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Some groups of mapping classes not realized by diffeomorphisms
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Abstract. Let † be a closed surface of genus g � 2 and z 2 † a marked point. We prove that
the subgroup of the mapping class group Map.†; z/ corresponding to the fundamental group
�1.†; z/ of the closed surface does not lift to the group of diffeomorphisms of † fixing z. As a
corollary, we show that the Atiyah–Kodaira surface bundles admit no invariant flat connection,
and obtain another proof of Morita’s non-lifting theorem.
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1. Introduction

Given a closed orientable surface † and a finite, possibly empty, set z � † of marked
points, consider the group

DiffC.†; z/ D ff 2 DiffC.†/ j f .z/ D zg
of orientation-preserving diffeomorphisms of † which map the set of marked points
to itself. (When z is empty we drop it from our notation.) We denote by Diff0.†; z/

the normal subgroup of DiffC.†; z/ consisting of those diffeomorphisms which are
isotopic to the identity via an isotopy which fixes the set z. The mapping class group
is the quotient group

Map.†; z/ D DiffC.†; z/= Diff0.†; z/:

In [16], Morita proved that if † has genus at least 18 and the set of punctures is empty,
then the exact sequence

0 ! Diff0.†/ ! DiffC.†/ ! Map.†/ ! 0

does not split. The bound was later improved to genus at least 5 by Morita ([17],
Theorem 4.21). Recently Franks–Handel [6] have extended this result so that it holds
for genus at least 3. Cantat–Cerveau [3] have proved that finite index subgroups of
the mapping class group do not lift to the group of analytic diffeomorphisms. A much
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more powerful result is due to Marković [12] and Marković–Šarić [13], who have
proved that for genus at least 2, the mapping class group does not even lift to the
group of homeomorphisms. The proofs of at least some of these results apply also to
the case with marked points.

Given a subgroup � ,! Map.†; z/, the realization problem asks whether �

lifts to DiffC.†; z/. This has been the focus of much interest for various classes of
subgroups over the years since Nielsen first raised the question. Affirmative answers
were given for cyclic groups by Nielsen [18], for finite groups by Kerckhoff [9], and
for abelian groups by Birman–Lubotzky–McCarthy [2]. In this paper, we exhibit
rather small subgroups of Map.†; z/ that do not lift to DiffC.†; z/. Specifically, in
the case of a surface of genus at least 2 with a single marked point we prove:

Theorem 1.1. Let † be a closed surface of genus g � 2 and z 2 † a marked point.
No finite index subgroup of the point-pushing subgroup �1.†; z/ � Map.†; z/ lifts
to DiffC.†; z/.

The point-pushing subgroup fits into the Birman exact sequence

1 ! �1.†; z/
F��! Map.†; z/ ! Map.†/ ! 1 (1.1)

as long as g � 2. Observe that if .†; z/ is a torus with a single marked point, then
the mapping class group does in fact lift to DiffC.†; z/.

We sketch now the proof of Theorem 1.1. Seeking a contradiction, assume that
there is a homomorphism ˆ such that the following diagram commutes:

DiffC.†; z/

��
�1.†; z/ ,

F ��

ˆ

��������
Map.†; z/

where F is the inclusion from (1.1). The homomorphism ˆ yields an action of
�1.†; z/ on † by diffeomorphisms fixing z and hence a representation of �1.†; z/

in GLC.Tz†/. By Milnor’s inequality this representation has Euler-number bounded
in absolute value by g � 1. On the other hand, we compute that the Euler-number
must be 2 � 2g; this contradiction gives Theorem 1.1.

Combining Theorem 1.1 with some topological constructions, we show that the
centralizers of most finite order elements of Map.†/ do not lift to DiffC.†/. Con-
cretely, we construct a subgroup of Map.†/ isomorphic to Z=3Z��1.S; z/ for some
closed surface S that does not lift to DiffC.†/. This relies on the existence of finite
order elements and thus does not apply to finite index subgroups of Map.†/. Us-
ing Theorem 1.1 and this construction, we derive the following version of Morita’s
theorem:
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Theorem 1.2 (Morita’s non-lifting theorem). Let .†; z/ be a surface of genus g with
jzj D k marked points. Assume either that g � 6 or that g � 2 and k � 1. Then the
exact sequence

0 ! Diff0.†; z/ ! DiffC.†; z/ ! Map.†; z/ ! 0 (1.2)

does not split. In fact, if g � 2 and k � 1 then no finite index subgroup of Map.†; z/

lifts to DiffC.†; z/.

