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Hydra groups
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Abstract. We give examples of CAT.0/, biautomatic, free-by-cyclic, one-relator groups which
have finite-rank free subgroups of huge (Ackermannian) distortion. This leads to elementary
examples of groups whose Dehn functions are similarly extravagant. This behaviour originates
in manifestations of Hercules-versus-the-hydra battles in string-rewriting.
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1. Introduction

1.1. Hercules versus the hydra. Hercules’ second labour was to fight the Lernaean
hydra, a beast with multiple serpentine heads enjoying magical regenerative powers:
whenever a head was severed, two grew in its place. Hercules succeeded with the
help of his nephew, Iolaus, who stopped the regrowth by searing the stumps with a
burning torch after each decapitation. The extraordinarily fast-growing functions we
will encounter in this article stem from a re-imagining of this battle.

For us, a hydra will be a finite-length positive word on the alphabet a1; a2; a3; : : :

– that is, it includes no inverse letters a1
�1; a2

�1; a3
�1; : : : . Hercules fights a hydra

by striking off its first letter. The hydra then regenerates as follows: each remaining
letter ai , where i > 1, becomes aiai�1 and the a1 are unchanged. This process –
removal of the first letter and then regeneration – repeats, with Hercules victorious
when (not if !) the hydra is reduced to the empty word ".

For example, Hercules defeats the hydra a2a3a1 in five strikes:

a2a3a1 ! a3a2a1 ! a2a1a1 ! a1a1 ! a1 ! ":

(Each arrow represents the removal of the first letter and then regeneration.)

Proposition 1.1. Hercules defeats all hydra.

Proof. When fighting a hydra in which the highest index present is k, no ai with
i > k will ever appear, and nor will any new ak . The prefix before the first ak is itself
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a hydra, which, by induction, we can assume Hercules defeats. Hercules will then
remove that ak , decreasing the total number of ak present. It follows that Hercules
eventually wins. �

However these battles are of extreme duration. Define H .w/ to be the number
of strikes it takes Hercules to vanquish the hydra w, and for integers k � 1, n � 0,
define Hk.n/ WD H .ak

n/. We call the Hk hydra functions. Here are some values of
Hk.n/.

1 2 3 4 � � � n � � �
1 1 2 3 4 � � � n � � �
2 1 3 7 15 � � � 2n � 1 � � �
3 1 4 46 3.246/ � 2 � � � � � � � � �
:::
:::

:::
:::

:::

k 1 k C 1
:::

:::
:::
:::

:::
:::

:::

To see that H2.n/ D 2n � 1 for all n, note that

H
�
a2

nC1
� D H .a2

n/C H
�
a2a1

H.a2
n/
� D 2H .a2

n/C 1:

And H3.n/ is essentially an n-fold iterated exponential function because, for all
n > 0,

H3.nC 1/ D 3
�
2H3.n/

� � 2;
by the calculations

H .a3
nC1/ D H .a3

n/C 1C H
�
a2a1 a2a1

2 : : : a2a1
H.a3

n/
�
;

H .a2a1 a2a1
2 : : : a2a1

m/ D 3.2m/ �m � 3:
Extending this line of reasoning, we will derive relationships (15) and (19) in

Section 3 from which it will follow, for example, that

H4.3/ D 3

0
BBB@2

3

0
B@2

3

 
2

3.25/�1
!

�1

1
CA�1

1
CCCA � 1:

So these functions are extremely wild. The reason behind the fast growth is a nested
recursion. What we have is a variation on Ackermann’s functions Ak W N ! N,
defined for integers k; n � 0 by

A0.n/ D nC 2 for n � 0;

Ak.0/ D
´
0 for k D 1;

1 for k � 2;
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and

AkC1.nC 1/ D Ak.AkC1.n// for k; n � 0:

So, in particular, A1.n/ D 2n, A2.n/ D 2n and A3.n/ D exp.n/
2 .1/, the n-fold iter-

ated power of 2. (Definitions of Ackermann’s functions occur with minor variations
in the literature.) Ackermann’s functions are representatives of the successive levels
of the Grzegorczyk hierarchy, which is a grading of all primitive recursive functions
– see, for example, [37].

We will prove the following relationship in Section 3. Our notation in this propo-
sition and henceforth is that for f; g W N ! N, we write f � g when there exists
C > 0 such that for all n we have f .n/ � Cg.CnC C/C CnC C . This gives an
equivalence relation capturing qualitative agreement of growth rates: f ' g if and
only if f � g and g � f .

Proposition 1.2. For all k � 1, Hk ' Ak .

Other hydra dwell in the mathematical literature, particularly in the context of
results concerning independence from Peano arithmetic and other logical systems.
The hydra of Kirby and Paris [27], based on finite rooted trees, are particularly
celebrated. Similar, but yet more extreme hydra were later constructed by Buchholz
[14]. And creatures that, like ours, are finite strings that regenerate on decapitation
were defined by Hamano and Okada [25] and then independently by Beklemishev [7].
They go by the name of worms, are descended from Buchholz’s hydra, involve more
complex regeneration rules, and withstand Hercules even longer.

1.2. Wild subgroup distortion. The distortion function DistGH W N ! N for a
subgroup H with finite generating set T inside a group G with finite generating set
S compares the intrinsic word metric dT on H with the extrinsic word metric dS :

DistGH .n/ ´ max f dT .1; g/ j g 2 H with dS .1; g/ � ng :
Up to ' it is does not depend on the particular finite generating sets used.

A manifestation of our Hercules-versus-the-hydra battle leads to the result that
even for apparently benign G and H , distortion can be wild.

Theorem 1.3. For each integer k � 1, there is a finitely generated group Gk that

� is free-by-cyclic,

� can be presented with only one defining relator,

� is CAT.0/,

� and is biautomatic,
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and yet has a rank-k free subgroupHk that is distorted like the k-th of Ackermann’s
functions – that is, DistGk

Hk
' Ak .

This distortion of a free subgroup of a CAT.0/ group stands in stark contrast to
that of any abelian subgroup – they are always quasi-isometrically embedded (see
Theorem 4.10 of Chapter III.� in [13], for example) and so no more than linearly
distorted.

The distortion we achieve exceeds that found in the hyperbolic groups of Mitra [32]
and the subsequent 2-dimensional CAT.�1/ groups of Barnard, Brady and Dani [2].
They give families of groups that have free subgroups distorted like the iterated
exponential function exp.k/.n/, and examples with faster growing distortion like
exp.blog4 nc/.1/. Their approach is to iterate the exponential distortion of the subgroup
F in certain free-by-cyclic groups F Ì Z.

In contrast to those of Mitra and of Barnard, Brady and Dani, our examples contain
Z2 subgroups and so are not hyperbolic. However, in a subsequent article [10] with
N. Brady we will give an elaboration ofGk that is hyperbolic and has a free subgroup
distorted � Ak .

Explicitly, our examples here are

Gk D ha1; : : : ; ak; t j t�1a1t D a1; t
�1ai t D aiai�1 .for all i > 1/i (1)

and their subgroups
Hk WD ha1t; : : : ; akt i:

So Gk is the free-by-cyclic group F.a1; : : : ; ak/ Ì Z where Z D h t i and t acts by
the automorphism of F.a1; : : : ; ak/ that is the restriction of the automorphism � of
F.a1; a2; : : :/ defined by

�.ai / D
´
a1; i D 1;

aiai�1; i > 1:
(2)

This automorphism of F.a1; : : : ; ak/ is polynomial growing and of the type studied
by Bestvina, Feighn and Handel in [9]. Indeed, our technique in Section 6 and
following of using pieces to analyze its affect on words is also employed in [9].

For i � j , the canonical homomorphism Gi ! Gj is an inclusion as the free-
by-cyclic normal forms of an element ofGi and its image inGj are the same. So the
direct limit of the Gi under these inclusions is

G D h t; a1; a2; : : : j t�1a1t D a1; t
�1ai t D aiai�1 .for all i > 1/i:

Also, the subgroup H WD ha1t; a2t; : : :i of G is lim�! Hi and Hk D Gk \H .

Our convention is that Œa; b� D a�1b�1ab. By re-expressing the original relations
as Œa1; t � D 1 and ai�1 D Œai ; t � for i > 1 and then eliminating a1; : : : ; ak�1 and
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defining a WD ak , one can presentGk with one relation, a nested commutator, known
as an Engel relation:

Gk Š ha; t j Œa; t; : : : ; t„ ƒ‚ …
k

� D 1i:

That is, the relation is vk D 1 where vk is the word defined recursively by v0 D a

and viC1 D Œvi ; t � for i � 0.
Recursively define a family of words by u0 D a and uiC1 D ui

�1sui for i � 0.
By inducting on i , one can verify that after substituting t˙1 for every s�1 in ui , the
words t�.i�1/ui t

i and vi become freely equal for all i � 1. So the relation vk D 1

can be replaced by uk D s to give an alternative one-relator presentation for Gk:

Gk Š
�
a; s

ˇ̌̌
s

:::
s

„ƒ‚…
k

a

D s

�
:

That the groupsGk are CAT.0/was proved by Samuelson: set� D 1 in Lemma 5.2
of [38]. We explain the result by re-expressing the presentation via ˛i WD uk�i for
1 � i � k as

Gk Š h˛1; : : : ; ˛k; s j ˛1
�1s˛1 D s; ˛i

�1s˛i D ˛i�1 .i > 1/i:
By checking the link condition (see, for example, [13], II.5.24) one finds that the
Cayley 2-complex of this presentation (that is, the universal cover of the associated
presentation 2-complex), metrized so that each 2-cell is a Euclidean square, is CAT.0/.
Gersten & Short [23] proved that all such groups are automatic, and later Niblo &
Reeves [33] proved that a more general class of groups, those acting geometrically
on CAT.0/ cube complexes, are biautomatic.

The groups Gk are well-behaved in a couple of senses not mentioned in Theo-
rem 1.3. They are residually torsion-free nilpotent by Baumslag [4]1 and enjoy the
property of rapid decay by Jolissaint [26], Corollary 2.1.10. We thank Gilbert Baum-
slag and Indira Chatterji, respectively, for these observations.

