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Introduction

LetA be an abelian variety over a number field k, letX be a subgroup of the Mordell–
Weil group A.k/ and let P 2 A.k/ be a rational point. We want to “decide” whether
P belongs to X or not. To do so, we choose a model of A over an open subscheme
U of spec Ok , where Ok denotes the ring of integers of k. Because A is proper, P
and all points in X extend to U -points. For closed points p 2 U we can consider the
reduction map

redp W A.U / �! A.�p/

where �p WD Ok=p denotes the residue field at p. A necessary condition for P
belonging to X is then that for all closed points p 2 U the reduction of P modulo p
belongs to the reduction of X modulo p. Wojciech Gajda asked in 2002 whether this
condition is also sufficient. This problem was named the problem of detecting linear
dependence.

In a joint work with Antonella Perucca ([JP09]) we have shown that the answer
to Gajda’s question is negative in general by giving an explicit counterexample (Ba-
naszak and Krasón have found independently such a counterexample). The abelian
variety in our counterexample is a power of an elliptic curve. Our main result in this
note is:

Main Theorem. LetA be a geometrically simple abelian variety over a number field
k, let X be a subgroup of A.k/ and let P 2 A.k/ be a rational point. If the set of
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places p of k for which redp.P / belongs to redp.X/ has natural density 1, then P
belongs to X .

By saying that A is geometrically simple we mean that A has no other abelian
subvariety other than 0 and itself defined over an algebraic closure Nk of k. The
statement of the theorem is new even in the case whereA is an elliptic curve. However,
many partial results in this direction have already been obtained, let us mention a
few of them. The earliest result on this problem is due to Schinzel ([Sch75]), who
showed the analogue of our Main Theorem for the multiplicative group in place of
an abelian variety. Weston has shown that for an abelian variety with a commutative
endomorphism ring the statement of our theorem holds up to a torsion ambiguity
([Wes03]), and Kowalski has shown the statement of our theorem to hold for an
elliptic curve and a cyclic subgroup ([Kow03]). Banaszak, Gajda, Górnisiewicz and
Krasoń have proven similar statements under various technical assumptions on the
abelian variety and the subgroup ([BGK05], [GG09], [BK09]), and Perucca has some
similar results for products of tori and abelian varieties ([Per08]).

Here is a quick overview on the main ideas of the proof. Let U be an open
subscheme of spec Ok , where Ok is the ring of integers of the number field k. A
1-motive over U is a morphism of fppf sheaves

M D Œu W Y �! G�

over U where Y is étale locally constant, locally isomorphic to a finitely generated
free group, and where G is a semiabelian scheme over U . By a semiabelian scheme
over U we understand in this paper an extension over U of an abelian scheme by a
torus. In the caseY is constant defined by a finitely generated free group which we still
denote by Y , morphisms of fppf-sheaves Y �! G are the same as homomorphisms of
groups Y �! G.U /. Given a semiabelian scheme G over U and a finitely generated
subgroup X of G.U / we can choose a 1-motive ŒY �! G� over U where Y is a
constant sheaf defined by a finitely generated free group, such that u.Y / D X . In
the case X is torsion free one can just take Y D X and for u the inclusion.

With any 1-motive M over U and prime number ` invertible on U is associated
a locally constant `-adic sheaf T`M on U , which can also be viewed as a finitely
generated free Z`-module equipped with a continuous action of the absolute Galois
group of k which is unramified in U . For a set S of closed points of U of density 1
we consider the group

H 1
S .U;T`M/ WD ker

�
H 1.U;T`M/ �!

Y
p2S

H 1.�p;T`M/
�

where �p D Ok=p denotes the residue field at p. Using Kummer theory we will
show that the vanishing of the groups H 1

S .U;T`M/ for all ` is the obstruction for
the local-global principle of the Main Theorem to hold. As observed by Serre and
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Tate it is essentially a consequence of Chebotarev’s Density Theorem that the group
H 1
S .U;T`M/ is isomorphic to the group

H 1� .LM ;T`M/ WD ker
�
H 1.LM ;T`M/ �!

Y
C�LM

H 1.C;T`M/
�

where LM denotes the image of the Galois group Gal. Nkjk/ in the group of automor-
phisms of T`M and where the product ranges over all subgroups C of LM topolog-
ically generated by one element. In the case where G is an abelian variety we will
determine the group LM up to commensurability, and modulo the Mumford–Tate
conjecture. This will allow us then, in the case where A is geometrically simple, to
gain sufficient control on H 1� .LM ;T`M/ in order to prove the Main Theorem.

A comment about our use of 1-motives is in order. Classical 1-motives and
Galois-modules attached to them are an effective tool for studying the arithmetic of
semiabelian varieties over number fields. We will use them only as such a tool. In
principle, everything could be done in terms of appropriately defined Galois modules,
without referring to 1-motives at all.

Acknowledgment. Large parts of this article are taken from my Ph.D. thesis directed
by Tamás Szamuely. I wish to thank him for his help, encouragement and support
during this work. Many thanks go to Antonella Perucca who considerably helped to
simplify some of the arguments. I am grateful to G. Banaszak and W. Gajda for very
useful correspondence and to G. Banaszak and P. Krasoń for pointing out a mistake
in an earlier version of this text. I acknowledge financial support provided by the
DFG-Forschergruppe “Algebraische Zykel und L-Funktionen”, Regensburg.

1. On 1-motives and Galois representations

In this section I recall what 1-motives are and how to attach `-adic Galois representa-
tions to them. Then I show how these representations are linked with the local-global
problem of detecting linear dependence.

1.1. Let S be a noetherian regular scheme. A 1-motive M over S is ([Del74],
Section 10) a two-term complex of fppf-sheaves over S , concentrated in degrees �1
and 0

M WD ŒY u��! G�

where Y is étale locally isomorphic to a finitely generated free Z-module and where
G is representable by a semiabelian scheme over S . A morphism of 1-motives is a
morphism of complexes of fppf-sheaves. One can viewM as an object of the derived
category of fppf-sheaves onS . Applying the derived global section functor R�.S;�/
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and taking homology yields the flat cohomology groups H i .S;M/. There is a long
exact sequence relating the cohomology of G and Y with that of M starting with

0 �!H�1.S;M/ �!H 0.S; Y / �!H 0.S;G/ �! H 0.S;M/ �!H 1.S; Y / �! � � � :
One can also viewM as an object of the derived category of étale sheaves and obtain
étale cohomology groups. However, since G and Y are both smooth over S , these
are canonically isomorphic.

1.2. Notation. For a commutative group C , a prime number ` and an integer i � 0,
we introduce the following notation: C Œ`i � denotes the group of elements of C of
order `i , and C Œ`1� denotes the group of elements of C of order any power of `. We
write

C y̋ Z` WD lim
i�0C=`

iC and T`C WD lim
i�0C Œ`

i �

for the `-adic completion and the `-adic Tate module of C . These groups have a
natural Z`-module structure. There is a canonical morphism C �! C y̋ Z` whose
kernel is the intersection of the groups `iC over i � 0. Remark that if C is finitely
generated, we may identify the `-adic completion C y̋ Z` with the tensor product
C ˝Z Z` via the mentioned canonical morphism.

1.3. Following Deligne (loc.cit.) we now construct the `-adic Tate module associated
with (or `-adic realisation of) a 1-motive M D Œu W Y �! G� over S , where ` is any
prime number invertible on S . We shall consider the derived tensor product M ˝L

Z=`iZ, or alternatively (that amounts to the same) the cone of the multiplication-by-
`i map on the complexM . The homology ofM ˝L Z=`iZ is concentrated in degree
�1 because Y is torsion free and G is divisible as a sheaf. The homology group

TZ=`i Z.M/ WD H�1.M ˝L Z=`iZ/

is a finite flat group scheme over S annihilated by `i , and because we suppose that ` is
invertible on S it is locally constant. We have a natural morphism TZ=`iC1Z.M/ �!
TZ=`i Z.M/ induced by the map Z=`iC1Z �! Z=`iZ for all i � 0. The formal limit
with respect to these maps

T`M WD lim
i�0 TZ=`i Z.M/

is a locally constant `-adic sheaf on S , called the `-adic Tate module ofM . This con-
struction is functorial inM so we look at T`.�/ as being a functor from the category
of 1-motives over S to the category of `-adic sheaves over S . The cohomology of
T`M over S is then defined accordingly as

H r.S;T`M/ WD lim
i�0H

r�1.S;M ˝L Z=`iZ/:
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These cohomology groups have a natural Z`-module structure. There are natural short
exact sequences as follows. The exact “Kummer” triangleM �!M �!M˝LZ=`iZ
induces a long exact sequence of cohomology groups from where we can cut out the
piece

0 �! H r�1.S;M/=`iH r�1.S;M/ �! H r�1.S;M ˝L Z=`iZ/

�! H r.S;M/Œ`i � �! 0:

Taking limits over i and observing that the left hand limit system satisfies the Mittag–
Leffler condition, we find a short exact sequence of Z`-modules

0 �! H r�1.S;M/ y̋ Z` �! H r.S;T`M/ �! T`H
r.S;M/ �! 0:

Naturality in M and S is clear from the construction.

1.4. For the rest of this section we fix a number field k with algebraic closure Nk and
absolute Galois group � WD Gal. Nkjk/, a nonempty open subscheme U of spec Ok
where Ok denotes the ring of integers of k, and a prime number ` invertible on
U . We write kU for the maximal subextension of Nkjk unramified in U , and set
�U WD Gal.kU jk/. In other words, �U D �1.U; u/ is the étale fundamental group
of U with respect to the base point u D spec Nk.

