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Vertices of closed curves in Riemannian surfaces
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Abstract. We uncover some connections between the topology of a complete Riemannian
surface M and the minimum number of vertices, i.e., critical points of geodesic curvature, of
closed curves in M . In particular we show that the space forms with finite fundamental group
are the only surfaces in which every simple closed curve has more than two vertices. Further
we characterize the simply connected space forms as the only surfaces in which every closed
curve bounding a compact immersed surface has more than two vertices.
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1. Introduction

In this paper we study the relation between the topology of a complete Riemannian
surface M and the minimum number of vertices, i.e., critical points of geodesic
curvature, of closed curves in M . Our prime motivation here is the classical theorem
of Kneser [25], [29], which states that any .C2/ simple closed curve in Euclidean
plane R2 has at least four vertices. It is known that this result also holds in the sphere
S2 and hyperbolic plane H2, since the stereographic projection and the inclusion
map of the Poincaré disk preserve vertices [26], [9]. Further, it follows from another
classical result due to Möbius [28], [39] that any simple closed curve in the projective
plane RP2 has at least three vertices. We show that, up to a rescaling, these are the
only surfaces where every simple closed curve has more than two vertices:

Theorem 1.1. The only complete Riemannian surfaces where every simple closed
curve has more than two vertices are the space forms with finite fundamental group.

Thus the simply connected space forms are the only complete Riemannian surfaces
where Kneser’s four vertex theorem holds, and real projective planes are the only
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other surfaces where every simple closed curve has at least three vertices. Another
classification result we obtain in this work uses the extension of Kneser’s theorem
to self-intersecting curves by Pinkall [34] who showed that every closed curve in R2

(and hence H2 and S2) which bounds a compact immersed region must have at least
four vertices. Our next theorem shows that this property also characterizes the simply
connected space forms:

Theorem 1.2. The only complete Riemannian surfaces where every closed curve
which bounds a compact immersed surface has more than two vertices are the simply
connected space forms.

Finally one may ask what are all surfaces which satisfy the condition of the last
theorem if the word “immersed” is replaced by “embedded”. Obviously, surfaces of
the above theorems would then fall into that category, but there are more examples:

Theorem 1.3. The only complete Riemannian surfaces where every closed curve
which bounds a compact embedded surface has more than two vertices are orientable
space forms of genus zero, flat tori, and rescalings of RP2.

We recall that an orientable surface of genus zero is one that is homeomorphic to
S2 minus a totally disconnected subset [37]. The above theorems are proved in the
next three sections below. The proofs of Theorems 1.1 and 1.3 employ some basic
curve shortening and certain perturbation results for closed geodesics or horocycles
in hyperbolic surfaces. An important lemma utilized here is a result of Jackson [24]
who showed that Kneser’s four vertex property holds only in surfaces with constant
curvature. The proof of Theorem 1.2 also uses this lemma, together with an explicit
example of a rather remarkable cylindrical curve which has only two vertices but
bounds a compact immersed surface (Figure 5). A general result for perturbing
closed geodesics to curves with only two vertices is discussed in the appendix.

Four vertex theorems have spawned a vast and diverse literature since the first
version of the theorem was proved in 1909 by Mukhopadhyaya [30], who showed
that convex planar curves have four vertices. This is the only version mentioned in
nearly all differential geometry textbooks, with the exceptions of [18], [29] where
the more general theorem of Kneser is discussed, see also [23], [31], [20]. Pinkall’s
paper [34] and related work [48], [7] offer other more general proofs as well, based on
a number of ideas. For more recent proofs see [1], [45] which use curvature flow and
Sturm theory. Another recent development is concerned with a converse of Kneser’s
theorem [10], [15]. There are also interesting generalizations to space curves [41],
[49], [46], connections with contact geometry [2], [50], polygonal analogues [33],
and a version for surfaces with boundary [14]. See [36] for a physical application,
and [13], [32] for some more references and historical remarks.
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2. Proof of Theorem 1.1

We begin by recording the result of Jackson mentioned above:

Lemma 2.1 ([24]). Let M be a Riemannian surface with curvature K and let p be a
point of M . Suppose that p is not a stationary point of K, i.e., dKp ¤ 0. Then there
exists an � > 0 such that for all 0 < r � �, the metric circle of radius r centered at
p has only two vertices. �

Thus we may confine our attention to complete Riemannian surfaces M of con-
stant curvature K, or 2-dimensional space forms, as far as proving Theorem 1.1 is
concerned. Furthermore, we may assume that M is not simply connected due to the
following fact: let S2 � R3 denote the unit sphere and H2 � R2 be the Poincaré
half-plane with its standard metric of constant curvature �1; then we have:

Lemma 2.2 ([26]). The stereographic projection � W S2 � f.0; 0; 1/g ! R2 and
the inclusion map i W H2 ! R2 preserve the sign of the derivative of the geodesic
curvature of curves. �

Thus Kneser’s theorem holds in all simply connected 2-dimensional space forms.
The property of the stereographic projection mentioned above was already known
to Kneser [25], and the property of the inclusion map for the Poincaré disk was
proved by Maeda [26]; but the Poincaré disk and half-plane are equivalent up to a
Möbius transformation, which establishes the corresponding fact for the Poincaré
half-plane, since Möbius transformations preserve vertices [34], [20]. Essentially,
these observations are consequences of the fact that the stereographic projection and
the inclusion map of the upper half-plane send circles to circles, and the vertices occur
when the curve has third order contact with its osculating circle.