We remark that a corollary of our recursive upper bound on DistGk

Hk
is that the

membership problem for Hk in Gk is decidable.
The family Gk have received attention elsewhere. From a geometric point-of-

view, it is natural to seeGk as the fundamental group of a mapping torus, and indeed
G2 is a 3-manifold group. In [22] Gersten showed the group G2 to be CAT.0/
with quadratic divergence function. He gave the free-by-cyclic, the one-relator, and
the CAT.0/ presentations of G2 we have described. In [30] Macura shows G3 to
be CAT.0/ and proves that an associated CAT.0/ complex has a cubic divergence

1Added in proof: Baumslag adds that Mikhailov should also be credited for this result and a proof is in their
recent article On residual properties of generalized Hydra groups, arXiv:1301.4629 [math.GR].

http://arxiv.org/abs/1301.4629
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function. Results in [30] imply that the divergence function of the universal cover of
the mapping torus associated to the free-by-cyclic presentation of Gk is polynomial
of degree k (up to ') and in [28] Macura proves the same result for CAT.0/ spaces
associated to each Gk . Macura also mentions G2 and G3 in [29] as examples in the
context of Kolchin maps and quadratic isoperimetric functions, and she and Cashen
use Gk as examples in [15] when studying novel quasi-isometry invariants they call
line patterns. It is stated in Example 4 of [5] that G3 is biautomatic. Bridson uses
Gk in [12] as a starting point to construct free-by-free groups with Dehn functions
that are polynomial of degree k C 1 and he shows them to be subgroups of Out.Fn/

for suitable n. Additionally, he shows his examples are asynchronously automatic
via normal forms which have length ' nk , but by no shorter normal form. En route
he shows (Section 4.1 (3)) that free-by-cyclic Fk Ì Z groups, such as Gk , embed in
Aut.Fk/.

Examples of yet more extreme distortion are known, even for subgroups of hy-
perbolic groups. Arzhantseva & Osin [1], §3.4, and Pittet [35] explain an argument
attributed to Sela in §3, 3:K 00

3 of [24]: the Rips construction, applied to a finitely pre-
sentable group with unsolvable word problem yields a hyperbolic (indeed, C 0.1=6/
small-cancellation) groupG with a finitely generated subgroupN such that DistGN is
not bounded above by any recursive function. The reason is that whenN is a finitely
generated normal subgroup of a finitely presented group G, there is an upper bound
for the Dehn function of G=N in terms of the Dehn function of G and the distortion
of N in G – see Corollary 8.2 in [19], [35]. Ol’shanskii & Sapir in [34], Theorem 2,
provide another source of extreme examples – using Mikhailova’s construction as
their starting point, they show that the set of distortion functions of finitely generated
subgroups of F2 � F2 coincides (up to ') with the set of Dehn functions of finitely
presented groups. As for finitely presented subgroups, Baumslag, Bridson, Miller
and Short [6] explain how to construct groups � that are both CAT.0/ and hyperbolic
and yet such that � � � has a finitely presented subgroup whose distortion is not
bounded above by any recursive function.

We are not aware of any systematic study of subgroup distortion in one-relator
groups. It seems natural to ask whether our examples are best-possible – that is,
whether there is a one-relator group with a finite-rank free subgroup of distortion
� Ak for every k.

1.3. Extreme Dehn functions. The Dehn function Area.n/ of a finitely presented
group hA j Ri is related to the group’s word problem in that Area.n/ is the minimal
N such that given any wordw of length at most n that represents the identity,w freely
equals some product

QN 0

iD1 ui
�1riui ofN 0 � N conjugates of relators ri 2 R˙1, or,

equivalently, one can reduce w to the empty word by applying defining relations at
most N times and removing or inserting inverse pairs of letters. At the same time,
the Dehn function is a natural geometric invariant (in fact, a quasi-isometry invariant
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up to ') of a group: Area.n/ is the minimal N such that any edge-loop of length at
most n in the Cayley 2-complex of hA j Ri can be spanned by a combinatorial filling
disc (a van Kampen diagram) with area (that is, number of 2-cells) at most N . This
geometric perspective is related to the classical notion of an isoperimetric function
in Riemannian geometry in that if hA j Ri is the fundamental group of a closed
Riemannian manifold M , then its Dehn function is '-equivalent to the minimal
isoperimetric function of the universal cover of M .

Theorem 1.3 leads to strikingly simple examples of finitely presented groups with
huge Dehn functions, namely the HNN-extensions ofGk with stable letter commuting
with all elements of the subgroup Hk .

Theorem 1.4. For k � 2, the Dehn function of the group

�k ´ ha1; : : : ; ak; t; p j t�1a1t D a1; t
�1ai t D aiai�1 .i > 1/;

Œp; ai t � D 1 .i > 0/i:
is '-equivalent to Ak .

So, together with �1, which has Dehn function '-equivalent to n 7! n2 (see
Proposition 9.1), these groups have Dehn functions that are representative of each
graduation of the Grzegorczyk hierarchy of primitive recursive functions. Details of
the proof are in Section 9.

These are not the only such examples (but we believe they are the first that are
explicit and elementary): Cohen, Madlener and Otto [17], [18], [31] embedded al-
gorithms (modular Turing machines, in fact) with running times like n 7! Ak.n/ in
groups so that the running of the algorithm is displayed in van Kampen diagrams so
as to make the Dehn function reflect the time-complexity of the algorithms. They
state that their techniques produce yet more extreme examples as they also apply to
an algorithm with running time like n 7! An.n/, and so yield a group with Dehn
function that is recursive but not primitive recursive. More extreme still, any finitely
presentable group with undecidable word problem is not bounded above by any re-
cursive function.

Elementary examples of groups with large Dehn function are described by Gromov
in [24], §4, but their behaviour is not so extreme. There is the family

hx0; : : : ; xk j xiC1
�1xixiC1 D xi

2 .i < k/i;
which has Dehn function '-equivalent to n 7! exp2

.k/.n/. [We write exp2.n/ to
denote 2n.] And Baumslag’s group [3]

ha; b j .b�1a�1b/ a .b�1ab/ D a2 i; (3)

which contains hx0; : : : ; xk j xiC1
�1xixiC1 D xi

2 .i � 0/i as a normal sub-
group, was shown by Platonov [36] to have Dehn function '-equivalent to n 7!
exp.blog2 nc/.1/. (Prior partial results in this direction are in [8], [20], [21].)
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1.4. The organisation of the article. We believe the most compelling assertion
of Theorem 1.3 to be the existence of groups Hk and Gk with Hk free of rank
k, Gk enjoying the bulleted list of properties, and DistGk

Hk
bounded below by Ak .

In particular, this shows that there is no uniform upper bound on the level in the

Grzegorczyk hierarchy at which the functions DistGk

Hk
appear. The reader who is

primarily interested in these components of Theorem 1.3 need only read up to the
end of Section 5. In Section 2 we derive a collection of elementary properties of the
Ackermann functions that will be used elsewhere in the paper. Section 3 contains a
proof of Proposition 1.2 comparing the hydra functions to Ackermann’s functions.
In Section 4 we prove that the subgroups Hk are free. And in Section 5 we prove
that each function DistGk

Hk
is bounded below by Hk – combining this result with

Proposition 1.2 gives the lower bound Ak .
Our proof that each function DistGk

Hk
lies in the same '-equivalence class of

functions as Ak – i.e. that Ak is an upper bound for DistGk

Hk
– is considerably more

involved than that of the lower bound and occupies most of the second half of the
article: Sections 6, 7 and 8. In deriving the upper bound, a key notion will be that
of passing a power of t through a word w on the letters ai . We explain this idea in
Section 6, where we also identify recursive structure that will be crucial in facilitating
an inductive analysis. In Section 7 we focus on the situation where w is of the form
�n.ak

˙1/ and derive preliminary result that will feed into the main proof, presented
in Section 8, that DistGk

Hk
� Ak .

Finally, in Section 9, we prove Theorem 1.4, which gives the Dehn functions of
the groups �k .

We illustrate some of our arguments using van Kampen diagrams, particularly
observing their corridors (also known as bands). For an introduction see, for example,
I.8A.4 and the proof of Proposition 6.16 in III.� of [13].

We denote the length of a word w by `.w/. We write w D w.a1; : : : ; ak/ when
w is a word on a1

˙1; : : : ; ak
˙1.

1.5. Acknowledgements. We are grateful to Martin Bridson for a number of conver-
sations on this work, to Volker Diekert for a discussion of Ackermann’s functions, to
Arye Juhasz for background on one-relator groups, and to John McCammond for help
with some computer explorations of Hercules’battle with the hydra. We also thank an
anonymous referee for a careful reading, for bringing to our attention the connections
between this work and [9], and for simplifying our proof of Proposition 5.2.

2. Ackermann’s functions

Throughout this article we will frequently compare functions to Ackermann’s func-
tions and will find the following relationships useful.
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Lemma 2.1. For integers k, l , m, n, the following relations hold within the given
domains:

Ak.AkC1.n// D AkC1.nC 1/; k; n � 0; (4)

Ak.1/ D 2; k � 1; (5)

Ak.2/ D 4; k � 0; (6)

Ak.n/ � AkC1.n/; k � 1I n � 0; (7)

Ak.n/ < Ak.nC 1/; k; n � 0; (8)

n � Ak.n/; k; n � 0; (9)

(with equality holding in (9) if and only if .k; n/ D .1; 0/)

mAk.n/ � Ak.nm/; k; n � 1I m � 0; (10)

mAk
.l/.n/ � Ak

.lCm/.n/; k � 1I l; m; n � 0; (11)

Ak.n/C Ak.m/ � Ak.nCm/; k; n;m � 1; (12)

Ak.n/Cm � Ak.nCm/; k; n;m � 0; (13)

.Ak.n//
m � Ak.nm/; k � 2I n;m � 0: (14)

Proof. Equation (4) follows immediately from the definition of the Ackermann func-
tions. Equations (5) and (6) follow from (4) by an easy induction on k.

