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1. Introduction

Let k be an algebraically closed field of characteristic 0 and let G be a finite group.
A faithful G-variety is a variety with a faithful G-action. A compression is a G-
equivariant dominant rational map of faithfulG-varieties. Given a faithfulG-variety
X over k, the essential dimension of X , denoted edk.X/, is the minimum dimension
of Y over all compressions X Ü Y where Y is a faithful G-variety over k. The
essential dimension ofG, denoted edk.G/, is the maximum of edk.X/ over all faithful
G-varieties X over k.

The major result of this paper is a classification of all finite groups of essential
dimension 2 over an algebraically closed field of characteristic 0.

Loosely speaking, the essential dimension of a group is the minimal number of pa-
rameters required to describe its faithful actions. Essential dimension was introduced
by Buhler and Reichstein in [10]. Their main interest was to determine how much a
“general polynomial of degree n” can be simplified via non-degenerate Tschirnhaus
transformations. They showed that essential dimension of the symmetric group on
n letters, edk.Sn/, is the minimal number of algebraically independent coefficients
possible for a polynomial simplified in this manner.

The essential dimension of finite groups in general is of interest in Inverse Galois
Theory. Here one wants to construct polynomials over a field k with a given Galois
group G. Ideally, one wants polynomials that parametrize all fields extensions with
that group: the so-called generic polynomials (see [31] and [29]). The essential
dimension of G is a lower bound for the generic dimension of G: the minimal
number of parameters possible for a generic polynomial.
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Essential dimension has been studied in the more general contexts of algebraic
groups [43], algebraic stacks [8], and functors [5]. We restrict our attention to the
case of finite groups in this paper.

If H is a subgroup of G then ed.H/ � ed.G/; a similar inequality fails for
quotient groups [41], Theorem 1.5. The essential dimension of an abelian group is
equal to its rank [8], Theorem 6.1. The essential dimensions of the symmetric groups,
Sn, and alternating groups, An, are known for n � 7 and bounds exist for higher n
(see Theorems 6.5 and 6.7 of [8], Proposition 3.6 of [51] and [22]). It is a deep
result of Karpenko and Merkurjev [30] that the essential dimension of a p-group is
the minimal dimension of a faithful linear representation.

We use the notationD2n to denote the dihedral group of order 2n. Finite groups of
essential dimension 1were classified by Buhler and Reichstein in their original paper;
they are either cyclic or isomorphic to D2n where n is odd. There is a classification
for infinite base fields by Ledet [36] (see also Remark 3.2), and for arbitrary base
fields by Chu, Hu, Kang and Zhang [11].

We review what is known about groupsG of essential dimension 2. IfG contains
an abelian subgroup A then rank.A/ � 2. The Sylow p-subgroups Gp of G can be
described using the Karpenko–Merkurjev theorem: Gp must be abelian for all p odd,
and groups G2 must be of a very special form (see [41], Theorems 1.2 and 1.3). Any
subgroup of GL2.C/ or S5 has essential dimension � 2.

Finite groups of essential dimension 2 with non-trivial centres were classified
(implicitly) by Kraft, Lötscher and Schwarz (see [34] and [33]). They show that a
finite group with a non-trivial centre has essential dimension � 2 if and only if it can
be embedded in GL2.C/. Their main interest was in covariant dimension, a “regular”
analog of essential dimension. See also [44] and [38].

Our study of essential dimension uses the concept of a versalG-variety (defined in
Section 2). These are simply models of the versal torsors seen in Galois cohomology.
We will often say a G-action is versal if it gives rise to a versal G-variety. The key
fact is that if G is a finite group of essential dimension n then there exists a versal
unirational G-variety of dimension n.

To study essential dimension2, we only need to consider versal rationalG-surfaces
since unirational surfaces are always rational over an algebraically closed field of
characteristic 0. Furthermore, one canG-equivariantly blow-down sets of exceptional
curves to obtain a minimal model of a smooth G-surface. The minimal rational G-
surfaces were classified by Manin [39] and Iskovskikh [28] building on work by
Enriques: they either possess conic bundle structures or they are del Pezzo surfaces.
The use of the Enriques–Manin–Iskovskikh classification for computing essential
dimension was pioneered by Serre in his proof that edk.A6/ D 3 [51], Proposition 3.6.
Independently, Tokunaga [53] has also investigated versal rational surfaces.
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The dichotomy into conic bundle structures and del Pezzo surfaces is too coarse
to easily identify exactly which groups occur. Our current work was inspired by
Dolgachev and Iskovskikh’s [20] finer classification of such groups. Their goal was
to classify conjugacy classes of finite subgroups of the Cremona group of rank 2 (the
group of birational automorphisms of a rational surface). This problem has a long
history. The first classification was due to Kantor; an exposition of his results (with
some corrections) can be found in Wiman [54]. Unfortunately, this early classification
had several errors, and the conjugacy issue was not addressed. More recent work on
this problem include [3], [17], [55], [4] and [6].

