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Abstract. We study the Lefschetz standard conjecture on a smooth complex projective variety
X . In degree 2, we reduce it to a local statement concerning local deformations of vector bundles
on X . When X is hyperkähler, we show that the existence of nontrivial deformations of stable
hyperholomorphic bundles implies the Lefschetz standard conjecture in codimension 2.
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1. Introduction

In the fundamental paper [9] of 1968, Grothendieck states a series of conjectures
concerning the existence of certain algebraic cycles on smooth projective algebraic
varieties over an algebraically closed ground fields. Those are known as the standard
conjectures. In particular, given such a variety X of dimension n, the Lefschetz
standard conjecture predicts the existence of self-correspondences on X that give an
inverse to the operations

H k.X/ ! H 2n�k.X/

given by the cup-product n � k times with a hyperplane section for all k � n. Here
H �.X/ stands for any Weil cohomology theory on X , e.g. singular cohomology if
X is defined over C, or l-adic étale cohomology in characteristic different from l . If
we can invert the morphism H k.X/ ! H 2n�k.X/ using self-correspondences on
X , we say that the Lefschetz conjecture holds in degree k.

Let us now, and for the rest of the paper, work over C. The Lefschetz standard
conjecture then implies the other ones and has strong theoretical consequences. For
instance, it implies that numerical and homological equivalence coincide, and that
the category of pure motives for homological equivalence is semisimple. We refer to
[13] and [14] for more detailed discussions. The Lefschetz standard conjecture for
varieties which are fibered in abelian varieties over a smooth curve also implies the
Hodge conjecture for abelian varieties as shown by Yves André in [1]. Grothendieck
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actually writes in the aforementioned paper that “alongside the resolution of singu-
larities, the proof of the standard conjectures seems to [him] to be the most urgent
task in algebraic geometry”.

Though the motivic picture has tremendously developed since Grothendieck’s
statement of the standard conjectures, very little progress has been made in their
direction. The Lefschetz standard conjecture is known for abelian varieties, see [13]
and in degree 1 where it reduces to the Hodge conjecture for divisors. Aside from
examples obtained by taking products and hyperplane sections, those seem to be the
only two cases where a proof is known.

In this paper, we want to investigate further the geometrical content of the Lef-
schetz standard conjecture, and try to give insight into the specific case of hyperkähler
varieties. The original form of the Lefschetz standard conjecture for a variety X pre-
dicts the existence of specific algebraic cycles in the product X � X . Those cycles
can be considered as family of cycles on X parametrized by X itself. Our first remark
is that the conjecture actually reduces to a general statement about the existence of
large families of algebraic cycles in X parametrized by any smooth quasi-projective
base. For this, we use Hodge theory on X .

It turns out that for those families to give a positive answer to the conjecture, it
is enough to control the local variation of the family of cycles considered. Let us
give a precise statement. Let X be a smooth projective variety, S a smooth quasi-
projective variety, and let Z 2 CHk.X � S/ be a family of codimension k cycles in
X parametrized by S . Let TS be the tangent sheaf of S . Using the Leray spectral
sequence for the projection onto S and constructions from Griffiths and Voisin in [8],
[25], we construct a map

�Z W
k̂

TS ! H k.X; OX / ˝ OS :

We then get the following result, which we state here only in degree 2 for simplicity,
but see Section 2.

Theorem 1. Let X be a smooth projective variety. Then the Lefschetz conjecture is
true in degree 2 for X if and only if there exists a smooth quasi-projective variety S ,
a codimension 2 cycle Z in CH2.X � S/ and a point s 2 S such that the morphism

�Z;s W
2̂

TS;s ! H 2.X; OX /;

considered above for k D 2, is surjective.

This variational approach to the existence of algebraic cycles can be compared to
the study of semi-regularity maps as in [5].

In the following section, we give an explicit formula for �Z in case the cycle Z

is given by the Chern classes of a family of vector bundles E on X � S . In this
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situation, we show that �Z is expressed very simply in terms of the Kodaira–Spencer
map. Indeed, TS;s maps to the space Ext1.Es; Es/. We then have a Yoneda product

Ext1.Es; Es/ � Ext1.Es; Es/ ! Ext2.Es; Es/

and a trace map
Ext2.Es; Es/ ! H 2.X; OX /:

We show that we can express �Z;s in terms of the composition

�2.E/ W
2̂

TS;s ! H 2.X; OX /

of those two maps, and we get the following theorem.

Theorem 2. Let X be a smooth projective variety. Then the Lefschetz conjecture is
true in degree 2 for X if there exists a smooth quasi-projective variety S , a vector
bundle E over X � S , and a point s 2 S such that the morphism

�2.E/s W
2̂

TS;s ! H 2.X; OX / (1)

induced by the composition above is surjective.

The main interest of this theorem is that it makes it possible to only use first-
order computations to check the Lefschetz standard conjecture, which is global in
nature, thus replacing it by a local statement on deformations of E . Of course,
when one wants to ensure that there exists a vector bundle over X that has a positive-
dimensional family of deformations, the computation of obstructions is needed, which
involves higher-order computations. However, once a family of vector bundles is
given, checking the surjectivity condition of the theorem involves only first-order
deformations.