Morita originally proved his theorem by finding a surface bundle over an 6-
dimensional manifold with a cohomological obstruction to the existence of a flat con-
nection. (All connections are taken to be smooth.) The theorem of Earle–Eells [4] on
the contractibility of Diff0.†/ implies that a †-bundle over a base B admits a flat con-
nection if and only if the topological monodromy representation �1.B/ ! Map.†/

can be lifted to a map �1.B/ ! DiffC.†/. In particular, if the sequence (1.2) split,
then every surface bundle would admit a flat connection, so Morita’s theorem follows
from his example.

In contrast, for surface bundles over surfaces, Kotschick–Morita [11] proved that
every surface bundle admits a flat connection after “stabilization”; in particular, there
can be no cohomological obstruction to flatness in this case. This raised the open
problem of finding a surface bundle over a surface that does not admit a flat connection.
The details of the proof of Theorem 1.2 give a partial solution to this problem. In
the case of a punctured surface, Theorem 1.1 gives a surface group isomorphic to
�1.†; z/ inside Map.†; z/ that does not lift to DiffC.†; z/. This yields a surface
bundle with a distinguished section, with base space a closed surface, which admits
no flat connection such that the distinguished section is parallel. (In fact, this bundle
is just the trivial bundle † � †, and the distinguished section is the diagonal.) We
believe that this is the first such surface group inside a punctured mapping class group
known. In the case of a closed surface, the construction described above corresponds
to a topological construction of Kodaira and Atiyah, and we conclude (see remarks
preceding the proof for definitions):

Theorem 1.3. When k � 3, the Atiyah–Kodaira bundle † ! Mk ! S 0 admits no
flat connection invariant under the order-k deck transformation T W Mk ! Mk .

However, the full question remains open in the case when the surface is closed.

Question. Does there exist a closed surface bundle over a surface that admits no flat
connection?

Acknowledgements. The authors would like to thank Benson Farb andVlad Marković
for their interest in this project. The second author would like to thank Benson Farb
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for introducing him to the examples of Kodaira and Atiyah and to the questions sur-
rounding flat surface bundles. We are very grateful to an anonymous referee for their
careful reading, and for pointing out that the bound in our main theorem could be
improved.

2. A few facts about Euler-numbers

Let † be a closed surface of genus g and let z† ! † be its universal cover. Choose
base points z 2 † and Qz 2 z† projecting to z. The choice of base points yields an
identification between the fundamental group �1.†; z/ and the deck-transformation
group of the cover z† ! †. Before going any further, let us remark that the compo-
sition � ? � of two elements �; � 2 �1.†; z/ is obtained by first running � and then
�. By construction, the universal cover z† consists of homotopy classes rel endpoints
of continuous paths in † beginning at z. Here we can identify Qz with, for instance,
the homotopy class of the constant path. The fundamental group �1.†; z/ acts on z†
by precomposition, meaning that we first run a path representing the element in the
fundamental group and then a path representing the element in z†. In particular, the
obtained action of �1.†; z/ Õ z†, the so-called action by deck-transformations, is a
left action.

Assume now that � W �1.†; z/ ! HomeoC.S1/ is an action of the fundamental
group of † on the circle. Let E� be the quotient of z† � S1 under the action

�1.†; z/ Õ .z† � S1/; .�; .x; �// 7! .�x; �.�/�/:

The projection of z† � S1 onto the first factor is �1.†/-equivariant and has fiber S1;
this descends to give E� the structure of a circle bundle over †. The trivial connection
on z† � S1 induces a flat connection on E�. Conversely, every flat circle bundle over
† is obtained in this way.

The Euler-number e.E�/ 2 Z of the bundle E� ! † is the obstruction for the
bundle E� to admit a section, or equivalently, for the action � to lift to an action on
the universal cover R of S1.

Milnor–Wood inequality. Assume that E� is a flat orientable circle bundle over a
closed surface † of genus g. Then

ˇˇe.E�/
ˇˇ � 2g � 2.