Before proving (7), (8) and (9), we first prove that non-strict versions of these
inequalities hold. The proof is by induction on k and n. It is easy to check that
(7) holds if k D 1 or if n D 0 and that (8) and (9) hold if k D 0, if k D 1 or if
n D 0. Now let k0 > 1 and n0 > 0 and suppose, as an inductive hypothesis, that
(7), (8) and (9) hold (not necessarily strictly) if k < k0 or if k D k0 and n < n0.
We prove that the inequalities hold if k D k0 and n D n0. For (7), we calculate that
Ak0.n0/ D Ak0�1.Ak0.n0 � 1// � Ak0�1.Ak0C1.n

0 � 1// � Ak0.Ak0C1.n
0 � 1// D

Ak0C1.n
0/, where we have applied (4) and the inductive hypothesis versions of (7) and

(8). For (8), we calculate that Ak0.n0/ � Ak0�1.Ak0.n0// D Ak0.n0 C 1/, where we
have used (4) and the inductive hypothesis version of (9). For (9), we calculate that
n0 � 2n0 D A1.n

0/ � Ak0.n0/, where we have used the inductive hypothesis version
of (7). This completes the proof that (7), (8) and (9) hold in non-strict form. Now
observe that equality in (9) at .k; n/ D .k0; n0/ requires n0 D 2n0, whence n0 D 0.
Since Ak.0/ D 1 for all k � 2, equality in (9) holds if and only if .k; n/ D .1; 0/. It
follows that equality in (8) at .k; n/ D .k0; n0/ would require that Ak0.n0/ D 0 and
k0 � 1 D 1, whence A2.n

0/ D 0. But A2.n/ D 2n > 0 for all n and so the inequality
(8) is strict.

We now prove inequality (10). This clearly holds if m D 0, so suppose that
m � 1. The proof is by induction on k and n. It is clear that (10) holds if k D 1.
The inequality also holds if n D 1 since, applying (5) and (7), we calculate that
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mAk.1/ D 2m D A1.m/ � Ak.m/. Now let k0; n0 > 1 and suppose, as an inductive
hypothesis, that (10) holds if k < k0 or if k D k0 and n < n0. We calculate that

mAk0.n0/ D mAk0�1.Ak0.n0 � 1// � Ak0�1.mAk0.n0 � 1//
� Ak0�1.Ak0.mn0 �m// � Ak0�1.Ak0.mn0 � 1// D Ak0.mn0/;

where we have used (4) and (8). Thus the inequality holds if .k; n/ D .k0; n0/,
completing the proof of (10).

For inequality (11) observe that, by (9), mAk
.l/.n/ � AkC1.m/Ak

.l/.n/ D
Ak

.m/.1/Ak
.l/.n/. It also follows from (9) that Ak

.i/.1/ � 1 for all i � 0. We
can thus apply (10), together with (8), to show that

Ak
.m/.1/Ak

.l/.n/ � Ak
.m/.Ak

.l/.n// D Ak
.lCm/.n/:

We prove (12) by induction on k. We will make repeated use of the identity
Ak.m/ D Ak�1

.m/.1/. It is clear that the inequality holds if k D 1, so suppose that
k > 1 and that the result is true for smaller values of k. Without loss of generality
suppose that n � m. It follows from (9) that Ak�1

.i/ � 1 for all i � 0, and so we
can apply the induction hypothesis to calculate thatAk.n/CAk.m/ D Ak�1

.n/.1/C
Ak�1

.m/.1/ � Ak�1
.n/.1CAk�1

.m�n/.1// D Ak�1
.n/.1CAk.m�n//. Applying (8)

gives that this quantity is at mostAk�1
.n/.Ak.m�nC1// D Ak.mC1/ � Ak.mCn/.

We now prove inequality (13). This clearly holds if k D 0, k D 1 or m D 0. If
k � 2 and n D 0, then Ak.n/ C m D m C 1 � Ak.m/ D Ak.n C m/ by (9). It
remains to prove (13) if k; n;m � 1. But in this caseAk.n/Cm � Ak.n/CAk.m/ �
Ak.nCm/ by (9) and (12).

Finally, we prove (14) by induction on k. It is clear that the inequality holds if
k D 2, so suppose that k � 3 and that the result holds for smaller values of k. It
is also clear that the inequality holds if n D 0 or if m D 0; suppose that n;m � 1.
Applying the induction hypothesis, together with (4), we calculate that Ak.n/

m D
Ak�1.Ak.n � 1//m � Ak�1.mAk.n � 1//. Applying (4), (8) and (10), we see that
this quantity is at mostAk�1.Ak.nm�m// � Ak�1.Ak.nm�1// D Ak.nm/. �

3. Comparing the hydra functions to Ackermann’s functions

In this section we prove Proposition 1.2 comparing Ackermann’s functions to the
hydra functions. The proof will proceed via a third family of functions �k . In this
section �k.n/ will be defined for n � 0; subsequently we will give a more general
definition with an expanded domain.

For integers k � 1 and n � 0, define �k.n/ WD H .�n.ak//. The functions Hk

satisfy
Hk.nC 1/ D Hk.n/C �k.Hk.n// (15)
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since after Hk.n/ strikes the word ak
nC1 has become �Hk.n/.ak/. We will need the

following elementary properties of the functions �k .

Lemma 3.1. For integers k � 1 and n � 0,

�k.0/ D 1; (16)

�2.n/ D nC 1; (17)

�k.n/ � 1; (18)

�kC1.nC 1/ D �kC1.n/C �k.�kC1.n/C n/: (19)

For integers k � 2 and n � 0,

�k.n/ < �k.nC 1/; (20)

�k.n/ � n: (21)

Proof. Assertions (16), (17), (18) are straightforward. For (19), note that, by induc-
tion on n, �nC1.akC1/ D akC1ak�.ak/ : : : �

n.ak/ and hence

�nC1.akC1/ D �n.akC1/�
n.ak/:

Thus, after �kC1.n/ strikes, �nC1.akC1/ has become

��kC1.n/.�n.ak// D ��kC1.n/Cn.ak/:

Inequality (20) follows immediately from (18) and (19) and inequality (21) follows
from (18) and (20). �

It is easy to check that �1 ' A0 and �2 ' A1. As such, the next result is sufficient
to establish that �k ' Ak�1 for k � 1.

Lemma 3.2. (i) For integers k � 3 and n � 0, �k.n/ � Ak�1.n/.

(ii) For integers k � 2 and n � 0, �k.n/ � Ak�1.nC k/ � n � k.
Proof. We prove (i) by simultaneous induction on k and n. It is immediate from (16)
that the inequality holds if n D 0. By (17) and (19), �3.n/ D 2�3.n�1/Cn, which,
combined with (16), gives �3.n/ D 3 .2n/ � n � 2. Since A2.n/ D 2n, it is easy to
check that (i) holds if k D 3. Now let k0 > 3 and n0 > 0 and suppose, as an inductive
hypothesis, that the result is true if k < k0 or if k D k0 and n < n0. Applying (4), (18)
and (20), we calculate that �k0.n0/ D �k0.n0 � 1/C �k0�1.�k0.n0 � 1/C n0 � 1/ �
�k0�1.�k0.n0 � 1// � �k0�1.Ak0�1.n

0 � 1// � Ak0�2.Ak0�1.n
0 � 1// D Ak0�1.n

0/.
Thus the result holds at .k; n/ D .k0; n0/, completing the proof of (i).

We now make the following claim: for all k � 2, n � 0 and c � k,

�k.n/ � Ak�1.nC c/ � nC k � 2c: (22)
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Assertion (ii) will follow by setting c D k. The proof of this inequality is by simul-
taneous induction on k and n. Since A1.n/ D 2n and, by (17), �2.n/ D nC 1, it is
straightforward to check that (22) holds if k D 2. The inequality also holds for n D 0

since, by (7) and (16), �k.0/ D 1 � k D A1.c/ C k � 2c � Ak�1.c/ C k � 2c.
Now let c � k0 > 2 and n0 > 0 and suppose, as an induction hypothesis, that (22)
holds if k < k0 or if k D k0 and n < n0. We calculate that

�k0.n0/ D �k0.n0 � 1/C �k0�1.�k0.n0 � 1/C n0 � 1/ by (19)

� �k0.n0 � 1/C Ak0�2.�k0.n0 � 1/C n0 C c � 1/
� �k0.n0 � 1/ � n0 C k0 � 2c

D Ak0�2.�k0.n0 � 1/C n0 C c � 1/ � n0 C k0 � 2c
� Ak0�2.Ak0�1.n

0 C c � 1/C k0 � c/ � n0 C k0 � 2c by (8)

� Ak0�2.Ak0�1.n
0 C c � 1// � n0 C k0 � 2c by (8)

D Ak0�1.n
0 C c/ � n0 C k0 � 2c: by (4)

Thus the inequality holds if .k; n/ D .k0; n0/, completing the proof of (22). �

SinceA1.n/ D 2n, H1.n/ D n,A2.n/ D 2n andH2.n/ D 2n �1, the next result
is sufficient to establish Proposition 1.2.

Proposition 3.3. (i) For integers k � 3 and n � 2, Hk.n/ � Ak.n/.

(ii) For integers k � 1 and n � 0, Hk.n/ � Ak.nC k/.

Proof. We prove (i) by induction on n. The inequality certainly holds for n D 2 since,
by (6), Hk.2/ D H .akak�1ak�1ak�2/ � 4 D Ak.2/. Now let n0 > 2 and suppose
that (i) holds for n < n0. Applying (4), (15) and (20), together with Lemma 3.2 (i),
we calculate that Hk.n

0/ D Hk.n
0 � 1/ C �k.Hk.n

0 � 1// � �k.Hk.n
0 � 1// �

�k.Ak.n
0�1// � Ak�1.Ak.n

0�1// D Ak.n
0/. Thus the inequality holds for n D n0,

completing the proof of (i).
For (ii), we prove the stronger claim that, for all k � 1, n � 0,

Hk.n/ � Ak.nC k/ � k: (23)

The proof is by simultaneous induction on k and n. Since A1.n/ D 2n and
H1.n/ D n, it is straightforward to check that (23) holds if k D 1. The inequality
holds if n D 0 since, by (7), Hk.0/ D 0 � k D A1.k/ � k � Ak.k/ � k. Now let
k0 > 1 and n0 > 0 and suppose, as an inductive hypothesis, that (23) holds if k < k0
or if k D k0 and n < n0. We calculate that

Hk0.n0/ D Hk0.n0 � 1/C �k0.Hk0.n0 � 1// by (15)

� Hk0.n0 � 1/C Ak0�1.Hk0.n0 � 1/C k0/
� Hk0.n0 � 1/ � k0 by Lemma 3.2 (ii)
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D Ak0�1.Hk0.n0 � 1/C k0/ � k0

� Ak0�1.Ak0.n0 C k0 � 1// � k0 by (8)

D Ak0.n0 C k0/ � k0 by (4).