The last part of the paper is devoted to applications of the previous results to
hyperkähler varieties. We will recall general properties of those and their hyperholo-
morphic bundles in Section 4. Those varieties have h2;0 D 1, which makes the last
criterion easier to check. In the case of 2-dimensional hyperkähler varieties, that is,
in the case of K3 surfaces, Mukai has investigated in [17] the 2-form on the moduli
space of some stable sheaves given by (1) and showed that it is nondegenerate. In
particular, it is nonzero. Of course, the case of surfaces is irrelevant in our work, but
we will use Verbitsky’s theory of hyperholomorphic bundles on hyperholomorphic
varieties as presented in [23]. In his work, Verbitsky extends the work of Mukai to
higher dimensions and shows results implying the nondegeneracy of the form (1)
in some cases. Using those, we are able to show that the existence of nonrigid hy-
perholomorphic bundles on a hyperkähler variety is enough to prove the Lefschetz
standard conjecture in degree 2. Indeed, we get the following.
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Theorem 3. Let X be a projective irreducible hyperkähler variety, and let E be a
stable hyperholomorphic bundle on X . Assume that E has a nontrivial positive-
dimensional family of deformations. Then the Lefschetz conjecture is true in degree 2

for X .

In a slightly different direction, recall that the only known hyperkähler varieties,
except in dimension 6 and 10, are the two families constructed by Beauville in [4]
which are the small deformations of Hilbert schemes of points on a K3 surface or of
generalized Kummer varieties. For those, the Lefschetz standard conjecture is easy –
see [2] for a general discussion – as their cohomology comes from that of a surface.
We get the following.

Theorem 4. Let n be a positive integer. Assume that for every K3 surface S , there ex-
ists a stable hyperholomorphic sheaf E with a nontrivial positive-dimensional family
of deformations on theHilbert schemeS Œn� parametrizing subschemes ofS of lengthn.
Then the Lefschetz conjecture is true in degree 2 for any projective deformation of
S Œn�. The same result holds for generalized Kummer varieties.

Both those results could be applied taking E to be the tangent sheaf of the variety
considered, in case it has nontrivial deformations.

Those results fit well in the – mostly conjectural – work of Verbitsky as exposed
in [24] predicting the existence of large moduli spaces of hyperholomorphic bundles.
Unfortunately, we were not able to exhibit bundles satisfying the hypotheses of the
theorems.

Varieties are defined to be reduced and irreducible. All varieties and schemes are
over the field of complex numbers.

Acknowledgements. It is a great pleasure to thank Claire Voisin for her help and
support, as well as many enlightening discussions during the writing of this paper. I
am grateful to Eyal Markman for kindly explaining to me the results of [16]. I would
also like to thank Daniel Huybrechts for pointing out the relevance of Verbitsky’s
results and for the interesting discussions we had around the manuscript during his
nice invitation to the university of Bonn, as well as Burt Totaro and the referee for
many useful comments.

2. General remarks on the Lefschetz standard conjecture

This section is devoted to some general remarks on the Lefschetz standard conjec-
ture. Although some are well known to specialists, we include them here for ease of
reference. Let us first recall the statement of the conjecture.

Let X be a smooth projective variety of dimension n over C. Let � 2 H 2.X; Q/ be
the cohomology class of a hyperplane section of X . According to the hard Lefschetz
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theorem, see for instance [27], Chapter 13, for all k 2 f0; : : : ; ng, cup-product with
�n�k induces an isomorphism

Y�n�k W H k.X; Q/ ! H 2n�k.X; Q/:

The Lefschetz standard conjecture was first stated in [9], conjecture B.X/. It is
the following.

Conjecture 5. Let X and � be as above. Then for all k 2 f0; : : : ; ng, there exists an
algebraic cycle Z of codimension k in the product X�X such that the correspondence

ŒZ�� W H 2n�k.X; Q/ ! H k.X; Q/

is the inverse of Y�n�k .

If this conjecture holds for some specific k on X , we will say the Lefschetz
conjecture holds in degree k for the variety X .

Let us recall the following easy lemma, see [14], Theorem 4.1, which shows in
particular that the Lefschetz conjecture does not depend on the choice of a polariza-
tion.

Lemma 6. Let X and � be as above. Then the Lefschetz conjecture holds in degree k

for X if and only if there exists an algebraic cycle Z of codimension k in the product
X � X such that the correspondence

ŒZ�� W H 2n�k.X; Q/ ! H k.X; Q/

is bijective.

Proof. Let Z be as in the lemma. The morphism

ŒZ�� B .Y�n�k B ŒZ��/�1 W H 2n�k.X; Q/ ! H k.X; Q/

is the inverse of Y�n�k W H k.X; Q/ ! H 2n�k.X; Q/: Now by the Cayley–Hamilton
theorem, the automorphism .Y�n�k B ŒZ��/�1 of H 2n�k.X; Q/ is a polynomial
in .Y�n�k B ŒZ��/. As such, it is defined by an algebraic correspondence. By
composition, the morphism ŒZ�� B .Y�n�k B ŒZ��/�1 is defined by an algebraic
correspondence, which concludes the proof. �

For the next results, we will need to work with primitive cohomology classes. Let
us recall some notation. Let S be a smooth polarized projective variety of dimension
l . Let L denote cup-product with the cohomology class of a hyperplane section. For
any integer k in f0; : : : ; lg, let H k.S; Q/prim denote the primitive part of H k.S; Q/,
that is, the kernel of

Ll�kC1 W H k.S; Q/ ! H 2l�kC2.S; Q/:
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The cohomology groups of S in degrees less than l then admit a Lefschetz decom-
position

H k.S; Q/ D
M
i�0

LiH k�2i .S; Q/prim:

The following lemma is well known, but we include it here for ease of reference as
well as to keep track of the degrees for which we have to use the Lefschetz standard
conjecture.