Recall that the automorphism group of the algebraic group .C�/n is isomorphic
to GLn.Z/. Our main theorem is as follows:

Theorem 1.1. Let T D .C�/2 be a 2-dimensional torus. If G is a finite group of
essential dimension 2 then G is isomorphic to a subgroup of one of the following
groups:

(1) GL2.C/, the general linear group of degree 2;

(2) T Ì G1 with jG \ T j coprime to 2 and 3, G1 D ˝�
1 �1
1 0

�
;
�

0 1
1 0

�˛ ' D12;

(3) T Ì G2 with jG \ T j coprime to 2, G2 D ˝� �1 0
0 1

�
;
�

0 1
1 0

�˛ ' D8;

(4) T Ì G3 with jG \ T j coprime to 3, G3 D ˝�
0 �1
1 �1

�
;
�

0 �1�1 0

�˛ ' S3;

(5) T Ì G4 with jG \ T j coprime to 3, G4 D ˝�
0 �1
1 �1

�
;
�

0 1
1 0

�˛ ' S3;

(6) PSL2.F7/, the simple group of order 168;

(7) S5, the symmetric group on 5 letters.

Furthermore, any finite subgroup of these groups has essential dimension � 2.

A few remarks are in order.

Remark 1.1. We do not classify all versal minimal rational G-surfaces; we only
determine which groups appear. Different G-surfaces with the same group G may
not be equivariantly birationally equivalent. There exist two versal S5-surfaces that
are not equivariantly birationally equivalent: the Clebsch diagonal cubic (by a result
of Hermite, see [14], [47] and [32]) and the del Pezzo surface of degree 5 (see the
proof of Theorem 4.5). Other examples of this phenomenon can be found for abelian
groups [46], and for versal actions of S4 and A5 [2].

Remark 1.2. Essential dimension can be defined over any field. Dolgachev and
Iskovskikh’s classification, and many of our other references, take the base field to be
C. We shall see in Lemma 2.1 below that this is sufficient to handle any algebraically
closed field of characteristic 0.
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Remark 1.3. For algebraically closed fields of non-zero characteristic, the Enriques–
Manin–Iskovskikh classification still holds. However, the Dolgachev–Iskovskikh
classification no longer applies. Furthermore, unirational surfaces are not necessarily
rational in this case, so the classification may be inadequate. See [51] for related
discussion.

Remark 1.4. For non-algebraically closed fields of characteristic 0, we know that
any group of essential dimension 2 must appear in the list above (this is immediate
from Proposition 1.5 of [5]). However, the problem of determining which groups
appear is more complicated. It is possible that a versal G-surface over a field k may
not be defined over a subfield k0 while there may be another versal G-surface that
is defined over k0. A full classification of versal minimal rational G-surfaces would
remedy this situation.

Remark 1.5. For essential dimension 3, one might try to do something similar with
threefolds. The problem is significantly more difficult. First, even over C there exist
unirational threefolds that are not rational. Second, there is no analog of the Enriques–
Manin–Iskovskikh classification here, nor the Dolgachev–Iskovskikh classification.
In fact, until recently it was an open question as to whether all finite groups could be
embedded into the Cremona group of rank 3 [52], 6.0.

However, Prokhorov [42] shows that very few simple non-abelian groups can act
faithfully on unirational threefolds. The author [22] has applied Prokhorov’s work to
show that the essential dimensions of A7 and S7 are 4.

Remark 1.6. Note that, since unirational and rational coincide in dimension 2, for
every group G appearing above, there exists a versal G-variety X whose rational
quotient X=G is rational. This has consequences related to Noether’s problem. As
suggested by the referee, for any faithful linear representation V of a group G in
this list, the invariant field C.V /G is retract rational (see [48], [18] or Remark 5 (a)
in [31]). In addition, any such G possesses a generic polynomial with only two
parameters. Thus, the list above is also a complete classification of groups of generic
dimension 2.

