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Gehring–Hayman Theorem for conformal deformations
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Abstract. We study conformal deformations of a uniform space that satisfies the Ahlfors
Q-regularity condition on balls of Whitney type. We verify the Gehring–Hayman Theorem
by using a Whitney covering of the space.
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1. Introduction

Given x; y 2 B2.0; 1/, the hyperbolic geodesic Œx; y� is essentially the shortest curve
joining x to y in B2.0; 1/. More precisely

`.Œx; y�/ � �

2
`.�/

whenever � is a path that joins x to y in B2.0; 1/. This simple fact is an instance of a
theorem of Gehring and Hayman in [GH]: If f W B2.0; 1/ ! � � C is a conformal
mapping and � is a path joining points x and y, thenZ

Œx;y�

jf 0.z/j ds � C

Z
�

jf 0.z/j ds; (1.1)

where C � 1 is an absolute constant. The density �.z/ D jf 0.z/j satisfies a Harnack
inequality

�.z/

A
� �.w/ � A�.z/

whenever z 2 B2.0; 1/ and w 2 B.z; .1 � jzj/=2/. It also satisfies the area growth
estimate Z

B�.z;r/

�2 dA � �r2;

�Both authors were supported by the Academy of Finland, grant no. 120972.



186 P. Koskela and P. Lammi CMH

where B�.z; r/ refers to the ball with centre z and radius r in the path metric

d�.x; y/ D inf
Z

�

� ds;

where the infimum is taken over all curves � joining points x and y.
In [BKR] the Gehring–Hayman inequality (1.1) was extended to Bn.0; 1/, n � 2,

for conformal deformations of the Euclidean metric. By a conformal deformation
(a conformal density) � we mean a continuous function � W Bn.0; 1/ ! .0; 1/ that
satisfies a Harnack inequality with a constant A � 1,

�.z/

A
� �.w/ � A�.z/ for all w 2 B.z; .1 � jzj/=2/ and all z 2 Bn.0; 1/;

and a volume growth condition with a constant B > 0,Z
B�.z;r/

�n dmn � Brn for all z 2 Bn.0; 1/ and all r > 0;

with respect to n-dimensional Lebesgue measure mn.
Subsequently, Herron showed in [H1] that Bn.0; 1/ can be replaced by any uni-

form space .�; d/ of bounded geometry. In this setting conformal densities are
defined by conditions analogous to those given above – see Section 2 for details.
Here uniformity is a substitute for the “roundness” of Bn.0; 1/. The assumption
of bounded geometry includes two conditions. First, it requires that � carries a
Borel regular measure � that satisfies the (Ahlfors) Q-regularity condition on balls
of Whitney type for some Q > 1. That is, there is a constant C1 � 1 such that if
r � d.z; @�/=2, then

C �1
1 rQ � �.B.z; r// � C1rQ:

Secondly, it requires that balls B.z; d.z; @�/=2/ allow for nice lower bounds for the
Q-modulus (see e.g. [HK], [BHK]). In fact, the Q-regularity condition on balls of
Whitney type is not explicitly stated in [H1] but it follows from the other assumptions.
The precise definition of a uniform space is given in Section 2 below. This concept,
introduced in [BHK], generalizes the notion of a uniform domain introduced by Jones
[Jo] and Martio and Sarvas [MaSa], see also [GO]. The volume growth condition for
� then refers to integrals of �Q with respect to the measure �. For predecessors of
the results in [H1], see [HN], [HR]. For connections to Gromov hyperbolicity, see
[Gr], [BHK] and [BB].

In this paper we show that, surprisingly, lower bounds on the Q-modulus are not
needed to prove the Gehring–Hayman inequality.

Theorem 1.1 (Gehring–Hayman Theorem). Let Q > 1 and let .�; d; �/ be a
non-complete uniform space equipped with a measure that is Q-regular on balls
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of Whitney type. If � W � ! .0; 1/ is a conformal density on �, then there is a
constant C � 1 that depends only on the data associated with � and � such that

`�.Œx; y�/ � C `�.�/;

whenever Œx; y� is a quasihyperbolic geodesic and � is a curve joining x to y in �.

The definition of a quasihyperbolic geodesic is given in Section 2 and the proof
of the theorem is in Section 4. Especially Subcase D of the proof is the novelty,
that allows us to avoid the use of lower bounds for the Q-modulus. The previous
arguments [BKR], [H1], [HN] and [HR] rely on modulus estimates.

The Gehring–Hayman Theorem was a central tool in [BHR], [BKR], [H1] and
[H2]. We expect that Theorem 1.1 will allow one to remove the use of modulus
bounds in [BHR], [BKR], [H1] and [H2] and thus extend large parts of those papers
to a much more general setting. A very simple example of a space that satisfies the
assumptions of Theorem 1.1 but does not support lower bounds for the Q-modulus
is

� D f.x; y/ 2 R2 W jyj � jxj; �1 < x < 1g
equipped with the path metric and Lebesgue measure.