Thus the inequality holds if .k; n/ D .k0; n0/, completing the proof of (23). �

4. Freeness of the subgroups H and Hk

In this section we prove:

Proposition 4.1. The subgroup Hk of Gk is free with free basis a1t; : : : ; akt , and
the subgroupH of G is free with free basis a1t; a2t; : : : .

To facilitate an induction argument, we will prove the following more elaborate
proposition. Proposition 4.1 will follow because if w D w.a1t; : : : ; akt / is freely
reduced and represents 1 in Gk (or, equivalently, in G), then w D " by conclusion
(i), and so a1t; : : : ; akt are each not the identity and satisfy no non-trivial relations.

Proposition 4.2. Let u D u.a1t; : : : ; akt / be a freely reduced word with free-by-
cyclic normal form vt r – that is, u D vt r in Gk , v D v.a1; : : : ; ak/ is reduced, and
r 2 Z.

(i) If v D ", then u D ".

(ii) If v D �.akC1
�1/�1�r.akC1/ in F.a1; a2; : : :/, then u D ".

(iii) If v is positive, then u is positive.

We emphasise that we are considering u as a word on the ai t – it is freely reduced
if and only if it contains no subword .ai t /

˙1.ai t /
�1.

Proof of Proposition 4.2. We first show that for all fixed k � 1, if (iii) holds, then so
do (i) and (ii).

For (i), note that if u D t r in G, then u�1 D t�r . Thus (iii) implies that both of
the freely reduced words u and u�1 are positive. Hence u D ".

For (ii), we will separately consider the cases r D 0, r < 0, and r > 0. If r D 0,
thenu D 1 inG and henceu D " by (i). If r < 0, then 1�r � 1 and so �1�r.akC1/ D
akC1akw in F.a1; a2; : : :/ for some positive word w D w.a1; : : : ; ak/. It follows
that v is positive and therefore (iii) implies that u is positive. Thus r � 0, giving
a contradiction. If r > 0, one calculates that u�1 D t�r�1�r.akC1

�1/�.akC1/ D
�.akC1

�1/�1Cr.akC1/t
�r in F.a1; a2; : : :/. Since 1 C r � 1, the reduced form

of �.akC1
�1/�1Cr.akC1/ is positive, and so (iii) implies that u�1 is positive. Thus

�r � 0, giving a contradiction.
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We now prove (iii) by induction on k. Since G1 is free abelian with basis
a1; t , it is easy to check that (iii) holds in the case k D 1. As an inductive hy-
pothesis, assume that assertions (i), (ii) and (iii) all hold for smaller values of k.
If u contains no occurrence of an .akt /

˙1, then we are done. Otherwise, write
u D �0.akt /

�1�1.akt /
�2 : : : .akt /

�m�m, where each �i D �i .a1t; : : : ; ak�1t / and
each �i 2 f˙1g.

Each �i has free-by-cyclic normal form 	i t
si for some 	i D 	i .a1; : : : ; ak�1/ and

some si 2 Z. Direct calculation of the normal form of u – moving all the t˙1 to the
right-hand end and applying the automorphism ��1 whenever a t˙1 is moved past a
letter ai – gives that v freely equals

v0 ´ 	0 �
�1.ak

�1/ ��1.	1/ �
�2.ak

�2/ : : : ��m.ak
�m/ ��m.	m/;

where


i D
´

�.s0 C : : :C si�1 C �1 C : : :C �i�1/ if �i D 1,

�.s0 C : : :C si�1 C �1 C : : :C �i / if �i D �1,

�i D �.s0 C : : :C si�1 C �1 C : : :C �i /:

We claim that �i D 1 for all i . For a contradiction, suppose otherwise. Ob-
serve that, for each s 2 Z, there are words ws D ws.a1; : : : ; ak�1/ and w0

s D
w0

s.a1; : : : ; ak�1/ such that � s.ak/ D akws and � s.ak
�1/ D w0

sak
�1. Since v is

positive, there must be a subword ak
˙1� ak

�1 in v0 which freely equals the empty
word and in which � D �.a1; : : : ; ak�1/. The way this subword must arise is that
for some i , either

(a) �i D �1, �iC1 D 1 and ��i .	i / D 1, or

(b) �i D 1, �iC1 D �1 and ��i .ak/ �
�i .	i / �

�iC1.ak
�1/ D 1.

In the first case 	i D 1 and hence the induction hypothesis (assertion (i)) gives
that �i D ". But this contradicts the supposition that u is freely reduced. In the
second case, one calculates that 
i � �i D 1 and 
iC1 � �i D 1 � si , and so 	i D
�.ak

�1/�1�si .ak/. The induction hypothesis (assertion (ii)) implies that �i D ", but
again this contradicts the supposition that u is freely reduced.

To complete our proof of (iii), we will show that all the �i are positive. Since
v is positive and each �i D 1, we have that 	0 is positive and each ��i .ak/ �

�i .	i /

is positive. The inductive hypothesis (assertion (iii)) immediately gives that �0 is
positive. Suppose we have shown that �0; : : : ; �j �1 are positive, for some j . It
follows that s0; : : : ; sj �1 � 0, whence 
j � 0. Note that if w D w.a1; : : : ; ak/ is
positive and s � 0, then � s.w/ is positive. Hence ak�

�j ��j .	j / D ak�
�1.	j / is

positive. Since ��1.	j / is a word on a1
˙1; : : : ; ak�1

˙1, it follows that ��1.	j / is
positive, and hence that 	j is positive. Applying the induction hypothesis (assertion
(iii)) gives that �j is positive. �
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5. A lower bound on the distortion of Hk in Gk

In the following lemma we see the battle between Hercules and the hydra manifest
in Gk .

Lemma 5.1. For all k; n � 1, there is a positive word uk;n D uk;n.a1t; : : : ; akt / of
length Hk.n/ that equals ak

ntHk.n/ in Gk .

Proof. Consider the following calculation in which successive t are moved to the
front and paired off with the ai . [We illustrate the calculation in the case k � 3 and
n � 2 – for k D 2, the letters ak�2 would not appear and for k D 1, neither would
the ak�1.]

ak
ntHk.n/ D .akt / t

�1ak
n�1t tHk.n/�1

D .akt / .akak�1/
n�1 tHk.n/�1

D .akt / .akt / t
�1ak�1.akak�1/

n�2t tHk.n/�2

D .akt / .akt / ak�1ak�2.akak�1ak�1ak�2/
n�2 tHk.n/�2

:::

A van Kampen diagram displaying this calculation in the case k D 2 and n D 4 is
shown in Figure 1.

t t t t t t

a2

a2

a2

a2

a2 a2 a2
a2 a1a1

a1a1a1a1a1a1a1a1a1

t
t

t
t

t
t

t
t

t
t

t
t

t
t

t

t ttttt tt t

Figure 1. A van Kampen diagram showing that a2
4t15 D u2;4 in G2 where u2;4 D

a2t a2t a1t a2t .a1t /
3 a2t .a1t /

7.

One sees the Hercules-versus-the-hydra battle

ak
n ! .akak�1/

n�1 ! ak�1ak�2.akak�1ak�1ak�2/
n�2 ! � � �
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being played out in this calculation. The pairing off of a t with an ai corresponds to a
decapitation, and the conjugation by t that moves that t into place from the right-hand
end causes a hydra-regeneration for the intervening subword. So by Proposition 1.1,
after Hk.n/ steps we have a positive word on uk;n D uk;n.a1t; : : : ; akt /, and its
length is Hk.n/. �

Our next proposition establishes that DistGk

Hk
� Hk for all k � 2. The case

k D 1 is straightforward: H1 Š Z is undistorted in G1 Š Z2 and H1.n/ D n. The
calculation in the proof of the proposition is illustrated by a van Kampen diagram in
Figure 2 in the case k D 2 and n D 4 – the idea is that a copy of the diagram from
Figure 1 fits together with its mirror image along intervening a1- and a2-corridors
to make a diagram demonstrating the equality of a freely reduced word of extreme
length on a1t; : : : ; akt with a short word on a1; : : : ; ak; t .

Proposition 5.2. For all k � 2 and n � 1, there is a reduced word of length
2Hk.n/ C 3 on the free basis a1t; : : : ; akt for Hk which, in Gk , equals a word of
length 2nC 4 on a1; : : : ; ak; t .

Proof. As t commutes with a1 in Gk , it also commutes with a2ta1a2
�1. So

t�Hk.n/a2ta1a2
�1tHk.n/ D a2ta1a2

�1 D .a2t / .a1t / .a2t /
�1;

and then by Lemma 5.1,

ak
na2 ta1 a2

�1ak
�n D uk;n .a2t / .a1t / .a2t /

�1 uk;n
�1:

The word on the left has length 2nC 4. The word on the right, viewed as a word on
a1t; : : : ; akt , is freely reduced and has length 2Hk.n/ C 3, since uk;n is a positive
word. �

4
4a2 a2

a2 a2

a2a2

a1

a1

t

t tu2;4 u2;4

Figure 2. A van Kampen diagram demonstrating the equality a2
4 a2ta1a2

�1a2
�4 D

u2;4 .a2t / .a1t / .a2t /
�1u2;4

�1 in G2.
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6. Recursive structure of words

This section contains preliminaries that will feed into the proof, presented in Section 8,
that DistGk

Hk
� Ak . Here is an outline of how we will bound the distortion of Hk in

Gk . We will first suppose u D u.t; a1; : : : ; ak/ represents an element ofHk . We will
shuffle all the t˙1 in u to the start, with the effect of applying �˙1 to each ai

˙1 they
pass. After freely reducing, we will have a word t rw where w D w.a1; : : : ; ak/.
We will then look to carry the t r back through w from left to right, converting all
it passes to a word on a1t; : : : ; akt . Estimating the length of this word will give an
upper bound on DistGk

Hk
.

For convenience, we work with the group G and its subgroup H defined in Sec-
tion 1.2.

When carrying the power of t through w we will face the problem of whether a
word t rw, where w D w.a1; a2; : : :/, represents an element of a coset Ht s in G for
some s 2 Z. We will see that the answer is not always affirmative – these cosets do
not coverG. However, if t rw D �t s for some � D �.a1t; a2t; : : :/ and some s 2 Z,
then � is unique up to free-equivalence since H is free (Proposition 4.1) and s is
unique by our next lemma. Indeed, we learn that Ht s1 and Ht s2 are equal precisely
when s1 D s2.