Lemma 7. Let k be an integer, and let S be a smooth projective scheme of dimension
l � k. Consider the Lefschetz decomposition

H k.S; Q/ D
M
i�0

LiH k�2i .S; Q/prim;

where L is the cup-product by the class of a hyperplane section. Assume that the
Lefschetz conjecture holds for S in degrees up to k � 2. Then the projections
H k.S; Q/ ! LiH k�2i .S; Q/prim are induced by algebraic correspondences.

Proof. By induction, it is enough to prove that the projection

H k.S; Q/ ! LH k�2.S; Q/

is induced by an algebraic correspondence. Let Z � S � S be an algebraic cycle
such that

ŒZ�� W H 2l�kC2.S; Q/ ! H k�2.S; Q/

is the inverse of Ll�kC2. Then the composition L B ŒZ�� B Ll�kC1 is the desired
projection since H k.S; Q/prim is the kernel of Ll�kC1 in H k.S; Q/ . �

The next result is the starting point of our paper. It shows that the Lefschetz
standard conjecture in degree k on X is equivalent to the existence of a sufficiently
big family of codimension k algebraic cycles in X , and allows us to work on the
product of X with any variety.

Proposition 8. Let X be a smooth projective variety of dimension n, and let k � n

be an integer. Then the Lefschetz conjecture is true in degree k for X if and only if
there exists a smooth projective scheme S of dimension l � k satisfying the Lefschetz
conjecture in degrees up to k � 2 and a codimension k cycle Z in X � S such that
the morphism

ŒZ�� W H 2l�k.S; Q/ ! H k.X; Q/

induced by the correspondence Z is surjective.
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Proof. Taking S D X , the ”only if” part is obvious. For the other statement, fix
a polarization on S , and let L be the cup-product with the class of a hyperplane
section of S . Consider the morphism s W H k.S; Q/ ! H k.S; Q/ which is given by
multiplication by .�1/i on LiH k�2i .S; Q/prim. By the Hodge index theorem, the
pairing

H k.S; C/ ˝ H k.S; C/ ! C; ˛ ˝ ˇ 7!
Z

S

˛ Y Ll�k.s.ˇ//

turns H k.S; Q/ into a polarized Hodge structure. Furthermore, Lemma 7 shows that
s is induced by an algebraic correspondence.

We have a morphism ŒZ�� W H 2l�k.S; Q/ ! H k.X; Q/ which is surjective. Its
dual ŒZ�� W H 2n�k.X; Q/ ! H k.S; Q/ is injective, where n is the dimension of X .
Let us consider the composition

ŒZ�� B Ll�k B s B ŒZ�� W H 2n�k.X; Q/ ! H k.X; Q/:

It is defined by an algebraic correspondence, and it is enough to show that it is a
bijection. Since H 2n�k.X; Q/ and H k.X; Q/ have the same dimension, we only
have to prove it is injective.

Let ˛ 2 H 2n�k.X; Q/ lie in the kernel of the composition. For any ˇ 2
H 2n�k.X; Q/, we get

.ŒZ��ˇ/ Y ..Ll�k B s/.ŒZ��˛// D 0:

Since ŒZ��.H 2n�k.X; Q// is a sub-Hodge structure of the polarized Hodge structure
H k.S; Q/, the restriction of the polarization

hu; vi D
Z

S

u Y .Ll�k B s/.v/

on H k.S; Q/ to this subspace is nondegenerate, which shows that ˛ is zero. �

Remark 9. Using the weak Lefschetz theorem, one can always reduce to the case
where S is of dimension k.

Corollary 10. Let X be a smooth projective variety of dimension n, and let k � n

be an integer. Assume the Lefschetz conjecture for all varieties in degrees up to k � 2

and that the generalized Hodge conjecture is true for H k.X; Q/.
Then the Lefschetz conjecture is true in degree k for X if and only if there exists

a smooth projective scheme S , of dimension l , and a codimension k cycle Z in
CHk.X � S/ such that the morphism

H l.S; �l�k
S / ! H k.X; OX / (2)
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induced by the morphism of Hodge structures

ŒZ�� W H 2l�k.S; C/ ! H k.X; C/

is surjective.

Remark 11. Note that this corollary is unconditional for k D 2 since the generalized
Hodge conjecture is just the Hodge conjecture for divisors, and the Lefschetz standard
conjecture is obvious in degree 0.

Proof. Let X , S and Z be as in the statement of the corollary. Let H be the image of
H 2l�k.S; Q/ by ŒZ��. By (2), we have H k;0 D H k.X; OX /. Let H 0 be a sub-Hodge
structure of H k.X; Q/ such that H k.X; Q/ D H ˚H 0. Then H 0k;0 D 0. As H 0 has
no part of type .k; 0/, the generalized Hodge conjecture then predicts that there exists
a smooth projective variety X 0 of dimension n � 1, together with a proper morphism
f W X 0 ! X such that H 0 is contained in f�H k�2.X 0; Q/.