2. Preliminaries

Let .�; d/ be a metric space. A curve means a continuous map � W Œa; b� ! � from
an interval Œa; b� � R to �. We also denote the image set �.Œa; b�/ of � by � . The
length `d .�/ of � with respect to the metric d is defined as

`d .�/ D sup
m�1X
iD0

d.�.ti /; �.tiC1//;

where the supremum is taken over all partitions a D t0 < t1 < � � � < tm D b of
the interval Œa; b�. If `d .�/ < 1, then � is said to be a rectifiable curve. When the
parameter interval is open or half-open, we set

`d .�/ D sup `d .� jŒc;d�/;

where the supremum is taken over all compact subintervals Œc; d �. For a rectifiable
curve � we define the arc length s W Œa; b� ! Œ0; 1/ along � by

s.t/ D `d .� jŒa;t�/:

Next, let us assume that � W � ! Œ0; 1� is a Borel function. For each rectifiable
curve � W Œa; b� ! � we define the �-length `�.�/ of � by

`�.�/ D
Z

�

� ds D
Z b

a

�.�.t// ds.t/:
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If � is rectifiably connected – that is, every pair of points in � can be joined by a
rectifiable curve – then � determines a distance function

d�.x; y/ D inf `�.�/;

where the infimum is taken over all rectifiable curves � joining x; y 2 �. In general,
the distance function d� need not be a metric. However, it is a metric – called a
�-metric – if � is positive and continuous. If � � 1, then `�.�/ D `d .�/ is the length
of the curve � with respect to the metric d . Furthermore, if `d .�/ D d.x; y/ for
some curve � joining points x; y 2 �, then � is said to be a geodesic. If every pair
of points in � can be joined by a geodesic, then .�; d/ is called a geodesic space.

Let .�; d/ be a locally compact, rectifiably connected and non-complete metric
space and denote by x� its metric completion. Then the boundary @� WD x� n � is
nonempty. We write

d.z/ D distd .z; @�/ D inffd.z; x/ W x 2 @�g
for z 2 �. If we choose

�.z/ D 1

d.z/
;

we obtain the quasihyperbolic metric k in �. In this special case we denote the metric
d� by k and the quasihyperbolic length of the curve � by `k.�/. That `k.�/ D `�.�/

is shown in [BHK], Appendix. Moreover, Œx; y� refers to a quasihyperbolic geodesic
joining points x and y in �.

Given a real number D � 1, a curve � W Œa; b� ! .�; d/ is called a D-uniform
curve if it is quasiconvex:

`d .�/ � Dd.�.a/; �.b//; (2.1)

and

minf`d .� jŒa;t�/; `d .� jŒt;b�/g � Dd.�.t// (2.2)

for every t 2 Œa; b�. A metric space .�; d/ is called a D-uniform space if every pair
of points in it can be joined by a D-uniform curve.

If .�; d/ is a uniform space, then by Proposition 2.8 and Theorem 2.10 of [BHK]
the quasihyperbolic space .�; k/ is complete, proper (closed balls are compact), and
geodesic. Furthermore, each quasihyperbolic geodesic Œx; y� is a D0-uniform curve
for every x; y 2 �, where D0 D D0.D/ � 1. Quasihyperbolic geodesics are also
locally D0-uniform curves – that is, every subcurve Œu; v� � Œx; y� is a D0-uniform
curve – because Œu; v� is a quasihyperbolic geodesic as well. We also have an estimate
for a quasihyperbolic distance of every pair of points x and y in the D-uniform space
.�; d/ (see [BHK], Lemma 2.13):

k.x; y/ � 4D2 log
�

1 C d.x; y/

minfd.x/; d.y/g
�

: (2.3)
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Let us consider a continuous function � W � ! .0; 1/, called a density. The
metric d� is then well defined. We use the subscript � for metric notations which
refer to d�, and similarly for k and d . For example, B�.a; r/; Bk.a; r/ and Bd .a; r/

are open balls with centre a and radius r in metrics d�, k and d . Furthermore, we
abbreviate the “Whitney ball” Bd .z; 1

2
d.z// to Bz .

Let � be a Borel regular measure on .�; d/ with dense support. We call � a
conformal density provided it satisfies both a Harnack type inequality, HI(A), for
some constant A � 1:

1

A
� �.x/

�.y/
� A for all x; y 2 Bz and all z 2 �; HI(A)

and a volume growth condition, VG(B), for some constant B > 0:

��.B�.z; r// � BrQ for all z 2 � and r > 0: VG(B)

Here �� is the Borel measure on � defined by

��.E/ D
Z

E

�Q d� for a Borel set E � �;

and Q is a positive real number. Generally Q will be the Hausdorff dimension of our
space .�; d/.

