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Abstract. We determine set-theoretic defining equations for the varietyDualk;d;N �P .Sd CN /

of hypersurfaces of degree d in CN that have dual variety of dimension at most k. We apply
these equations to the Mulmuley–Sohoni variety GLn2 � Œdetn� � P .SnCn2

/, showing it is an
irreducible component of the variety of hypersurfaces of degree n in Cn2

with dual of dimension
at most 2n � 2. We establish additional geometric properties of the Mulmuley–Sohoni variety
and prove a quadratic lower bound for the determinantal border-complexity of the permanent.
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1. Introduction

1.1. The GCT program. A classical problem in linear algebra is to determine or
bound the smallest integer n such that the permanent of an m � m matrix may be
realized as an affine linear projection of the determinant of an n�n matrix. L. Valiant
[7] proposed using this problem as an algebraic analog of the problem of comparing
the complexity classes P and NP . Denote this value of n by dc.permm/. He
conjectured that dc.permm/ grows faster than any polynomial in m. The best known

lower bound is dc.permm/ � m2

2
, which was proved in [3].

The definition of dc.permm/ may be rephrased as follows: let ` be a linear co-
ordinate on C, let C ˚ Mm.C/� � Mn.C/� be any linear inclusion, where Mn.C/

denotes the space of complex n � n matrices; then dc.permm/ is the smallest n

such that `n�m permm 2 End.Mn.C// � detn. Here u 2 End.Mn.C// acts by
.u � detn/.M/ WD detn.u.M//.

K. Mulmuley and M. Sohoni (see [4], [5]) have proposed to study the function
dc.permm/, which is the smallest n such that Œ`n�m permm� is contained in the orbit
closure GLn2 � Œdetn� � P .Sn.Mn.C//�/. Here Sn.Mn.C//� denotes the homo-
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geneous polynomials of degree n on Mn.C/. The best known lower bound on this
function had been linear. Note that dc.permm/ � dc.permm/, the potential differ-

ence being the added flexibility of limiting polynomials in GLn2 � Œdetn� that are not
in End.Mn.C// � Œdetn�. Our main result about dc.permm/ is the following quadratic
bound.

Theorem 1.1.1. dc.permm/ � m2

2
.

Consider the ideal of regular functions on Sn.Mn.C/�/ that are zero on
GLn2 � Œdetn�. We construct an explicit sub-GLn2-module Vn in this ideal which
has the following properties.

Theorem 1.1.2. (1) The GLn2-module Vn contains an irreducible module of highest
weight

2n.n � 1/.n � 2/!1 C .2n2 � 4n � 1/!2 C 2!2nC1

and Vn is a subspace of the space of homogeneous polynomials of degree n.n � 1/

on Sn.Mn.C//�.
(2) The variety GLn2 � Œdetn� is an irreducible component of the zero locus Dn

of Vn.

Theorem 1.1.2 provides the first explicit module of equations in the ideal of
GLn2 � Œdetn�. However, the dimension dim.Dn/ grows exponentially with n, whereas
dim.GLn2 � Œdetn�/ is on the order of n4. In particular, Dn has other irreducible com-
ponents, one of which is described in §4. A more precise statement than Theorem 1.1.2
is Theorem 3.1.1, which implies that our equations provide a full set of local equations
of GLn2 � Œdetn� around Œdetn�.

1.2. Dual varieties. One can similarly define dc.P /; dc.P / for an arbitrary poly-
nomial P of degree n in N variables. Such a polynomial, if nonzero, defines a
hypersurface Z.P / � P N �1. If P is reduced, the Zariski closure of the set of tan-
gent hyperplanes to this hypersurface is a subvariety Z.P /� of the dual projective
space, called the dual variety of Z.P /. For general such P , Z.P /� is a hypersurface.

Theorem 1.2.1. For any irreducible polynomial P ,

dc.P / � dim Z.P /� C 1

2
:

Theorem 1.2.1 is obtained by partially solving a question in classical algebraic ge-
ometry (Theorem 2.3.1): find set-theoretic defining equations for the variety
Dualk;d;N � P .Sd CN / of hypersurfaces of degree d in CP N �1 whose dual variety
has dimension at most k. Usually one only discusses dual varieties of irreducible va-
rieties, in fact there are several possible definitions of the dual of a reducible variety.
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Thus it would be more precise to say our equations describe Dualk;d;N locally on the
set of irreducible hypersurfaces.