It should be observed that there are flat circle bundles with Euler-number 2 � 2g.
For instance, endowing † with a hyperbolic metric, we can identify the universal cover
z† with the hyperbolic plane. The action of �1.†; z/ on H2 extends to an action on
the circle at infinity @1H2. The associated flat circle bundle is isomorphic to the unit
tangent bundle of † and hence has Euler-number equal to the Euler characteristic
�.†/ D 2 � 2g. We record this fact for further reference (see Appendix C of [15]):
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Lemma 2.1. Let † be a closed orientable hyperbolic surface of genus g and identify
�1.†; z/ with the corresponding group of deck-transformations of H2. The circle
bundle corresponding to the induced action of �1.†; z/ on @1H2 D S1 has Euler-
number 2 � 2g. �

We point out that Goldman [7] proved a converse to this lemma: if � W �1.†; z/ !
PSL2 R has

ˇˇe.E�/
ˇˇ D 2g � 2, then � is an isomorphism onto a discrete subgroup of

PSL2 R and thus comes from a hyperbolic metric on † as in the lemma.
Other examples of circle bundles over † can be constructed as follows. A linear

action � W �1.†; z/ ! GLC
2 R of �1.†; z/ on R2 induces an action on the space

of directions PCR2 D .R2 n f0g/=RC of R2. The latter can be identified with
the circle and hence the same construction as above yields a circle bundle E�. A
circle bundle E� arising in this way is called a flat linear circle bundle. The linear
action � induces a different circle bundle yE� via the induced projective action on
the projective line P R2 D .R2 n f0g/=.R n f0g/, which can also be identified with
the circle. By construction there is a two-to-one fiberwise covering E� ! yE�. In
particular, e. yE�/ D 2e.E�/. We have then:

Milnor’s inequality. Assume that E� is a flat linear orientable circle bundle over a
closed surface † of genus g. Then

ˇˇe.E�/
ˇˇ � g � 1.

In [14], Milnor proved that if a GLC
2 R-bundle over a closed surface of genus

g admits a flat symmetric connection, then its Euler-number is bounded in absolute
value by g � 1. This is equivalent to Milnor’s inequality above. Later, Wood [19]
extended Milnor’s work to prove the Milnor–Wood inequality.

For a general oriented circle bundle S1 ! E ! B , the Euler class is a charac-
teristic class e.E/ 2 H 2.B/. When the base space is a surface, we identify this with
the Euler-number by the identification H 2.†/ D Z. We will use the same symbol
for the Euler-number and Euler class; it should be clear from context what is meant.

3. Surfaces with one puncture

Let † be a closed surface of genus g and z 2 † a marked point, and define the group
G .†; z/ to consist of those orientation-preserving homeomorphisms f of † which
fix z so that f and f �1 are differentiable at z. In this section we prove the following
generalization of Theorem 1.1:

Proposition 3.1. Let † be a closed surface of genus g � 2 and z 2 † a marked point.
If � � �1.†; z/ is a finite index subgroup, then the inclusion of � into Map.†; z/

under the homomorphism F from (1.1) does not lift to G .†; z/.
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Observe that since DiffC.†; z/ is a subgroup of G .†; z/, Theorem 1.1 follows
directly from Proposition 3.1. Although Proposition 3.1 applies only to punctured
surfaces, we will upgrade it in Section 4 to prove Theorem 1.2 for closed surfaces.

Before going any further we describe the homomorphism

F W �1.†; z/ ,! Map.†; z/

from (1.1) in detail. Given � 2 �1.†; z/, let E� W Œ0; 1	 ! † be a loop in the
corresponding homotopy class. The map t 7! E�.1 � t / can be interpreted as an
isotopy from the identity Idz to itself. By the theorem on extension of isotopies we
obtain an isotopy ft W † ! † with f0 D Id† and ft .z/ D E�.1 � t /. Birman proved
that the element F� 2 Map.†; z/ corresponding to f1 2 DiffC.†; z/ depends only
on the element � 2 �1.†; z/. Observing that

F�?� D F� B F�

we have that F W �1.†; z/ ! Map.†; z/ is a homomorphism.
Starting now the proof of Proposition 3.1, assume that there is a homomorphism

ˆ W �1.†; z/ ! G .†; z/

such that for each � 2 �1.†; z/ the homeomorphism ˆ� represents the mapping class
F� 2 Map.†; z/. Endowing † with a hyperbolic metric we identify its universal
cover with H2; choose a point Qz covering z. We obtain then a homomorphism

ẑ W �1.†; z/ ! G .H2; Qz/

mapping � to the unique lift of ˆ� which fixes Qz. Here G .H2; Qz/ is the group of home-
omorphisms of H2 fixing Qz which are differentiable at Qz with inverse differentiable
at Qz.

Lemma 3.2. The homeomorphism ẑ
� W H2 ! H2 extends to a homeomorphism

of the closed disk xH2 D H2 [ @1H2. Moreover, the restriction of ẑ
� to @1H2

coincides with the action of � as a deck-transformation.