We defined in the introduction the concept of Q-regularity on balls of Whitney
type. The immediate consequence is that the measure � is also doubling on balls of
Whitney type: there exists a constant C2 � 1 such that

�.Bd .z; 2r// � C2�.Bd .z; r// (2.4)

for every z 2 � and every 0 < r � 1
4
d.z/.

3. Whitney covering

In this section we assume that .�; d; �/ is a locally compact, rectifiably connected,
and non-complete metric measure space such that the measure � is doubling on balls
of Whitney type. Let r.z/ D d.z/=50. From the family of balls fBd .z; r.z//gz2�

we select a maximal (countable) subfamily fBd .zi ; r.zi /=5/gi2I of pairwise disjoint
balls. Let B D fBigi2I , where Bi D Bd .zi ; ri / and ri D r.zi /. We call the
family B the Whitney covering of �. Let us list a few facts concerning the Whitney
covering. The last property is a consequence of the doubling on balls of Whitney
type property of the measure �. For more properties of the Whitney covering, see
e.g. Theorem III.1.3 of [CW], Lemma 2.9 of [MaSe], Lemma 7 of [HKT], and [BS],
Theorem 5.3 and Lemma 5.5.
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Lemma 3.1. There is N 2 N such that

(i) the balls Bd .zi ; ri=5/ are pairwise disjoint,

(ii) � D S
i2I Bd .zi ; ri /,

(iii) Bd .zi ; 5ri / � �,

(iv)
P1

iD1 �Bd .zi ;5ri /.x/ � N for all x 2 �.

The family B has the same kind of properties as the usual Whitney decomposition
W of a domain � � Rn and next we prove a couple of them. In addition to the
assumptions above, we assume that for each pair of points in B 2 B for every B 2 B

can be joined by a D-uniform curve in �.

Lemma 3.2. Let x; y 2 .�; d; �/ and d.x; y/ � d.x/=2. There is a constant
C D C.C2; D/ > 0 such that

C �1N.x; y/ � k.x; y/ � CN.x; y/;

where N.x; y/ is the number of balls B 2 B intersecting a quasihyperbolic geodesic
Œx; y�.

Proof. Let x; y 2 � be points so that d.x; y/ � d.x/=2. Since 24 diamd .B/ � d.z/

for every B 2 B and for every z 2 B , then the basic estimate (2.3) implies

diamk.B/ � 4D2 log
�

1 C diamd .B/

24 diamd .B/

�
D 4D2 log

25

24
:

Thus

N.x; y/ � k.x; y/

4D2 log 25
24

:

Lemma 3.1 (iv) says that there are only N balls B 2 B that contain x. Fix one
of them and denote it by B1. A neighbour of the ball B1 is a ball B 2 B which
intersects the ball 5B1 D Bd .z1; 5r1/ D Bd .z1; d.z1/=10/. Because the measure
� is doubling in every ball Bd .z; r/ with radius 0 < r � d.z/=4, the ball B1 has
a uniformly bounded number of neighbours. Let this number be N 0 2 N and let
y1 2 Œx; y� be the first point such that y1 does not belong to any neighbour of B1.
This choice is possible because d.x; y/ � d.x/=2. The geodesic Œx; y1� intersects at
most N 0 balls B 2 B and

k.x; y1/ D
Z

Œx;y1�

1

d.z/
ds �

Z
5B1\Œx;y1�

10

11d.z1/
ds

� 10

11d.z1/

�
d.z1/

10
� d.z1/

50

�
D 4

55
:

(3.1)
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Let B2 2 B be a ball such that y1 2 B2 and B2 \ B ¤ ; for some neighbour
B 2 B of B1. Again there are only N 0 balls B 2 B which are neighbours of B2. Let
y2 2 Œx; y� be the first point so that y2 does not belong to any neighbour of B2. Then
the geodesic Œy1; y2� intersects at most N 0 balls B 2 B and k.y1; y2/ � 4

55
, by the

same way than in inequality (3.1). We continue this process until we end up with a
ball Bm whose neighbours contain Œym�1; y�. This process really ends and m < 1,
because Œx; y� is compact. We may start doing this process from every ball B that
contains x. Thus we obtain the upper bound to the number of balls that intersects the
quasihyperbolic geodesic Œx; y�:

N.x; y/ � 55

4
NN 0k.x; y/: �

Fix a ball B0 from the Whitney covering B and let z0 be its centre point. For
each Bi 2 B we fix a geodesic Œz0; zi �. Furthermore, for each Bi 2 B we set
P.Bi / D fB 2 B W B \ Œz0; zi � ¤ ;g and define the shadow S.B/ of a ball B 2 B

by
S.B/ D

[
Bi 2B

B2P.Bi /

Bi :

For n 2 N we set

Bn D fBi 2 B W n � k.z0; zi / < n C 1g:
The next two lemmas are metric space analogues of [KL], Lemma 2.1 and

Lemma 2.2.