It remains to consider non-simply connected 2-dimensional space forms M . We
may assume, after a rescaling, that the curvature K of M is 0, 1, or �1. Then by the
Hopf–Killing theorem [44], [38], M D X=G where X D R2, S2, or H2 and G is a
discrete subgroup of isometries of X which acts freely and properly discontinuously
on X . In particular, the projection � W X ! X=G D M is a Riemannian covering
map. We also recall that G is isometric to the fundamental group �1.M/. Indeed,
for any point o 2 M , No 2 X with �. No/ D o, and closed curve � W Œ0; L� ! M

with �.0/ D o, if N� W Œ0; L� ! X is the lifting of � with N�.0/ D No, then there exists
a unique element g 2 G such g. N�.0// D N�.L/. This correspondence, which will
be utilized a number of times below, establishes the isomorphism between G and
�1.M/.

2.1. The elliptic case. If K D 1, then M is the real projective plane RP2 D
S2=f˙1g. By a theorem of Möbius [28], [39], see Note 2.8 below for other references,
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any simple closed noncontractible curve � in RP2 has at least three inflection points,
i.e., points where the geodesic curvature vanishes. But there must be at least one
vertex between every pair of inflections. Thus � must have at least three vertices. On
the other hand, if � is contractible, then it lifts to a pair of simple closed curves in
S2, each of which must have four vertices by Kneser’s theorem. Since the covering
map is one-to-one on each of these curves, it then follows that � must have at least
four vertices. So we conclude then that all simple closed curves in RP2 must have
at least three vertices. (Note that in a nonorientable surface, the geodesic curvature
in only well-defined locally and up to a sign; however, this is enough to allow one to
talk about vertices and inflection points.)

In the remaining cases we construct explicit examples of simple closed curves
with only two vertices, by perturbing geodesics or horocycles of M .

2.2. The parabolic case. If K D 0, then M D R2=G where there are exactly four
types of possibilities for G corresponding to the cases of cylinder, twisted cylinder,
torus, or Klein bottle [44]. In each of these cases M contains a simple closed geodesic
� , as may be easily seen by looking at the fundamental region of these surfaces which
is either a rectangle or an infinite strip in R2. Let � W R=L ! M be a parametrization
of � by arclength (where L denotes the length of �), and N� be a lifting of � to R2. Then
N� traces a line which we may assume to be the x-axis. Let g 2 G be the unique element
such that g. N�.0// D N�.L/. Then g is either the “translation” .x; y/ 7! .x C L; y/

or the “glide reflection” .x; y/ 7! .x C L; �y/ and we define, respectively,

Q�.t/ WD
�

t; � sin
�

2�t

L

��
or Q�.t/ WD

�
t; � sin

�
�t

L

��
;

for some � > 0. Then the image of Q� is invariant under the action of g. Consequently,
if � W R2 ! M denotes the covering map, then � B Q� traces a smooth closed curve in
M with only one or two vertices. Further note that, as � ! 0, Q� converges to N� , and
consequently � B Q� converges to � B N� D � with respect to the C1-norm. So since �

is simple, it follows that � B Q� will be simple as well for sufficiently small �.

2.3. The hyperbolic case. If K D �1, or M is a hyperbolic surface, we need to
establish a basic structure theorem first. Recall that an end of a surface is a nested
sequence of subsets which eventually lie outside any given compact subset. Each
element of this sequence is called an end representative, and two ends are equivalent
if each representative of one end lies in a representative of the other. A cusp of a
hyperbolic surface is an end with a representative which is isometric to a representative
C of the “thin” end of the parabolic cylinder H2=G where G is generated by the
parabolic translations .x; y/ 7! .x C L; y/; more explicitly, a cusp representative
may be defined as

C D C.h/ WD ˚
.x; y/ 2 H2 j y > h

�
=G;
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for some h > 0. Alternatively, a cusp may be visualized as an end of the tapering
surface of revolution in R3 known as the pseudosphere.

Proposition 2.3. Every non-simply connected complete hyperbolic surface contains
a simple closed geodesic or a cusp.

In the special case where the surface is orientable and has finite Euler character-
istic, the above proposition follows from a result in the recent book of Borthwick [6],
Proposition 2.16. With the aid of this result, and some curve shortening, we give the
more general proof which we seek. First we need to establish the following lemma.
If M were orientable, this lemma would follow from basic results on curve short-
ening flow by curvature [17], [8]; however, when M is not orientable, the geodesic
curvature is not well-defined along the entire curve; hence we use the “disk flow”
method devised in [19] which does not require orientability.