Lemma 3.2 is probably well known to experts and non-experts alike. However,
here is a proof:

Proof. We start by observing that the action ˆ can be lifted in a different way. By
construction, if we forget the marked point, the homeomorphism ˆ� is homotopic to
the identity. If ft is such a homotopy with f0 D Id† and f1 D ˆ� , let Oft be the
unique lift of ft to H2 with Of0 D IdH2 . We obtain a new lift ŷ

� D Of1 of ˆ� . It
follows directly from the construction of the homomorphism F and from the fact that
ˆ� represents F.�/ that

ŷ
� . Qz/ D ��1 Qz



Vol. 88 (2013) Mapping classes not realized by diffeomorphisms 211

where we have identified � 2 �1.†; z/ with the corresponding deck-transformation.
In particular, the two lifts ŷ

� and ẑ
� differ by the deck-transformation � , meaning

that
� B ŷ

� D ẑ
� : (3.1)

By construction, the lift ŷ
� moves every point in H2 a uniformly bounded distance

from itself. In particular ŷ extends continuously to the identity map on the boundary
@1H2 of the hyperbolic plane. The claim follows from this fact and (3.1). �

We come now to the meat of the proof of Theorem 1.2. Recall that xH2 is the
union of H2 with the circle at infinity @1H2. The half-open annulus xH2 n Qz can be
compactified in a canonical way by attaching to the open end the space of directions
PCTQzH2 D .TQzH2 n f0g/=RC of the tangent space at Qz. Let A be the so-obtained
closed annulus. By Lemma 3.2, the action of �1.†; z/ via ẑ induces an action on
xH2 nfQzg. Moreover, the assumption that ẑ

� is differentiable at Qz for all � 2 �1.†; z/

implies that this action extends to an action on A which restricts to @A as follows.

� On the component @1A corresponding to @1H2 the action of �1.†; z/ the action
is equal to the one induced by the deck-transformation group by Lemma 3.2.

� On the component @2A corresponding to the space of directions of TQzH2, the
action is induced by the representation

�1.†; z/ ! GLC.TQzH2/; � 7! d ŷ
� jQz :

In particular, it follows from Lemma 2.1 that the circle bundle E1 over † induced by
the action on @1A has Euler-number

e.E1/ D 2 � 2g:

Similarly, it follows from Milnor’s inequality that the circle bundle E2 over † induced
by the action on @2A satisfies

je.E2/j D g � 1:

But since the annulus bundle A admits a fiberwise deformation retract onto E1 and
also onto E2, these bundles have the same Euler-number

e.E1/ D e.A/ D e.E2/:

This contradiction shows that the image of �1.†; z/ under F does not lift to G .†; z/.
The same argument applies to finite index subgroups; this concludes the proof of
Proposition 3.1. �

As mentioned above, Theorem 1.1 follows directly from Proposition 3.1.
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An alternate perspective on Proposition 3.1. In the remainder of this section, we
sketch an alternate perspective on the above proof in the language of surface bundles.
This perspective will be used in the remarks following the proof of Theorem 1.2 and
in the proof of Theorems 1.3 and 4.3.

The previous section considered the flat linear circle bundle Edˆ ! †, which
a priori depends on the lift ˆ of F ; however, the isomorphism type of Edˆ as a
topological circle bundle does not depend on ˆ. In fact, this circle bundle can be
defined without reference to any lift, as we describe below.

The theorem of Earle–Eells, extended to punctured surfaces by Earle–Schatz [5],
gives a one-to-one correspondence between †-bundles with distinguished section
over a base B (up to isomorphism) and their monodromy representation �1.B/ !
Map.†; z/ (up to conjugacy). The “vertical Euler class” of a †-bundle with dis-
tinguished section is a characteristic class defined as follows. Given such a bundle

† ! E
��! B with section 
 W B ! E, the vectors tangent to the fibers span a 2-

dimensional subbundle T � � TE. Passing to the space of directions and restricting
to the section 
 induces a circle bundle U T �j� ! B . The vertical Euler class is
defined to be the Euler class e.U T �j� / 2 H 2.B/ of this circle bundle. This class
is discussed in many references, including [16]. We will need only the following
property.

Fact. If the monodromy r W �1.B/ ! Map.†; z/ of a †-bundle with section lifts to
� W �1.B/ ! G .†; z/, yielding as above the flat linear circle bundle Ed� ! B , then
Ed� is isomorphic to U T �j� as a circle bundle.