The proof of Theorem 1.1 breaks into two mostly independent pieces. We show
that it suffices to consider only four surfaces:

Theorem 1.2. If G is a finite group of essential dimension 2 then G has a versal
action on the projective plane P 2, the product of projective lines P 1 � P 1, or the del
Pezzo surfaces of degree 5 and 6.

And we show that the groups with versal actions on these four surfaces are those
listed above (Theorem 4.5). As in Remark 1.1, we point out that Theorem 1.2 does
not classify minimal versal G-surfaces.
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We also mention some intermediary results that we feel are of independent interest.
Three of the four surfaces are toric varieties. In order to classify their versal actions,
we develop techniques that apply to smooth complete toric varieties in general. We
leverage the theory of Cox rings [15] and universal torsors [13]): a faithfulG-action
on a complete non-singular toric variety is versal if and only if it lifts to an action on
the variety of the associated Cox ring (Theorem 3.2).

This result has some important corollaries. First, if a complete non-singular toric
variety has a G-fixed point then it is versal (Corollary 3.5). Second, a complete non-
singular toric variety isG-versal if and only if it isGp-versal for all of itsp-subgroups
(Corollary 3.6). The assumption that the variety is toric may be gratuitous (see
Conjecture 3.7). This second corollary is instrumental in our proof of Theorem 4.5;
it reduces the study of versal toric surfaces to actions of 3-groups on P 2 and actions
of 2-groups on P 1 � P 1.

The rest of this paper is structured as follows. In Section 2, we recall basic
facts about versal varieties, essential dimension and the Enriques–Manin–Iskovskikh
classification. In Section 3, we develop tools for determining when a toric G-variety
is versal. In Section 4, we determine precisely which groups act versally on the
four surfaces of Theorem 1.2. In Section 5, we show that all groups acting versally
on conic bundle structures already act versally on the four surfaces. In Section 6,
we show the same for the del Pezzo surfaces. This proves Theorem 1.2 and, thus,
Theorem 1.1.

2. Preliminaries

Recall that the main theorem applies for any algebraically closed field of characteris-
tic 0. Nevertheless, for the rest of the paper, we will restrict our attention to C. This
is possible in view of the following lemma:

Lemma 2.1. Suppose G is a finite group and k is an algebraically closed field of
characteristic 0. Then edk.G/ D edC.G/.

Proof. This is just Proposition 2.14(1) of [8] since k and C both contain an algebraic
closure of Q. �

We will make no more reference to a general field k. All varieties, group actions
and maps will be defined over C unless it is explicitly stated otherwise. We write
ed.�/ instead of edC.�/ for the rest of the paper without risk of ambiguity.

2.1. Versal varieties

Definition 2.1. An irreducibleG-varietyX isG-versal (or just versal) if it is faithful
and, for any faithful G-variety Y and any non-empty G-invariant open subset U of
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X , there exists a G-equivariant rational map f W Y Ü U . We say an action of G is
versal, or that G acts versally, if the corresponding G-variety is versal.

Note that the versal property is a birational invariant: it is preserved by equivariant
birational equivalence. In fact, our definition of versal variety is equivalent to saying
that its generic point is a “versal torsor” as in [5], Definition 6.3, or [24], Definition 5.1.

Versal varieties are useful for studying essential dimension. If X is a versal G-
variety then ed.X/ D ed.G/ [5], Corollary 6.16. If X Ü Y is a compression of
faithful G-varieties and X is versal then so is Y [5], Corollary 6.14. Thus, if a versal
variety exists, there exists a versal variety X such that dim.X/ D ed.X/ D ed.G/.

Recall that a linear G-variety is a linear representation of G regarded as a G-
variety. Any faithful linearG-variety is versal [24], Example 5.4. Thus versal varieties
exist. In particular, the essential dimension of any finite group is bounded above by
the dimension of a faithful linear representation.

The versal property descends to subgroups:

Proposition 2.2. Suppose H is a subgroup of a finite group G. If X is a G-versal
variety then X isH -versal.

Proof. Clearly, a faithful G-action restricts to a faithful H -action. Consider any
faithful H -variety Y and any non-empty H -invariant open subset U of X . We need
to show the existence of an H -equivariant rational map f W Y Ü U . The set
U 0 D T

g2G g.U / is a G-invariant dense open subset of U . Since X is G-versal,
there exists a G-equivariant rational map  W V Ü U 0 from a faithful linear G-
variety V . Let W be a non-empty H -invariant open subset on which  is defined.
Note that V is H -versal since the restricted action still acts linearly. Thus there
exists an H -equivariant rational map � W Y Ü W . By composition, we obtain an
H -equivariant map f W Y Ü U as desired. �

The following result is one of our major tools:

Proposition 2.3. Let G be a finite group. If X is a proper versal G-variety then all
abelian subgroups of G have fixed points on X .