Lemma 6.1. If ` 2 Z and t` 2 H , then ` D 0.

Proof. Were t` 2 H for some integer ` ¤ 0, then Z2 Š ha1t; t
`i would be a

subgroup of H contrary to the freeness of H established in Proposition 4.1. �

Our next lemma will be the crux of our method for establishing an upper bound
on distortion. It identifies recursive structure that will allow us to analyse the process
of passing a power of t through a word w D w.a1; a2; : : :/, so as to leave behind a
word on a1t; a2t; : : : .

For a non-empty freely-reduced word w D w.a1; a2; : : :/, define the rank of w
to be the highest k such that ak

˙1 occurs in w. We define the empty word to have
rank 0. For an integer k � 1, define a piece of rank k to be a freely-reduced word
ak

�1
ak
��2 where 
 D 
.a1; : : : ; ak�1/ and �1; �2 2 f0; 1g. Notice that a piece of

rank k will always also be a piece of rank k C 1 and that the empty word is a piece
of rank k for every k.

For a non-empty freely-reduced word w of rank k, define the number of pieces in
w to be the least integerm such thatw can be expressed as a concatenationw1 : : : wm

of subwords wi each of which is a piece of rank k. (We say the empty word is
composed of 0 pieces.) Observe that

(i) each ak and ak
�1 in w is the first or last letter of some wi , respectively;

(ii) for i D 1; : : : ; m � 1, either the final letter of wi is ak
�1 or the first of wiC1 is

ak , but never both; and
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(iii) if ak
�1�ak is a subword of w and � D �.a1; : : : ; ak�1/, then � D wi for

some i .

In particular, w1, …, wm are uniquely determined by the locations of the ak
˙1 in w,

and so we call the list of subwords w1; : : : ; wm the partition of w into pieces.
For example, w WD a3

�1a1a2a3a2
�1a3a1

�1a3
�1 has rank 3 and its partition

into pieces is w D w1w2w3w4 where w1 D a3
�1, w2 D a1a2, w3 D a3a2

�1, and
w4 D a3a1

�1a3
�1.

Lemma 6.2. Suppose w D w.a1; : : : ; ak/ is a non-empty freely-reduced word of
rank k and r and s are integers such that t rw 2 Ht s . Let w D w1 : : : wn be the
partition of w into pieces. Then there exist integers r D r0; r1; : : : ; rn D s such that
t riwiC1 2 Ht riC1 for each i .

Proof. As t rw 2 Ht s , there is some reduced word v D v.a1t; : : : ; akt / such that
t rw D vt s . Form the analogue of a partition into pieces for v – that is, express v as
a concatenation v1 : : : vm of subwords vi each of the form .akt /

�1 	 .akt /
��2 where

	 D 	.a1t; : : : ; ak�1t / and �1; �2 2 f0; 1g and m is minimal.
Note that v is non-empty as otherwise w would equal t s�r in G and so be the

empty word by the free-by-cyclic structure of G. Note also that no vi is the empty
word since m is minimal.

One can obtain t rw from vt s by carrying all the t˙1 to the left and freely reducing.
More particularly, the t s at the end of vt s and all the t˙1 in vm can be collected
immediately to the left of vm, and then those t˙1 and the t˙1 in vm�1 can be carried
to the left of vm�1, and so on. Accordingly, inductively define w0

m; : : : ; w
0
1 and

rm; : : : ; r0 by setting rm WD s and then, for i D m; : : : ; 1, taking ri�1 and w0
i D

w0
i .a1; : : : ; ak/ to be the unique integer and reduced word such that vi t

ri D t ri�1w0
i .

Then r0 D r and w is (a priori) the freely reduced form of w0
1 : : : w

0
m. We claim that,

in fact, w0
1 : : : w

0
m is the partition of w into pieces of rank k – that is, m D n and

w0
i D wi for all i . This will suffice to establish the lemma.

To prove this claim, we will show that for all i , if vi D .akt /
�1 	 .akt /

��2 where
	 D 	.a1t; : : : ; ak�1t / and �1; �2 2 f0; 1g, then w0

i is a reduced word ak
�1 
 ak

��2

for some 
 D 
.a1; : : : ; ak�1/. Moreover, if �1 D �2 D 0, then 
 is not the empty
word. In particular, no w0

i is the empty word.
Well, vi t

ri D t ri�1w0
i . Consider the process of carrying each t˙1 in vi t

ri to the
front of the word, applying �˙1 to each aj they pass and then freely reducing, to give
t ri�1w0

i . Throughout this process, no new ak
˙1 are produced and, such is � , no al

appears to the left of the ak in vi (if present) or to the right of the ak
�1 (if present) –

see (2) and Lemma 7.1. This means that the only way w0
i could fail to be a reduced

word of the form ak
�1 
 ak

��2 where 
 D 
.a1; : : : ; ak�1/, would be for �1 and �2

to both be 1 and 
 be the empty word. But in that case, w0
i would be the empty word

and so vi would equal t ri�1�ri in Gk and ri�1 � ri would be 0 by Lemma 6.1. But
then vi would be the empty word by Proposition 4.1 which, as we observed, is not the
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case. Likewise, when �1 D �2 D 0, it cannot be the case that 
 D w0
i is the empty

word, as otherwise vi would again be the empty word.
So properties (i), (ii) and (iii) all apply to w0

1, …, w0
m as they are inherited the

corresponding properties for v1, …, vm. It follows from these properties together
with the fact that each w0

i is reduced, that w0
1 : : : w

0
m is reduced and is the partition of

w into pieces of rank k. �

7. Passing powers of t through �n.ak
˙1/

The words �n.ak
˙1/will play a crucial role in our proof that DistGk

Hk
� Ak . The next

lemma reveals their recursive structure. The first part is proved by an induction on n.
The second part is then an immediate consequence.

Lemma 7.1.

�n.ak/ D

8̂<
:̂
ak �

0.ak�1/ �
1.ak�1/ : : : �

n�1.ak�1/; n > 0;

ak; n D 0;

ak �
�1.ak�1

�1/ ��2.ak�1
�1/ : : : �n.ak�1

�1/; n < 0;

�n.ak
�1/ D

8̂<
:̂
�n�1.ak�1

�1/ �n�2.ak�1
�1/ : : : �0.ak�1

�1/ ak
�1; n > 0;

ak
�1; n D 0;

�n.ak�1/ �
nC1.ak�1/ : : : �

�1.ak�1/ ak
�1; n < 0:

When attempting to carry a power of t through a word w D w.a1; a2; : : :/, we
will frequently be faced with the special case where w is of the form �n.ak

˙1/. We
now focus on this situation.

Definition 7.2. Define
ƒ D

[
i2Z

Ht i :

For each integer k � 1, define

Sk D fn 2 Z W �n.ak/ 2 ƒg
and define the function �k W Sk ! Z by setting �k.n/ to be the unique integer
satisfying

�n.ak/t
�k.n/ 2 H:

Note that this extends the previous definition of the functions�k given in Section 3
since �k.n/ D H .�n.ak// for n � 0.
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Lemma 7.3. (i) S1 D Z and �1.n/ D 1 for all n 2 S1.

(ii) S2 D Z and �2.n/ D nC 1 for all n 2 S2.

(iii) If k � 3, then Sk D N.

Proof. It is easy to check that S1 D S2 D Z, �1.n/ D 1, �2.n/ D n C 1 and that
N 	 Sk for all k.

Let k � 3 and suppose that n < 0 lies inSk . Since �n.ak/t
�k.n/ lies inH , so does

.akt /
�1�n.ak/t

�k.n/ D ak�1
�1��1.ak�1

�1/ : : : �nC1.ak�1
�1/t�k.n/�1, and hence,

by Lemma 6.2, ak�1
�1 lies in Ht r for some r . It follows that ��r.ak�1/t

r 2 H

and so r D �k�1.�r/. If k D 3, this is a contradiction, since it implies r D �r C 1.
If k > 3, then �r 2 Sk�1, and so, by the induction hypothesis, r � 0. But then
�k�1.�r/ � 1, by (18), and hence r � 1, a contradiction. �

LetdH denote the word metric onH with respect to the generating seta1t; a2t; : : : .

Lemma 7.4. If n 2 Sk and h D �n.ak/t
�k.n/, then dH .1; h/ D �k.jnj/.

Proof. If k D 1, then the result is obvious. If k D 2, then h D a2a1
ntnC1 D

.a2t /.a1t /
n so dH .1; h/ D 1C jnj D �k.jnj/. If k � 3, then n � 0. Thus the word

�n.ak/ is positive and hence dH .1; h/ D �k.n/ D �k.jnj/. �

Lemma 7.5. (i) Let h D t r� i .ak/t
�s . Then h 2 H if and only if i � r 2 Sk and

s D r � �k.i � r/.
(ii) Let h D t r� i .ak

�1/t�s . Then h 2 H if and only if i � s 2 Sk and r D
s � �k.i � s/.

Proof. For (i), note that h D � i�r.ak/t
r�s and apply Definition 7.2. For (ii), note

that h�1 D t s� i .ak/t
�r and apply (i). �

Lemma 7.6. If k � 3 and t r� i .ak
�1/ 2 ƒ, then r < i .

Proof. If t r� i .ak
�1/ 2 Ht s , then Lemmas 7.3 and 7.5 give that i � s � 0 and

s � r D �k.i � s/ � 1. Thus i � r � 1. �

The exceptional nature of S1 and S2 highlighted by Lemma 7.3 means that small
values of k will have to be treated separately in our proof. This motivates the inclusion
of the following result, a special case of Lemma 7.5. Note in particular that (ii) implies
that t r� i .a2

�1/ 2 ƒ if and only if r C i is odd.

Lemma 7.7. (i) Let h D t r� i .a2/t
�s . Then h 2 H if and only if s D 2r � i � 1.