To apply this fact to the map F W �1.†; z/ ! Map.†; z/, we must identify the
†-bundle with section over † whose monodromy is F . It is easy to check that the
desired bundle is the product bundle p1 W † � † ! †, with section given by the
diagonal � W † ! † � †.

Along the diagonal, we can identify the tangent space T.p;p/.† � †/ with Tp† �
Tp†. Under this identification, Tp1 D ker dp1 consists of vectors of the form
.0; v/ 2 Tp† � Tp†. Mapping .0; v/ 7! .v; v/ gives an isomorphism between
Tp1j� and T�, the subbundle spanned by vectors tangent to the diagonal. It follows
that e.U Tp1j�/ D e.U T�/ D 2 � 2g. By Milnor’s inequality, this bundle is not
isomorphic to any flat linear circle bundle. Thus the fact above implies that no lift
ˆ W �1.†; z/ ! G .†; z/ exists.

For a finite index subgroup of �1.†; z/ corresponding to the cover p W †0 ! †,
the same argument applies to the bundle †0 � † ! †, with section given by the
graph of p.
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4. The proof of Theorem 1.2

In this section we deduce Theorem 1.2 from Proposition 3.1, but before doing so we
need some notation.

Theorem 1.2. Let .†; z/ be a surface of genus g with k marked points. Assume that
either g � 6 or that g � 2 and k � 1. Then the exact sequence

0 ! Diff0.†; z/ ! DiffC.†; z/ ! Map.†; z/ ! 0

does not split. In fact, if g � 2 and k � 1 then no finite index subgroup of Map.†; z/

lifts to DiffC.†; z/.

Given a surface as in Theorem 1.2, let G .†; z/ be the group of those orientation-
preserving homeomorphisms f of † which fix the marked points z pointwise so that
f and f �1 are differentiable at each z 2 z. If G0.†; z/ denotes the normal subgroup
of G .†; z/ consisting of those elements which are isotopic to the identity relative to
the set z then the quotient group

PMap.†; z/ D G .†; z/=G0.†; z/

is the pure mapping class group, a finite index subgroup of the mapping class group
Map.†; z/. We could equivalently define PMap.†; z/ using diffeomorphisms instead
of G .†; z/.

We can now start with the proof of Theorem 1.2. We will divide the proof into
cases depending on the genus g and number of marked points k in .†; z/; the proof
for each case will depend upon the previous one.

Case 1. g � 2 and k D 1. Since the group DiffC.†; z/ is a subgroup of G .†; z/,
the claim follows directly from Proposition 3.1. �

Case 2. g � 2 and k � 2. Consider the configuration space

Ck.†/ D ˚
.x1; : : : ; xk/ 2 †k j xi ¤ xj if i ¤ j

�

of ordered k-tuples of pairwise distinct points in the closed surface †. We can consider
Ck.†/ as a fiber bundle over † via the following projection:

p1 W Ck.†/ ! †; p1 W .x1; : : : ; xk/ 7! x1

In particular, we obtain a homomorphism

�1.p1/ W �1.Ck.†/; .z1; : : : ; zk// ! �1.†; z1/:

We claim that �1.p1/ has a right inverse:
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Lemma 4.1. There is a homomorphism

� W �1.†; z1/ ! �1.Ck.†/; .z1; : : : ; zk//

with �1.p1/ B � D Id.

Proof. It suffices to construct a section † ! Ck.†/ of the fiber bundle p1 W Ck.†/ !
†. In order to construct such a section, it suffices to find maps ˛i W † ! † for
i D 2; : : : ; k, each without fixed points and satisfying ˛i .z1/ D zi and ˛i .x/ ¤

j̨ .x/ for i ¤ j . Given such ˛i , let 
 W † ! †k be the map given by 
.x/ D
.x; ˛2.x/; : : : ; ˛k.x//. By construction, the image of 
 is contained in Ck.†/. On
the other hand, p1 B 
 D Id; in other words, 
 is the desired section.