If the Lefschetz conjecture is true in degree k �2, then it is true for H k�2.X 0; Q/.
As a consequence, we get a cycle Z0 of codimension k � 2 in X 0 � X 0 such that
ŒZ0�� W H 2.n�1/�kC2.X 0; Q/ ! H k�2.X 0; Q/ is surjective. Consider the composi-
tion

H 2.n�1/C2�k.X 0 � P 1; Q/ � H 2.n�1/�kC2.X 0; Q/

� H k�2.X 0; Q/ ! H k.X; Q/;

the first map being the pullback by any of the immersions X 0 ! X 0�P 1, x0 7! .x0; x/,
the second one being ŒZ0�� and the last one f�. This composition is induced by an
algebraic correspondence Z00 ,! X 0�P 1�X , and is surjective onto f�H k�2.X 0; Q/.
It is easy to assume, after taking products with projective spaces, that S and X 0 � P 1

have the same dimension. Now since the subspaces H and f�H k�2.X 0; Q/ generate
H k.X; Q/, the correspondence induced by the cycle Z CZ00 in .S

`
.X 0 �P 1//�X

satisfies the hypotheses of Proposition 8. �

With the notations of the previous corollary, in case, Z is flat over X , we have a
family of codimension k algebraic cycles in X parametrized by S . The next theorem
shows that the map (2), which is the one we have to study in order to prove the
Lefschetz conjecture in degree k for X , does not depend on the global geometry of S ,
and can be computed locally on S . This will allow us to give an explicit description
of the map (2) in terms of the deformation theory of the family Z in the next section.

Let us first recall a general cohomological invariant for families of algebraic
cycles. We follow [27], 19.2.2, see also [8], [25] for related discussions. In the
previous setting, Z, X and S being as before, the algebraic cycle Z has a class

ŒZ� 2 H k.X � S; �k
X�S /:
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Using the Künneth formula, this last group maps to

H 0.S; �k
S / ˝ H k.X; OX /;

which means that the cohomology class ŒZ� gives rise to a morphism of sheaves on S

�Z W
k̂

TS ! H k.X; OX / ˝ OS ; (3)

where TS is the tangent sheaf of S . If s is a complex point of S , let �Z;s be the
morphism

Vk
TS;s ! H k.X; OX / coming from �Z .

Note that the definition of �Z;s is local on S . Indeed, the map

H k.X � S; �k
X�S / ! H 0.S; �k

S / ˝ H k.X; OX /

factors through the restriction map

H k.X � S; �k
X�S / ! H 0.S; Rkp��k

X�S /;

where p is the projection from X � S to S , corresponding to the restriction of a
cohomology class to the fibers of p. Actually, it can be shown that it only depends
on the first order deformation Z�

s of Zs in X , see [27], Remarque 19.12, under rather
weak assumptions. We will recover this result in the next section by giving an explicit
formula for �Z;s . This fact is the one that allows us to reduce the Lefschetz standard
conjecture to a variational statement.

The next theorem shows, using the map �Z;s , that the Lefschetz conjecture can
be reduced to the existence of local deformations of algebraic cycles in X .

Theorem 12. Let X be a smooth projective variety. Assume as in Corollary 10 that
the generalized Hodge conjecture is true for H k.X; Q/ and the Lefschetz conjecture
holds for smooth projective varieties in degree k � 2.

Then the Lefschetz conjecture is true in degree k for X if and only if there exist a
smooth quasi-projective scheme S , a codimension k cycle Z in CHk.X � S/ and a
point s 2 S such that the morphism

�Z;s W
k̂

TS;s ! H k.X; OX / (4)

is surjective.

Proof. Assume the hypothesis of the theorem holds. Up to taking a smooth projective
compactification of S and taking the adherence of Z, we can assume S is smooth
projective. The morphism of sheaves

�Z W
k̂

TS ! H k.X; OX / ˝ OS
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that we constructed earlier corresponds to an element of the group

HomOS

� k̂

TS ; H k.X; OX / ˝ OS

� D H 0.�k
S ˝ H k.X; OX //;

which in turn using Serre duality corresponds to a morphism

H l.S; �l�k
S / ! H k.X; OX /;

where l is the dimension of S .
By the definition of �Z , this morphism is actually the morphism (2) of Corol-

lary 10. Indeed, this last morphism was constructed using the Künneth formula for
X � S , Poincaré duality and taking components of the Hodge decomposition, which
is the way �Z is defined, since Serre duality is compatible with Poincaré duality.

Moreover, by construction, if �Z;s is surjective, then H l.S; �l�k
S / ! H k.X; OX /

is. As for the converse, if H l.S; �l�k
S / ! H k.X; OX / is surjective, then we can

find points s1; : : : ; sr of s such that the images of the �Z;si
generate H k.X; OX /.

Replacing S by S r , the cycle Z by the disjoint union of the Zi D p�
i Z, where

pi W S r � X ! S � X is the projection on the product of the i -th factor, and s by
.s1; : : : ; sr/, this concludes the proof by Corollary 10. �

The important part of this theorem is that it does not depend on the global geometry
of S , but only on the local variation of the family Z. As such, it makes it possible to use
deformation theory and moduli spaces to study the Lefschetz conjecture, especially
in degree 2 where Theorem 12 is unconditional by Remark 11.