Lemma 2.4. Let M be a complete Riemannian surface and � be a simple closed
curve of length L in M . Suppose that � is not isotopic to a point and the set of all
curves in the isotopy class of � whose lengths are bounded above by L are confined
to a compact region of M . Then � is isotopic to a simple closed geodesic.

Proof. If M is compact, the lemma follows immediately from [19], Theorem 1.8.
But the proof of Theorem 1.8 in [19] shows that compactness is needed only so that
one can apply Ascoli’s theorem to conclude that any length non-increasing homotopy
�t has a convergent subsequence. Of course one may draw the same conclusion as
long as �t is confined to a compact subset of M , which we assume is the case. �

Next we use the previous lemma to establish another basic fact:

Lemma 2.5. Every complete non-orientable Riemannian surface contains a simple
closed geodesic, which has a tubular neighborhood homeomorphic to a Möbius strip.

Proof. If a complete Riemannian surface M is nonorientable then it must contain a
Möbius band U . Let � be a smooth simple closed curve which is a retraction of U .
By the isotopy extension lemma [22], if � 0 is any curve in M which is isotopic to
� , then � 0 will also have a neighborhood U 0 which is homeomorphic to a Möbius
band and retracts onto � 0. This yields the following two observations. First, � is
not isotopic to a point, because every surface is locally orientable. Second, no curve
homotopic to � may be disjoint from � . This is due to the fact that there exists a
smooth curve � 0 homotopic to � which intersects � only once, see Figure 1. Next
note that any curve � 00 homotopic to � will be homotopic to � 0 as well. Suppose
now, towards a contradiction, that � 00 is disjoint from � . Then, if # denotes the
intersection number, we have

0 D #.� 00; �/ D #.� 0; �/ D 1;
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�
� 0

Figure 1

by the invariance of intersection number under homotopy [22]. Thus, � 00 \ � ¤ ;.
This shows that any length nonincreasing isotopy of � must be confined within a
compact region of M (if length of � is L, then this region would consist of points of
M which are within a distance L=2 of �). It follows then, via Lemma 2.4, that � is
isotopic to a simple closed geodesic. �

We need only one other basic result before proving Proposition 2.3. A hyperbolic
cylinder is the quotient H2=G where G is generated by the hyperbolic translations
.x; y/ 7! .eLx; eLy/. Thus a hyperbolic cylinder contains a simple closed geodesic,
i.e., the image of the positive half of the y-axis, which cuts the cylinder in half.
Following Borthwick [6] we define a funnel, as one of these halves. We say that a
surface is topologically finite if it is homeomorphic to a compact surface minus a
finite set of points.

Lemma 2.6 ([6]). Every non-simply connected noncompact complete orientable hy-
perbolic surface with finite topology has a cusp or funnel end.

Proof. If our hyperbolic surface M D H2=G is homeomorphic to an annulus, or,
equivalently, M is orientable and G has only one generator, then that generator is
conjugate to either a parabolic or hyperbolic translation of H2, which we defined
above. Consequently M is isometric to either the parabolic cylinder or hyperbolic
cylinder, in which case M has a cusp or funnel end respectively, and we are done. On
the other hand, if M is not homeomorphic to an annulus (and is not simply connected),
then M will be “nonelementary” and the proof follows from Theorem 2.13 of [6]
which classifies the ends of nonelementary geometrically finite orientable hyperbolic
surfaces. To apply this classification result, we just need to note that since M is
topologically finite, it is “geometrically finite” as well ([6], Theorem 2.10), i.e., G

is finitely generated, or, equivalently, the fundamental region of M is a finite-sided
convex polygon in H2. �

Now we are ready to prove Proposition 2.3:

Proof of Proposition 2.3. By Lemma 2.5 we may suppose that our surface, say M ,
is orientable. It is well-known that every compact non-simply connected orientable
surface contains a simple closed geodesic, e.g., this follows from Lemma 2.4; or
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see Section 9.6 in [38] for the hyperbolic case. So we may also suppose that M

is noncompact. Then, if M has finite topology, by Lemma 2.6, one of the ends of
M must be a “cusp” or a “funnel” [6]. In either case we would be done since, by
definition, funnels are bounded by simple closed geodesics. So it remains to consider
the case where M has infinite topology, although all we need is that M have at least
four ends. Then we show that M must have a simple closed geodesic as follows.