(ii) Let h D t r� i .a2
�1/t�s . Then h 2 H if and only if s D 1

2
.r C i C 1/.
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Proof. This follows immediately from Lemma 7.5 and the fact, given in Lemma 7.3,
that �2.n/ D nC 1. �

The following result concerns passing a power of t through a sequence of terms of
the form � i .a2

˙1/. The statement is made neater by the use of the following formula,
which is a consequence of Lemma 7.1:

�a.a3
�1/�b.a3/ D

8̂<
:̂
�a.a2/ : : : �

b�1.a2/; a < b;

1; a D b;

�a�1.a2
�1/ : : : �b.a2

�1/; a > b:

Lemma 7.8. Let � D t r�a.a3
�1/�b.a3/ and s D 2b�a.r �a� 2/C bC 2 for some

integers r , a, b. Then � 2 ƒ if and only if s is an integer. Furthermore, in this case,
� 2 Ht s .
Proof. We split the proof into two claims. The first claim is that if � 2 Ht s

0

for
some integer s0, then s D s0. In particular, this implies that if � 2 ƒ, then s is an
integer. If a D b, then clearly s0 D r D s. If a < b, then �a.a3

�1/�b.a3/ D
�a.a2/ : : : �

b�1.a2/. By the Lemma 6.2, there exist integers r D r0; r1; : : : ; rb�a D
s0 such that t ri �aCi .a2/ 2 Ht riC1 . By Lemma 7.7, riC1 D 2ri � a � i � 1, which
solves to give ri D 2i .r�a�2/C iCaC2. Substituting i D b�a gives s0 D s. On
the other hand, suppose that a > b. Note that t r�a.a3

�1/�b.a3/ 2 Ht s0

implies that
t s

0

�b.a3
�1/�a.a3/ 2 Ht r . Since b < a, we can substitute into the above solution to

obtain r D 2a�b.s0 �b�2/CaC2, which rearranges to give s0 D s. This completes
the proof of our first claim.

The second claim is that if s is an integer, then � 2 Ht s . If a D b, then this
clearly holds. Suppose that a < b. Then � D t r�a.a2/ : : : �

b�1.a2/, so certainly
� 2 ƒ since all the letters a2

˙1 that appear are positive. Therefore � 2 Ht s by
the first claim. Now suppose that a > b. Since s is an integer, we can define
	 D t s�b.a3

�1/�a.a3/ D t s�b.a2/ : : : �
a�1.a2/. Then certainly 	 2 ƒ – say

	 2 Ht r
0

. By the first claim, r 0 D 2a�b.s � b � 2/ C a C 2 D r . Therefore
t s�b.a3

�1/�a.a3/ 2 t r , whence t r�a.a3
�1/�b.a3/ 2 Ht s , and the second claim is

proved. �

8. An upper bound on the distortion of Hk in Gk

Next we turn to estimates associated with pushing a power of t from left to right
through a word w D w.a1; : : : ; ak/ or through a piece of w, so as to leave a word on
a1t; : : : ; akt times a power of t . We will need to keep track of both the length of that
word on the a1t; : : : ; akt and the power of t that emerges to its right. Accordingly,
let us define four families of functions,  k;l.n/, ‰k;l;p.n/, �k;l.n/, Kk;l;p.n/ for
integers k � 1 and l; p; n � 0.
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�  k;l.n/ is the least integerN such that if h 2 H is represented by a word t r
t�s

with 
 a piece of rank k, with `.
/ � l , and with jr j � n, then dH .1; h/ � N .

� ‰k;l;p.n/ is the least integer N such that if h 2 H is represented by a word
t rwt�s with w D w.a1; : : : ; ak/ a word of at most p pieces, with `.w/ � l ,
and with jr j � n, then dH .1; h/ � N .

� �k;l.n/ is the least integer N such that if 
 is a piece of rank k with `.
/ � l

and r is an integer with jr j � n and t r
 2 ƒ, then t r
 2 Ht s for some s with
jsj � N .

� Kk;l;p.n/ is the least integerN such that ifw is a word of rank at most k with at
most p pieces and with `.w/ � l and r is an integer with jr j � n and t rw 2 ƒ,
then t rw 2 Ht s for some s with jsj � N .

We will frequently make use, without further comment, of the fact that each of
these functions is increasing in k, l , p and n.

The main technical result of this section is the following proposition. In the
corollary that follows it we explain how the upper bound it gives on ‰k;l;p.n/ leads

to our desired bound DistGk

Hk
� Ak .

Proposition 8.1. For all k � 1, there exist integers Ck � 1 such that for all
l; p; n � 0,

�k;l.n/ � Ak�1.CknC Ckl/;

Kk;l;p.n/ � Ak�1
.p/.CknC Ckl/;

 k;l.n/ � Ak�1.CknC Ckl/;

‰k;l;p.n/ � Ak�1
.3p/.CknC Ckl/:

Corollary 8.2. For all k � 1, the distortion function ofHk in Gk satisfies

DistGk

Hk
� Ak :

Proof of Corollary 8.2. Since G1 Š Z2 and H1 Š Z, H1 is undistorted in G1 and

DistG1

H1
� A1. Now suppose that k � 2 and that u D u.a1; : : : ; ak; t / is a word of

length at most n representing an element of H . By carrying each t˙1 to the front,
we see that u is equal in Gk to t rw for some integer r and some freely reduced word
w D w.a1; : : : ak/. These satisfy jr j � n and `.w/ � Cnk for some integer C > 0

depending only on k – see, for example, Section 3.3 of [12].
We first show that the number of pieces ofw is at mostnC1. Indeed, the process of

carrying each t˙1 to the front of u has the effect of applying �˙1 to each ai it passes.
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The form of the automorphism � ensures that no new ak
˙1 are created by this process.

The number of occurrences of ak
˙1 in w, which we denote by `k.w/, is therefore at

mostn. Letw D w1 : : : wp be the partition ofw into pieces. Saywi D ak
��

i 
iak
��

C

i

where ��
i ; �

C
i 2 f0; 1g and
i D 
i .a1; : : : ; ak�1/. Observe that, for each i , precisely

one of �C
i and ��

iC1 is equal to 1. Indeed, if �C
i D ��

iC1 D 0, then the pieces wi and
wiC1 could be concatenated to form a single piece, contradicting the minimality of
p, and if �C

i D ��
iC1 D 1, then w would not be freely reduced. So

`k.w/ D
pX

iD1

.��
i C �C

i / D ��
1 C

p�1X
iD1

.�C
i C ��

iC1/C �C
n D ��

1 C p � 1C �C
n ;

whence p � `k.w/C 1 � nC 1.
Now,

dH .1; u/ D dH .1; t
rw/ � ‰k;`.w/;p.jr j/ � ‰k;C nk ;nC1.n/;

which is at most
Ak�1

.3nC3/.CkCn
k C Ckn/

by Proposition 8.1. Choose an integer N large enough that nk � 2n for n � N .
Then, for n � maxfN; 1g,

dH .1; u/ � Ak�1
.3nC3/.CkCA2.n/C Ckn/ by (8)

� Ak�1
.3nC3/.CkCAk.n/C Ckn/ by (7), (8)

� Ak�1
.3nC3/.Ak.CkCn/C Ckn/ by (8), (10)

� Ak�1
.3nC3/.Ak..CkC C Ck/n// by (8), (13)

D Ak..CkC C Ck C 3/nC 3/ by (4): �

Proposition 8.1 will follow from the relationships between  k;l.n/, ‰k;l;p.n/,
�k;l.n/ andKk;l;p.n/ set out in the next proposition. Of its claims, (26) and (29) are
the most challenging to establish; we postpone their proof to Proposition 8.4, which
itself will draw on Lemmas 8.5, 8.6 and 8.7.

Proposition 8.3. For integers k � 1 and l; p; n � 0,

�1;l.n/ � nC 1; (24)

Kk;l;p.n/ � max
q�p

l1C:::Clq�l

˚
�k;l1

.: : : �k;lq�1
.�k;lq

.n// : : :/
�
; (25)

�kC1;l.n/ � 2Kk;l;l.2�kC1.n//; (26)

 1;l.n/ � 1; (27)

‰k;l;p.n/ � p k;l.Kk;l;p.n//; (28)

 kC1;l.n/ � 3Kk;l;l.2�kC1.n//C‰k;l;l.2�kC1.n//: (29)
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Proof. We first establish (24) and (27). Consideration of the empty word gives that
�k;0.n/ D n and  k;0 D 0. Now suppose that l � 1 and note that the only pieces of
rank 1 are a1

˙1. If h D t ra1
˙1t�s lies in H , then dH .1; h/ D 1 and r � s D ˙1,

whence jsj � jr j C 1. Thus �1;l.n/ � nC 1 and  1;l.n/ D 1.
For (25) and (28), let h D t rwt�s where w D w.a1; : : : ; ak/ is a word of length

at most l with at most p pieces and jr j � n. Let w D w1 : : : wq be the partition of w
into pieces, where q � p. If h 2 H , then Lemma 6.2 implies that there exist integers
r D r0; r1; : : : ; rq D s and elements h1; : : : ; hq in H such that t ri�1wi D hi t

ri .
Thus jri j � �k;`.wi /.jri�1j/, whence

jsj � �k;`.wq/.: : : .�k;`.w1/.jr j// : : :/ � �k;`.wq/.: : : .�k;`.w1/.n// : : :/

and we obtain inequality (25). For inequality (28), note that

jri j � Kk;`.w1:::wi /;i .jr j/ � Kk;l;p.n/;

whence

dH .1; h/ �
qX

iD1

dH .1; hi / �
qX

iD1

 k;`.wi /.jri�1j/ � p k;l.Kk;l;p.n//:

Finally, (26) and (29) will follow from Proposition 8.4. �

We now derive Proposition 8.1 from Proposition 8.3. We first use (24), (25) and
(26) to obtain bounds on �k;l.n/ and Kk;l;p.n/ in terms of Ackermann’s functions.
We then derive bounds on  k;l.n/ and‰k;l;p.n/ from (27), (28) and (29), having fed
in our bounds on �k;l.n/ and Kk;l;p.n/.