While it was generally understood that End.Mn.C// � Œdetn� � GLn2 � Œdetn� was
a proper inclusion, it had not been known if the difference was potentially signifi-
cant. Proposition 3.5.1 exhibits an explicit codimension one GLn2.C/-orbit that is
contained in the boundary of GLn2 � Œdetn� but not contained in End.Cn2

/ � detn, at
least when n is odd. In particular, we exhibit an explicit sequence of polynomials Pm

with dc.Pm/ < dc.Pm/.

2. Hypersurfaces with degenerate dual varieties

2.1. B. Segre’s dimension formula. Let W be a complex vector space of dimension
N , and P 2 Sd W � a homogeneous polynomial of degree d . Let Z.P / � PW

denote the hypersurface defined by P . If P is irreducible, then Z.P / and its dual
variety Z.P /�, the Zariski closure of the set of tangent hyperplanes to Z.P /, are
both irreducible. The Segre dimension formula [2] states that

dim Z.P /� D rank.HP;w/ � 2;

where HP;w denotes the Hessian of P at w, a general point of the affine cone over
Z.P /. Recall that the Hessian can be defined, once a coordinate system on W has
been chosen, as the symmetric matrix of second partial derivatives of P . Intrinsically,
it is just the quadratic form constructed from P by polarization:

HP;w.X/ WD P.w; : : : ; w; X; X/:

Segre’s formula implies that Z.P /� has dimension less or equal to k if and only
if, for any w 2 W such that P.w/ D 0, and any .k C 3/-dimensional subspace F

of W ,
det.HP;w jF / D 0:

Equivalently (assuming P is irreducible), for any such subspace F , the polynomial
P must divide det.HP jF /, a polynomial of degree .k C 3/.d � 2/.

Note that for polynomials in N 0 < N variables, the maximum rank of the Hessian
is N 0 so in particular the determinant of the Hessian will vanish on any F of dimension
N 0 C 1.

2.2. Pairs of polynomials such that one divides the other. Consider two homo-
geneous polynomials P , Q on W D CN , of respective degrees d , e. We determine
equations on their coefficients that are implied by the condition that P divides Q.

There is an obvious solution in the slightly different situation where P and Q

are (non-homogeneous) polynomials in a single variable: one simply performs the
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Euclidian division of Q by P and requires that the remainder R be zero. The ideal
defined by this condition is described in [6].

In our situation, we can first restrict P and Q to some plane L in W , and choose
coordinates x; y on L. The restricted polynomials PL and QL are then binary forms in
these coordinates. Then set y D 1 and perform a Euclidean division on the resulting
polynomials in x. After rehomogenization, we obtain

QL.x; y/ D PL.x; y/DL.x; y/ C ye�dC1RL.x; y/; (1)

where RL.x; y/ is homogeneous of degree d � 1. The condition RL D 0 depends on
the choice of the coordinates x and y, but up to scale, the coefficient RL;d�1 of xd�1

only depends on the choice of the coordinate y. That is, the condition RL;d�1 D 0,
considered as a polynomial equation in the coefficients of P and Q, only depends on
the choice of L and of the line D in L defined by the equation y D 0.

To make the connection with [6], write

QL.x; y/ D
eX

iD0

qix
iye�i D qe

eY
kD1

.x � y˛k/;

PL.x; y/ D
dX

j D0

pj xj yd�j D pd

dY
lD1

.x � yˇl/:

Divide equation (1) by PL.x; y/ and set x D 1. We get an identity between power
series in y, to which DL contributes only up to degree e � d . We conclude that
RL;d�1=pd is equal to the coefficient of ye�dC1 in

QL.1; y/

PL.1; y/
D qe

Qe
kD1.1 � y˛k/

pd

Qd
lD1.1 � yˇl/

D qe

pd

X
m�0

sm.ˇ � ˛/ym;

where the last equality can be taken as a definition of the symmetric functions
sm.ˇ � ˛/. The condition that RL;d�1 D 0 is thus equivalent to the condition
that

se�dC1.ˇ � ˛/ D 0:

In order to get a polynomial equation in the coefficients of QL and PL, we modify
the expression slightly. Write

QL.1; y/

PL.1; y/
D QL.1; y/

pd .1 C �.y//
D QL.1; y/

pd

X
m�0

.�1/m�.y/m;

where �.y/ D Pd
j D1

pd�j

pd
yj . Therefore, the coefficient of ye�dC1 can be expressed

as

yR.Q; P / WD 1

pd

eX
iD0

qi

X
j1C���Cjr D�dC1Ci

.�1/r pd�j1
� � � pd�jr

pr
d

:
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In that sum the maximal value of r is e � d C 1, so we make it a polynomial by
multiplying by pe�dC2

d
. We conclude that RL;d�1 D 0 is equivalent to the condition

that X
j1C���Cjr D�dC1Ci

.�1/rqipd�j1
� � � pd�jr

pe�dC1�r
d

D 0: (2)

This condition is linear in the coefficients of QL, and of degree e � d C 1 in those
of PL. It depends, as we have seen, on the choice of a preferred coordinate on L, in
particular, on the choice of the line D defined by this coordinate.