3. A local computation

Let X be a smooth variety and S a smooth scheme, X being projective and S quasi-
projective. Let Z be a cycle of codimension k in the product X � S . As we saw
earlier, for any point s 2 S , the correspondence defined by Z induces a map

�Z;s W
k̂

TS;s ! H k.X; OX /

The goal of this section is to compute this map in terms of the deformation theory of
the family Z of cycles on X parametrized by S . We will formulate this result when
the class of Z in the Chow group of X �S is given by the codimension k part chk.E/

of the Chern character of a vector bundle E over X � S . It is well known that we
obtain all the rational equivalence classes of algebraic cycles as linear combinations
of those.

Let us now recall general facts about the deformation theory of vector bun-
dles and their Atiyah class. Given a vector bundle E over X � S , and p being
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the projection of X � S to S , let Ext1p.E; E/ be the sheafification of the presheaf
U 7! Ext1

OX�U
.EjX�U ; EjX�U / on S . The deformation of vector bundles deter-

mined by E is described by the Kodaira–Spencer map. This is a map of sheaves

� W TS ! Ext1p.E; E/;

where TS is the tangent sheaf to S . Let s be a complex point of S . The Kodaira–
Spencer map at s is given by the composition

�s W TS;s ! Ext1p.E; E/s ! Ext1.Es; Es/;

the last one being the canonical one.
In the next section, we will use results of Verbitsky which allow us to produce

unobstructed elements of Ext1.Es; Es/ in the hyperholomorphic setting.
Associated to E as well are the images in H k.X � S; �k

X�S / of the Chern classes
of E , which we will denote by ck.E/ with a slight abuse of notation. We also have
the images chk.E/ 2 H k.X � S; �k

X�S / of the Chern character.
The link between Chern classes and the Kodaira–Spencer map is given by the

Atiyah class. It is well known that the Chern classes of F can be computed from its
Atiyah class A.F / 2 Ext1.F ; F ˝ �1

Y /, see [3], [11], Chapter 10:

Proposition 13. For k a positive integer, let ˛k 2 H k.Y; �k
Y / be the trace of the

element A.F /k 2 Extk.F ; F ˝ �k
Y / by the trace map. Then

˛k D kŠ chk.F /:

Now in the relative situation with our previous notation, the vector bundle E has
an Atiyah class A.E/ with value in Ext1.E; E ˝ �1

X�S /. The latter group maps to
the group H 0.S; Ext1p.E; E ˝ �1

X�S //, which contains

H 0.S; Ext1p.E; E/ ˝ �1
S / D Hom.TS ! Ext1p.E; E//

as a direct factor. We thus get a morphism of sheaves

� W TS ! Ext1p.E; E/:

For the following well-known computation, see [11] or [12], Chapter IV.

Proposition 14. The map � induced by the Atiyah class of E is equal to the Kodaira–
Spencer map �.

Those two results make it possible to give an explicit description of the map �Z

of last section in case the image of Z in the Chow group of X � S is given by the
codimension k part chk.E/ of the Chern character of a vector bundle E over X � S .
First introduce a map of sheaves coming from the Kodaira–Spencer map.



460 F. Charles CMH

For k a positive integer, let

�k.E/ W
k̂

TS ! H k.X; OX / ˝ OS

be the composition of the k-th alternate product of the Kodaira–Spencer map with
the map

k̂

Ext1p.E; E/ ! Extk
p .E; E/ ! H k.X; OX / ˝ OS ;

the first arrow being the Yoneda product and the second being the trace map.

Lemma 15. We have
�k.E/ D kŠ �chk.E/;

where �chk.E/ is the map appearing in (3).

Proof. We have the following commutative diagram:

Ext1.E; E ˝ �1
X�S /˝k ��

��

Extk.E; E ˝ �k
X�S / ��

��

H k.X � S; �k
X�S /

��
H 0.S; Ext1p.E; E ˝ �1

X�S //˝k ��

��

H 0.S; Extkp.E; E ˝ �k
X�S // ��

��

H 0.S; Rkp��k
X�S /

��
H 0.S; �1

S ˝ Ext1p.E; E//˝k �� H 0.S; �k
S ˝ Extkp.E; E// �� H 0.S; �k

S ˝ H k.X; OX //;

where the horizontal maps on the left are given by the Yoneda product, the horizontal
maps on the right side are the trace maps, the upper vertical maps come from the
Leray exact sequence associated to p, and the lower vertical maps come from the
projection �1

X�S ! p��1
S .

By definition, and using Proposition 14, A.E/˝k 2 Ext1.E; E ˝ �1
X�S /˝k maps

to

�k.E/ 2 Hom
� k̂

TS ; H k.X; OX / ˝ OS

� D H 0.S; �k
S ˝ H k.X; OX //;

following the left side, then the lower side of the diagram. On the other hand,
Proposition 13 shows that it also maps to kŠ �chk.E/, following the upper side, then
the right side of the diagram. This concludes the proof. �

As an immediate consequence, we get the following criterion.

Theorem 16. Let X be a smooth projective variety, and assume the same hypotheses
as in Theorem 12. Then the Lefschetz conjecture is true in degree k for X if there
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exists a smooth quasi-projective scheme S , a vector bundle E over X �S , and a point
s 2 S such that the morphism

�k.E/s W
k̂

TS;s ! H k.X; OX / (5)

induced by �k.E/ is surjective.

Remark 17. Since Chern classes of vector bundles generate the Chow groups of
smooth varieties, we can get a converse to the preceding statement by stating the
theorem for complexes of vector bundles – or of coherent sheaves. The statement
would be entirely similar. As we will not use it in that form, we keep the preceding
formulation.