Proof of Proposition 8.1. We will need the inequality, established in Lemma 3.2, that
for n � 0 and k � 2,

�k.n/ � Ak�1.nC k/: (30)

We first prove that there exist integers Dk � 1 such that

�k;l.n/ � Ak�1.DknCDkl/; (31)

Kk;l;p.n/ � Ak�1
.p/.DknCDkl/: (32)

Inequalities (24) and (25) together imply that K1;l;p.n/ � n C p. Thus (31) and
(32) hold in the case k D 1 with D1 D 1. Now suppose that k � 2 and that (31)
and (32) hold for smaller values of k. If l D 0, then, using (9), we calculate that
�k;l.n/ D n � Ak�1.n/. If l � 1, then

�k;l.n/ � 2Kk�1;l;l.2�k.n// by (26)

� 2Kk�1;l;l.2Ak�1.nC k// by (30)

� 2Ak�2
.l/.2Dk�1Ak�1.nC k/CDk�1l/
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� 2Ak�2
.l/.Ak�1.2Dk�1nCDk�1l C 2Dk�1k// by (8), (10), (13)

D 2Ak�1.2Dk�1nC .Dk�1 C 1/l C 2Dk�1k/ by (4)

� Ak�1.4Dk�1nC 2.Dk�1 C 1/l C 4Dk�1k/ by (10)

� Ak�1.4Dk�1nC Œ2.Dk�1 C 1/C 4Dk�1k�l/ by (8):

Taking Dk D maxf2.Dk�1 C 1/C 4Dk�1k; 1g, we obtain (31).

For (32) we calculate that

Kk;l;p.n/ � max
q�p

l1C:::Clq�l

˚
�k;l1

.: : : �k;lq�1
.�k;lq

.n// : : :/
�

by (25)

� max
q�p

l1C:::Clq�l

¹Ak�1. : : : Ak�1.Ak�1.DknCDklq/CDklq�1/ : : :/º
by (8)

� max
q�p

l1C:::Clq�l

²
Ak�1

.q/
�
DknCDk

qX
iD1

li

�³
by (8), (13)

� max
q�p

®
Ak�1

.q/.DknCDkl/
¯

by (8)

� Ak�1
.p/.DknCDkl/ by (9):

Next, we combine (27), (28) and (29) with (31) and (32) to deduce that there exist
integers Ek; Fk � 1 such that

 k;l.n/ � Ak�1.EknCEkl/; (33)

‰k;l;p.n/ � Ak�1
.3p/.FknC Fkl/: (34)

It follows from (27) and (28) that‰1;l;p.n/ � p. Thus (33) and (34) hold in the case
k D 1 with Ek D Fk D 1. Now suppose that k � 2 and that (33) and (34) hold for
smaller values of k. If l D 0, then  k;l.n/ D 0 � Ak�1.0/. If l � 1, then

 k;l.n/ � 3Kk�1;l;l.2�k.n//C‰k�1;l;l.2�k.n// by (29)

� 3Kk�1;l;l.2Ak�1.nC k//C‰k�1;l;l.2Ak�1.nC k// by (30)

� 3Ak�2
.l/.2Dk�1Ak�1.nC k/CDk�1l/

C Ak�2
.3l/.2Fk�1Ak�1.nC k/C Fk�1l/ by (32)

� 3Ak�2
.l/.Ak�1.2Dk�1.nC k/CDk�1l//

C Ak�2
.3l/.Ak�1.2Fk�1.nC k/C Fk�1l// by (8), (10),

(13)
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D 3Ak�1.2Dk�1.nC k/C .Dk�1 C 1/l/

C Ak�1.2Fk�1.nC k/C .Fk�1 C 3/l/ by (4)

� Ak�1.6Dk�1.nC k/C 3.Dk�1 C 1/l/

C Ak�1.2Fk�1.nC k/C .Fk�1 C 3/l/ by (10)

� Ak�1.2.3Dk�1 C Fk�1/.nC k/C .3Dk�1 C Fk�1 C 4/l/ by (12)

� Ak�1.2.3Dk�1 C Fk�1/nC .3.2k C 1/Dk�1 C .2k C 1/Fk�1 C 4/l/:

Taking Ek D 3.2k C 1/Dk�1 C .2k C 1/Fk�1 C 4, we obtain (33).
Ifp D 0or l D 0, then, using (9), we calculate that‰k;l;p.n/ D 0 � Ak�1

.3p/.0/.
If l; p � 1, then

‰k;l;p.n/ � p k;l.Kk;l;p.n// by (28)

� p k;l.Ak�1
.p/.DknCDkl// by (32)

� pAk�1.EkAk�1
.p/.DknCDkl/CEkl/

� pAk�1
.pC1/.DkEknC .Dk C 1/Ekl/ by (8), (9), (10), (13)

� Ak�1
.2pC1/.DkEknC .Dk C 1/Ekl/ by (11);

� Ak�1
.3p/.DkEknC .Dk C 1/Ekl/ by (9).

Taking Fk D .Dk C 1/Ek , we obtain (34).
Finally, the proof is completed by taking Ck D maxfDk; Ek; Fkg and apply-

ing (8). �

The remainder of this section is devoted to establishing (26) and (29). This is
done in Proposition 8.4, which draws on Lemmas 8.5, 8.6 and 8.7 that follow. We
now outline our strategy.

Suppose that t rak
�1wak

��2 t�s , where r; s 2 Z, �1; �2 2 f0; 1g and w D
w.a1; : : : ; ak�1/, represents an element h 2 H . Our approach will be to find el-
ements h1; h2 2 H , integers r 0; s0 and a word w0 D w0.a1; : : : ; ak�1/ such that h is
represented by h1t

r 0

w0t�s0

h2. The functionsKk�1;�;� and‰k�1;�;� will then control
the behaviour of the subword t r

0

w0t�s0

. Together with estimates for dH .1; hi /, jr 0j,
js0j and `.w0/, this will allow us to derive bounds on jsj and dH .1; h/.

As indicated by Lemma 7.3, the case k D 2 is exceptional and so will be treated
separately. For k � 3, the h1, h2 r

0, s0 and w will be produced by Lemma 8.5. This
lemma takes integers k, n and �, with k � 3 and � 2 f0; 1g, and gives an integer n0,
an element h 2 H and a word u D u.a1; : : : ; ak�1/ such that tnak

� D htn
0

u in G.
Applying Lemma 8.5 to k, r and �1 will produce r 0, h1 and a word u1. Applying
Lemma 8.5 to k, s and �2 will produce s0, h2

�1 and a word u2. The word w0 will
then be defined to be the free reduction of Qw WD u1wu2

�1.
The relationship between the input and output of Lemma 8.5 is determined by

which of the following holds:
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(i) � D 0,

(ii) � D 1 and n � 0, or

(iii) � D 1 and n > 0.

A priori, this would lead to us having to consider nine distinct cases, depending on
the values of �1 and �2 and the signs of r and s. To streamline the process, Lemma 8.5
packages (i) and (ii) together: it considers the cases that either n� � 0 or n� > 0. As
such, we need now only consider four cases, depending on the signs of r�1 and s�2.

The form of Qw will depend on which of (i), (ii) or (iii) applies to r and �1 and to s
and �2. Lemmas 8.6 and 8.7 will be brought to bear to ensure that enough cancellation
occurs to obtain a sufficiently strong bound on `.w0/.

Proposition 8.4. Let h D t rak
�1wak

��2 t�s where k � 2, �1; �2 2 f0; 1g, and
w D w.a1; : : : ; ak�1/. Let n and l be integers with jr j � n and `.w/ � l . If h 2 H ,
then

jsj � 2Kk�1;l;l.2�k.n//;

dH .1; h/ � 3Kk�1;l;l.2�k.n//C‰k�1;l;l.2�k.n//:

Proof. We claim that there exist h1; h2 2 H , r 0; s0 2 Z and w0 D w0.a1; : : : ; ak�1/

such that h D h1t
r 0

w0t�s0

h2 in G and

jr 0j � 2�k.n/; (35)

jsj � js0j C 1; (36)

dH .1; h1/ � jr 0j C 1; (37)

dH .1; h2/ � js0j C 1; (38)

`.w0/ � l: (39)

The result follows from the claim by direct calculation. Indeed, since the number
of pieces of a word is bounded by its length,

js0j � Kk�1;`.w0/;`.w0/.jr 0j/; (40)

dH .1; t
r 0

w0t�s0

/ � ‰k�1;`.w0/;`.w0/.jr 0j/: (41)

We will also need the inequality

Kk;l;p.n/ � n; (42)

which follows immediately from consideration of the empty word. We can now
calculate that

jsj � js0j C 1 by (36)

� Kk�1;`.w0/;`.w0/.jr 0j/C 1 by (40)

� Kk�1;l;l.2�k.n//C 1 by (35), (39)

� 2Kk�1;l;l.2�k.n// by (18), (42)
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and

dH .1; h/ � dH .1; h1/C dH .1; t
r 0

w0t�s0

/C dH .1; h2/

� jr 0j C 1C‰k�1;`.w0/;`.w0/.jr 0j/C js0j C 1 by (37), (38), (41)

� 2�k.n/C 1C‰k�1;l;l.2�k.n//CKk�1;`.w0/;`.w0/.jr 0j/C 1

by (35), (39), (40)

� 4�k.n/C‰k�1;l;l.2�k.n//CKk�1;l;l.2�k.n// by (18), (35), (39)

� 3Kk�1;l;l.2�k.n//C‰k�1;l;l.2�k.n// by (42).

We first prove the claim for k D 2. Since tqa2 D .a2t /.a1t /
�qt2q�1, we can

take w0 to be w and define h1, h2, r 0 and s0 by

h1 D
´
1;

.a2t /.a1t /
�r ;

�1 D 0;

�1 D 1;
r 0 D

´
r;

2r � 1;
�1 D 0;

�1 D 1;

h2 D
´
1;

.a1t /
�s.a2t /

�1;

�2 D 0;

�2 D 1;
s0 D

´
s;

2s � 1;
�2 D 0;

�2 D 1:

Inequalities (36) and (39) are immediate. For (35), use the fact, from Lemma 7.3, that
�2.n/ D nC1. Inequality (37) is immediate if �1 D 0. If �1 D 1, then r D 1

2
.r 0 C1/,

whence jr j � 1
2
.jr 0jC1/. But r 0 ¤ 0, so jr j � jr 0j anddH .1; h1/ D jr jC1 � jr 0jC1.

Inequality (38) is derived similarly.
We now prove the claim for k � 3. First apply Lemma 8.5 to k; r; �1 to produce

r 0, h1 and a word u1. Then apply it to k; s; �2 to produce s0, h2
�1 and a word u2.

Defining Qw WD u1wu2
�1, we have that h is represented by h1t

r 0 Qwt�s0

h2 and hence
that t r

0 Qwt�s0 2 H . It is immediate from the bounds given in Lemma 8.5 that (35)–
(38) hold. Finally, we define w0 to be the free reduction of Qw. To establish (39), we
consider four cases.