Lemma 3.3. Let � be a quasihyperbolic geodesic in � starting at the point z0. Then
there is a constant C D C.C2; D/ > 0 such that, for each n 2 N,

#fB 2 Bn W B \ � ¤ ;g � C:

Proof. Put
an WD #fB 2 Bn W B \ � ¤ ;g < 1:

Let B1; : : : ; Ban
2 Bn be the balls intersecting � , ordered so that if k < l , then there

exists xk 2 Bk \� such that for every z 2 Bl \� , we have k.z0; xk/ � k.z0; z/. We
may assume that d.x1; xan

/ � d.x1/=2, otherwise xan
2 Bx1

and we get the result
by doubling on balls of Whitney type. Thus by Lemma 3.2, k.x1; xan

/ � an

C
. Since

k.zi ; xi / � 1
49

< 1 for all i D 1; : : : ; an, we may compute

an

C
� k.x1; xan

/ D k.z0; xan
/ � k.z0; x1/

� k.z0; zan
/ C k.zan

; xan
/ � .k.z0; z1/ � k.x1; z1//

� .n C 1/ C 1 � n C 1 D 3:

Hence an � 3C . �
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Lemma 3.4. There is a constant C D C.C2; D/ > 0 such that, for each n 2 N,X
B2Bn

�S.B/.x/ � C

whenever x 2 �.

Proof. Let x 2 �. The number of balls B 2 B containing x is bounded, so we may
assume that there is a unique ball, denote it by B1, in B such that x 2 B1. Let Œz0; z1�

be the fixed geodesic joining z0 to z1. Then x 2 S.B/ for B 2 Bn if and only if
Œz0; z1� \ B ¤ ;. By Lemma 3.3, the number of balls B 2 Bn is bounded by a
constant that is independent of n. �

4. Gehring–Hayman Theorem

We begin with Frostman’s Lemma. First we recall the definitions of the Hausdorff
measure and the weighted Hausdorff measure.

Let .X; d/ be a compact metric space. Let 0 � s < 1 and 0 < ı � 1. We set

	s
ı.X/ D inf

˚P1
iD1 ci diamd .Ei /

s W �X � P
i ci�Ei

; ci > 0; diamd .Ei / � ı
�
:

The weighted Hausdorff s-measure of X is

	s.X/ D lim
ı!0

	s
ı.X/:

In the special case, where ci D 1 for every i D 1; 2; : : :, we set Hs
ı.X/ D 	s

ı
.X/,

and we obtain the Hausdorff s-measure

Hs.X/ D lim
ı!0

Hs
ı.X/:

The Hausdorff s-content of X is

Hs1.X/ D inf
˚P1

iD1 diamd .Ei /
s W X � S1

iD1 Ei

�
:

By Lemma 8.16 of [Ma] we know that Hs.X/ � 30s	s.X/, but in fact from the
proof of that lemma one obtains that

Hs
30ı.X/ � 30s	s

ı.X/ for every 0 < ı � 1:

In particular

Hs1.X/ � 30s	s1.X/:

The following formulation of Frostman’s Lemma (cf. [Ma], Theorem 8.17, and [BO],
Theorem 2) is suitable for our purposes.
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Theorem 4.1 (Frostman’s Lemma). For any s � 0 there is a Radon measure ! on
X such that

!.X/ D 	s1.X/

and
!.E/ � diamd .E/s for all E � X:

In particular, when s D 1 and X is connected, we obtain

!.X/ � 1

30
H11.X/ � diamd .X/

60
:

In this paper we apply the version of Frostman’s Lemma, where X is connected
and s D 1.

For the rest of the paper we assume that .�; d; �/ is a locally compact, non-
complete and D-uniform metric measure space such that the measure � is Q-regular
on balls of Whitney type for some Q > 1. Let � be a conformal density such that the
number Q in the definition VG(B) coincides with the previous Q > 1.

Proof of Theorem 1.1. Let x and y be points in x� and let Œx; y� be a quasihyperbolic
geodesic in � joining points x and y. Because quasihyperbolic geodesics are D0-
uniform curves, Œx; y� is rectifiable in the metric d .