Note the following behavior under rescaling:

yR.˛Q.x; �y/; ˇP.x; �y// D ˛ˇe�dC1�e�dC1 yR.Q; P /: (3)

2.3. Equations for hypersurfaces with degenerate duals. We apply the results
of the preceding section to the case where Q D det.HP jF /, whose degree equals
e D .k C 3/.d � 2/. Recall that F � W is a subspace of dimension k C 3. Once
F has been chosen, we obtain a family of equations depending, up to scale, only on
the choice of a plane L in W and a line D in L. In particular, if F contains L we
get an equation depending only on the partial flag D � L � F . This equation must
therefore be a highest weight vector in some module of polynomials on SnW �, and
its highest weight must be of the form a!1 C b!2 C c!kC3.

Consider a basis adapted to D � L � F and let .x; y; z; w/ D .x; y; zi ; ws/

denote its dual basis. Consider a diagonal matrix T WD .tx; ty ; tzIdF=L; tw IdW=F /.
Under rescaling

.T:P /.x; y; 0; 0/ D t�n
x P.x; txt�1

y y; 0; 0/: (4)

Moreover, the matrix of HT:P jF is obtained from that of HP jF by substitut-
ing .x; y; z; w/ by .t�1

x x; t�1
y y; t�1

z z; t�1
w w/ and multiplying the first row and col-

umn by t�1
x , the second row and column by t�1

y and the other rows and columns
by t�1

z . It follows that det.HT:P jF / is obtained from det.HP jF / by substituting
.t�1

x x; t�1
y y; t�1

z z; t�1
w w/ in for .x; y; z; w/ and by multiplying the result by

t�2
x t�2

y t�2.kC1/
z :

In summary,

det.HT:P jF /.x; y; 0; 0/ D t�2
x t�2

y t�2.kC1/
z t�e

x det.HP jF /.x; txt�1
y y; 0; 0/: (5)

From equations (3), (4) and (5), the vector of exponents of the action of T on our
equation is: 0

@2 C e C .d � 1/.e � d C 1/

e � d C 3

2.k C 1/

1
A :
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This vector should be 0
@a C b C c

b C c

c.k C 1/

1
A :

We deduce

a D �e C 3d � 2 C de � d 2 D .d � 1/.d � 2/.k C 2/;

b D e � d C 1 D d.k C 2/ � 2k � 5;

c D 2:

Note that aC2bC.kC3/c D d.d�1/.kC2/ so this module occurs in W ˝d.d�1/.kC2/.
Define Dualk;d;N � P .Sd W �/ as the Zariski closure of the set of irreducible

hypersurfaces of degree d in PW ' P N �1, whose dual variety has dimension at
most k.

Theorem 2.3.1. The variety Dualk;d;N � P .Sd .CN /�/ has equations given by a
copy of the SLN -module with highest weight

�.k; d/ D .d � 1/.d � 2/.k C 2/!1 C �
d.k C 2/ � 2k � 5

�
!2 C 2!kC3:

These equations have degree .k C 2/.d � 1/.

Note that when we constructed our equations, we did not suppose that L was
contained in F . This indicates that the module generated by these equations should
in fact be larger than the single module with highest weight �.k; d/.

Set theoretically, these equations suffice to define Dualk;d;N locally, at least on
the open subset parametrizing irreducible hypersurfaces Z.P / � P .W /. Indeed,
once the plane L is fixed, by varying the line D one obtains a family of equations
expressing the condition that PL divides QL, respectively the restrictions to L of
the polynomials P and Q D det.HP jF /. But P divides Q if and only if restricted
to each plane P divides Q, so our conditions imply that the dual variety of the
irreducible hypersurface Z.P / has dimension at most k. On the other hand, if P is
not reduced, then these equations can vanish even if the dual of Pred is non-degenerate.
For example, if P D R2 where R is a quadratic polynomial of rank 2s, then det.HP /

is a multiple of R2s .

2.4. Polynomials of the form `d�mR

Lemma 2.4.1. Let U D CM and L D C, let R 2 SmU � be irreducible, let ` 2 L�
be nonzero, let U � ˚L� � W � be a linear inclusion, and let P D `d�mR 2 Sd W �.