1.5. By Grothendieck’s theory of the fundamental group (see for example [Sza09],
Theorem 5.4.2), there is an equivalence of categories²

locally constant Z-con-
structible sheaves on U

³
 !

²
finitely generated
discrete �U -modules

³

given by the functor that sends such a sheaf F on U to the �U -module F. Nk/. In
particular, to give a locally constant sheaf Y locally isomorphic to a finitely generated
free group is the same, via this equivalence of categories, as to give a finitely generated
free group Y together with a continuous action of �U . Continuity means that the
stabiliser of Y in �U is an open subgroup of finite index. As a consequence, a 1-
motive over U is given by the following data: A finitely generated free group Y
together with a continuous action of �U , a semiabelian scheme G over U and a
morphism of �U -modules u W Y �! G.kU /.

1.6. The equivalence of categories given in 1.5 also explains why `-adic sheaves on
U are essentially the same as `-adic representations of k unramified in U . Indeed,
this equivalence of categories induces an equivalence²

locally constant `-adic
sheaves on U

³
 !

²
finitely generated Z`-modules
with continuous �U -action

³



328 P. Jossen CMH

given by the functor that sends a locally constant `-adic sheaf onU , given by a formal
limit system .Ti /

1
iD0 to the Z`-module lim Ti . Nk/. A quasi inverse to this functor is

can be defined as follows: Given a finitely generated Z`-module T with continuous
�U -action, one associates with it the formal limit system .Ti /

1
iD0 where Ti is the

locally constant sheaf on U corresponding to the finite �U -module T=`iT .

1.7. Using the equivalence of categories introduced in 1.6, we can give an explicit
description of the Tate module of a 1-motive M D Œu W Y �! G� over U in terms of
Galois representations. For all i � 0 we have finite Galois modules

TZ=`i Z.M/. Nk/ Š f.y; P / 2 Y �G.
Nk/ j u.y/ D `iP g

f.`iy; u.y// j y 2 Y g
which are unramified in U . The limit over i of these finite Galois modules is then the
Tate module ofM seen as a Galois module. Explicitly, an element x 2 T`M is given
by a sequence .yi ; Pi /1iD0 where the yi ’s are elements of Y , the Pi ’s are elements of
G. Nk/, and where it is required that

u.yi / D `iPi ; `Pi � Pi�1 D u.zi / and yi � yi�1 D `i�1zi
for some elements zi 2 Y . Two sequences .yi ; Pi /1iD0 and .y0

i ; P
0
i /

1
iD0 represent

the same element if and only if for each i � 0, there exists a zi 2 Y such that
`izi D yi � y0

i and u.zi / D Pi � P 0
i .

Proposition 1.8. Let T D .Ti /
1
iD0 be a locally constant `-adic sheaf on U corre-

sponding via the above equivalence to a Z`-module with continuous �U -action (also
denoted by T ). For r D 0; 1, the natural maps

H r.�U ; T / �! H r.U; T /

are isomorphisms, whereH r.�U ; T / is defined by means of continuous cocycles.

Proof. From Proposition II.2.9 of [Mil08] we know that if F is a finite locally
constant sheaf of order a power of ` on U , then we have canonical isomorphisms
H r.U; F / Š H r.�U ; F / for all r � 0. Cohomology of `-adic sheaves over U com-
mutes with limits by definition. It remains to prove that if T is a finitely generated
Z`-module with �U -action, then the natural map

H r.�U ; T / �! lim
i�0H

r.�U ; T=`
iT /

is an isomorphism for r D 0; 1. For r D 0 this is trivial, and for r D 1 this follows
from the well known fact that continuous H 1 commutes with limits of compact
modules (see Proposition 7 of [Ser64]). �
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Proposition 1.9. LetM D Œu W Y �! G� be a 1-motive over k. There is a canonical
isomorphism .T`M/� Š ker.Y � �! G.k//˝ Z`.

Proof. Let U be an open subscheme of spec Ok such that there is a model ofM over
U , which we still denote by M . We have a short exact sequence

0 �! H�1.U;M/ y̋ Z` �! H 0.U;T`M/ �! T`H
0.U;M/ �! 0

as introduced in 1.3. The group H 0.U;M/ is finitely generated (this follows by
dévissage from the Mordell–Weil theorem, Dirichlet’s unit theorem and the finiteness
of H 1.U; Y /, see [HSz05], Lemma 3.2) hence T`H 0.U;M/ is trivial. We remain
with an isomorphism

H�1.U;M/˝ Z` �! H 0.U;T`M/;

but now observe that H�1.U;M/ D ker.Y � �! G.k// and that H 0.U;T`M/ Š
.T`M/� . �

Definition 1.10. Let T be an `-adic sheaf on U and let S be a set of closed points of
U . For each p 2 S let �p be the residue field at p and denote still by T the pull-back
of T to spec �p. We define

H 1
S .U; T / WD ker

�
H 1.U; T / �!

Y
p2S

H 1.�p; T /
�
:

Alternatively, in terms of Galois cohomology, let �U be the Galois group of the
maximal extension of k unramified in U and let Dp be a decomposition group of p
in �U . For every finitely generated free Z`-module with continuous �U -action T we
define

H 1
S .�U ; T / WD ker

�
H 1.�U ; T / �!

Y
p2S

H 1.Dp; T /
�
:

Observe that the choice of decomposition groups Dp is unimportant since all de-
composition groups over p are conjugate, and a cocycle c W �U �! T restricts to a
coboundary onDp if and only if it restricts to a coboundary on some conjugate ofDp.

Proposition 1.11. Let k be a number field, let G be a semiabelian scheme over U
and let X be a subgroup of G.U /. Let S be a set of closed points of U of density 1
and write

xX WD fP 2 G.U / j redp.P / 2 redp.X/ for all p 2 Sg:
LetM D Œu W Y �! G� be a 1-motive overU where Y is constant and such that u.Y /
is equal to X . For every prime number ` invertible on U there exists a canonical,
Z`-linear injection . xX=X/˝ Z` �! H 1

S .�U ;T`M/.
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Proof. We have chosen a 1-motive M D Œu W Y �! G� over U with constant Y ,
such that the image of Y �! G.U / is X . The image of Y �! G.�p/ is then Xp, the
reduction ofX modulo p. So, if p is any element of S , then every point P 2 xX maps
to zero in H 0.�p;M/ in the following diagram with exact rows:

� � � �� Y
uU �� G.U /

��

�� H 0.U;M/

��

�� 0 D H 1.U; Y /

� � � �� Y
up �� G.�p/ �� H 0.�p;M/ �� 0 D H 1.�p; Y /.

Denote by ŒP � the class of P 2 xX in H 0.U;M/ Š G.U /=X . We have seen that
ŒP �˝ 1 belongs to the kernel of the map ˛` in the diagram

0 �� H 0.U;M/˝ Z` ��

˛`

��

H 1.U;T`M/ ��

ˇ`

��

T`H 1.U;M/ ��

��

0

0 �� QH 0.�p;M/˝Z` �� QH 1.�p;T`M/ �� Q T`H 1.�p;M/ �� 0.

The rows are those introduced in 1.3 and the products range over p 2 S . The `-adic
completions are here just ordinary tensor products because the involved groups are
all finitely generated ([HSz05], Lemma 3.2). We have natural injections

. xX=X/˝ Z` � ker ˛` � ker ˇ` D H 1
S .U;T`M/

hence the claim. �

Remark 1.12. The injection whose existence we claim in Proposition 1.11 is ex-
plicitly given as follows. Let P be an element of xX , and denote by ŒP � its class in
xX=X . Choose a sequence of points .Pi /1iD0 inG. Nk/ such that P0 D P and such that
`PiC1 D Pi for all i � 0. The image of ŒP �˝ 1 in H 1� .�U ;T`M/ via the injection
under consideration is the class of the cocycle cP W �U �! T`M given by

cP W � 7�! .�Pi � Pi /1iD0
This makes sense since indeed each �Pi � Pi is a point in G. Nk/ of order `i , and
together these points form a compatible system representing an element of the Tate
module T`G, which is a submodule of T`M .

Remark 1.13. LetG be any semiabelian variety over k, letX be a finitely generated
subgroup of G.k/ and let ` be any prime number. It is always possible to find an
open subscheme U of spec Ok such that G has a model over U , such that all points
in X extend to U -points, and such that ` is invertible on U . Also observe that
G.U / is finitely generated, as a direct consequence of the Mordell–Weil theorem and
Dirichlet’s unit theorem.
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1.14. For a 1-motive M over U we may regard the `-adic sheaf T`M as a finitely
generated free Z`-module with continuous �U -action, as we have explained, �U
being the Galois group of the maximal extension of k unramified inU . The following
definition goes back to an idea of Tate and Serre: For a Hausdorff topological group
� and a continuous �-module T we write

H 1� .�; T / WD ker
�
H 1.�; T / �!

Y
C��

H 1.C; T /
�

the product running over monogenous subgroups C of � , cohomology being defined
by means of continuous cochains. A subgroup of a topological group is called mono-
geneous if it is topologically generated by one element, that is, if it is the closure
of a subgroup generated by one element. The following two propositions ([Ser64],
Proposition 8 and Proposition 6) explain why the groupH 1� .�U ;T`M/ is interesting.

Proposition 1.15. Let T be a finitely generated Z`-module with a continuous �U -
action and letS be a set of closed points of U of density 1. The subgroupsH 1

S .�U ; T /

andH 1� .�U ; T / ofH 1.�U ; T / are equal.