By the generalized Jordan curve theorem, any simple closed curve �0 divides M

into two components. Choose �0 so that each of the components of M � �0 contains
at least two ends of M , and �0 is rectifiable. Then let �t be a length nonincreasing
isotopy of �0, e.g., as defined by Hass and Scott [19], Theorem 1.8. Note that, by
the isotopy extension lemma [22], the topology of M � �t does not depend on t .
Let At be a continuous choice of a component of M � �t , and E � A0 be an end
representative of M which does not contain all ends of M that are in A0. Then �t

cannot be contained entirely in E for any time t , because then At would be disjoint
from some of the ends of A0. Now let E 0 � E be another end representative such
that the distance of @E 0 from @E is bigger than L=2 were L is the length of �0. Then
�t \ E 0 D ; for all t .

Similarly, for each end of M we may choose an end representative which will
always be disjoint from �t . Then the complement of all these end representatives is
a compact subset of M which contains �t for all t , and so we may apply Lemma 2.4
to complete the proof. �

Having proved Proposition 2.3, we may now proceed with the rest of the proof of
Theorem 1.1 by considering the following two cases:

2.3.1. If our hyperbolic surface M D H2=G contains a cusp, then it contains a
horocycle, i.e., a simple closed curve � W R=L ! M which lifts to a horizontal line
N�.t/ D .t; h/ � H2. Then let Q� be the perturbation of N� given by

Q�.t/ WD
�

t; h C � sin
�

2�t

L

��
;

see Figure 2. Recall that there is a unique element g 2 G, given by g. N�.0// D N�.L/,

h

0 L

Figure 2
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which in this case is the parabolic translation .x; y/ 7! .x C L; y/. Further, as we
argued in Section 2.2, since Q� is also invariant with respect to g, the projection � B Q�
is a smooth closed curve in M with only two vertices for any � ¤ 0, by Lemma 2.2.
Furthermore, again as � ! 0, Q� converges to N� with respect to the C1 norm. Thus,
since � is simple, � B Q� will be simple as well.

2.3.2. If M D H2=G contains a simple closed geodesic � W R=L ! M , then it lifts
to a geodesic N� W R ! H2. We may assume that N� traces the upper half of the y-axis
in its positive direction, and N�.0/ D .0; 1/. Then N�.L/ D .0; eL/ (recall that the
hyperbolic distance of .0; 1/ from .0; y/ is given by ln.y/). As before, let g 2 G

be the (unique) element such that g.�.0// D �.L/. Then g is either the hyperbolic
translation .x; y/ 7! .eLx; eLy/ or the glide reflection .x; y/ 7! .�eLx; eLy/,
depending on wether or not small tubular neighborhoods of � are orientable. So
there are two cases to consider:

If g is the hyperbolic translation (i.e., a tubular neighborhood of � in M is ori-
entable), let

Q�.t/ WD
�

�t sin
�

2�

L
ln.t/

�
; t

�
;

see Figure 3. Note that Q�.eLt / D eL Q�.t/, i.e., the image of Q� is invariant under the
action of g. Thus � B Q� is a smooth closed curve in M , and choosing � sufficiently

0 1 eL e2L

Figure 3

small we can make sure that � B Q� is simple as we argued in Section 2.2. Finally note
that Q� has only two vertices on the interval Œ1; eL�. Thus, the projection of � B Q� will
have only two vertices, again by Lemma 2.2.

If g is the glide reflection (i.e., no neighborhood of � in M is orientable) let

Q�.t/ WD
�
�t sin

��

L
ln.t/

�
; t

�
:

Then the image of Q� is invariant under the action of g and � B Q� again yields the
desired curve for small �, which completes the proof of Theorem 1.1.

We record below the last part of the proof for future reference:
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Lemma 2.7. Any closed geodesic or horocycle in a hyperbolic surface is C1-close
to a closed curve with no more than two vertices. �

Note 2.8. The theorem of Möbius mentioned above is equivalent to the statement that
every simple closed curve � in S2 which is symmetric with respect to the antipodal
reflection (� D ��) has at least six inflection points. Since the antipodal reflection
switches the sign of geodesic curvature, the number of inflection points of � must be
2m where m is odd. So, it is enough to show that � has more than two inflections.
In this sense, the theorem of Möbius may be viewed as a special case of the “tennis
ball theorem” [2], [3], [1] which proves the existence of at least four inflections for
curves which bisect the area of S2. The latter result in turn follows from a theorem of
Segre [42] who proved that any simple closed curve on S2 which contains the origin
in its convex hull must have at least four inflection points. Another proof of Segre’s
theorem may be found in [51]. For other refinements or results related to the theorem
of Möbius see, [40], [47], [35].

3. Proof of Theorem 1.2

Let M be a complete Riemannian surface satisfying the hypothesis of Theorem 1.2.
By Lemma 2.1, and after a rescaling, we may again assume that M has constant
curvature K D 1, 0, or �1 which result in the following three cases respectively:

3.1. The elliptic case. Recall that here M is the real projective plane RP2 D
S2=f˙1g. In this case we may construct an explicit example of a curve with only two
vertices, which bounds an immersed compact surface, as shown in Figure 4. In this
picture, RP2 is represented as a hemisphere of S2, say the northern hemisphere, with

Figure 4

the antipodal points on its boundary, or the equator, identified, and we are looking at
this hemisphere from “above” (i.e., in a direction orthogonal to the plane of the equa-
tor). Alternatively, the above picture may be regarded as that of a unit disk, and then
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we may transfer the depicted region to a hemisphere via a stereographic projection,
which preserves the number of vertices by Lemma 2.2. Note that the points where
the curve intersects the boundary of the hemisphere are inflection points.