If ŒR� 2 Dual�;m;M and ŒR� 62 Dual��1;m;M , then ŒP � 2 Dual�;d;N and ŒP � 62
Dual��1;d;N .
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Proof. Choose a basis u1; : : : ; uM ; v; wMC2; : : : ; wN of W so that

.U �/? D hwMC2; : : : ; wN i
and

.L�/? D hu1; : : : ; uM ; wMC2; : : : ; wN i:
Let c D .d �m/.d �m�1/. In these coordinates, we have the matrix in the following
.M; 1; N � M � 1/ � .M; 1; N � M � 1/-block form:

HP D
0
@`d�mHR 0 0

0 c`d�m�2R 0

0 0 0

1
A :

First note that detMC1.HP jF / for any F D CMC1 is either zero or a multiple of
P . If dimZ.R/� D M �2 (the expected dimension), then for a general F D CMC1,
detM .HP jF / will not be a multiple of P , and more generally if dimZ.R/� D �,
then for a general F D C�C2, det�C2.HP jF / will not be a multiple of P but for any
F D C�C3, det�C3.HP jF / will be a multiple of P . �

3. The orbit of the determinant

3.1. Statement of themain result. Let W D Mn.C/, the space of complex matrices
of size n. Its dimension is N D n2. The hypersurface in PW defined by the
determinant is dual to the variety of rank one matrices, the Segre product P n�1 �
P n�1 � P N �1.

Intuitively, a deformation of the determinant hypersurface, subject to the condi-
tion that its dual remains of dimension 2n�2, should have a deformation of the Segre
as its dual variety. But the Segre is rigid, its only deformations in PW � are trans-
lates by projective automorphisms. Hence the only deformations of the determinant
hypersurface, with duals of the same dimension, should be translates by projective
automorphisms as well.

The problem with this intuitive argument is that the dual map can be highly discon-
tinuous, especially in the presence of singularities, and the determinant hypersurface
is very singular. Nevertheless, the conclusion turns out to be correct:

Every small deformation of the determinant hypersurface, with dual variety of the
same dimension, is a translate by a projective automorphism.

We will prove a more precise statement. For a polynomial P of degree n on
W , and a k-dimensional subspace F of W , we have expressed the condition that
P divides det.HP jF / in terms of polynomial equations of degree .k C 2/.n � 1/.
These equations define a subscheme Dualk;n;N � PSnW �, supported on the variety
Dualk;n;N and possibly other reducible hypersurfaces.
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Theorem 3.1.1. The scheme Dual2n�2;n;n2 is smooth at Œdetn�, and the PGLn2-orbit
closure of Œdetn� is an irreducible component of Dual2n�2;n;n2 .

In particular, Theorem 3.1.1 implies that the SL.W /-module of highest weight
�.2n � 2; n/ given by Theorem 2.3.1 gives local equations at Œdetn� of GLn2 � Œdetn�,
of degree 2n.n � 1/. Since Dualk;n;N always contains the variety of degree n hyper-
surfaces which are cones over a linear space of dimension N � k � 1, the zero set of
the equations is strictly larger than GLn2 � Œdetn�. The so-called subspace variety of
cones has dimension

�
kCnC1

n

�C .k C 2/.N � k � 2/ � 1. For k D 2n � 2; N D n2,
this dimension is bigger than the dimension of the orbit of Œdetn�, and therefore
Dual2n�2;n;n2 is not irreducible. We have not yet been able to find equations that
separate the orbit of Œdetn� from the other components of Dual2n�2;n;n2 .

3.2. Consequences regarding Kronecker coefficients. A copy of the module with
highest weight 2n.n�1/.n�2/!1C.2n2�4n�1/!2C2!2nC1 in S2n.n�1/.SnCn2

/

is in the ideal of GL.W / � Œdetn�.
The program suggested in [5] was to separate the determinant and permanent by

finding SL.W /-modules in the ideal of GLn2 � Œdetn� such that their entire isotypic
component was in the ideal. (Also see [1] for explicit statements regarding Kronecker
coefficients needed to carry out the program.) This does not occur for the module
with highest weight 2n.n � 1/.n � 2/!1 C .2n2 � 4n � 1/!2 C 2!2nC1.

For example, when n D 3, the module with highest weight 12!1 C 5!2 C 2!7

occurs with multiplicity six in S12.S3C9/, but only one copy of it is in the ideal.