To find such maps, let T � † be a compact subsurface homeomorphic to a torus
with one boundary component and which contains all the points z1; : : : ; zk . Let C be
a homotopically essential simple closed curve in T n@T with zi 2 C for i D 1; : : : ; k;
let also T be the closed torus obtained by collapsing the boundary of T to a point.
Equivalently, T is obtained by collapsing † n .T n @T / to a point; this gives a map
† ! T . We can now identify C with a factor of T � S1 � S1, giving in particular a
projection T ! C . Composing with the map † ! T above, we obtain a retraction
a W † ! C which fixes each point in C . Fixing a parametrization of C , let ˛i be the
composition

˛i W †
a� C

ri�! C ,! †

where the middle map ri W C ! C is the rotation taking z1 to zi . Since the image of
each ˛i is C , any fixed point of ˛i must lie in C ; since ˛i acts by a nontrivial rotation
on C , ˛i has no fixed points. Similarly, since each ˛i is the composition of a with a
different rotation, we have ˛i .x/ ¤ j̨ .x/ for i ¤ j , as desired. �

Order now the points z1; : : : ; zk in z and let Ez be the so-obtained point in Ck.†/.
Recall that PMap.†; z/ is the pure mapping class group of .†; z/, i.e. the subgroup
of the mapping class group consisting of mapping classes whose representatives in
DiffC.†/ fix each one of the marked points. Forgetting all the marked points, and
forgetting all the marked points but z1, we obtain the following versions of the Birman
exact sequence (1.1):

1 �� �1.Ck.†/; Ez/ ��

�1.p/

��

PMap.†; z/ ��

��

Map.†/ �� 1

1 �� �1.†; z1/

�

��

�� Map.†; z1/ �� Map.†/ �� 1 .

Here � is the homomorphism provided by Lemma 4.1.
Assume now that G is a finite index subgroup in Map.†; z/ which lifts to

DiffC.†; z/. Intersecting with the point-pushing subgroup �1.Ck.†/; Ez/, we ob-
tain a finite index subgroup of �1.Ck.†; Ez// which lifts to DiffC.†; z/. Composing
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with the section � provided by Lemma 4.1, we obtain a lift of a finite index subgroup
� < �1.†; z1/ to DiffC.†; z/. Since DiffC.†; z/ is a subgroup of DiffC.†; z1/

and hence of G .†; z1/, this contradicts Proposition 3.1. This concludes the proof of
Case 2. �

Remark. Before going further, observe that we have actually proved that, under the
assumptions of Case 2, no finite index subgroup of Map.†; z/ lifts to G .†; z/.

Case 3. g � 6 and k D 0. In this case we will prove that the centralizer of a certain
finite order element T 2 Map.†/ does not lift to DiffC.†/. We have significant
freedom in our choice of T ; we require only that the order of T be at least 3, and
that the quotient †=hT i have genus at least 2. The first step is to verify that such
finite order elements exist for all †. Though in the proof we work with an order 3
automorphism � , any number k � 3 would work just as well; see the remark following
the proof of Lemma 4.2 to see why it is necessary that � have order at least 3.

Fact. If g � 6, then there is a diffeomorphism � W † ! † of order 3 with at least 2

fixed points so that the quotient †=h�i has genus h � 2.

There are many different ways to find such a finite-order diffeomorphism. One
uniform way is to begin with a degree 3 cyclic branched cover of the sphere branched
at g � 4 points. By the Hurwitz formula, the resulting surface has genus g � 6. Now
add three genus 2 handles symmetrically, so they are permuted freely by the order
3 deck transformation; in the quotient this corresponds to adding a single genus 2
handle to the sphere. The result is a genus g surface † with an order 3 automorphism
� so that the quotient †=h�i has genus 2.

Let � W † ! † be the diffeomorphism provided by the fact above, T 2 Map.†/

the corresponding mapping class, and

C.T / D ff 2 Map.†/ j f B T D T B f g
its centralizer. We claim that C.T / does not lift to DiffC.†/. Seeking a contradiction,
assume that such a lifting

‰ W C.T / ! DiffC.†/

exists. By definition, the diffeomorphism ‰.T / has order 3 and is isotopic to � . In
particular, both diffeomorphisms are conjugate and we may assume without loss of
generality that ‰.T / D � , so that the image of ‰ is contained in the centralizer
C.�/ < DiffC.†/.

Remark. The authors did not find a reference for this fact, so we give a short argument
here. Each of � and � 0 D ‰.T / is an isometry of some hyperbolic structure X and X 0
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on †, respectively. Identifying the universal cover of X and X 0 with the hyperbolic
plane, we obtain that the groups G generated by all lifts of � and G0 generated by all
lifts of � 0 are Fuchsian groups. In fact, the assumption that � is isotopic to � 0 implies
that G and G0 are isomorphic. Satz IV.10 in Zieschang–Vogt–Coldewey [20] implies
that the actions of G and G0 are conjugate. This yields a conjugation between � and
� 0. Before moving on, we observe that a second and slightly more sophisticated proof
follows from the fact that the fixed point set of the mapping class T in Teichmüller
space is totally geodesic with respect to the Teichmüller metric, and thus a fortiori
connected.