Proof. It is enough to show that the proposition holds for finite Galois modules of
order a power of `. Indeed, T can be written as a limit of such and the general case
follows then because H 1 commutes with limits of finite modules, and formation of
limits is left exact and commutes with products.

So let F be a finite �U module of order a power of `. Let c W �U �! F be a
continuous cocycle representing an element of H 1

S .�U ; F / and let � be an element
of �U . We have to show that the restriction of c to the monogeneous subgroup of �U
generated by � is a coboundary, that is, we have to show that there exists an element
x 2 F such that c.�/ D �x � x.

BecauseF is finite there exists an open subgroupN of �U on which c is zero. We
may suppose thatN is normal and acts trivially on F . Denote by �N the class of � in
�U =N . By Chebotarev’s density theorem (see for example [Neu99] Theorem 13.4),
there exists a valuation v of k corresponding to an element p 2 S and an extensionw
of v tokU such that decomposition group ofw in�U =N equals the group generated by
�N . Since the restriction of c to the decomposition groupDw � �U is a coboundary,
there exists a x 2 F such that

c.�/ D �x � x for all � 2 Dw :
As N acts trivially on F , the same holds for all � 2 DwN , and in particular for
� D � . This shows that H 1

S .�U ; F / is contained in H 1� .�U ; F /. That H 1� .�U ; F /
is contained in H 1

S .�U ; F / is clear, since every decomposition group in �U corre-
sponding to a place in S is monogenous, topologically generated by the Frobenius
element. �
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Proposition 1.16. Let � be a Hausdorff topological group and let T be a continuous
�-module. Let N be a normal closed subgroup of � acting trivially on T . The
inflation map H 1.�=N; T / �! H 1.�; T / induces an isomorphism H 1� .�=N; T / Š
H 1� .�; T /.

Proof. This is straightforward to check, see [Ser64], Proposition 6. �

1.17. This has the following interesting consequence: Let us denote by LM be the
image of �U in GL.T`M/. Together, Propositions 1.15 and 1.16 yield a canonical
isomorphism

H 1� .LM ;T`M/ Š H 1
S .�U ;T`M/:

Since �U is compact this imageLM is a closed subgroup of GL.T`M/, hence has the
structure of an `-adic Lie group ([Bou72], Ch.III, §2, no.2, théorème 2). We therefore
can apply the machinery of `-adic Lie theory, and if we have sufficient knowledge of
this Lie group and its Lie algebra, there might be a chance of effectively computing
H 1� .LM ;T`M/, henceH 1� .�U ;T`M/. In the next section we will determine LM as
far as we need.

2. The image of Galois

Let k be a number field contained in C, denote by Nk the algebraic closure of k in C,
and let M D ŒY �! G� be a 1-motive over k. To M and every prime number ` we
have associated a finitely generated free Z`-module with a continuous Galois action
T`M . We define

V̀ M WD T`M ˝Z`
Q`

so V̀ M is a finite dimensional Q`-vector space, and we have a continuous group
homomorphism

�` W Gal. Nkjk/ �! GL.V̀ M/:

We have already noted that the image LM of the map �` is a compact `-adic Lie
subgroup of GL.V̀ M/. We write lM � End.V̀ M/ for the corresponding Lie algebra.
The aim of this section is to say something halfway useful about the Lie algebra lM .
We restrict ourselves to 1-motives of the formM D ŒY �! A� where A is an abelian
variety (rather than a semiabelian variety).

Definition 2.1. Let M D ŒY �! A� be a 1-motive over k where A is an abelian
variety. We write TZ.M/ for the pull-back of Y and LieA.C/ over A.C/ (in the
category of commutative groups) explicitly given by

TZ.M/ WD f.x; y/ 2 LieA.C/ � Y j exp.x/ D u.y/g
and define V0M WD TZ.M/˝Q.
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2.2. The kernel of the exponential map exp W LieA.C/ �! A.C/ is a finitely gener-
ated free group of rank twice the dimension of A. We have a commutative diagram

0 �� ker.exp/ �� TZ.M/ ��

��

Y ��

u

��

0

0 �� ker.exp/ �� LieA.C/
exp �� A.C/ �� 0

showing that TZ.M/ is a finitely generated free group of rank 2 dimAC rank Y . The
Q-vector space V0M has therefore finite dimension 2 dimAC rank Y . The C-vector
space V0M ˝C carries a Hodge decomposition of type .0; 0/, .0; 1/, .1; 0/ ([Del74],
Lemme 10.1.3.2), hence V0M is a rational mixed Hodge structure. It is called the
rational Hodge realisation of M . By construction we have a short exact sequence

0 �! V0A �! V0M �! Y ˝Q �! 0

and there is a canonical lift \ W ker u˝Q �! V0M of the inclusion of ker u˝Q �
Y ˝Q. The next proposition is Deligne’s construction 10.1.6 of loc.cit.

Proposition 2.3. For every prime number ` there is a canonical and natural isomor-
phism of Q`-vector spaces V0M ˝Q` Š V̀ M .

Proof. We show that there is even a natural isomorphism of Z`-modules TZ.M/˝
Z` Š T`M . To do so, we must show that there are natural and compatible isomor-
phisms of finite groups

`�iTZ.M/=TZ.M/
Š��! TZ=`i Z.M/. Nk/:

Indeed, elements of TZ.M/ are pairs .y; x/ 2 Y � LieA.C/ such that u.y/ D
exp.x/. Hence elements of `�iTZ.M/ are pairs .y; x/ 2 `�iY �LieA.C/ such that
`iu.y/ D `i exp.x/. Using the expression for TZ=`i Z.M/. Nk/ introduced in 1.7, we
must show that there are natural isomorphisms

f.y; x/ 2 `�iY � LieA.C/ j `iu.y/ D `i exp.x/g
f.y; x/ 2 Y � LieA.C/ j u.y/ D exp.x/g

Š��! f.y; P / 2 Y � A.
Nk/ j u.y/ D `iP g

f.`iy; u.y// j y 2 Y. Nk/g :

The isomorphisms we are looking for are given by .y; x/ 7! .`iy; exp.x//. Com-
patibility is straightforward to check and naturality is clear from the construction.

�
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2.4. Let M D ŒY �! A� be a 1-motive over k where A is an abelian variety. There
are obvious morphisms of 1-motives

AŒ0� �!M �! Y Œ1�

where AŒ0� denotes the 1-motive Œ0 �! A� and Y Œ1� denotes the 1-motive ŒY �! 0�.
These morphisms induce a short exact sequence of Galois representations as well as
a short exact sequence of rational Hodge structures

0 �! V̀ A �! V̀ M �! Y ˝Q` �! 0 and 0 �! V0A �! V0M �! Y ˝Q �! 0:

These exact sequences are compatible in the sense that the underlying exact sequence
of Q`-vector spaces of the `-adic realisations is canonically isomorphic to the un-
derlying exact sequence of Q-vector spaces of the Hodge realisation tensored with
Q`. This follows from Proposition 2.3. Observe that V̀ A is the usual `-adic Ga-
lois representation associated with A, obtained by tensoring the `-adic Tate module
limA. Nk/Œ`i � with Q`, and that V0A is canonically isomorphic to the singular homol-
ogy group H1.A.C/;Q/, which also is a rational Hodge structure of pure weight 1.

2.5. Let M D ŒY �! A� be a 1-motive over k where A is an abelian variety and
set � WD Gal. Nkjk/. We write LM and LA for the image of � in the group of
Q`-linear automorphisms of V̀ M and V̀ A respectively, and we denote by LMA the
stabiliser of V̀ A in LM . We have thus a short exact sequence of `-adic Lie groups
0 �! LMA �! LM �! LA �! 1 and associated with it is a short exact sequence of
Lie algebras

0 �! lMA �! lM �! lA �! 0:

The Lie algebra lMA acts trivially on Y ˝Q` and on V̀ A. Hence it is commutative and
may be identified with a Q`-linear subspace of Hom.Y ˝Q`; V̀ A/. To determine
lM amounts to determine the Lie algebras lA and lMA and to determine how lM is an
extension of lA by lMA . We can now formulate the main results of this section.

Definition 2.6. For every a 1-motive M D Œu W Y �! A�, where A is an abelian
variety, we write hMA for the Q-linear subspace of Hom.Y ˝ Q; V0A/ consisting
of those homomorphisms f such that  1f .y1/ C � � � C  nf .yn/ D 0 whenever
 i 2 End Nk A and yi 2 Y are such that  1u.y1/C � � � C  nu.yn/ D 0.

Theorem 2.7. Let M D Œu W Y �! A� be a 1-motive over k where A is an abelian
variety. The equality hMA ˝Q` D lMA holds for all prime numbers `. In particular
the dimension of lMA is independent of `.

The result is not really new, it essentially is a reformulation of a theorem of Ribet
[Rib76] (see also [Hin88], Appendix 2). While the inclusion hMA ˝ Q` � lMA is
elementary to show, the inclusion in the other direction uses Faltings’s theorem on
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homomorphisms of abelian varieties over number fields ([Fal83]) as well as Bogo-
molov’s theorem on the image of the Galois group in the automorphisms of the Tate
module of an abelian variety ([Bog81]).

2.8. We will moreover construct a Lie subalgebra hM of End.V0M/with the follow-
ing properties. The Lie algebra hM leaves V0A invariant and acts trivially on Y ˝Q.
The stabiliser of V0A in hM is the Lie algebra hMA defined in 2.6. So there is a short
exact sequence

0 �! hMA �! hM �! hA �! 1

where hA is the image of hM in the endomorphisms of V0A. The Lie algebra hA is
chosen in such a way that hM ˝ Q` is contained in lM , and in the case where the
equality hA˝Q` D lA holds, the equality hM ˝Q` D lM holds as well. We would
of course like to take for hA a Lie algebra such that for every prime number ` the
equality

hA ˝Q`
‹D lA

holds. The Mumford–Tate conjecture states that such a Lie algebra exists and that it
is the Lie algebra associated with the Mumford–Tate group of A. We do not want to
assume this conjecture here.