Example. Let A be a polarized complex abelian variety of dimension g. The tangent
bundle of A is canonically isomorphic to H 1.A; OA/˝OA. The trivial line bundle OA

on A admits a family of deformations parametrized by A itself such that the Kodaira–
Spencer map TA;O ! H 1.A; OA/ is the identity under the above identification. Now
the induced deformation of OA ˚ OA parametrized by A � A satisfies the criterion
of Theorem 16, since the map

V2
H 1.A; OA/ ! H 2.A; OA/ given by cup-product

is surjective and identifies with the map (5). Of course, the Lefschetz conjecture for
abelian varieties is well known, see [15], Theorem 3.

4. The case of hyperkähler varieties

In this section, we describe how Verbitsky’s theory of hyperholomorphic bundles
on hyperkähler varieties as developed in [23] and [24] makes those a promising
source of examples for Theorem 16. Unfortunately, we were not able to provide
examples, as it appears some computations of dimensions of moduli spaces in [24]
were incorrect, but we will show how the existence of nontrivial examples of moduli
spaces of hyperholomorphic bundles on hyperkähler varieties as conjectured in [24]
implies the Lefschetz standard conjecture in degree 2.

4.1. Hyperholomorphic bundles on hyperkähler varieties. We refer to [4] for
general definitions and results. An irreducible hyperkähler variety is a simply con-
nected Kähler manifold which admits a closed everywhere non-degenerate two-form
which is unique up to a factor. As such, an irreducible hyperkähler variety X has
H 2;0.X; OX / D C, and Theorem 16 takes the following simpler form in degree 2.

Theorem 18. Let X be an irreducible projective hyperkähler variety. The Lefschetz
conjecture is true in degree 2 for X if there exists a smooth quasi-projective variety
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S , a vector bundle E over X � S , and a point s 2 S such that the morphism

�2.E/s W
2̂

TS;s ! H 2.X; OX /; (6)

induced by the Kodaira–Spencer map and the trace map, is nonzero.

In the paper [4], Beauville constructs two families of projective irreducible hy-
perkähler varieties in dimension 2n for every integer n. Those are the n-th punctual
Hilbert scheme S Œn� of a projective K3 surface S and the generalized Kummer variety
Kn which is the fiber at the origin of the Albanese map from AŒnC1� to A, where A

is an abelian surface and AŒnC1� is the n C 1-st punctual Hilbert scheme of A.
The Bogomolov–Tian–Todorov theorem, see [6], [20], [21], states that the local

moduli space of deformations of an irreducible hyperkähler variety is unobstructed.
Small deformations of a hyperkähler variety remain hyperkähler, and in the local mod-
uli space of S Œn� and Kn, the projective hyperkähler varieties form a dense countable
union of hypersurfaces. The varieties S Œn� and Kn have Picard number at least 2,
whereas a very general projective irreducible hyperkähler variety has Picard num-
ber 1, hence is not of this form. Except in dimension 6 and 10, where O’Grady
constructs in [18] and [19] new examples, all the known hyperkähler varieties are
deformations of S Œn� or Kn.

The Lefschetz standard conjecture is easy to prove in degree 2 for S Œn� (resp.
Kn), using the tautological correspondence with the K3 surface (resp. the abelian
surface), see [2], Corollary 7.5. In terms of Theorem 16, one can show that the
tautological sheaf on S Œn� (resp. Kn) associated to the tangent sheaf of S has enough
deformations to prove the Lefschetz conjecture in degree 2. Since the tautological
correspondence between S and S Œn� gives an isomorphism between H 2;0.S/ and
H 2;0.S Œn�/, checking that the criterion is satisfied amounts to the following.

Proposition 19. Let S be a projective K3 surface. Then there exists a smooth quasi-
projective variety M with a distinguished point O parametrizing deformations of TS

and a vector bundle E over M � M such that EjfO�Sg ' TS , such that the map

�2.E/O W
2̂

TM;O ! H 2.S; OS /

induced by the Kodaira–Spencer map and the trace map, is nonzero.

Proof. This is proved by Mukai in [17]. A Riemann–Roch computation proves that
the moduli space of deformations of the tangent bundle of a K3 surface is smooth of
dimension 90. �

This last proof is of course very specific to Hilbert schemes and does not apply
as such to other hyperkähler varieties. We feel nonetheless that it exhibits general
facts about hyperkähler varieties which seem to give strong evidence to the Lefschetz
conjecture in degree 2.
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4.2. Consequences of the existence of a hyperkähler structure on the moduli
space of stable hyperholomorphic bundles. In his paper [17], Mukai studies the
moduli spaces of some stable vector bundles on K3 surfaces and endows them with
a symplectic structure by showing that the holomorphic two-form induced by (5) on
the moduli space is nondegenerate. Of course, this result is not directly useful when
dealing with the Lefschetz standard conjecture in degree 2 as it is trivial for surfaces.
Nevertheless, Verbitsky shows in [23] that it is possible to extend Mukai’s result to
the case of higher-dimensional hyperkähler varieties.

Before describing Verbitsky’s results, let us recall some general facts from linear
algebra around quaternionic actions and symplectic forms. This is all well known,
and described for instance in [4], Example 3, and [23], Section 6. Let H denote the
quaternions, and let V be a real vector space endowed with an action of H and a
euclidean metric .; /.