3.3. Computing the Zariski tangent space. We differentiate the condition that
P divides det.HP jF / for each F . That is, write det.HP jF / D PQF for some
polynomial QF , and consider a curve P� D P C �� C �2� C O.�3/, inducing a
curve QF;� D QF C �Q0

F C O.�2/. Up to O.�2/, HP becomes HP C �H� and we
deduce the identity

det.HP ; : : : ; HP ; H�/jF D �QF C PQ0
F : (6)

To exploit (6), let Œw� be a general point of the hypersurface Z.P /, so the rank
of the quadratic form HP;w is exactly k C 2. Let X belong to the kernel of HP;w .
Let F 0 be a .k C 2/-dimensional subspace of W , transverse to the kernel of HP;w ,
and let F D F 0 ˚ CX . Now compute det.HP ; : : : ; HP ; H�/jF at w. In terms of
bases adapted to the flag F 0 � F � W , the matrix of HP;w has zeros in its last row
and column, since they correspond to X , which belongs to the kernel. Removing
this row and column yields an invertible matrix, corresponding to HP;w jF 0 , as F 0 is
transverse to the kernel.

Now, det.HP ; : : : ; HP ; H�/jF evaluated at w is the sum of the kC3 determinants
obtained by considering the matrix of HP;w jF and replacing one column by the
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corresponding column of H�;w jF . If this column is not the last one, this determinant
remains with a zero column, hence equals zero. In case the replaced column is the last
one, since the last row of the matrix of HP;w jF vanishes, the resulting determinant
is equal to the determinant of the upper-left block, det.HP;w jF 0/, multiplied by the
lower-right entry of H�;w jF , that is, H�;w.X/ D �.w; : : : ; w; X; X/. Equation (6)
becomes

det.HP;w jF 0/H�;w.X/ D �.w/QF .w/: (7)

Note that QF .w/ depends on both w and X (since F depends on X ), but det.HP;w jF 0/

only depends on w.
Now specialize (7) to the case P D detn. Then w must be a matrix of rank exactly

n � 1. Write W D E ˝ E�, and as such, it is naturally self-dual via the involution
e ˝ 	 7! 	 ˝ e. For w 2 W , write w� 2 E� ˝ E D W � for the image of w under
the involution.

Lemma 3.3.1. Let w be a matrix of rank exactly n � 1. Then the singular locus of
the quadratic form Hdetn;w , .Hdetn;w/sing is the space of n � n matrices X such that:

1/ X.E/ � w.E/; 2/ X.E�/ � w.E�/; 3/ w�.X/ D 0:

Proof. Write w D 	1 ˝ e1 C � � � C 	n�1 ˝ en�1, for some collection e1; : : : ; en�1 of
independent vectors in E D Cn, and some collection 	1; : : : ; 	n�1 of independent
linear forms. We complete these collections into bases by adding a vector en and a
linear form 	n. Consider an endomorphism X D P

1�i;j �n xij 	i ˝ ej . An easy
computation yields

Hdetn;w.X/ D det.w; : : : ; w; X; X/ D
n�1X
iD1

.xnnxi i � xnixin/:

Taking the exterior derivative shows that the singular locus of the quadratic form
Hdetn;w is defined by the conditions xni D xin D 0 for 1 � i � n, and

Pn�1
iD1 xi i D 0.

The first identities are equivalent to the conditions Im.X/ � Im.w/ and Ker.X/ �
Ker.w/. The third one is the condition w�.X/ D 0. �

We summarize our analysis:

Lemma 3.3.2. Suppose that � 2 SnW � belongs to the affine Zariski tangent space
yTŒdetn�Dual2n�2;n;n2 . Then for any matrix w of rank n�1, and any X 2 .Hdetn;w/sing,

H�;w.X/ D cX;w�.w/;

for some scalar cX;w that does not depend on � .
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3.4. Immanants. Recall that each partition � of n defines an irreducible represen-
tation Œ�� of the symmetric group Sn, hence a character 
�. The immanant IM� is
the degree n polynomial on Mn defined by the formula

IM�.X/ D
X

�2Sn


�.�/x1�.1/ � � � xn�.n/:

For example, Œn� is the trivial representation and IM.n/ is the permanent; Œ1n� is the
sign representation and IM.1n/ is the determinant.