3.2. The parabolic case. In this case M D R2=G where G has at most two genera-
tors one of which must be a translation or a glide reflection [44]. But the composition
of two glide reflections is a translation. Thus G must contain a subgroup H generated
by a translation. Then the projection R2=H ! R2=G yields a covering of M by a
cylinder. Thus it is enough to show that every flat cylinder contains a closed curve
with only two vertices which bounds a compact immersed surface. Then the covering
map yields the corresponding examples in all other topological types of flat surfaces
(the twisted cylinder, the torus, and the Klein bottle).

So we may suppose that M is a flat cylinder, i.e., M D R2=LZ which is the quo-
tient of R2 modulo the horizontal translations .x; y/ 7! .x C zL; y/. Alternatively,
we may think of M as the fundamental region Œ0; L� � R � R2 with its right and
left hand sides identified. Then the curve we seek is depicted in the left hand side of
Figure 5, and the picture on the right shows a lifting of that curve in R2. Note that

Figure 5

the curve on the cylinder bounds a compact immersed surface. Thus we only need
to check that the given curve has only two vertices. Indeed the curve on the right is
given by

�.t/ WD 1

a2 C 2a cos
�

t
5

�
cos.t/ C cos

�
t
5

�2

�
a C cos

�
t
5

�
cos.t/; cos

�
t
5

�
sin.t/

�
;

where a D 9=100. To count the vertices of � note that if we invert � with respect to
the unit circle and then translate it to the left by a distance of a we obtain the curve
given by r.�/ D cos.�=5/ in polar coordinates, see Figure 6. A straight forward
computation then shows that the derivative of the curvature of r is given by

	0.�/ WD 24
�
8 C 6 cos

�
2�
5

��
sin

�
2�
5

�
�
13 C 12 cos

�
2�
5

�� 5
2

:
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Figure 6

Thus r has only two vertices which occur at � D 0 and � D 5�=2, and one may
easily check that both are nondegenerate critical points of curvature. Hence � has
only two vertices as well, since Möbius transformations preserve vertices [34], [20],
as we had pointed out earlier. Finally, if � has only two vertices as a curve in R2 then
it has only two vertices in H2 as well, by Lemma 2.2.

Note 3.1. Another example of a closed curve on the torus, or the Klein bottle, which
has only two vertices but bounds a compact immersed surface is depicted in Figure 7.
Note that although this example is more simple than that of Figure 5, it does not work

Figure 7

on the cylinder or twisted cylinder because the region that it bounds would not be
compact in those surfaces.

Note 3.2. Although the example of Figure 5 bounds a compact immersed surface in
the cylinder, the lifting of that curve does not bound any such surface in the plane.
The conditions for a closed planar curve to bound a compact immersed disk were first
described in the thesis of Blank [5]. See [27], [12], [4] for further refinements and
generalizations of that result.

3.3. The hyperbolic case. Recall that in this case, by Proposition 2.3, M either has
a cusp, or a simple closed geodesic.

3.3.1. Suppose first that M has a cusp, then we may construct an example similar
to that of Figure 5 on M because cusps are asymptotic to cylinders. More precisely,
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recall that a cusp is isometric to an end of a pseudosphere, which we may think of as
a surface of revolution † about the z-axis in R3. Note that † contains a meridian m�

of length � for every sufficiently small �. After a vertical translation we may assume
that m� lies on the xy-plane. Further, after a homothety of R3, we may assume that
m� has length 2� . Thus we obtain a sequence of surfaces †� which converge to the
cylinder C given by x2 C y2 D 1, within any given compact ball B centered at the
origin of R3, as � ! 0. In particular, for small �, C and †� will be C1-close in
B , and thus any curve in B \ C may be projected into †� by moving it along the
normals to C . The new curve will be C1 close to the original one, and thus will have
the same number of vertices as the original curve if all the vertices of the original
curve are nondegenerate critical points of curvature, which, as we verified earlier, is
the case in the example of Figure 5.

3.3.2. Now suppose that M has a simple closed geodesic � . Then � lifts to a
geodesic in the upper half-plane H2, and after an isometry, we may suppose that this
lifting traces the positive half of the y-axis. Also recall that homotheties of R2 are
isometries of H2. We can use these homotheties by constructing an example similar
to that of Figure 5 along the y-axis, see Figure 8. The curves depicted in this picture

0 1 eL e2L

Figure 8

are rescalings of each other by a (Euclidean) factor of eL where L is the length of � .
This completes the proof once we note that example of Figure 5 may be constructed
for any given L.