2.9. Notation. For a nontrivial abelian variety A over Nk and every prime number
` we let hA D hA

.`/
denote any Lie subalgebra of End.V0A/ having the following

properties.

(1) As an hA-module V0A is semisimple.

(2) The Lie algebra hA is contained in the commutator of End Nk.A/ in End.V0A/.

(3) The identity endomorphism of V0A belongs to hA.

(4) The Lie algebra lA contains hA ˝Q`.

Such a Lie algebra indeed exists, we could just take hA to be the commutative 1-
dimensional Lie algebra Q acting as scalar multiplication on V0A, independently
of `. A theorem of Bogomolov ([Bog81], Theorem 3) asserts that the Lie algebra
lA contains the scalars. Bogomolov’s Theorem even assures that we can take hA

such that the equality lA D hA ˝Q` holds, but then hA might depend on `. If the
Mumford–Tate conjecture holds for A we can take hA to be the Lie algebra of the
Mumford–Tate group of A.

2.10. We now come to the proof of Theorem 2.7, which we split up in several lemmas.
We start with three preliminary remarks.

(a) In proving Theorem 2.7 we can without loss of generality replace k by a finite
extension of k. Indeed, if we do so the group LM gets replaced by a subgroup of
finite index, which has then the same Lie algebra as LM . In particular, we can and
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will assume from now on that Y is constant and that all endomorphisms of A are
defined over k.

(b) The fppf-sheaf Hom.Y; A/ on spec k is representable by a power of A. The
morphism u W Y �! A is a k-rational point on Hom.Y; A/, and we denote by B the
connected component of the smallest algebraic subgroup of Hom.Y; A/ containing
u. In proving Theorem 2.7 we can without loss of generality suppose that u belongs
to B . Indeed, the smallest algebraic subgroup of Hom.Y; A/ containing u has only
finitely many connected components because Hom.Y; A/ is proper, hence for some
m > 0 the point mu belongs to B . The morphism of 1-motives

ŒY
u��! A�

.m;id/�����! ŒY
mu���! A�

induces isomorphisms under the realisation functors V̀ .�/ and V0.�/, so we may
replace u by mu.

(c) Let us write E WD End Nk A ˝ Q and denote by R the Q-linear subspace of
E˝Y generated by the elements  1˝y1C � � �C n˝yn 2 End Nk A˝Y such that
 1u.y1/C � � � C  nu.yn/ D 0 in A.k/. The subspace R of E ˝ Y is obviously an
E-submodule. We have a canonical pairing

h�;�i W .E ˝ Y / � Hom.Y ˝Q;V0A/ �! V0A

defined by h ˝ y; f i D  f .y/. By definition hMA is the annihilator of R in this
pairing.

Lemma 2.11. There is a canonical and natural isomorphism of E-modules

V0Hom.Y; A/ Š Hom.Y ˝Q;V0A/:

Under this isomorphism V0B � V0Hom.Y; A/ and hMA � Hom.Y ˝Q;V0A/ cor-
respond to each other.

Proof. We choose a Z-basis y1; : : : ; yr of Y so that we can identify Y with Zr and
hence the abelian varieties Hom.Y; A/ and Ar . This identification is natural in A,
and the point u of Hom.Y; A/ corresponds to the point .u.y1/; : : : ; u.yr// ofAr . We
get isomorphisms of E-modules

V0Hom.Y; A/ Š V0.A
r/ Š .V0A/r Š Hom.Y ˝Q;V0A/

whose composition is independent of the choice of the basis of Y . An element x
of V0.Ar/ � LieAr.C/ belongs to V0B if and only if the one parameter subgroup
exp.Rx/ of Ar.C/ is contained in B.C/. It follows from Poincaré’s Reducibility
Theorem ([Mum70] IV.19, Theorem 1) that a connected subgroup of Ar.C/ is con-
tained in B if and only if it is contained in ker for every morphism  W Ar �! A
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such that .B/ D 0. By minimality ofB we have .B/ D 0 if and only if .u/ D 0,
hence we find

x 2 V0B ()  .exp.Rx// D 0 for all  2 Hom.Ar ; A/ such that  .u/ D 0:
But now observe that  .exp.Rx// D exp.R x/ and that to say that exp.R x/ D 0
is the same as to say that  x D 0. If we denote by  1; : : : ;  r the components of
 2 Hom.Ar ; A/, we therefore have

x 2 V0B ()  x D 0 for all  1; : : : ;  r 2 EndA

with  1u.y1/C � � � C  ru.yr/ D 0:
If we now look at x 2 V0.Ar/ as being a homomorphism Y ˝ Q �! V0A via the
isomorphism we have introduced, the condition that  x D 0 for all  means that x
belongs to hMA . �

Lemma 2.12. LetM D ŒY �! A� be a 1-motive over k whereA is an abelian variety,
and let ` be a prime number. The Lie algebra lMA is contained in hMA ˝Q`.

Proof. Let r D  1 ˝ y1 C � � � C  n ˝ yn be an element of R and let us show that
we have hr; xi D 0 for every x 2 lMA . Replacing r by some multiple of r we may
suppose that the  i are actual endomorphisms of A. We must show that for every
� 2 LMA we have hr; log �i D 0. We have log � D � �1, so what we have to show is
that for all � 2 Gal. Nkjk/ acting trivially on T`A we have hr; � � 1i D 0. For every
yi , let vi be an element of T`M mapping to yi ˝ 1 in Y ˝ Z`. Using our explicit
description of the Tate module T`M given in 1.7 we may write these preimages as
sequences vi D .Pij ; yi /1jD0 where the Pij 2 A. Nk/ are points such that Pi0 D u.yi /
and `Pi;jC1 D Pij for all j � 0. Now we compute

hr; � � 1i D
nX
iD1

 i .�vi � vi / D
nX
iD1

 i .�Pij � Pij /1jD0

D �
nX
iD1
. iPij /

1
jD0 �

X
. iPij /

1
jD0:

By definition of R we have  1P10C � � � C nPn0 D 0 hence  1P1j C � � � C nPnj
is an element of order `j in A. Nk/. But by hypothesis � acts trivially on T`A, hence
on all `j -torsion points of A. Nk/. Therefore, the right hand side of the above equality
is zero. �

Lemma 2.13. LetM D ŒY �! A� be a 1-motive over k whereA is an abelian variety,
and let ` be a prime number. There is a canonical isomorphism H 1.LM ; V̀ A/ Š
HomLA.LMA ; V̀ A/.
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Proof. The Hochschild–Serre spectral sequence furnishes an exact sequence in low
degrees

0 �! H 1.LA; V̀ A/ �! H 1.LM ; V̀ A/

.�/���! H 0.LA;H 1.LMA ; V̀ A// �! H 2.LA; V̀ A/:

By Bogomolov’s theorem ([Bog81] Theorem 3) there exists an element in LA which
acts as multiplication by a scalar ¤ 1 on V̀ A. Thus, by Sah’s Lemma the first
and last term in the above exact sequence vanish, and so the map labelled .�/ is an
isomorphism. Since LMA acts trivially on V̀ A by definition, we have

H 0.LA;H 1.LMA ; V̀ A// D HomLA.LMA ; V̀ A/: �

Lemma 2.14. There is a canonical, injective Z`-linear map

Homk.B;A/˝ Z` �! H 1.LM ;T`M/:

Proof. Let us write kM for the field extension of k whose Galois group is the quotient
LM of � D Gal. Nkjk/. By our explicit description of the Tate module ofM (1.7), this
kM is the smallest field extension of k such that for all y 2 Y all `-division points
of u.y/ are defined over kM . In other words, kM is the smallest extension of k such
that all elements of u.Y / become `-divisible in A.kM /. Any point P 2 A.k/ which
is an Endk A-linear combination of points in u.Y / becomes then divisible in A.kM /
as well. We consider now the following diagram:

Homk.B;A/˝ Z`

��� � � � � � � � �
.1/

��
0 �� K ��

.4/

��

A.k/˝ Z`
.2/ ��

.5/

��

A.kM / y̋ Z`

.6/

��
0 �� H 1.LM ;T`A/ �� H 1.k;T`A/

.3/ �� H 1.kM ;T`A/ .