Write Mn.C/ D A� ˝ B for two copies A; B of Cn. Since Œdetn� is preserved by
the action of GL.A/ � GL.B/ by left-right multiplication, this is also the case of the
Zariski tangent space at Œdetn� of the GLn2-invariant scheme Dual2n�2;n;n2 . But as
a GL.A/ � GL.B/-module,

Sn.A� ˝ B/� D
M

�

S�A ˝ S�B�;

where the sum is over all partitions of n. Since this decomposition is multiplicity
free, the submodule yTŒdetn�Dual2n�2;n;n2 must be the direct sum of some of the
components:

yTŒdetn�Dual2n�2;n;n2 D
M

�2Pn

S�A ˝ S�B�;

for some set of partitions Pn to be determined. Note that IM� is contained in the
component S�A ˝ S�B�. Therefore � belongs to Pn if and only if IM� belongs to
yTŒdetn�Dual2n�2;n;n2 .

We apply Lemma 3.3.2 as follows. Start with a matrix w of rank n � 1, which we
write as

Pn
iD1 e�

i ˝ ci . There is a dependence relation between c1; : : : ; cn, which we
can suppose to be of the form cn D Pn�1

iD1 �ici . Then w D Pn�1
iD1.e�

i C �ie
�
n/ ˝ ci .

By Lemma 3.3.1, .Hdetn;w/sing can then be described as the set of all

X D
n�1X
iD1

.e�
i C �ie

�
n/ ˝ .

n�1X
j D1



j
i cj /;

where
Pn�1

iD1 
i
i D 0. In bases, the first n � 1 columns c0

1; : : : ; c0
n�1 of X are linear

combinations of the columns of w, and c0
n D Pn�1

iD1 �ic
0
i is then given by the same

linear combination as for the last column of w. We can thus write the entries of X as

xk
i D

n�1X
j D1



j
i wk

j ; i < n; xk
n D

n�1X
iD1

�ix
k
i :

Substituting these expressions into HIM�;w.X/ D IM�.w; : : : ; w; X; X/ yields a
polynomial IM�.
; w0; �/ which is quadratic in the 


j
i and of degree n in the coeffi-
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cients wk
j , j < n, of the first n � 1 columns of w, denoted by w0. Explicitly,

HIM�;w.X/

D IM�.
; w0; �/

D
X
i<j

X
p;q



p
i 


q
j

�X
k;�

�k
�.�/w
�.1/
1 � � � w�.i/

p � � � w�.j /
q � � � w�.n�1/

n�1 w
�.n/

k

�

C
X
i;j

X
p;q



p
i 


q
j

�X
�

�j 
�.�/w
�.1/
1 � � � w�.i/

p � � � w�.j /
j � � � w�.n�1/

n�1 w�.n/
q

�
:

On the other hand, expressing the last column of w in terms of the first ones, IM�.w/

becomes a polynomial IM�.w0; �/, of degree n in w0:

IM�.w/ D IM�.w0; �/ D
X
k;�

�k
�.�/w
�.1/
1 � � � w�.k/

k
� � � w�.n�1/

n�1 w
�.n/

k
:

By Lemma 3.3.2, for each choice of �, the vanishing of IM�.w0; �/ implies the
vanishing of IM�.
; w0; �/. Since they are both homogeneous of degree m in w0,
they must be proportional.

This gives many relations, one for each quadratic monomial in the 
’s (but recall
the relation

Pn�1
iD1 
i

i D 0). We will need only a small subset of them:

Lemma 3.4.1. Suppose that IM� belongs to yTŒdetn�Dual2n�2;n;n2 . Then for any
permutation � , and any triple of distinct integers i , p, q smaller than n, one has the
relations X

�2h.ip/;.qn/i

�.��/ D 0:

Here h.ip/; .qn/i denotes the group of permutations generated by the two simple
transpositions .ip/ and .qn/. This group has order four, hence we get a collection of
four term relations between the values of the character 
�. Observe also that since
the characters are class functions, ipqn can be replaced by any four-tuple of distinct
integers.

Proof. Consider the coefficient of 

p
i 


q
i in IM�.
; w0; �/. It isX

�

�i
�.�/w
�.1/
1 � � � w�.i/

p � � � w�.p/
p � � � w�.i/

i � � � w�.q/
q � � � w�.n/

q :

The monomials in that sum do not appear in IM�.w0; �/, so this sum must be zero.
Our condition is then just that the coefficient of each monomial is equal to zero,
since the monomial to which a permutation � contributes does not change when we
compose it on the right with some element of h.ip/; .qn/i. �
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We conclude:

Proposition 3.4.2. Pn D f1n; 21n�2g:
Proof. We know that both partitions are contained in Pn, since the first one corre-
sponds to the determinant itself, and the second one to the tangent space to the orbit
of its projectivization. Therefore, by Lemma 3.4.1, it is enough to check that the
vector space Cn of class functions F on Sn, such thatX