By construction, the quotient surface S D †=h�i has genus h � 2. Let now
z1; : : : ; zk 2 S be the projection to S of the fixed points of � and set z D fz1; : : : ; zkg.
Every f 2 DiffC.†/ which commutes with � induces a homeomorphism of .S; z/.
This gives a homomorphism

˛ W C.�/ ! Homeo.S; z/

whose kernel is the cyclic group generated by � . Let C.�; z/ be the finite index
subgroup of C.�/ consisting of those diffeomorphisms which commute with � and
fix each of its fixed points. The key fact, and the reason we require � to have order 3,
is the following lemma:

Lemma 4.2. The image of C.�; z/ under ˛ is contained in G .S; z/.

Proof. It is well known that there is a conformal structure on † such that � is biholo-
morphic. In particular, if x is one of the fixed points of � we can find coordinates
 around x such that �./ D ! �  where ! is a primitive third root of unity. Every
differentiable f W † ! † which fixes x and commutes with � has differential

dfx W Tx† ! Tx†

satisfying dfx � ! D ! � dfx . Since ! has order 3, the elements 1 and ! span C as a
real vector space. Since dfx commutes with multiplication by each, dfx is complex
differentiable. This implies that the induced map S ! S is also differentiable at the
projection of x. This concludes the proof of the lemma. Note that we could not have
concluded that dfx is complex differentiable if ! instead had order 2, since any linear
map commutes with �1. �

By composing with ‰, we obtain an action

C.T /
‰�! C.�/

˛�! Homeo.S; z/

of C.T / on .S; z/. Since h�i is the kernel of ˛, this descends to an action

C.T /=hT i ! Homeo.S; z/:
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As in the construction of ˛, we can identify C.T /=hT i with a certain subgroup
of Map.S; z/. A mapping class in Map.S; z/ lifts to the branched cover † exactly
if it preserves up to conjugacy the subgroup of �1.S n z/ determining the cover
† n z ! S n z. Since this subgroup has finite index in �1.S n z/, its stabilizer has
finite index in Map.S; z/. Among these, C.T /=hT i is identified with the finite index
subgroup consisting of those mapping classes whose lift to † commutes with T . Let
� be the intersection of C.T /=hT i with PMap.S; z/; note that � has finite index in
Map.S; z/.

We consider the restriction of the action C.T /=hT i ! Homeo.S; z/ above to
the subgroup � . Since � is contained in PMap.S; z/, the image under ‰ of any lift
will be contained in C.�; z/. Lemma 4.2 implies that the action � ! Homeo.S; z/

has image contained in G .S; z/. Thus we have a lift of the finite index subgroup
� < Map.S; z/ to G .S; z/, contradicting the remark following the proof of Case 2.
This contradiction completes the proof of Case 3, and thus concludes the proof of
Theorem 1.2. �

For a minimal example of a non-lifting subgroup, consider the intersection of
� � Map.S; z/ with the surface group �.�1.S; z1//; this gives a surface group
inside Map.S; z/ whose preimage in C.T / does not lift to DiffC.†/. This preimage
is a central extension of a surface group by the cyclic group hT i; by possibly passing
to an index 3 subgroup, we may assume this extension is trivial, yielding a subgroup
of Map.†/ isomorphic to Z=3Z � �1.S 0; z/ which does not lift to DiffC.†/.

Observations on the proof of Theorem 1.2. In this section, we give an informal
discussion interpreting the above proof in terms of surface bundles. We then use this
perspective to give two observations, Theorems 1.3 and 4.3 below.

As discussed in the introduction, Case 1 above is equivalent to the statement that
not every surface bundle with section admits a flat connection so that the section is
parallel. This was proved in Proposition 3.1 by exhibiting the product bundle † � †

with section given by the diagonal �.
The content of Lemma 4.1 in Case 2 is then that this bundle admits k disjoint

sections, one of which is the diagonal. The proof given above was chosen because
it requires no conditions on the genus g of †. In the special case when kj.g � 1/,
another construction is as follows. Let 
 W † ! † generate a free action of Z=kZ on
†; then the graphs � D �id; �� ; ��2 ; : : : ; ��k�1 give k disjoint sections of † � †.