Let me explain the maps. First, the map (1) is induced by the map Homk.B;A/ �!
A.k/ sending a homomorphism ' to the rational point '.u/. The maps (2) and (3)
are induced by the inclusion of fields k � kM . We use here that A.k/ is finitely
generated, so A.k/˝ Z` is the same as A.k/ y̋ Z`. The vertical maps (5) and (6)
are the maps in the Kummer sequences introduced in 1.3 (for i D 1), so they are both
injective. We define K to be the kernel of (2). From the Hochschild–Serre spectral
sequence we see that the kernel of (3) is H 1.LM ;T`A/. The map (4) is then the
restriction of (5) so that the diagram commutes. Since (5) is injective, (4) is injective
as well.
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Having this diagram, all that remains to show is that the dashed arrow exists and
that it is injective. In other words, we have to show that (1) is injective and that
the composition of (1) and (2) is zero. The map (1) is injective because Z` is a flat
Z-module and because already the map Homk.B;A/ �! A.k/ is injective. Indeed,
let ' W B �! A be a morphism of abelian varieties such that '.u/ D 0 2 A.k/. The
kernel of ' is then an algebraic subgroup of B containing u, hence equal to B by
minimality ofB , and so ' is zero. The composition of (1) and (2) is zero. Indeed, for
every homomorphism ' W B �! A the point '.u/ is an Endk A-linear combination of
points in u.Y /, hence '.u/ is `-divisible in A.kM /, and hence the class of '.u/ in
A.kM / y̋ Z` is trivial. �

Remark 2.15. Explicitly, the map whose existence we claim in the lemma is the
following. Given a homomorphism ' W B �! A, it sends ' ˝ 1 to the class of the
cocycle

c' W � 7�! .�Pi � Pi /1iD0 2 T`A

where .Pi /1iD0 is a sequence of points inA. Nk/ such thatP0 D '.u/ and `PiC1 D Pi .
As we shall see in a moment, this map has a finite cokernel. It is then not hard to
see that the points of P 2 A.k/ which become divisible in A.kM / are precisely
those points such that for some integer m > 0 the point mP is an Endk A-linear
combination of points in u.Y /. This relates Theorem 2.7 with Ribet’s Main Theorem
in [Rib76] on dividing points on abelian varieties.

Proof of Theorem 2.7. By Faltings’s theorem on homomorphisms of abelian varieties
over number fields, and because we suppose that all endomorphisms ofA are defined
over k, we have a canonical isomorphism

Homk.B;A/˝Q` Š HomlA.V̀ B; V̀ A/:

By Lemma 2.13 we have a canonical isomorphism

H 1.LM ; V̀ A/ Š HomLA.LMA ; V̀ A/:

Together with Lemma 2.14 this yields an injection

HomlA.V̀ B; V̀ A/ Š Homk.B;A/˝Q` �! HomlA.lMA ; V̀ A/:

We have seen in Lemma 2.12 that the inclusion lMA � hMA ˝Q` Š V0B˝Q Š V̀ B

holds. Let us then consider the restriction map

HomlA.V̀ B; V̀ A/ �! HomlA.lMA ; V̀ A/:

Because V̀ A, V̀ B and lMA are all semisimple lA-modules by Faltings’s results, this
map is surjective and it is injective if and only if the equality lMA D V̀ B holds. This
is indeed the case, for dimension reasons. �
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2.16. We now come to the construction of the Lie algebra hM � End.V0M/ which
will be an extension of hA by hMA as announced in 2.8. Let M D Œu W Y �! A� be a
1-motive over k where A is an abelian variety, and consider the 1-motive

MC D ŒuC W End Nk A˝ Y �! A�

given by uC. ˝ y/ D  u.y/. There is a canonical morphism of 1-motives M �!
MC inducing a diagram

0 �� V0A
� �� V0M

p ��
� �

��

Y ˝Q ��
� �

��

0

0 �� V0A �� V0MC
pC �� End Nk A˝ Y ˝Q �� 0

ker uC ˝Q .
\

��������������
�

��

Because the map uC is a map of End Nk A-modules, the maps in the lower exact
sequence as well as the canonical lift \ (cf. 2.2) are maps of E WD End Nk A ˝ Q-
modules. Because E is a semisimple Q-algebra ([Mum70], IV.19 Theorem 1) we
can choose an E-module section sC of pC extending \. Denote by s the restriction
of sC to Y ˝Q. This s takes values in V0M and is therefore a section of p. We now
give the definition of hM and proceed then with checking that this definition makes
sense.

Definition 2.17. Let s be a section of the canonical projection V0M �! Y ˝ Q
such as constructed in 2.16. We define hM to be the Lie subalgebra of End.V0M/

consisting of those endomorphisms which are of the form

.e; f /s W v C s.y/ 7�! ev C f .y/ for all v 2 V0A � V0M; y 2 Y ˝Q

for some e 2 hA and some f 2 hMA � Hom.Y ˝Q;V0A/.

Proposition 2.18. The set of endomorphisms hM of V0M defined in 2.17 is indeed
a Lie subalgebra of End.V0M/. Moreover, hM does not depend on the choice of the
section s.

Proof. The set hM is a linear subspace of End.V0M/. In order to show that hM is a
Lie subalgebra we must show that hM is closed under taking commutators. Indeed,
the formula Œ.e; f /s; .e0; f 0/s� D .Œe; e0�; e Bf 0�e0 Bf /s holds, and e Bf 0�e0 Bf is
again an element of hMA because the composition of f 2 hMA with any endomorphism
ofV0A again belongs to hMA by definition of hMA . We now show that hM is independent
of s. Consider again the diagram of 2.16, let sC and tC be E-module sections of pC
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extending \ and write s and t for their restrictions to Y ˝ Q. We claim that the
difference d WD s � t W Y ˝ Q �! V0A belongs to hMA . Indeed, observe that the
objects introduced in 2.10.c reappear in the diagram of 2.16, namely

End Nk A˝ Y ˝Q D E ˝ Y and ker uC ˝Q D R:
We have hd; ri D 0 for all r 2 R because sC and tC areE-module maps that coincide
onR, and that means by definition thatd belongs to hMA . From this we can deduce that
the Lie algebras constructed as in the definition 2.17 from s and from t respectively
are the same. Indeed, the equalities

.e; f /s D .e; f � e B d/t and .e; f /t D .e; f C e B d/s
hold for all e 2 hA and all f 2 hMA � Hom.Y ˝ Q;V0A/. We have seen that d
belongs to hMA hence so do f � e B d and f C e B d . That does it. �

Corollary 2.19 (to Theorem 2.7). Let M D Œu W Y �! A� be a 1-motive over k
where A is an abelian variety and let ` be a prime number. The Lie algebra lM

contains hM ˝Q`, and the equality lM D hM ˝Q holds if and only if the equality
lA D hA ˝Q` holds.

Proof. Define MC and choose sC as in 2.16, and construct the Lie algebra hM as in
Definition 2.17 from this data. We still denote by sC and by s the Q`-linear extensions
of sC and s, so we have a split short exact sequence of Q`-vector spaces

0 �� V̀ A
� �� V̀ M

p
�� Y ˝Q`

s
�� �� 0 .

The lA-module lMA can be identified with a submodule of Hom.Y ˝ Q`; V̀ A/ '
V̀ Ar . SinceV̀ A is a semisimple lA-module by Faltings’s results, lMA is isomorphic as
an lA-module to a direct factor of a power of V̀ A. Bogomolov’s Theorem ([Bog81],
Theorem 3) and Sah’s Lemma imply that

H i .lA; V̀ A/ D 0; H i .lA;Hom.Y ˝Q`; V̀ A// D 0 and H i .lA; lMA / D 0
for all i � 0. The vanishing of H 2.lA; lMA / implies that the Lie algebra extension
given in 2.5 is split ([Wei94], theorem 7.6.3), we can therefore choose a splitting �
of the projection map � as indicated.

0 �� lMA
� �� lM �

�� lA
�

�� �� 0 .

Using the splittings s and � we fabricate a map c W lA �! Hom.Y ˝ Q; V̀ A/ by
setting

c.x/.v/ D �.x/s.v/ for all x 2 lA; v 2 Y ˝Q`:
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This map is a cocycle, hence a coboundary because H 1.lA;Hom.Y ˝ Q`; V̀ A//

vanishes. So, there exists a Q`-linear map f W Y ˝Q` �! V̀ A such that

�.e/s.v/ D e:f .y/ for all e 2 lA; y 2 Y ˝Q`:

We claim that this f belongs to lMA . In order to check this it suffices by Theorem 2.7 to
show that for all y1; : : : ; yn 2 Y and all  1; : : : ;  n 2 End Nk A such that  1u.y1/C
� � � C  nu.yn/ D 0 we have  1f .y1/C � � � C  nf .yn/ D 0. Indeed, we have

nX
iD1

 if .yi / D
nX
iD1

 i�.x/s.yi / D �.x/:sC
� nX
iD1

 i ˝ yi
�
:

Here we have used that the i commute with elements of lM and End Nk A-linearity of

sC. By hypothesis sC sends elements of ker uC ˝Q` to .V̀ M/l
M

, hence the right
hand side of the above equation is zero. The map lA �! lM given by x 7! �.x/�x:f
is therefore another section of� . Let us replace� by this new section. By construction
we have now �.e/s.y/ D 0 for all e 2 lA and all y 2 Y ˝Q`, hence

.�.e/Cf /:.vCs.y// D evCf .y/ for all e 2 lA; f 2 lMA ; v 2 V̀ A; y 2 Y˝Q`:

Since lA contains hA˝Q` and lMA is equal to hMA ˝Q`, this shows that lM contains
hM ˝ Q`, and that the equality lM D hM ˝ Q holds if and only if the equality
lA D hA ˝Q` holds. �

Remark 2.20. We have left two important things undiscussed. First, we have only
worked with 1-motives whose semiabelian part is an abelian variety. The benefit we
had from this was Poincaré’s Reducibility Theorem and semisimplicity of various
objects associated with the abelian variety. It would of course be desirable to have a
statement as Corollary 2.19 for general 1-motives. Secondly, we have given the Lie
algebra hM by an ad hoc construction. This construction should be compared with
the Mumford–Tate group associated with the mixed Hodge structure V0M , which
one may define directly in terms of Tannakian formalism.

3. Some linear algebra

The 1-motives we are working with in this section are of the form M D ŒY �! A�

where A is a geometrically simple abelian variety over k. I recall that this means
that A has no abelian subvariety defined over Nk other than 0 and itself. Our goal is to
prove the following technical result.