Let I 2 H be a quaternion such that I 2 D �1. The action of I on V gives a
complex structure on V . We say that V is quaternionic hermitian if the metric on V is
hermitian for all such complex structures I . Fix such an I , and choose J and K in H
satisfying the quaternionic relations I 2 D J 2 D K2 D �Id, IJ D �JI D K. We
can define on V a real symplectic form � such that �.x; y/ D .x; Jy/ C i.x; Ky/.
This symplectic form does not depend on the choice of J and K. Furthermore, � is
C-bilinear for the complex structure induced by I . Now given such I and � on V ,
it is straightforward to reconstruct a quaternionic action on V by taking the real and
complex parts of �.

Taking V to be the tangent space to a complex variety, we can globalize the
previous computations to get the following. Let X be an irreducible hyperkähler
variety with given Kähler class !. Then the manifold X is endowed with a canonical
hypercomplex structure, that is, three complex structures I , J , K which satisfy the
quaternionic relations I 2 D J 2 D K2 D �Id, IJ D �JI D K. It is indeed possible
to check that J and K obtained as before are actually integrable. Conversely, the
holomorphic symplectic form on X can be recovered from I , J , K and a Kähler form
on X with class !.

If E is a complex hermitian vector bundle on X with a hermitian connection 	 , we
say that E is hyperholomorphic if 	 is compatible with the three complex structures
I , J and K. In case E is stable, this is equivalent to the first two Chern classes of
E being Hodge classes for the Hodge structures induced by I , J and K, see [23],
Theorem 2.5. This implies that any stable deformation of a stable hyperholomorphic
bundle is hyperholomorphic. It is a consequence of Yau’s theorem, see [28] that the
tangent bundle of X is a stable hyperholomorphic bundle.

Let E be a stable hyperholomorphic vector bundle on X , and let S D Spl.E; X/

be the reduction of the coarse moduli space of stable deformations of E on X . For
s a complex point of S , let Es be the hyperholomorphic bundle corresponding to a
complex point s in S . The Zariski tangent space to S at s maps to Ext1.Es; Es/ using
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the map from S to the coarse moduli space of stable deformations of E . We can now
define a global section �S of Hom.TS ˝ TS ; OS /, where TS is the tangent sheaf to
S , by the composition

TS;s ˝ TS;s !
2̂

Ext1.Es; Es/ ! Ext2.Es; Es/ ! H 2.X; OX / D C

as in the preceding section. The following is due to Verbitsky, see part (iv) of the
proof in Section 9 of [23] for the second statement.

Theorem 20 ([23], Theorem 6.3). Let Spl.E; X/ be the reduction of the coarsemoduli
space of stable deformations of E on X . Then S D Spl.E; X/ is endowed with a
canonical hyperkähler structure. The holomorphic section of Hom.TS ˝ TS ; OS /

induced by this hyperkähler structure is �S .

In this theorem, S does not have to be smooth. We use Verbitsky’s definition of a
singular hyperkähler variety as in [23], Definition 6.4.

We can now prove Theorem 3.

Proof of Theorem 3. Let X be a smooth projective irreducible hyperkähler variety,
and let E be a stable hyperholomorphic bundle on X . Assume that E has a non-
trivial positive-dimensional family of deformations, and let s be a smooth point of
S D Spl.E; X/ such that TS;s is positive dimensional. We can choose a smooth
quasi-projective variety S 0 with a complex point s0 and a family ES 0 of stable hyper-
holomorphic deformations of E on X parametrized by S 0 such that the moduli map
S 0 ! S maps s0 to s and is étale at s0. Since �S induces a symplectic form on TS;s ,
the map

�2.ES 0/0
s W

2̂

TS 0;s0 ! H 2.X; OX / D C

is surjective as it identifies with �S;s under the isomorphism TS 0;s0 ��!� TS;s . The
result now follows from Theorem 16. �

In order to prove Theorem 4, we need to recall some well-known results on defor-
mations of hyperkähler varieties. Everything is contained in [4], Section 8 and [23],
Section 1. See also [10], Section 1 for a similar discussion. Let X be an irreducible
hyperkähler variety with given Kähler class !. Let � be a holomorphic everywhere
non-degenerate 2-form on X . Let q be the Beauville–Bogomolov quadratic form on
H 2.X; Z/, and consider the complex projective plane P in P .H 2.X; C// generated
by �, N� and !. There exists a quadric Q of deformations of X given the elements
˛ 2 P such that q.˛/ D 0 and q.˛ C N̨ / > 0.

Recalling that the tangent bundle of X comes with an action of the groups of
quaternions of norm 1 given by the three complex structures I , J , K, which satisfy
the quaternionic relations I 2 D J 2 D K2 D �Id, IJ D �JI D K, this quadric
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Q of deformations of X corresponds to the complex structures on X of the form
aI C bJ C cK with a, b, c being three real numbers such that a2 C b2 C c2 D 1

– those complex structures are always integrable. The quadric Q is called a twistor
line.

In this setting, let d be the cohomology class of a divisor in H 2.X; C/, and let
˛ be in Q. This corresponds to a deformation X˛ of X . The cohomology class d

corresponds to a rational cohomology class in H 2.X˛; C/, and it is the cohomology
class of a divisor if and only if it is of type .1; 1/, that is, if and only if q.˛; d/ D 0,
where by q we also denote the bilinear form induced by q. Indeed, d is a real
cohomology class, so if q.˛; d/ D 0, then q. N̨ ; d / D 0 and d is of type .1; 1/.
It follows from this computation that d remains the class of a divisor for all the
deformations of X parametrized by Q if and only if q.�; d/ D q.!; d/ D 0.