Fiberwise branched covers. In Case 3, we exploit the connection between Map.†/

and Map.S; z/, where S D †=h�i and z is the image of the fixed points of � . For
surface bundles, this corresponds to passing to a fiberwise branched cover, as follows;
we allow the order of � to be any k � 3. If S ! E ! B is a surface bundle with n

disjoint sections 
1; : : : ; 
n W B ! E, the union of the sections gives a (disconnected)
codimension 2 subspace of E. Depending on the bundle and sections, E may admit
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a cyclic branched cover zE ! E of order k, branched over the sections 
i ; in this
case zE becomes a †-bundle † ! zE ! B . The action of � on † then corresponds
to the order-k automorphism T W zE ! zE generating the deck transformations of
the branched cover zE ! E. The observation above that C.T /=hT i has finite index
in Map.S; z/ becomes here the following fact: even if E does not admit such a
branched cover, there is always some finite cover B 0 ! B so that the pullback
bundle S ! E 0 ! B 0 admits a cyclic branched cover, branched over the preimages
in E 0 of the sections 
i .

Combining this construction with the choice of sections �� i � †�† recovers the
classical example of Kodaira [10] and Atiyah [1] . Their surface bundle is constructed
as follows: start with a surface S admitting a free action of Z=kZ generated by 
 .
The bundle S � S ! S does not admit a branched cover branched over the union of
the sections �� i . However, taking � W S 0 ! S to be the cover corresponding to the
kernel of �1.S/ ! H1.S/ ! H1.S I Z=kZ/, the pullback S 0 � S ! S 0 does admit
a branched cover Mk ! S 0 � S of order k, branched over the union of the sections
�� i B� . Composing with the projection S 0 � S ! S 0 gives a bundle † ! Mk ! S 0,
where the fiber † is a branched cover of the original fiber S of order k, branched over
k points. (Note that the manifold Mk fibers over a surface in two different ways; the
fibering considered here is that of the original authors.)

Aside from the choice of sections, these steps correspond exactly to the consid-
erations above, and so the results of Case 3 apply identically to this case, giving the
following theorem:

Theorem 1.3. When k � 3, the Atiyah–Kodaira bundle † ! Mk ! S 0 admits no
flat connection invariant under the order-k deck transformation T W Mk ! Mk .

The surface group �1.S 0; z/ � Map.†/ singled out in the previous section is the
monodromy of this surface bundle. We remark that by returning to the choice of
sections considered in Case 3, the same theorem is obtained for the surface bundles
constructed by González-Díez and Harvey in [8].

We now sketch a description of Morita’s m-construction; this is a generalization
of the construction of Kodaira and Atiyah, used by Morita in [16] to give the original
proof of Morita’s theorem. Roughly, the m-construction begins with a surface bundle
over a manifold of dimension n satisfying certain conditions, then modifies it by
pulling back along covers of the base, covers and branched covers of the fiber, and
the bundle projection itself; the result is another surface bundle whose base has
dimension n C 2.

More precisely, given an admissible surface bundle s ! E ! B , first pull back
to the total space to obtain a bundle over E with fiber s; this bundle naturally admits
a “diagonal” section. Possibly passing to a finite cover of the base, we may take a
fiberwise cover, obtaining a new bundle with fiber S , where S ! s is a cover with
deck transformation group Z=mZ. As discussed above, combining the “diagonal”
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section with this Z=mZ-action yields m disjoint sections of this S -bundle. Again
possibly passing to a finite cover of the base, we may take a fiberwise branched cover,
yielding a bundle † ! zE ! E 0, where † ! S is a cyclic branched cover of order
m branched at m points. Note that the deck transformation T W zE ! zE of this cyclic
branched cover has order m.

Fixing a single fiber of the original bundle s ! E ! B and following through
this construction, we see that the preimage of this fiber in zE gives an Atiyah–Kodaira
bundle † ! Mm ! S 0 inside † ! zE ! E 0. Thus we have the following
consequence of Theorem 1.3.

Theorem 4.3. When m � 3, given any admissible bundle s ! E ! B , the †-bundle
† ! zE ! E 0 resulting from Morita’s m-construction admits no flat connection
invariant under the order-m deck transformation T W zE ! zE.

For comparison, the corresponding form of Morita’s theorem is as follows.

Theorem 4.4 (Morita’s Theorem). There exists a bundle s ! E6 ! B4 so that the
†-bundle † ! zE8 ! E 06 resulting from Morita’s m-construction admits no flat
connection.
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