Proposition 3.1. LetM D ŒY �! A� be a 1-motive over k whereA is a geometrically
simple abelian variety, and let ` be a prime number. The image of the bilinear map

˛` W .V̀ M/� � lM �! .V̀ M/�
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given by ˛`.�; x/ D � Bx consists precisely of those linear forms on V̀ M which are
zero on the subspace ker u˝Q` of V̀ M . In particular, the image of ˛` is a linear
subspace of .V̀ M/�.

3.2. Here is the setup for this section. We fix a finite dimensional division algebra
E over Q, a nontrivial E-module V1 of finite rank and a Q-vector space of finite
dimension V0. There is a canonical pairing

h�;�i W .E ˝ V0/ � Hom.V0; V1/ �! V1

given by h ˝ y; f i D  f .y/. Furthermore, we fix an E-submodule R of E ˝ V0
and define hR � Hom.V0; V1/ to be the annihilator ofR in this pairing. The following
proposition remains valid if one replaces E by a finite product of division algebras
over Q – the price to pay are more indices.

Proposition 3.3. In the situation of 3.2, let � be a nonzero linear form on V1 and let
v be an element of V0. The equality �.f .v// D 0 holds for all f 2 hR if and only if
1E ˝ v belongs to R.

Proof. If 1E ˝ v belongs to R then f .v/ D 0 for all f 2 hR by definition, so the if
part is obvious. To prove the converse, let us fix an element v 2 V0 such that

�f .v/ D 0 for all f 2 hR:

We must show that 1E ˝ v belongs to R. Let us choose a Q-basis of V0 as follows.
We begin by choosing elements y1; : : : ; yr 2 V0 such that 1E ˝ y1; : : : ; 1E ˝ yr
form an E-basis of .E ˝ V0/=R. These elements are Q-linearly independent, hence
we can choose elements z1; : : : ; zs of V0 completing y1; : : : ; yr to basis of V0. There
exist unique elements  ij of E such that for all 1 	 j 	 s

rj WD 1E ˝ zj � . j1 ˝ y1 C � � � C  jr ˝ yr/
belongs to R. We claim that a homomorphism f W V0 �! V1 belongs to hR if and
only if the relations

f .zj / D  j1f .y1/C � � � C  jrf .yr/ for all 1 	 j 	 s
hold. In other words we claim that f belongs to hR if and only if hri ; f i D 0 holds
for 1 	 j 	 s. Indeed, since rj 2 R, every f 2 hR must satisfy

˝
f; rj

˛ D 0 by
definition. On the other hand, we must show that if

˝
rj ; f

˛ D 0 holds for 1 	 j 	 s,
then we have hr; f i D 0 for all r 2 R. This is the case because R is E-linearly
generated by r1; : : : ; rs . Indeed, we can write every r 2 R as r D  1j ˝ y1C � � � C
 rj ˝ yr C '1˝ z1C � � � C 's ˝ zs . After subtracting '1r1C � � � C 'srs from r we
remain with an element r 0 2 R of the form r 0 D  0

1j ˝ y1 C � � � C  0
rj ˝ yr . But
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this element can only be zero because the 1E ˝ y1; : : : ; 1E ˝ yr are an E-basis of
.E ˝ V0/=R.

In summary, if we want to give an element f 2 h � Hom.V0; V1/, we may
freely choose the values f .y1/; : : : ; f .yr/ 2 V1, and must then follow the rules
f .zj / D  1jf .y1/C � � � C  rjf .yr/ to determine the value of f on the remaining
basis elements z1; : : : ; zs .

Let us write v D ˛1y1 C � � � C ˛ryr C ˇ1z1 C � � � C ˇszs for scalars ˛i and
ǰ 2 Q, and define elements �1; : : : ; �r of E by

�i WD ˛i1E C ˇ1 1i C � � � C ˇs si
for 1 	 i 	 r . Using these definitions, the relation �.f .v// D 0 becomes

0 D �
� rX
iD1

˛if .yi /C
sX

jD1
ǰf .zj /

�

D �
� rX
iD1

˛if .yi /C
rX
iD1

sX
jD1

ǰ j if .yi /
�

D �
rX
iD1

�if .yi /:

For every 1 	 i 	 r and everyx 2 V1 there exists anf 2 hR such thatf .yi / D x and
f .yk/ D 0 for k ¤ i . The above relation shows thus in particular that �.�i .x// D 0
for all x 2 V1, that is, � B �i D 0. Since � is nonzero, this means that �i is not
invertible, and since E is a division algebra, we find �i D 0. Thus, the equality

0 D ˛i1E ˝ yi C ˇ1 1i ˝ yi C � � � C ˇs si ˝ yi
holds in E ˝ V0 for all 1 	 i 	 r . Summing over all i yields then

0 D
rX
iD1

˛i1E ˝ yi C
sX

jD1
ǰ

rX
iD1

 1i ˝ yi

D
rX
iD1

˛i1E ˝ yi C
sX

jD1
ǰ 1E ˝ zj

„ ƒ‚ …
1E˝v

�
sX

jD1
ǰ rj :

Hence 1E ˝ v D ˇ1r1 C � � � C ˇsrs belongs to R, and that is what we wanted to
show. �

Proposition 3.4. Let M D Œu W Y �! A� be a 1-motive over Nk where A is a simple
abelian variety. The image of the bilinear map

˛0 W .V0M/� � hM �! .V0M/�
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given by ˛0.�; x/ D � Bx consists precisely of those linear forms on V0M which are
zero on the subspace ker u˝Q of V0M . In particular, the image of ˛0 is a linear
subspace of .V0M/�.

Proof. Let us fix a linear section s W .Y ˝Q/ �! V0M such as in the construction of
hM , so that every element of hM is of the form

.e; f /s W v C s.y/ 7�! ev C f .y/ for all v 2 V0A; y 2 Y ˝Q

for some e 2 hA and some f 2 hMA . Using this section, every linear form � on V0M
can be uniquely written as � D .�A; �Y /, where �A is a form on V0A and �Y is a
form on Y ˝Q. With this notation, the map ˛0 in the proposition becomes

˛0 W
�
.�A; �Y /; .e; f /s

� 7�! .�A B e; �A B f /

For every linear form .�A; �Y / on V0M , every element .e; f /s of hM and every
y 2 ker u˝Q we have .�A B e; �A B f /s.0; s.y// D f .y/ D 0 by definition of hMA ,
so all forms in the image of ˛0 annihilate ker u˝Q. On the other hand, let .	A; 	Y /
be a linear form on V0M such that 	Y .y/ D 0 for all y 2 ker u. Let us define

e WD
´

id if 	A ¤ 0;
0 if 	A D 0,

and .�A; �Y / WD
´
.	A; 0/ if 	A ¤ 0;
.�A; 0/ for some �A ¤ 0 if 	A D 0.

In order to make use of Proposition 3.3, we specialise the objects introduced in 3.2
as follows. We takeE to be the Q-algebra End Nk.A/˝Q, which is a division algebra
according to [Mum70], IV.19 Corollary 2 to Theorem 1. Then V1 WD V0A is an
E-module of finite rank, and we specialise V0 WD Y ˝Q. Finally we let R be the
E-submodule of E ˝ .Y ˝Q/ introduced in 2.10.c, so that according to Definition
2.6 we have hR D hMA . Proposition 3.3 states that the image of the linear map
hMA �! .Y ˝Q/� given by f 7! �A B f is equal to the annihilator of the subspace
ker u ˝ Q of Y ˝ Q. In particular there exists an element f 2 hMA such that
�A B f D 	Y . With this choice of f we have

˛0
�
.�A; �Y /; .e; f /s

� D .�A B e; �A B f / D .	A; 	Y /
in both cases, 	A D 0 and 	A ¤ 0. This proves the proposition. �

3.5. It follows from Theorem 2.7 (or rather its Corollary 2.19) that the Q`-bilinear
map in Proposition 3.1 is obtained from the Q-bilinear map of Proposition 3.4 by
extension of scalars. However, it is not clear whether or not the property of a bilinear
map to be surjective is invariant under scalar extension. Let LjK be an extension
of fields. Given finite dimensional K-vector spaces U; V;W and a K-bilinear map
ˇK W U � V �! W , denote by ˇL the L-bilinear map obtained from ˇK . Which of
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the following implications is true (for a fixed field extension LjK and all K-bilinear
maps ˇK between finite dimensional K-vector spaces) ?

ˇK is surjective
a)(H b)H) ˇL is surjective

We were unable to find a satisfying answer to this general problem. Our next propo-
sition shows that the implication b) holds for the extension Q`jQ, and that is all we
need.

Aside 3.6. There exist Q-bilinear maps ˇ W U � V �! W which are not surjective,
but which become surjective after base change to any completion of Q. For instance
the bilinear map ˇ W Q3 �Q3 �! Q4 given by

ˇ..u1; u2; u3/; .v1; v2; v3// D .u1v1; u2v2; u3v3; .u1 C u2 C u3/.v1 C v2 C v3//
has this property. This example is due to Bjorn Poonen.

Proposition 3.7. Let V; V 0 andW be Q-vector spaces and let ˛ W V �V 0 �! W be a
bilinear map. LetK be either the field of real numbers or the field of `-adic numbers
for some prime number `. If the image of ˛ is a linear subspace ofW , then the image
of the induced K-bilinear map

˛K W .V ˝K/ � .V 0 ˝K/ �! W ˝K
is a linear subspace of W ˝K, and the equality im ˛K D im ˛ ˝K holds.

Proof. To ease notation let us define VK WD V ˝ K and analogously V 0
K and WK .