Let � be another rectifiable curve in � joining points x and y. Let a 2 Œx; y�

be the point such that `d .Œx; a�/ D `d .Œa; y�/, and write p D d.x; a/. Moreover,
for each j D 0; 1; 2; : : : ; write Aj D . xBd .x; 2�j p/ n Bd .x; 2�.j C1/p// \ �. Let
Œxj C1; xj � � Œx; a� � Œx; y� be a subcurve, where xj C1 is the last point of Œx; y� in
xB.x; 2�.j C1/p/ and xj is the last point of Œx; y� in xB.x; 2�j p/, and set �j D � \Aj .

We may clearly assume that �j is connected. By summing and symmetry it suffices
to prove that

`�.Œxj C1; xj �/ � C `�.�j / (4.1)

for every j D 0; 1; 2; : : : .
Let j D 0; 1; 2; : : : . From the definition of the curve �j it follows that

`d .�j / � 2�.j C1/p: (4.2)

From the definition of the quasihyperbolic geodesic Œxj C1; xj � and from the local
D0-uniformity of the curve Œx; y�, we have that

`d .Œxj C1; xj �/ � D0d.xj C1; xj / � D02�j C1p; (4.3)

2�.j C1/p � `d .Œx; z�/ � D0d.z/ for every z 2 Œxj C1; xj �; (4.4)
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and

k.xj C1; xj / D
Z

Œxj C1;xj �

1

d.z/
ds � D0

p
2j C1`d .Œxj C1; xj �/ � 4D02: (4.5)

The proof consists of two parts: the “easy part”, Case A, and the “hard part”,
Case B. Furthermore, Case B is divided into two parts, Subcase C and Subcase D.
Here Subcase D is the hardest part and the novelty of our proof.

Case A. We first prove that inequality (4.1) holds when the curves Œxj C1; xj � and �j

are “close” to each other in the quasihyperbolic metric k. Let

M > max
²
4D²

log.4D02/

log 2
C 1; 4D2 log.B.2 C A2=6/Q=c1/

log 2

³
;

where c1 > 0 is a sufficiently small constant depending on A; C1; D and Q, and
let us assume that distk.Œxj C1; xj �; �j / � M . Let yj 2 Œxj C1; xj � and Qyj 2 �j be
points such that k.yj ; Qyj / � M . Let us show that we may estimate the �-length of
the quasihyperbolic geodesic Œxj C1; xj � from above by 2�j p�.yj / in the following
way

`�.Œxj C1; xj �/ � AbD0�.yj /2�j C1p; (4.6)

where b D 4c2D02 and c2 D c2.C1; D/ > 0 is the constant from Lemma 3.2.
If there exists z 2 Œxj C1; xj � such that Œxj C1; xj � � Bz D Bd .z; d.z/=2/, we

obtain from HI(A) and (4.3)

`�.Œxj C1; xj �/ � A�.yj /`d .Œxj C1; xj �/ � AD0�.yj /2�j C1p:

Otherwise we may assume that d.xj C1; xj / � d.xj C1/=2. From Lemma 3.2 and
inequality (4.5), it follows that

N.xj C1; xj / � 4c2D02 DW b;

where the constant c2 D c2.C1; D/ > 0 is the constant from Lemma 3.2. Then by
HI(A), every z 2 Œxj C1; xj � satisfies

�.z/ � Ab�.yj /:

This with (4.3) gives us inequality (4.6)

`�.Œxj C1; xj �/ � Ab�.yj /`d .Œxj C1; xj �/

� AbD0�.yj /2�j C1p:

Next we estimate the �-length of the curve �j from below by 2�j p�.yj /. If
Œxj C1; xj � \ B Qyj

¤ ;, we easily get from HI(A) an estimate for `�.�j /:

`�.�j / � 1

AbC1
�.yj /`d .�j \ B Qyj

/: (4.7)



Vol. 88 (2013) Gehring–Hayman Theorem for conformal deformations 195

Furthermore, for every z 2 Œxj C1; xj � \ B Qyj
, using inequalities (4.2) and (4.4) it

holds that

`d .�j \ B Qyj
/ �

´
2�.j C1/p if �j � B Qyj

;
1
2
d. Qyj / � 1

2

�
3
2
d.z/

� � 3
4D0 2

�.j C1/p if �j 6� B Qyj
:

(4.8)

In this case, combining (4.6), (4.7) and (4.8) we obtain the desired result (4.1)

`�.Œxj C1; xj �/ � 16

3
A2bC1D02`�.�j /:

Therefore we may assume that Œxj C1; xj �\B Qyj
D ;. This implies that d.yj ; Qyj / �

d. Qyj /=2. By Lemma 3.2 there are at most h WD Mc2 balls in the Whitney covering
B that intersect Œyj ; Qyj � and hence, by HI(A),

�.yj / � Ah�. Qyj /: (4.9)