4. Proof of Theorem 1.3

Let M be an orientable space form of genus zero, flat torus, or a rescaling of RP2, and
� � M be a simple closed curve which bounds an embedded surface. If M D RP2,
or a rescaling of RP2, then � has at least three inflection points by Möbius’s theorem,
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as we pointed out in Section 2.1. If M is an orientable surface of genus zero or a torus,
then � must bound a disk in M . Consequently � lifts to a simple closed curve in the
universal cover of M , and then it follows from Kneser’s theorem and Lemma 2.2 that
� must have at least four vertices.

To complete the proof of Theorem 1.3 it remains then to show that if M is not an
orientable space form of genus zero, flat torus, or a rescaling of RP2, then it must
contain a simple close curve � which bounds a compact surface but has no more than
two vertices. Again, by Lemma 2.1, we may assume that M has constant curvature.
Further, since we already know that M may not be S2 or RP2, we may suppose that
the curvature of M is nonpositive. The next result shows that we may assume that
M is orientable as well:

Lemma 4.1. Any nonorientable complete surface of nonpositive curvature contains
a simple closed curve with only two vertices which bounds a compact embedded
surface.

Proof. First recall that, by Lemma 2.5, any nonorientable complete Riemannian sur-
face M contains a simple closed geodesic � W R=L ! M which has a tubular neigh-
borhood homeomorphic to a Möbius strip. Let N� be a lifting of � to the universal
cover of M , which is R2 or H2.

If the universal cover of M is R2, i.e., M has zero curvature, then we may suppose,
for convenience, that N� traces the x-axis. Now let

Q�˙.t/ WD
�

t; �

�
sin

�
�t

L

�
˙ �

��

and note that these curves are invariant under the group of “glide reflections” .x; y/ 7!
.x CL; �y/, see Figure 9. Thus the covering map � W R2 ! M sends these curves to

0 L

Figure 9

a single closed curve with only two vertices in M which converges to � with respect
to the C1-norm as � ! 0. In particular, this curve will be embedded for small �.

If the universal cover of M is H2, i.e., if M has negative curvature, then we
may suppose that N� traces the positive half of y-axis in the positive direction and
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N�.0/ D .0; 1/. Now let

Q�˙.t/ WD
�

� t

�
sin

�
� ln.t/

L

�
˙ �

�
; t

�

and again note that these curves are invariant under the group of “glide reflections”
.x; y/ 7! .�eLx; eLy/, see Figure 10. Thus the covering map � W H2 ! M once

0 1 eL e2L

Figure 10

again sends these curves to the desired curve for small �. �

Now recall that the only orientable parabolic 2-dimensional space forms other
than the tori are the cylinders and the Euclidean plane, both of which have genus
zero. Thus we may assume that M has negative curvature, and observe that

Lemma 4.2. Every complete orientable hyperbolic surface M of nonzero genus
contains a simple closed geodesic or a horocycle which bounds a compact subset
of M .

Proof. Since M has nonzero genus, and is not a torus, it is the connected sum of
a torus T with a noncontractible surface M 0; this follows from the normalization
theorem of Richards [37] which states that any orientable surface is homeomorphic
to the connected sum of S2 with a countable number of tori and minus a totally
disconnected subset. Thus there exists a simple closed curve � which divides M into
two components: one homeomorphic to T minus a disk and the other homeomorphic
to M 0 minus a disk. Now let �t be the curve shortening flow devised in [19]. Then
as we argued in the proof of Proposition 2.3, �t either converges to a simple closed
geodesic or else eventually enters every representative of an end of M . The latter
case may happen only if that end is a cusp and �t is isotopic to a horocycle of that
cusp. The proof is then complete once we recall that, by the isotopy extension lemma
[22], the topology of M � �t is independent of t . In particular, the closure of one of
the components of M � �t will be homeomorphic to T minus an open disk, which
is a compact region of M . �
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By Lemma 2.7, we may now perturb the curve given by the last result to obtain a
simple closed curve with only two vertices, which completes the proof.

Appendix: More on perturbations of geodesics

In Section 2.3 we showed that any closed geodesic in a hyperbolic surface may be
perturbed, in the C1 sense, to a closed curve with only two vertices. Here we include
a more general result for orientable surfaces of constant curvature, which may not be
complete.

Theorem 4.3. Let � be a closed geodesic of length L in a Riemannian surface of
constant curvature K, which is orientable in a neighborhood of � . Then, every
neighborhood of � contains a closed curve which has only two vertices, and may be
required to be arbitrarily C1-close to � , if, and only if, K ¤ .2�=L/2.