The image of ˛K is certainly contained in theK-linear subspace im ˛˝K. We may
thus, replacing W by im ˛, suppose without loss of generality that ˛ is surjective.
We have to show that ˛K is surjective as well. We consider the projective spaces

PV WD .V n f0g/=Q� and PVK WD .VK n f0g/=K�:

Because Q is dense in K, the subset PV is dense in PVK , and again the same goes
for V 0 and W in place of V . The map ˛ induces well defined maps

x̨ W PV � PV 0 �! PW and x̨K W PVK � PV 0
K �! PWK :

Considering PV �PV 0 as a subset of PVK�PV 0
K , the map x̨ extends to x̨K , hence in

particular the image of x̨ contains the dense subset PW of PWK . On the other hand,
the topological spaces PVK and PV 0

K are compact, hence so is their product, and the
map x̨K is continuous. Thus, the image of x̨K must be compact, hence closed, and
therefore consist of all of PWK . But then, surjectivity of ˛K immediately follows
from surjectivity of x̨K . �
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Proof of Proposition 3.1. On one hand, let � be a linear form on V̀ M and let x be
an element of lM . For every v 2 ker u˝Q` � V̀ M we have x:v D 0 and hence
�.x:v/ D 0. On the other hand, let 	 be a linear form on V̀ M which is trivial on
ker u ˝ Q`. By Corollary 2.19 the Lie algebra lM contains hM ˝ Q`, hence it is
enough to show that the image of the bilinear map

.V̀ M/� � .hM ˝Q`/ �! .V̀ M/�

contains all linear forms on V̀ M Š V0M ˝ Q` which are trivial on ker u ˝ Q`.
Indeed, that follows from Proposition 3.4 and Proposition 3.7. �

4. Proof of the Main Theorem

For this section we prove our main theorem as announced in the introduction. Our
strategy is as follows: Given a geometrically simple abelian varietyA over the number
field k and a subgroup X of k, we consider the group

xX WD fP 2 A.k/ j redp.P / 2 redp.X/ for all p 2 Sg
where S is any fixed set of places of k of density 1 where A has good reduction. The
main theorem states that for all X and all S the equality X D xX holds. A simple
argument will show that in order to prove this equality, it suffices to prove that the
quotient group xX=X is torsion free. Since xX=X is finitely generated, it is enough
to show that for all primes ` the group . xX=X/˝ Z` is torsion free. But then, using
Propositions 1.11 and 1.16 this amounts to show that the group H 1.LM ;T`M/ is
torsion free for a suitable 1-motive M . Our program consists now of establishing a
general condition ensuring that H 1� .L; T / is torsion free for an `-adic Lie group L
acting on a finitely generated free Z`-module T , and then to show that LM acting on
T`M meets this condition.

Key Lemma 4.1. Let T be a finitely generated free Z`-module, let L be a Lie
subgroup of GL.T / with Lie algebra l and set V WD T ˝Q`. Suppose that

(1) the set f� B x j x 2 l; � 2 V �g is a linear subspace of V �,

(2) the equality V L D V l holds.

Then the groupH 1� .L; T / is torsion free.

4.2. The proof needs some preparation. Let us introduce the following ambulant
terminology: Given a finitely generated free Z`-module T and a Lie subgroup L �
GL.T / as in the lemma, we say that L acts tightly if the equality\

g2L

�
T C V g/ D T C V L
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holds, where V WD T ˝Q`. The inclusion� always trivially holds. More generally,
if V2 is another Q`-vector space we say that a family of linear mapsˆ � Hom.V; V2/
is tight if the equality \

'2ˆ

�
T C ker '

� D T C \
'2ˆ

ker ' (�)

holds. Again the inclusion � is trivial. So, L acts tightly on V if and only if for
V2 D V the family f.g� 1V / jg 2 Lg is tight. The following lemma shows how this
is related with the torsion of H 1� .L; T /.

Lemma 4.3. Let T be a finitely generated free Z`-module, let L be a Lie subgroup
of GL.T / with Lie algebra l and set V WD T ˝Q`. If L acts tightly on V then the
groupH 1� .L; T / is torsion free.

Proof. Let c W L �! T be a cocycle representing an element of H 1� .L; T /Œ`�, and let
us show that c is a coboundary. As `c is a coboundary, c is a coboundary inH 1.L; V /

and there exists an element v 2 V such that c.g/ D gv � v for all g 2 L. To say
that the cohomology class of c belongs to the subgroupH 1� .L; T / ofH 1.L; T / is to
say that for all g 2 L, there exists a tg 2 T such that c.g/ D gtg � tg . We find that

.g � 1V /tg D .g � 1V /v for all g 2 L;
or, in other words, v � tg 2 ker.g � 1V /, that is to say v 2 T C V g . This is true for
all g 2 L and since L acts tightly this implies that v D t C v0 for some t 2 T and
some v0 2 V L. Hence c.g/ D gt � t is a coboundary as needed. �

Lemma 4.4. Let V and V2 be Q`-vector spaces with linear duals V � and V �
2 let ˆ

be a linear subspace of Hom.V; V2/. If the set ‰ WD f� B ' j ' 2 ˆ;� 2 V �
2 g is a

linear subspace of V �, then ˆ is tight.

Proof. In (�), the inclusion � holds trivially, we have to show that the inclusion �
holds as well. We have\

'2ˆ

�
T C ker '

� � \
 2‰

�
T C ker 

�
and

\
'2ˆ

ker ' D
\
 2‰

ker :

Hence, it is enough to show that the lemma holds in the case where V2 D Q` and
ˆ D ‰. Write W for the intersection of the kernels ker ', so that

W D fv 2 V j '.v/ D 0 for all ' 2 ˆg
and

ˆ D f' 2 V � j '.w/ D 0 for all w 2 W g:



Vol. 88 (2013) Detecting linear dependence on an abelian variety via reduction maps 349

Here we use that ˆ D ‰ is a linear subspace of V �. Because T=.T \ W / is
torsion free the submodule W \ T is a direct factor of T (every finitely generated
torsion free Z`-module is free, hence projective), hence we can choose a Z`-basis
e1; : : : ; es; : : : ; er of T such that e1; : : : ; es make up a Z`-basis of W \ T . Let v be
an element of V that is contained in T C ker ' for all ' 2 ˆ. We can write v as

v D 
1e1 C � � � C 
ses„ ƒ‚ …
2W

C
sC1esC1 C � � � C 
rer

where the 
i are scalars in Q`. Taking for ' the projection onto the i -th component
for s < i 	 r shows that 
i 2 Z` for s < i 	 r . Hence 
sC1esC1C� � �C
rer 2 T ,
and we find that v 2 W C T as required. �

Proof of Lemma 4.1. Let H be an open subgroup of L such that the logarithm map
is defined on H . Such a subgroup always exists, and the exponential of log h is then
also defined and one has exp log h D h for all h 2 H ([Bou72], Ch.II, §8, no.4,
proposition 4). The Lie algebra of H is also l. Let h be an element of H and set
' WD log h, so that h D exp'. We claim that equality V h D ker ' holds. On one
hand if hv D v, then the series

'.v/ D log h.v/ D .h � 1/.v/ � .h � 1/
2.v/

2
C � � � C .�1/n�1 .h � 1/n.v/

n
C � � �

is zero, whence V h � ker '. On the other hand, if '.v/ D 0, then the series

h.v/ D exp'.v/ D 1V .v/C '.v/C '2.v/

2
C � � � C 'n.v/

nŠ
C � � �

is trivial except for its first term which is 1V .v/ D v, whence the inclusion in the other
direction. The Lie algebra l is a linear subspace of End V satisfying the hypothesis
of Lemma 4.4. Using this lemma and the hypothesis (2) we find\

g2L
.T C V g/ �

\
'2l

.T C ker '/
4.4D T C V l D T C V L

hence L acts tightly on V . By Lemma 4.3 this implies that H 1� .L; T / is torsion free
as claimed. Mind that in the second intersection it does not matter whether we take
the intersection over ' 2 l or ' 2 log.H/, because every element of l is a scalar
multiple of an element in log.H/. �

Corollary 4.5. LetM D Œu W Y �! A� be a 1-motive over a number field k where Y is
constant and A is a geometrically simple abelian variety. The groupH 1� .LM ;T`M/

is torsion free.
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Proof. We check that the two conditions of Lemma 4.1 are satisfied. The first con-
dition holds by Proposition 3.1. To check the second condition, we have to show
that for every subgroup N of LM of finite index the equality .V̀ M/L

M D .V̀ M/N

holds. It is enough to show this for normal subgroups, so let us fix a normal sub-
group N of LM , and denote by k0 the subfield of Nk fixed by the preimage � 0 of N in
� WD Gal. Nkjk/. So k0 is a finite Galois extension of k, and what we have to show is
that the inclusion

.T`M/� � .T`M/�
0

is an equality. Indeed, by Proposition 1.9 and because Y is constant both of these
submodules of T`M are equal to .ker u/˝ Z`. �

Proof of the Main Theorem. We fix a geometrically simple abelian variety A over a
number field k with algebraic closure Nk. We also choose a model of A over an open
subscheme U of spec Ok , which we still denote by A, and we fix a set S of closed
points of U of density 1. For every subgroup X of A.k/ we define

xX WD fP 2 A.U / j redp.P / 2 redp.X/ for all p 2 Sg:
Our aim is to show that for all X � A.k/ the equality X D xX holds.

Claim. It suffices to prove that for all subgroupsX � A.k/ the group xX=X is torsion
free.

Indeed, let X be a subgroup of A.k/, and let X 0 be any subgroup of finite index
of A.k/ containing X . Because X is contained in X 0 the group xX is contained in
xX 0. Moreover X 0 is of finite index in xX 0, so if xX 0=X 0 is torsion free we must have

equality X 0 D xX 0. Hence, as X 0 was arbitrary, xX is contained in every subgroup of
finite index of A.k/ which contains X . This in turn implies that the equality X D xX
holds, because A.k/ is finitely generated.