On the other hand, by HI(A) and (4.2),

`�.�j / � 1

A
�. Qyj /`d .�j \ B Qyj

/ �
´

1
A

�. Qyj /2�.j C1/p if �j � B Qyj
;

1
2A

�. Qyj /d. Qyj / if �j 6� B Qyj
:

(4.10)

If �j � B Qyj
, again we obtain the desired inequality (4.1) by combining inequalities

(4.6), (4.9) and (4.10). If �j 6� B Qyj
, then (4.10) with (4.9) gives

�.yj / � AhC1 2

d. Qyj /
`�.�j /: (4.11)

By elementary inequalities in [GP], Lemma 2.1, and [BHK], Inequality (2.4), we
obtain

log
�

1 C d.yj ; Qyj /

minfd.yj /; d. Qyj /g
�

� k.yj ; Qyj / � M

and further,
1

d. Qyj /
� eM � 1

d.yj ; Qyj /
: (4.12)

Moreover, the assumption d.yj ; Qyj / � d. Qyj /=2 gives us

d.yj / � d.yj ; Qyj / C d. Qyj / � 3d.yj ; Qyj /:

This, along with inequalities (4.11), (4.12) and (4.4), yields an estimate for the �-
length of �j :

�.yj / � 2AhC1 eM � 1

d.yj ; Qyj /
`�.�j / � 6AhC1 eM � 1

d.yj /
`�.�j /

� 6AhC1.eM � 1/
D0

p
2j C1`�.�j /:

(4.13)
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Now combining (4.6) and (4.13) we obtain

`�.Œxj C1; xj �/ � 24.eM � 1/AbChC1D02`�.�j /:

Thus (4.1) is proven when the curves Œxj C1; xj � and �j are “close” to each other in
the quasihyperbolic metric.

Case B. By Case A we may assume that distk.Œxj C1; xj �; �j / > M . Let wj 2
Œxj C1; xj � satisfy d.x; wj / D 3 � 2�.j C2/p. Let r WD `�.�j / and let w 2 �j . Let us
consider the �-ball B�.w; 2r/.

Subcase C. If distk.wj ; B�.w; 2r// < M , there exists u 2 B�.w; 2r/ such that
k.wj ; u/ � M and hence �.wj / � Ah�.u/ (cf. inequality (4.9)). We may assume
that �j \ Bu D ;. Otherwise distk.Œxj C1; xj �; �j / � M C 1 and replacing M with
M C 1 we obtain the result by the case A. As we have assumed �j \ Bu D ;,

2`�.�j / D 2r > dist�.u; �j /

HI(A)� 1

2A
�.u/d.u/

(4.9)� 1

2AhC1
�.wj /d.u/

.�/� 1

2AhC1eM
�.wj /d.wj /

(4.4)� 2�.j C1/p

2AhC1D0eM
�.wj /

(4.6)� 1

8AbChC1D02eM
`�.Œxj C1; xj �/:

The inequality .�/ above follows from the elementary estimate ([GP], Lemma 2.1,
[BHK], Inequality (2.3)) ˇ̌̌

ˇ log
d.wj /

d.u/

ˇ̌̌
ˇ � k.wj ; u/ � M:

Again we find a constant C � 1 such that `�.Œxj C1; xj �/ � C `�.�j /. So (4.1) is
satisfied.

Subcase D. By Subcase C we may assume that the �-ball B�.w; 2r/ is “far away”
from the quasihyperbolic geodesic Œxj C1; xj �. More precisely, we may assume that
distk.wj ; B�.w; 2r// � M . Our plan is to prove that the volume growth condition
VG(B) does not hold for such a �-ball. This is done by considering subcurves of
�-length r of quasihyperbolic geodesics Œz; wj � with z 2 �j and “averaging over �j ”
with respect to a suitable Frostman measure.

Let for every z 2 �j , Œz; wj � be a quasihyperbolic geodesic which joins z and
wj . Cover Œz; wj � with balls fB1; : : : ; Bn.z/g � B ordered so that if m < n, then
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there exists zm 2 Bm \ Œz; wj � such that for every Qz 2 Bn \ Œz; wj �, we have
k.z; zm/ � k.z; Qz/. Recall that n.z/ < 1.

Let Œz; wz� � Œz; wj �, where wz is the first point which does not belong to
B�.w; 2r/. Thus `�.Œz; wz�/ � r . Let fB1; : : : ; Bnr .z/g � fB1; : : : ; Bn.z/g be
those balls which cover Œz; wz�. So by HI(A) and by the local D0-uniformity (quasi-
convexity) of quasihyperbolic geodesics we obtain

r � `�.Œz; wz�/ �
nr .z/X
iD1

A�.zi /`d .Œz; wz� \ Bi /

� AD0
nr .z/X
iD1

�.zi / diamd .Bi /:

(4.14)

We next provide a tool that will be used to estimate the ��-measure of the �-ball

B�.w; 2r/. We claim that if B 2 B intersects B�.w; 2r/, then B � B�.w; .2C A2

6
/r/.