The proof of this result follows from the following three lemmas. The basic idea
here is again to perturb the geodesic in the direction of its normals according to a sine
curve. To this end we first show that a neighborhood of � in M may be represented
as a surface of revolution in R3. This observation, via the above theorem, shows
that the only closed geodesics which cannot be perturbed to curves with only two
vertices correspond to great circles in spheres (there are still many other examples of
closed geodesics in noncomplete surfaces of constant positive curvature, which may
be perturbed to curves with only two vertices, provided only that the length condition
in the above theorem is satisfied.).

Lemma 4.4. Let M and M 0 be Riemannian surfaces of constant curvature K which
contain simple closed geodesics � and � 0 with orientable neighborhoods. Then
there exist open neighborhoods U and U 0 of � and � 0, respectively, and an isometry
f W U 0 ! U which maps � to � 0.

Proof. Fix an orientation for M , and for each point p of � let fe1.p/; e2.p/g be a
continuous choice of basis for TpM such that e1 is tangent to � and .e1.p/; e2.p//

is in a fixed orientation class of TpM . Similarly, let fe0
1.p0/; e0

2.p0/g be a continuous
choice of basis along � 0 such that e0

1.p0/ is tangent to � 0 and .e0
1.p0/; e0

2.p0// is in
a fixed orientation class of M 0 for all p0 2 � 0. Since M and M 0 have the same
constant curvature, then, as is well known, they are locally isometric. Indeed, it
follows from a theorem of Cartan, that for every p 2 � , and p0 2 � 0, there is an open
neighborhood Up of p and an isometry f WD fp W Up ! M 0 such that f .p/ D p0
and df .ei .p// D e0

i .p/, i D 1, 2, see [11], p. 158.
We may assume, without loss of generality, that the neighborhoods Up mentioned

above are tubular, which we define as follows. Let N�.�/ be the set of all point of



442 M. Ghomi CMH

M whose distance from � is less than �, then by the tubular neighborhood theorem
[43], for sufficiently small �, N�.�/ is fibrated by geodesic segments which meet �

orthogonally at one point. This gives rise to a natural projection map � W N�.�/ ! � .
We say that a neighborhood U of p is tubular provided that there exists a connected
open neighborhood I of p in � such that U D ��1.I /.

Now let p.t/ and p0.t/ be a pair of parametrizations of � and � 0 by arclength, and
Ut WD Up.t/ be a tubular neighborhood of p.t/ such that there exists an isometry f WD
ft W Ut ! M 0 with f .p.t// D p0.t/ and df .e0

i .p// D e0
i .p

0/. By compactness of � ,
there will be a finite number of points pj D p.tj / such that the tubular neighborhoods
Uj cover � . Note that if fj W Uj ! M 0 are the corresponding local isometries, then
U 0

j WD fj .Uj / also form an open covering of � 0. Let U WD [Uj , U 0 WD [U 0
j , and

define f W U ! U 0 by setting f jUj
WD fj . It is simple to verify that f is well

defined, i.e., whenever Uj \Uk ¤ ;, then fj D fk on Uj \Uk , using the uniqueness
of geodesics and the fact that the intersection of two tubular neighborhood is tubular,
which shows that f is the desired isometry. �

Suppose we have a surface of revolution in R3 parametrized by

X.t; �/ D �
r.t/ cos.�/; r.t/ sin.�/; h.t/

�
: (1)

By a neck of X we mean a meridian, i.e., a curve � 7! X.t0; �/, which occurs at a
height where the tangent to the profile curve r is parallel to the axis of revolution,
i.e., r 0.t0/ D 0.

Lemma 4.5. For any constant K and positive constant L, there exists a C1 surface
of revolution in R3 with constant curvature K and a neck of length L.

Proof. If K D 0, then it is obvious that we may let our surface to be a cylinder over
a circle of length L. If K > 0, then, for �� � t � �, set

r.t/ WD L

2�
cos

�
t

K

�
and h.t/ WD

Z t

0

s
1 �

�
L

2�
sin

�
t

K

��2

dt:

Then the surface of revolution X given by (1) has constant curvature K, see [16],
p. 483. Further X has a neck at t D 0 which has length L. Similarly, if K < 0, set

r.t/ WD L

2�
cosh

�
t

K

�
and h.t/ WD

Z t

0

s
1 �

�
L

2�
sinh

�
t

K

��2

dt:

Then X again has constant curvature K, see [16], p. 487, and it has a neck of length
L at t D 0 . �

Finally we need:
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Lemma 4.6. Let X be a C1 surface of revolution in R3 parametrized by

X.t; �/ WD �
r.t/ cos.�/; r.t/ sin.�/; t

�
; (2)

where 0 � � � 2� and �� � t � �. Suppose that X has a neck � at t D 0, and

1 C r.0/r 00.0/ ¤ 0: (3)

Then there exists an � > 0 such that for every 0 < � � � the curve

c�.�/ WD X
�
� cos.�/; �

�
has only two vertices.