Case r�1 � 0, s�2 � 0. We have that Qw D w and so it is immediate that
`.w0/ � `.w/.

Case r�1 > 0, s�2 � 0. We have that Qw D � r�1.ak�1
�1/ : : : �0.ak�1

�1/w.
Since t r

0

� r�1.ak�1
�1/ does not lie inƒ, applying Lemma 6.2 to t r

0 Qwt�s0

shows that,
when Qw is freely reduced, each ak�1

�1 in � r�1.ak�1
�1/ : : : �0.ak�1

�1/ cancels into
w. It follows from Lemma 8.7 that `.w0/ � `.w/.

Case r�1 � 0, s�2 > 0. We have that Qw D w�0.ak�1/ : : : �
s�1.ak�1/. Since

t s
0

� s�1.ak�1
�1/ does not lie in ƒ, applying Lemma 6.2 to t s

0 Qw�1t�r 0 2 H shows
that, when Qw is freely reduced, each ak�1 in �0.ak�1/ : : : �

s�1.ak�1/ cancels into
w. It follows from Lemma 8.7 that `.w0/ � `.w/.

Case r�1 > 0, s�2 > 0. We have that

Qw D � r�1.ak�1
�1/ : : : �0.ak�1

�1/w�0.ak�1/ : : : �
s�1.ak�1/:
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Neither t r
0

� r�1.ak�1
�1/ nor t s

0

� s�1.ak�1
�1/ lies inƒ, so we are in a position to ap-

ply Lemma 8.6. If case (i) of Lemma 8.6 occurs, then, when Qw is freely reduced, each
ak�1

�1 in � r�1.ak�1
�1/ : : : �0.ak�1

�1/ and each ak�1 in �0.ak�1/ : : : �
s�1.ak�1/

cancels into w. Applying Lemma 8.7 gives that `.w0/ � `.w/. On the other
hand, suppose that case (ii) of Lemma 8.6 occurs, so w0 is the free reduction of
� r�1.ak�1

�1/� s�1.ak�1/. We will show that r D s, whence w0 is the empty word
and trivially `.w0/ � l . If k D 3, then t r

0

w0t�s0 D t r�1� r�1.a2
�1/� s�1.a2/t

1�s D
t r�sa1

s�r in G. Since this element lies in H , r � s D s � r , whence r D s. If
k D 4, then t r

0

w0t�s0

is freely equal to t r�1� r�1.a3
�1/� s�1.a3/t

1�s . Since this lies
in H , applying Lemma 7.8 and solving the resulting equation gives r D s. Finally,
suppose that k > 4. Lemma 7.1 gives that

t r
0

w0t�s0 frD

8̂<
:̂
t r�1� r�1.ak�2/ : : : �

s�2.ak�2/t
1�s; r < s;

t r�s; r D s;

t r�1� r�2.ak�2
�1/ : : : � s�1.ak�2

�1/t1�s; r > s:

By Lemma 7.6, neither t r�1� r�2.ak�2
�1/ nor t s�1� s�2.ak�2

�1/ lies in ƒ, since
k�2 � 3. Thus, by Lemma 6.2, both r < s and s > r lead to a contradiction. Hence
r D s as required. �

Lemma 8.5. Given integers k; n; �, with k � 3 and � 2 f0; 1g, there exists an integer
n0, an element h 2 H and a word u D u.a1; : : : ; ak�1/ such that tnak

� D htn
0

u

in G,

jnj � 1 � jn0j � 2�k.jnj/ and dH .1; h/ � maxfjn0j; 1g:
Furthermore,

(i) if n� � 0, then u is the empty word;

(ii) if n� > 0, then n0 D n � 1,
u D �n�1.ak�1

�1/ : : : �0.ak�1
�1/ and tn

0

�n�1.ak�1
�1/ … ƒ:

Proof. We consider three cases.
Case � D 0. We trivially obtain an instance of conclusion (i) by taking n0 D n,

h D 1 and u to be the empty word. The upper bound on jn0j follows from (18)
and (21).

Case � D 1 and n � 0. Following the calculation

tnak D ��n.ak/t
n D ��n.ak/t

�k.jnj/tn��k.jnj/;

we obtain an instance of conclusion (i) by takingn0 D n��k.jnj/, hD ��n.ak/t
�k.jnj/

and u to be the empty word. It follows immediately from the definition of the function
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�k that h 2 H and from Lemma 7.4 that dH .1; h/ D �k.jnj/. By (18), �k.jnj/ is
positive whence jn0j D jnj C �k.jnj/ and dh.1; h/ � jn0j. Applying (18) and (21)
gives jnj C 1 � jn0j � 2�k.jnj/.

Case � D 1 and n > 0. Following the calculation

tnak D akak
�1tnak D akt

n�n.ak
�1/ak D .akt /t

n�1�n�1.ak�1
�1/ : : : �0.ak�1

�1/

we obtain an instance of conclusion (ii) by taking n0 D n � 1, h D .akt / and

u D �n�1.ak�1
�1/ : : : �0.ak�1

�1/:

The upper bound on jn0j follows from (18) and (21). The fact that tn
0

�n�1.ak�1
�1/

does not lie in ƒ follows from Lemmas 7.6 and 7.7. �

Lemma 8.6. Let � D t r�a.ak
�1/ : : : �0.ak

�1/w�0.ak/ : : : �
b.ak/t

�s where w D
w.a1; : : : ; ak/ is freely reduced and a; b � 0. Suppose � represents an element of
H but t r�a.ak

�1/ … ƒ and t s�b.ak
�1/ … ƒ. Then either

(i) w has a prefix �0.ak/ : : : �
a�1.ak/ak and suffix ak

�1�b�1.ak
�1/ : : : �0.ak

�1/,
or

(ii) w D �0.ak/ : : : �
a�1.ak/�

b�1.ak
�1/ : : : �0.ak

�1/.

Proof. Write l1 for the letter ak
�1 of the term �a.ak

�1/ of � and write l2 for the
letter ak of the term �b.ak/ of � . Lemma 6.2 implies that, when � is freely reduced,
both l1 and l2 cancel. Let l 0 be the letter ak that cancels with l1

If l 0 lies in w, then l2 must cancel with a letter to the right of l 0 in w, and we have
case (i).

On the other hand, suppose that l 0 lies in the subword �0.ak/ : : : �
b.ak/. If l 0 is

distinct from l2, then l2 must cancel with an ak
�1 lying to the right of l 0. But this is

a contradiction, since all the occurrences of ak
˙1 in �0.ak/ : : : �

b.ak/ are positive.
Thus l 0 D l2. Now �a�1.ak

�1/ : : : �0.ak
�1/w�0.ak/ : : : �

b�1.ak/ must be freely
trivial and we have case (ii). �

Lemma 8.7. Letw D �0.ak/ : : : �
r.ak/ where r � 0. Let l be the last ak appearing

in w and partition w as w D uv where u is the prefix of w ending with l and v is the
suffix of w coming after l . Then `.u/ � `.v/.

Proof. Note that u D �0.ak/ : : : �
r�1.ak/ak , and v D �0.ak�1/ : : : �

r�1.ak�1/ by
Lemma 7.1. It thus suffices to prove that `.� i .ak// � `.� i .ak�1// for i � 0. But
this follows by an easy induction on k from the structures of � i .ak/ and � i .ak�1/

respectively given by Lemma 7.1. �
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9. Groups with Ackermannian Dehn functions

Recall that�k is the HNN extension ofGk overHk in which the stable letter commutes
with all elements of Hk:

�k ´ ha1; : : : ; ak; t; p j t�1a1t D a1; t
�1ai t D aiai�1 .i > 1/;

Œp; ai t � D 1 .i > 0/i:

Proposition 9.1. The group �1 has Dehn function '-equivalent to n 7! n2.

Proof. Making the substitution ˛ D a1t shows that �1 is a right-angled Artin group
with presentation h˛; t; p j Œt; ˛�; Œp; ˛�i. It follows that �1 is CAT.0/ [16] whence
it has Dehn function '-equivalent to n2 by [13], Proposition 1.6.III.� . �

Proposition 9.2. For all k � 2, the group �k has Dehn function '-equivalent toAk .

Proof. Let k � 2. The Dehn function of a CAT.0/ group is either linear or quadratic
[11], Theorem 6.2.1, with the linear case occurring precisely when the group is
hyperbolic [11], Theorem 6.1.5. By Theorem 1.3, the groupGk is CAT.0/. However,
since it contains an embedded copy of Z2 it is not hyperbolic [11], Theorem 6.1.10.
The Dehn function of Gk is therefore quadratic. By Theorem 1.3, the distortion
function of Hk in Gk is '-equivalent to Ak . Plugging these two functions into
Theorem 6.20.III.� of [13] gives lower and upper bounds for the Dehn function of
�k of maxfn2; nAk.n/g and nAk.n/

2 respectively, up to '-equivalence. So, by (9),
the Dehn function of �k is between Ak.n/ and Ak.n/

3. But (14) implies that, for
any C � 1, the function n 7! Ak.n/

C is '-equivalent to Ak . �

The ideas behind [13], Theorem 6.20.III.� , used here are most transparent via the
tools of van Kampen diagrams and corridors. For example, towards the lower bound,
consider the words

vk;n ´ ak
na2 ta1 a2

�1ak
�n

of Section 5, which equal

wk;n ´ uk;n .a2t / .a1t / .a2t /
�1 uk;n

�1

in Gk . Observe that Œvk;n; p� D 1 in �k and that in any van Kampen diagram for
Œvk;n; p�, there must be a p-corridor connecting the two boundary edges labelled
by p. (Figure 3 is an example of such a diagram when k D 2 and n D 4.) The word
on a1t; : : : ; akt written along each side of this corridor must equal vk;n in Gk and
so freely equals wk;n. It follows that any van Kampen diagram for Œvk;n; p� has area
at least the length of wk;n, which is 2Hk.n/ C 3. So, as the length of Œvk;n; p� is
4nC 10, this leads to a lower bound of Ak.n/ ' Hk on the Dehn function of Gk .
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p p

v2;4

v2;4

Figure 3. A van Kampen diagram for Œv2;4; p� – an example of a word which represents the
identity in �k but can only be filled by a large area diagram.
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