We now fix a subgroupX of A.k/ and a prime number `, and we show that xX=X
contains no `-torsion, or equivalently that . xX=X/˝Z` is torsion free. Replacing U
by a smaller open subschemeU 0 � U and deleting some finitely many elements from
S we may suppose without loss of generality that ` is invertible on U . Let us then
choose a 1-motive M D Œu W Y �! A� over U such that Y is constant and such that
u.Y / D X . From the propositions 1.11, 1.15 and 1.16 we get a canonical Z`-linear
injections

. xX=X/˝ Z`
1.11���! H 1

S .�U ;T`M/
1.15���! H 1� .�U ;T`M/

1.16���! H 1� .LM ;T`M/:

It is therefore enough to show that H 1� .LM ;T`M/ is torsion free. But this is guar-
anteed by Lemma 4.1 and the hypothesis that A is geometrically simple. �

Remark 4.6. In the proof we only used information on the torsion ofH 1� .LM ;T`M/

because of the trick that permitted us to suppose that X is of finite index in xX . One
can show that the group H 1� .LM ;T`M/ is in fact trivial for such 1-motives.
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Question 1. LetG be a semiabelian variety over a number field k, letX be a finitely
generated subgroup of G.k/ and let P 2 G.U / be a point. Suppose that for all
finite places v of k, the point P belongs to the closure of X in G.kv/. Does then P
belong toX? Here, kv denotes the completion of k at v, and we equipG.kv/with the
topology induced by the topology of kv . If G has good reduction at v and if X and
P are integral at v (so this concerns all but finitely many places) then to say that P is
in the closure of X in G.kv/ is equivalent with saying that P belongs to X modulo
v, essentially by Hensel’s Lemma.

Question 2. Let A be an abelian variety over a number field k, let X � A.k/ be a
subgroup of the group of rational points and let P 2 A.k/ be a rational point. What
can one say about the density of the set of places p of k with the property that redp.P /

belongs to redp.X/?
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[BK09] G. Banaszak and P. Krasoń, On arithmetic in Mordell–Weil groups. Acta Arith. 150
(2011), no. 4, 315–317. Zbl 05964563 MR 2847263

[Bog81] F. A. Bogomolov, Points of finite order on an abelian variety. Math. USSR Izv. 17
(1981), 55–72. Zbl 0466.14015 MR 0587337

[Bou72] N. Bourbaki, Groupes et algèbres de Lie. Chapitre II. Algèbres de Lie libres, Chapitre
III. Groupes de Lie, Éléments de mathématique XXXVII, Actualités Scientifiques et
Industrielles 1349, Hermann, Paris 1972. Zbl 0244.22007 MR 0573068

[Del74] P. Deligne, Théorie de Hodge III. Inst. Hautes Études Sci. Publ. Math. 44 (1974),
5–77. Zbl 0237.14003 MR 0498552

[GG09] W. Gajda and K. Górnisiewicz, Linear dependence in Mordell–Weil groups. J. Reine
Angew. Math. 630 (2009), 219–233. Zbl 1170.11013 MR 2526790

[Fal83] G. Faltings, Endlichkeitssätze für abelscheVarietäten über Zahlkörpern. Invent.Math.
73 (1983), 349–366. Zbl 0588.14026 MR 0718935

[HSz05] D. Harari andT. Szamuely,Arithmetic duality theorems for1-motives. J.ReineAngew.
Math. 578 (2005), 93–128. Zbl 1088.14012 MR 2113891

[Hin88] M. Hindry,Autour d’une conjecture de Serge Lang. Invent.Math. 94 (1988), 575–603.
Zbl 0638.14026 MR 0969244

[JR87] O. Jacquinot and K. Ribet, Deficient points on extensions of abelian varieties by Gm.
J. Number Theory 25 (1987), no. 2, 133–151. Zbl 0667.14021 MR 0873872

[JP09] P. Jossen and A. Perucca, A counterexample to the local-global principle of linear
dependence for abelian varieties. C. R. Math. Acad. Sci. Paris 348 (2010), no. 1–2,
9—10. Zbl 1219.11089 MR 2586734

[Kow03] E. Kowalski, Some local-global applications of Kummer theory. Manuscripta Math.
111 (2003), no. 1, 105–139. Zbl 1089.11031 MR 1981599

http://www.emis.de/MATH-item?1089.11030
http://www.ams.org/mathscinet-getitem?mr=2180505
http://www.emis.de/MATH-item?05964563
http://www.ams.org/mathscinet-getitem?mr=2847263
http://www.emis.de/MATH-item?0466.14015
http://www.ams.org/mathscinet-getitem?mr=0587337
http://www.emis.de/MATH-item?0244.22007
http://www.ams.org/mathscinet-getitem?mr=0573068
http://www.emis.de/MATH-item?0237.14003
http://www.ams.org/mathscinet-getitem?mr=0498552
http://www.emis.de/MATH-item?1170.11013
http://www.ams.org/mathscinet-getitem?mr=2526790
http://www.emis.de/MATH-item?0588.14026
http://www.ams.org/mathscinet-getitem?mr=0718935
http://www.emis.de/MATH-item?1088.14012
http://www.ams.org/mathscinet-getitem?mr=2113891
http://www.emis.de/MATH-item?0638.14026
http://www.ams.org/mathscinet-getitem?mr=0969244
http://www.emis.de/MATH-item?0667.14021
http://www.ams.org/mathscinet-getitem?mr=0873872
http://www.emis.de/MATH-item?1219.11089
http://www.ams.org/mathscinet-getitem?mr=2586734
http://www.emis.de/MATH-item?1089.11031
http://www.ams.org/mathscinet-getitem?mr=1981599


352 P. Jossen CMH

[Mil08] J. S. Milne, Arithmetic duality theorems. 2nd ed., BookSurge, LLC, Charleston, SC,
2006. Zbl 1127.14001 MR 2261462

[Mum70] D. Mumford, Abelian varieties. 2nd ed., Tata Inst. Fund. Res. Studies in Math. 5,
Oxford University Press, London 1974. Zbl 0223.14022 MR 0282985

[Neu99] J. Neukirch, Algebraic number theory. Grundlehren Math. Wiss. 322, Springer-
Verlag, 1999. Zbl 0956.11021 MR 1697859

[Per08] A. Perucca, On the problem of detecting linear dependence for products of abelian va-
rieties and tori. Acta Arith. 142 (2010), no. 2, 119–128. Zbl 1198.11055 MR 2601054

[Rib76] K. Ribet, Dividing rational points on abelian varieties of CM-type. Compositio Math.
33, (1976), no. 1, 69–74. Zbl 0331.14020 MR 0424823

[Rib87] K. Ribet, Cohomological realization of a family of 1-motives. J. Number Theory 25
(1987), no. 2, 152–161. Zbl 0666.14001 MR 0873873

[Sch75] A. Schinzel, On power residues and exponential congruences. Acta Arith. 27 (1975),
397–420. Zbl 0342.12002 MR 0379432

[Ser64] J.-P. Serre, Sur les groupes de congruence des variétés abéliennes. Izv. Akad. Nauk.
SSSR 28 (1964), 3–18. Zbl 0128.15601 MR 0160783

[Sza09] T. Szamuely, Galois groups and fundamental groups. Cambridge Stud. Adv. Math.
117, Cambridge University Press, Cambridge 2009. Zbl 1189.14002 MR 2548205

[Wei94] C. A. Weibel, An introduction to homological algebra. Cambridge Stud.
Adv. Math. 38, Cambridge University Press, Cambridge 1994. Zbl 0797.18001
MR 1269324

[Wes03] T. Weston, Kummer theory of abelian varieties and reduction of Mordell–Weil groups.
Acta Arith. 110 (2003), 77–88. Zbl 1041.11044 MR 2007545

Received March 10, 2010

Peter Jossen, CNRS, UMR 8628, Mathématiques, Bâtiment 425, Université Paris-Sud,
91450 Orsay cedex, France
E-mail: peter.jossen@gmail.com

http://www.emis.de/MATH-item?1127.14001
http://www.ams.org/mathscinet-getitem?mr=2261462
http://www.emis.de/MATH-item?0223.14022
http://www.ams.org/mathscinet-getitem?mr=0282985
http://www.emis.de/MATH-item?0956.11021
http://www.ams.org/mathscinet-getitem?mr=1697859
http://www.emis.de/MATH-item?1198.11055
http://www.ams.org/mathscinet-getitem?mr=2601054
http://www.emis.de/MATH-item?0331.14020
http://www.ams.org/mathscinet-getitem?mr=0424823
http://www.emis.de/MATH-item?0666.14001
http://www.ams.org/mathscinet-getitem?mr=0873873
http://www.emis.de/MATH-item?0342.12002
http://www.ams.org/mathscinet-getitem?mr=0379432
http://www.emis.de/MATH-item?0128.15601
http://www.ams.org/mathscinet-getitem?mr=0160783
http://www.emis.de/MATH-item?1189.14002
http://www.ams.org/mathscinet-getitem?mr=2548205
http://www.emis.de/MATH-item?0797.18001
http://www.ams.org/mathscinet-getitem?mr=1269324
http://www.emis.de/MATH-item?1041.11044
http://www.ams.org/mathscinet-getitem?mr=2007545

	On 1-motives and Galois representations
	Notation

	The image of Galois
	Notation

	Some linear algebra
	Proof of the Main Theorem
	References