Proof. First we recall that the geodesic curvature of c� is given by

k�.�/ WD
	

T 0
�
.�/

kc0.�/k ; 
�.�/



;

where T�.�/ WD c0
�
.�/=kc0

�
.�/k is the unit tangent vector field of c�, and 
�.�/ is

a continuous normal vector field along c� which is tangent to X . To compute 
, we
may let n.t; �/ WD @tX � @�X=k@tX � @�k be a unit normal vector field of X , and
set 
�.�/ WD n.� cos.�/; �/ � T�.�/: A straight forward calculation then shows that

k�.�/ D Nr 0 Nr2 C � Nr� � � Nr 0 Nr 00 sin2.�/ C cos.�/. Nr 0/2 C cos.�/
� C 2�2 sin2.�/ Nr 0

�
. Nr 0/2 C 1

�
p

. Nr 0/2 C 1
� Nr2 C �2 sin2.�/

�
. Nr 0/2 C 1

��3=2
;

where

Nr WD r
�
� cos.�/

�
; Nr 0 WD r 0�� cos.�/

�
; and Nr 00 WD r 00�� cos.�/

�
:

Since by assumption r 0.0/ D 0, we have k0.�/ D 0 for all � . So, fixing � and
applying Taylor’s theorem, we obtain

k�.�/ D @�k0.�/� C R�.�/�2; (4)

where

@�k0.�/ D 1 C r.0/r 00.0/

r2.0/
cos.�/; and R�.�/ D

Z �

0

@2
uku.�/.� � u/ du: (5)

Note that (4) is valid for all .�; �/ in Œ0; 1� � Œ0; 2��. Further, since k�.�/ depends
smoothly on both � and � , so does R�.�/. Consequently, the C2-norm of R�.�/, as
a function of � , has a uniform upper bound A valid for all � 2 Œ0; 1�:

A WD sup
�2Œ0;1�

kR�.�/kC2 D sup
�2Œ0;1�

sup
�2Œ0;2��

fR�.�/; R0
�.�/; R00

�.�/g < 1:



444 M. Ghomi CMH

Furthermore, (4) shows that��k�.�/ � @�k0.�/�kC2 D kR�.�/kC2 �2 � A�2;

where all norms are with respect to � . So

lim
�!0C

��k�.�/ � @�k0.�/�
��

C2 D 0:

Combing the last equation with the computation for @�k0.�/ in (5) we obtain

lim
�!0C

����k�.�/

�
� 1 C r.0/r 00.0/

r2.0/
cos.�/

����
C2

D 0:

Now recall that 1 C r.0/r 00.0/ ¤ 0 by assumption. Thus, for small �, k�.�/=�

is C2-close to C cos.�/ for some nonzero constant C , which yields that k0
�
.�/=� is

C1-close to �C sin.�/. It follows then that k0
�
.�/=�, and consequently k0

�
.�/, has

precisely two zeros, because �C sin.�/ has only two zeros and at those points its
derivative does not vanish. We conclude then that k�.�/ has only two local extrema,
as claimed. �

The last three lemmas yield:

Proof of Theorem 4.3. Suppose that K D .2�=L/2. Then, by Lemma 4.4, we may
isometrically identify a neighborhood of � in M with a neighborhood of a great
circle � 0 in a sphere of radius L=.2�/. But any C1 perturbation of � 0 will still be
a simple closed curve, which by the classical four vertex theorem of Kneser on the
sphere [25] must have four vertices (the spherical version of the classical four vertex
theorem follows from the fact that the stereographic projection preserves vertices, as
had already been observed by Kneser). This proves the “only if” part of the theorem.

Now suppose that K ¤ .2�=L/2. By Lemmas 4.4 and 4.5 we may identify a
neighborhood of � with a surface of revolution in R3, which we may parametrize
by X given in (2), so that � is identified with the neck � 0 of X at height t D 0.
Then Lemma 4.6 completes the proof once we can verify that 1 C r.0/r 00.0/ ¤ 0.
To see this note that a neck of a surface of revolution is a line of curvature, i.e., it is
tangent to a principal direction field of the surface, because the Gauss map n sends
any neck to a great circle of S2, whose plane is parallel to that of the neck, via a
homothety of the neck. More precisely, if a neck has radius r.0/, then for any tangent
vector v to that neck dn.v/ D v=r.0/, where dn is the shape operator of X . So
X has constant principal curvatures 1=r.0/ in the direction of the tangent vectors
of the neck � 0 (and with respect to the inward normal to X ). Further, recall that a
direction orthogonal to a principal direction is again a principal direction. Thus the
other principal curvatures along � 0 are given by the curvatures of the profile curve
which is �r 00.0/ (with respect to the direction of the inward normal). So we conclude
that the Gauss curvature (which is the product of principal curvatures) of X along
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� 0 is K D �r 00.0/=r.0/. Note further that L D 2�r.0/. Thus, by our assumption
at the beginning of this paragraph, 4�2 ¤ KL2 D �r 00.0/r.0/4�2, which yields
1 ¤ �r 00.0/r.0/ as desired. �
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