�2.ij /.kl/

F.��/ D 0 for all � and all i , j , k, l ,

is at most two-dimensional. We prove that F 2 Cn is completely determined by its
values on permutations of cycle type .1n/ or .21n�2/. Recall that the value of a class
function F on a permutation � only depends on its cycle type, which is encoded by a
partition �. We will thus write F.�/ rather than F.�/. Apply induction on the number
of fixed points in � . Suppose that � has at least two nontrivial cycles. Choose i and
k in these two cycles and let j D �.i/, l D �.k/, then the three permutations �.ij /,
�.kl/, �.ij /.kl/ have more fixed points than � . If � has a cycle of length at least
four, take i in this cycle and let j D �.i/, k D �.j /, l D �.k/, to obtain the same
conclusion. Finally, if � is of cycle type 31n�3, say with a nontrivial cycle .123/,
choose ijkl D 1234. This gives the relation 2F.31n�3/ C F.41n�4/ C F.21n�2/ D
0. On the other hand, when � has cycle type 41n�4, with nontrivial cycle .1234/,
let ijkl D 1324, which yields the relation F.41n�4/ C F.221n�4/ D 0. And if �

has cycle type 221n�4, with nontrivial cycles .12/.34/, letting ijkl D 1234 gives the
relation F.221n�4/ C 2F.21n�2/ C F.1n/ D 0. These three identities altogether
imply that F.31n�3/ is determined by F.21n�2/ and F.1n/, and then the induction
argument shows that F is completely determined by these two values. �

Our discussion implies

yTŒdetn�Dual2n�2;n;n2 D yTŒdetn�PGL.Mn/:Œdetn�:

Theorem 3.1.1 immediately follows.

3.5. On the boundary of the orbit of the determinant. Decompose a matrix M

into its symmetric and skew-symmetric parts S and A. Define a polynomial Pƒ 2
Sn.Mn.C//� by letting

Pƒ.M/ D detn.A; : : : ; A; S/:

This is easily seen to be zero for n even so we suppose n to be odd. More explicitly, Pƒ

can be expressed as follows. Let Pf i .A/ denote the Pfaffian of the skew-symmetric
matrix, of even size, obtained from A by suppressing its i -th row and column. Then

Pƒ.M/ D
X
i;j

sij Pf i .A/ Pfj .A/:
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Proposition3.5.1. ThepolynomialPƒ belongs to the orbit closure of the determinant.
Moreover, GL.W / � Pƒ is an irreducible codimension one component of the boundary
of GL.W / � Œdetn�, not contained in End.W / � Œdetn�. In particular dc.Pƒ;m/ D m <

dc.Pƒ;m/.

Proof. The first assertion is clear: for t ¤ 0, one can define an invertible endo-
morphism ut of Mn.C/ by ut .A C S/ D A C tS , where A and S are the skew-
symmetric and symmetric parts of a matrix M in Mn.C/. Since the determinant of
a skew-symmetric matrix of odd size vanishes,

.ut � detn/.M/ D detn.A C tS/ D nt detn.A; : : : ; A; S/ C O.t2/;

and therefore ut � Œdetn� converges to ŒPƒ� when t goes to zero.
To prove the second assertion, we compute the stabilizer of Pƒ inside GL.Mn.C//.

The easiest way to make this computation uses the decomposition Cn ˝ Cn D
ƒ2Cn ˚ S2Cn of the space of matrices into skew-symmetric and symmetric ones.
The action of GLn.C/ on Mn.C/ by M 7! gMgt preserves Pƒ up to scale, and the
Lie algebra of the stabilizer of ŒPƒ� is a GLn.C/ submodule of End.Mn.C//. We
have the decomposition into GLn.C/-modules:

End.Mn.C// D End.ƒ2 ˚ S2/

D End.ƒ2/ ˚ End.S2/ ˚ Hom.ƒ2; S2/ ˚ Hom.S2; ƒ2/:

Moreover, End.ƒ2/ D gln ˚ EA and End.S2/ D gln ˚ ES , where EA and ES

are distinct irreducible GLn.C/-modules. Similarly, Hom.ƒ2; S2/ D sln ˚ EAS

and Hom.S2; ƒ2/ D sln ˚ ESA, where EAS and ESA are irreducible, pairwise
distinct and different from EA and ES . Then one can check that the modules EA,
ES , EAS , ESA are not contained in the stabilizer, and that the contribution of
the remaining terms is isomorphic with gln ˚ gln. In particular it has dimension
2n2, which is one more than the dimension of the stabilizer of Œdetn�. This implies
GL.W / � Pƒ has codimension one in GL.W / � Œdetn�. Since it is not contained in the
orbit of the determinant, it must be an irreducible component of its boundary. Since
the zero set is not a cone (i.e., the equation involves all the variables), Pƒ cannot be
in End.W / � detn which consists of GL.W / � detn plus cones. �

The hypersurface defined by Pƒ has interesting properties.