To show this, it suffices to prove that if B 2 B intersects B�.w; 2r/ then

diam�.B/ � A2

6
r: (4.15)

Consider such a ball B 2 B. It follows from HI(A) that

diam�.B/ � A�.zB/ diamd .B/ D A

25
�.zB/d.zB/

for each B 2 B, where zB is the centre of B . Hence it actually suffices to prove that

�.zB/d.zB/ � 25

6
Ar: (4.16)

Let y 2 B \ B�.w; 2r/. If w … BzB
, then there exists a curve � , which joins points

w and y and

2r �
Z

�

�.z/ ds � 1

A
�.zB/`d .� \ BzB

/

� �1

2
� 1

50

� 1

A
�.zB/d.zB/ D 12

25A
�.zB/d.zB/;

and the inequality (4.16) is proven.
Let us assume that w 2 BzB

. The elementary estimate (2.3) implies

M � k.wj ; w/ � 4D2 log
�

1 C d.wj ; w/

minfd.wj /; d.w/g
�

:

Along with the assumption that M > 4D2 log.4D02/
log 2

C 1, we see that

minfd.wj /; d.w/g � d.wj ; w/

eM=4D2 � 1
� 2�j C1�.M�1/=4D2

p: (4.17)
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The assumption M > 4D2 log.4D02/
log 2

C 1 and (4.4) give us

d.wj / � p

D0 2
�.j C1/ D 2�j C1�.M�1/=4D2

p
2.M�1/=4D2

22D0
� 2�j C1�.M�1/=4D2

p:

(4.18)

Thus it follows from inequality (4.17) that

d.w/ � 2�j C1�.M�1/=4D2

p � 2�.j C1/p:

Hence, from the definition of the curve �j and inequality (4.2) we know that �j cannot
be a subset of Bw . Then by HI(A)

r D
Z

�j

�.z/ ds � 1

2A
�.zB/d.w/ � 1

4A
�.zB/d.zB/;

and (4.16) is proven.
Now we know that if B 2 B intersects B�.w; 2r/, then B � B�.w; .2 C 1

6
A2/r/.

Then by HI(A), Lemma 3.1 (iv) and Q-regularity on balls of Whitney type, we have

��.B�.w; .2 C 1
6
A2/r// D

Z
B�.w;.2C 1

6 A2/r/

�Q d�

�
X
B2B

B\B�.w;2r/¤;

1

NAQ
�.zB/Q�.B/

�
X
B2B

B\B�.w;2r/¤;

c3�.zB/Q

�
diamd .B/

2

�Q

;

(4.19)

where c3 D 1

NC1AQ
.

Let us choose the basepoint z0 to be wj . According to Frostman’s Lemma (Theo-

rem 4.1) there is a Radon measure ! supported on �j such that !.�j / � diamd .�j /

60

and !.E/ � diamd .E/ for every E � �j . Then with (4.14) we obtain (a version of
Fubini’s theorem)

!.�j /r � AD0
Z

�j

nr .z/X
iD1

�.zi / diamd .Bi / d!.z/

� AD0
1X

nDM�1

X
B2Bn

B\Œz;wz �¤;
z2�j

�.zB/ diamd .B/!.S.B/ \ �j /:
(4.20)
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By Hölder’s inequality we obtain that

1X
nDM�1

X
B2Bn

B\Œz;wz �¤;
z2�j

�.zB/ diamd .B/!.S.B/ \ �j /

�
� 1X

nDM�1

X
B2Bn

B\Œz;wz �¤;
z2�j

�.zB/Q diamd .B/Q
� 1

Q

� 1X
nDM�1

X
B2Bn

B\Œz;wz �¤;
z2�j

!.S.B/ \ �j /
Q

Q�1

� Q�1
Q

:

Combining this with (4.20), (4.19) and the assumption distk.wj ; B�.w; 2r// � M

we obtain the estimate

!.�j /r � AD0
�

2Q

c3

��

�
B�

�
w;

�
2 C 1

6
A2

�
r
��� 1

Q

� 1X
nDM�1

X
B2Bn

B\Œz;wz �¤;
z2�j

!.S.B/ \ �j /
Q

Q�1

� Q�1
Q

(4.21)

D c4

�
��

�
B�

�
w;

