/ or A2.1/, and T 2 � I if M D P 2.0/. By Proposition 5.14 either
bullet (1) or (2) holds, or K can be isotoped to be disjoint from A.

If M D P 2.0/ and K can be isotoped to be disjoint from A, then K � T �I where
T is a boundary component of M . Therefore bullet (1) or (2) holds, by Corollary 3.19.

If M is one of D2.2/, M 2.0/ or A2.1/ and K can be isotoped to be disjoint from
A, then K is contained in a fibered solid torus V � M . Let F 0 D F \ V and F 00 D
F \ .M � int V /. By hypothesis M � K is irreducible, so @V is incompressible in
M �int N.K/. Therefore we can assume that F 00 has no disk (or sphere) components.
Hence ���.F / � ���.F 0/. Therefore by Proposition 3.13 either ���.F / > p=6

or K is a cable of K0, the core of V . If K0 is an ordinary fiber then it lies in a vertical
incompressible torus T , so by Corollary 3.19 either bullet (1) holds or K is isotopic
to K0, in which case bullet (2) holds. If K0 is an exceptional fiber we get conclusion
(3).

Finally we consider the case where F is an annulus, i.e. �F is a beachball.
If �F is a beachball of the first kind then (see Theorem 2.11 (3)) K is contained

in a submanifold N of M of the form M 2.0/ or M 2.1/, as an ordinary or exceptional
fiber respectively. Since M is irreducible, atoroidal, and has non-empty boundary,
the torus @N is boundary parallel in M , and so M Š N . Therefore N is of the form
M 2.0/, and K is isotopic into @M .
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If �F is a beachball of the second kind, then M D V [B W , where V is a solid
torus, B is an annulus with winding number r � 1 in V , and K is a core of V . If
r D 1 then K is isotopic into @M . If r > 1 then the form of M implies that the
(separating) annulus B is essential in M , and hence is vertical. Therefore K is an
exceptional fiber in M . �

We are finally ready to treat the case that M is toroidal.

Theorem 5.19. Let M be a closed, irreducible, toroidal 3-manifold, and let K be a
knot in M . Then either

(1) kKk � 1=402; or

(2) K is trivial; or

(3) K is contained in a hyperbolic piece N of the JSJ decomposition of M and is
isotopic either to a cable of a core of a Margulis tube or into a component of
@N ; or

(4) K is contained in a Seifert fiber piece N of the JSJ decomposition of M and
either

(A) K is isotopic to an ordinary fiber or a cable of an exceptional fiber or into
@N , or

(B) N contains a copy Q of the twisted S1 bundle over the Möbius band and
K is contained in Q as a fiber in this bundle structure;

or

(5) M is a T 2-bundle over S1 with Anosov monodromy and K is contained in a
fiber.

Remark 5.20. If K is disjoint from the hyperbolic pieces in the JSJ decomposition
of M , the constant 1=402 can be improved to 1=24.

Remark 5.21. In Case (4) (B), kKk D 0 (see Theorem 2.11 (3)). Also, the Seifert
fibration of Q induced from N may be the one with base orbifold a disk with two
cone points of order 2, in which case K is not a Seifert fiber in N .

Remark 5.22. Strictly speaking, (5) is a special case of (4) where the Seifert fiber
piece N is T 2 � I , but for clarity we list it separately.

Proof. We may assume that M � K is irreducible. By Proposition 5.11, either
kKk � 1=24 or M � K is toroidal. So we may assume that M � K is irreducible
and toroidal.

Let T be a maximal disjoint union of non-parallel essential tori in M � K (note
that T is nonempty). Let N be the component of M cut along T that contains K.



128 D. Calegari and C. Gordon CMH

Then N is irreducible, has boundary a non-empty disjoint union of tori, and N � K

is irreducible and atoroidal.
Let S be a good p-Seifert surface for K in M . Then F D S \ N is a relative

p-Seifert surface for K in N . Let S0 D S � F . Since @N is incompressible in
M � K we may assume that no component of S0 or F is a disk (or sphere). Hence
�.S/ D �.F / C �.S0/ and so �.S/ � �.F /.

If N is toroidal then we are done by Proposition 5.11. If N is atoroidal then N

is either hyperbolic or Seifert fibered. In the former case, N is a piece of the JSJ
decomposition of M , and by Proposition 5.8, either (1) or (3) holds.

Suppose N is a Seifert fiber space. Since N is atoroidal and has non-empty
boundary it is either homeomorphic to S1 � D2 or T 2 � I , or has Seifert fiber
structure D2.2/, M 2.0/, A2.1/ or P 2.0/. In the last four cases the result follows from
Proposition 5.18 (to get conclusion (4) of the theorem we replace the N considered
here with the Seifert fiber piece of the JSJ decomposition of M that contains it).

If N D T 2 � I then by Proposition 3.17 either (1) holds or K is isotopic onto
T D T 2 �f1=2g. Since T is an incompressible torus in M there are four possibilities:

(i) T is a torus in the JSJ decomposition of M ;

(ii) T is a vertical essential torus in a Seifert fiber piece of the JSJ decomposition
of M ;

(iii) M is a Seifert fiber space and T is horizontal;

(iv) M is a T 2-bundle over S1 and T is a fiber.

If (i) holds we are done. If (ii) holds we are done by Proposition 2.24.
Suppose (iii) holds but not (iv). Then T separates M into two twisted I -bundles

over the Klein bottle. The Seifert fibering of M must have Euler number 0, and M

is either a twisted S1-bundle over the Klein bottle or has base orbifold RP 2 with
two orbifold points of order 2. In both cases M has an isomorphic (but non-isotopic)
Seifert fibering in which T is vertical.

If (iv) holds then by Remark 2.22 either kKk D 0, or kKk � 1=8, or we are
in Case G or Case H of §2.5. In Case G, M is Seifert fibered and K is a fiber.
Case H is conclusion (5). So suppose kKk D 0. Then by part (2) of Theorem 2.21�

˛ ˇ
� ı

�
D ��1 n

0 �1

�
, with K representing the first element of the corresponding basis.

Thus M also has the structure of an S1-bundle over the Klein bottle with Euler number
n, where K is a fiber.

Finally, suppose N D S1 � D2. Then by Proposition 3.13, and the fact that T is
essential in M � K, we may assume that K is a non-trivial cable of K0, the core of
N . By Proposition 3.12, kK0k < kKk.

Now repeat the whole argument with K0 in place of K. We conclude that either
(1) holds or

(a) K0 is contained in a hyperbolic piece N0 of the JSJ decomposition of M and is
isotopic either to a cable of a core of a Margulis tube or into @N0; or
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(b) K0 is contained in a Seifert fiber piece N0 of the JSJ decomposition of M and
is isotopic either to an ordinary fiber or a cable of an exceptional fiber of N0 or
into @N0, or N0 contains a copy Q0 of the twisted S1 bundle over the Möbius
band and K is contained in Q0 as an S1 fiber; or

(c) M is a T 2-bundle over S1 and K0 lies in a fiber; or

(d) K0 is a non-trivial cable of a knot K1.

By Proposition 3.13, K cannot be a non-trivial cable of a non-trivial cable. Simi-
larly, by Proposition 3.17, K cannot be a non-trivial cable of an essential curve in an
incompressible torus in M . This completes the proof of the theorem. �
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