Proposition 3.5.2. The dual variety of the hypersurface Z.Pƒ/ is isomorphic to the
Zariski closure of

Pfv2 ˚ v ^ w 2 S2Cn ˚ ƒ2Cn; v; w 2 Cng � P .Mn.C//:

As expected, Z.Pƒ/� is close to being a Segre product P n�1 � P n�1. It can
be defined as the image of the projective bundle � W P .E/ ! P n�1; where E D
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O.�1/ ˚ Q is the sum of the tautological and quotient bundles on P n�1, by a sub-
linear system of OE .1/ ˝ ��O.1/. This sub-linear system contracts the divisor
P .Q/ � P .E/ to the Grassmannian G.2; n/ � Pƒ2Cn.

4. A large irreducible component of Dualk;d;N

Let SubkC2.Sd W �/ be the projectivization of

fP 2 Sd W � j dim.U �/ D k C 2; and P 2 Sd U � for some U � � W �g
the subspace variety of hypersurfaces of degree d in PW that are cones over some
Zk � P kC1 � PW . The reduced, irreducible variety SubkC2.Sd W �/ is of dimen-
sion k C 1 C .k C 2/.N � .k C 2// and its ideal is generated in degree k C 3 (see
[8], §7.2).

If ŒP � 2 SubkC2.Sd W �/, then Z.P / � PW is a cone with an .N � k � 1/-
dimensional vertex P .U �/?, and Z.P /� � PU �. In particular dim.Z.P /�/ � k.

Proposition 4.1.1. SubkC2.Sd CN / is a reduced, irreducible component of
Dualk;d;N .

Proof. Let W � D CN and let P 2 SubkC2.Sd W �/ be a general point. Write
P 2 Sd U �. It follows from the Kempf–Weyman desingularization described in
§7.2 of [8] that

yTŒP �SubkC2.Sd W �/ D Sd U � C h.u ³ P / B ˛ j u 2 U; ˛ 2 W �i:
If we choose a complement V � to U � in W � we may write

yTŒP �SubkC2.Sd W �/ D Sd U � ˚ h.u ³ P / B ˛ j u 2 U; ˛ 2 V �i:
We must show

yTŒP �Dualk;d;N 	 yTŒP �SubkC2.Sd W �/ � Sd U �˚Sd�1U �˝V � � Sd .U �˚V �/:

Following the notation and discussion of §3.3, for P 2 SubkC2.Sd W �/ in equa-
tion (7) we have QF D 0, since the determinant of the Hessian on any k C 3-plane
vanishes, and we conclude that H�;w.X/ D 0 for all Œw� 2 Z.P / and for all X 2 V .
This says the degree d � 2 hypersurface Z.H�;�.X// is contained in the irreducible

degree d hypersurface Z.P /, which implies �.X; X; �; : : : ; �/ D @2�
.@X/2 D 0 for all

X 2 V , i.e., yTŒP �Dualk;d;N 	 Sd U � ˚ Sd�1U � ˝ V �. To obtain the restrictions
on the term in Sd�1U � ˝ V � we must consider the term of order two in � in the
expansion of det.HP�

jF / D P�Q�;F . With our choice of splitting we may identify
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U D .V �/? � W and take F 0 D U . (In other words, the choice of F 0 is equivalent
to choosing the splitting.) Note the order � term also implies in this case that Q0

F D 0.
The terms on the left hand side that potentially could contribute to the �2 coefficient

are in

det

 
@2P

@ui @uj
C � @2�

@ui @uj
� @2�

@ui @X

� @2�
@uj @X

� @2�
.@X/2 C �2 @2�

.@X/2

!
:

The actual contribution is the sum of detkC2.HP jU / @2�
.@X/2 and terms substituting two

entries from @2�
@ui @X

for two of the columns of HP jU D @2P
@ui @uj

. The right hand side
is zero.

Choose Œw� 2 Z.P / \ Z.detkC2.HP jU //, and note that we can take a basis of
elements of W of this form, so the first term is zero. We conclude that the column
vector @2�

@ui @X
is a linear combination of the columns of @2P

@ui @uj
which implies @�

@X
is a

linear combination of the @P
@ui

, i.e. that @�
@X

D u ³ P for some u 2 U which is what
we needed to prove. �
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