�
2 C 1

6
A2

�
r
��� 1

Q

� 1X
nDM�1

X
B2Bn

B\Œz;wz �¤;
z2�j

!.S.B/ \ �j /
Q

Q�1

� Q�1
Q

;

where c4 D 2AD0c� 1
Q

3 D 2.NC1/
1
Q A2D0.

In order to estimate the measure of the shadow of the ball B 2 Bn, let us make
a couple of preliminary estimates. For every v 2 B \ Œz; wj �, where B 2 B and
z 2 �j , we have by uniformity (quasiconvexity) and inequality (4.3) that

d.wj ; v/ � `d .Œwj ; v�/ � `d .Œwj ; z�/ � D0d.wj ; z/ � 2�j C1pD0:

In the same way as in inequalities (4.17) and (4.18), we obtain from inequality (4.4)

and the assumption n � M �1 � 4D2 log.4D02/
log 2

that for every v 2 B \ Œz; wj �, where
B 2 Bn and z 2 �j , it holds that

d.v/ � 2�j C1�n=4D2

pD0:
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Furthermore, for every centre point zB 2 B 2 Bn, such that B \ Œz; wj � ¤ ; for
some z 2 �j , it holds that

d.zB/ � 50

49
d.v/ � 2�j C1�n=4D2

p
50D0

49
: (4.22)

Also from the uniformity of the space .�; d/ and inequality (4.22) it follows that
there exist a constant c5 D c5.C1; D/ � 1 such that for every B 2 Bn, so that
B \ Œz; wj � ¤ ; for some z 2 �j , it holds

diamd .S.B// � c5 diamd .B/ � 2�j C2�n=4D2

pc5

50D0

49
: (4.23)

Now for every n � M � 1 it holds by Lemma 3.4, Frostman’s Lemma and
inequality (4.23) thatX

B2Bn

B\Œz;wz �¤;
z2�j

!.S.B/ \ �j /
Q

Q�1

� max
B2Bn

B\Œz;wz �¤;
z2�j

!.S.B/ \ �j /
1

Q�1

X
B2Bn

B\Œz;wz �¤;
z2�j

!.S.B/ \ �j /

� c6!.�j / max
B2Bn

B\Œz;wz �¤;
z2�j

!.S.B/ \ �j /
1

Q�1

� c6!.�j / max
B2Bn

B\Œz;wz �¤;
z2�j

diamd .S.B/ \ �j /
1

Q�1

� c6

�
200D0c5

49

� 1
Q�1

!.�j /.2�j �n=4D2

p/
1

Q�1 ;

where c6 D c6.C1; D/ is from Lemma 3.4. Furthermore, using this we may compute
that

1X
nDM�1

X
B2Bn

B\Œz;wz �¤;
z2�j

!.S.B/ \ �j /
Q

Q�1

� c6

�
200D0c5

49

� 1
Q�1

!.�j /

1X
nDM�1

.2�j �n=4D2

p/
1

Q�1

� c7!.�j /p
1

Q�1 2
�j

Q�1 2
�M

4D2.Q�1/ ;
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where c7 D c6

�
200D0c5

49

� 1
Q�1

2
2

4D2.Q�1/

2
1

4D2.Q�1/ � 1

. Thus with (4.21) we have

!.�j /QrQ � c
Q
4 c

Q�1
7 ��.B�.w; .2 C 1

6
A2/r//!.�j /Q�12

�j � M

4D2 p:

Furthermore !.�j / � diamd .�j /

60
, and this gives us

��.B�.w; .2 C 1
6
A2/r// � !.�j /

1

c
Q
4 c

Q�1
7

2
j C M

4D2

p
rQ

� 2�j �1p

60

1

c
Q
4 c

Q�1
7

2
j C M

4D2

p
rQ

D 2
M

4D2 c1rQ;

where c1 D 49 � 2
�2

4D2 �1�
2

1

4D2.Q�1/ � 1
�Q�1

12000c5NC1.2A2/QD0QC1c
Q�1
6

.

This is a contradiction because when M is sufficiently big, the volume growth
condition VG(B) will not hold. Consequently, if k.Œxj C1; xj �; �j / > M then our �-
ball is in the quasihyperbolic metric k so big that distk.wj ; B�.w; 2r// � M . Thus
the conclusion is that `�.Œxj C1; xj �/ � C `�.�j /, where C D C.A; B; C1; D; Q/.

�

There is nothing special about the constant 1
2

in condition HI(A) and the constants
1

50
and 5 in Whitney covering. The only restriction in the Whitney covering is that

if 	1Bd .z1; d.z1/=	2/ \ 	1Bd .z2; d.z2/=	2/ ¤ ;, then 	1Bd .z1; d.z1/=	2/ must
be included in some ball Bd .z2; d.z2/=	3/ on which the measure � is doubling.
Otherwise one can choose the constants as desired.
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