We will work with the varieties S Œn�, the case of generalized Kummer varieties
being completely similar. Let us start with a K3 surface S , projective or not, and let
us consider the irreducible hyperkähler variety X D S Œn� given by the Douady space
of n points in S – this is Kähler by [22]. In the moduli space M of deformations
of X , the varieties of the type S 0Œn� form a countable union of smooth hypersurfaces
Hi . On the other hand, the hyperkähler variety admits deformations parametrized by
a twistor line, and those cannot be included in any of the Hi . Indeed, if that were the
case, the class e of the exceptional divisor of X D S Œn� would remain algebraic in
all the deformations parametrized by the twistor line. But this is impossible, as e is a
class of an effective divisor, which implies that q.!; e/ > 0, ! being a Kähler class,
see [10], 1.11 and 1.17.

This computation actually shows that the twistor lines are transverse to the hy-
persurfaces Hi . Now the preceding definition of the twistor line parametrizing de-
formations of an irreducible hyperkähler X shows that it moves continuously with
deformations of X . Counting dimensions, this implies that the union of the twistor
lines parametrizing deformations of Douady spaces of n points on K3 surfaces cover
a neighborhood of the Hi in M . We thus get the following.

Lemma 21. Let n be a positive integer, and let X be a small projective deformation
of the Douady space of n points on a K3 surface. Then there exists a K3 surface S

and a twistor line Q parametrizing deformations of S Œn� such that X is a deformation
of S Œn� along Q.

The next result of Verbitsky is the main remaining ingredient we need to prove
Theorem 4. Recall first that if E is a hyperholomorphic vector bundle on an irreducible
hyperkähler variety X , then by definition the bundle E deforms as X deforms along
the twistor line.

Theorem 22 ([23], Corollary 10.1). Let X be an irreducible hyperkähler variety,
and let E be a stable hyperholomorphic vector bundle on X , and let Spl.E; X/ be
the reduction of the coarse moduli space of stable deformations of E on X .
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Then the canonical hyperkähler structure on Spl.E; X/ is such that if Q is the
twistor line parametrizing deformations of X , Q is a twistor line parametrizing
deformations of Spl.E; X/ such that if ˛ 2 Q, then Spl.E; X/˛ D Spl.E˛; X˛/.

This implies that the deformations of a hyperholomorphic bundle on X actually
deform as the complex structure of X moves along a twistor line. We can now prove
our last result.

Proof of Theorem 4. Let X be an irreducible projective hyperkähler variety that is
a deformation of the Douady space of n points on some K3 surface. By a standard
Hilbert scheme argument, in order to prove the Lefschetz conjecture for X , it is
enough to prove it for an open set of the moduli space of projective deformations of
X . By Lemma 21, we can thus assume that X is a deformation of some S Œn� along a
twistor line Q, where S is a K3 surface. Let E on S Œn� be a sheaf as in the statement
of the theorem. By Theorems 22 and 3, we get a bundle E 0 which still satisfies the
hypothesis of Theorem 16. This concludes the proof. �

One can use this theorem with the tangent bundle of S Œn�, which is stable by
Yau’s theorem and hyperholomorphic since its first two Chern classes are Hodge
classes for all the complex structures induced by the hyperkähler structure of S Œn�.
Unfortunately, while Verbitsky announces in [24], after the proof of Corollary 10.24,
that those have some unobstructed deformations for n D 2 and n D 3,it seems that
if n D 2, the tangent bundle might be actually rigid. However, we get the following
result by applying the last theorem to the tangent bundle.

Corollary 23. Let n be a positive integer. Assume that for every K3 surface S , the
tangent bundle TS Œn� of S Œn� has a nontrivial positive-dimensional family of deforma-
tions. Then the Lefschetz conjecture is true in degree 2 for any projective deformation
of the Douady space of n points on a K3 surface.

Remark 24. The conditions of the corollary might be actually not so difficult to
check. Indeed, Verbitsky’s Theorem 6.2 of [23] which computes the obstruction to
extending first-order deformations implies easily that the obstruction to deform TS Œn�

actually lies in H 2.S Œn�; �2
S Œn�/, where we see this group as a subgroup of

Ext2.TS Œn� ; TS Œn�/ D H 2.S Œn�; �˝2

S Œn�/

under the isomorphism TS Œn� ' �1
S Œn� .

Now the dimension of H 2.S Œn�; �2
S Œn�/ does not depend on n for large n, see for

instance [7], Theorem 2. As a consequence, the hypothesis of the Corollary would
be satisfied for large n as soon as the dimension of Ext1.TS Œn� ; TS Œn�/ goes to infinity
with n.



Vol. 88 (2013) Remarks on the Lefschetz standard conjecture and hyperkähler varieties 467

Remark 25. Of course, our results might be apply to different sheaves. In the recent
preprint [16], Markman announces the construction of – possibly twisted – sheaves
that, combined with our results, proves the Lefschetz standard conjecture in degree
2 for deformations of Hilbert schemes of K3 surfaces.

Remark 26. The use of nonprojective Kähler varieties in these results dealing with
the standard conjectures can be a little surprising. Indeed, results like those of Voisin
in [26] show that there can be very few algebraic cycles, whether coming from
subvarieties or even from Chern classes of coherent sheaves, on general nonprojective
Kähler varieties.
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