Proof. Note that the origin is a smooth fixed point of any linear G-variety V . Thus,
the result follows immediately by “going down” ([45], Proposition A.2). �

We recall various standard results on essential dimension which can be found in
[10]. We say that a dihedral group, D2n, of order 2n is an odd dihedral group if n is
odd, and an even dihedral group otherwise.

Proposition 2.4. Let G be a finite group.

(a) IfH is a subgroup of G then ed.H/ � ed.G/.
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(b) If G is abelian then ed.G/ D rank.G/.

(c) ed.G/ D 0 if and only if G is trivial.

(d) ed.G/ D 1 if and only if G is cyclic or odd dihedral.

The covariant dimension of a group G, denoted covdim.G/, is the minimal di-
mension of a faithfulG-varietyX such that there is a faithful linearG-variety V and
a dominant regularG-equivariant map V ! X . One may consider covariant dimen-
sion as a regular analog of essential dimension. The interested reader is directed to
the work of Kraft, Lötscher and Schwarz ([34], [33]). The following result follows
from the classification of groups of covariant dimension 2. We do not use the concept
of covariant dimension anywhere else in this paper.

Proposition 2.5. If G is a finite group of essential dimension 2 with a non-trivial
centre then G is isomorphic to a subgroup of GL2.C/. In particular, G has a versal
action on P 2.

Proof. By Proposition 3.6 of [33], whenever G has a non-trivial centre we have
ed.G/ D covdim.G/. By [33], Section 7, all finite groups of covariant dimension 2
are isomorphic to subgroups of GL2.C/. Thus we have a faithful linear G-variety of
dimension 2. This is versal and equivariantly birational to P 2. �

We remark that, since all non-trivialp-groups have non-trivial centres, this propo-
sition suffices to prove the Karpenko–Merkurjev theorem for groups of essential di-
mension 2. Recalling that all irreducible representations of p-groups have degree a
power of p, we have the following:

Proposition 2.6. If p > 2 is a prime, then all p-groups of essential dimension 2 are
abelian.

2.2. Minimal rational surfaces. We recall some basic facts about minimal rational
surfaces (see [20] or [40]). Throughout this paper, a surface is an irreducible non-
singular projective 2-dimensional variety over C. A minimal G-surface is a faithful
G-surface X such that any birational regular G-map X ! Y to another faithful G-
surface Y is an isomorphism. There is a (not necessarily unique) minimal G-surface
in every equivariant birational equivalence class ofG-surfaces. The possible minimal
G-surfaces are classified as follows:

Theorem 2.7 (Enriques, Manin, Iskovskikh). If X is a minimal rational G-surface
then X admits a conic bundle structure or X is isomorphic to a del Pezzo surface.

Our interest in minimal rational surfaces is justified by the following proposition
(see §3.6 in [51]):
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Proposition 2.8. Suppose G is a finite group. Then ed.G/ � 2 if and only if there
exists a minimal rational versal G-surface X .

2.3. Polyhedral groups. The following facts will be used extensively in the sections
that follow. Most of these results can be found in, for example, [16]. Recall that a
polyhedral group is a finite subgroup of PGL2.C/. Equivalently, the polyhedral
groups are precisely the finite groups acting regularly on P 1. The polyhedral groups
were classified by Klein as follows: Cn, the cyclic group of n elements; D2n, the
dihedral group of order 2n; A4, the alternating group on 4 letters; S4, the symmetric
group on 4 letters; and A5, the alternating group on 5 letters.

These groups have normal structures as follows:

Proposition 2.9. Suppose P is a polyhedral group and N is a non-trivial proper
normal subgroup of P . We have the following possibilities:

(a) P ' S4, N ' A4, P=N ' C2,

(b) P ' S4, N ' C2 � C2, P=N ' S3,

(c) P ' A4, N ' C2 � C2, P=N ' C3,

(d) P ' D2n, N ' Cm, P=N ' D2n=m where mjn,
(e) P ' D4n, N ' D2n, P=N ' C2,

(f) P ' Cn, N ' Cm, P=N ' Cm=n where mjn.
Note thatD2 ' C2 andD4 ' C2 � C2 are included above as degenerate cases.

Finally, we will need the following fact about lifts of polyhedral groups to 2-
dimensional representations:

Proposition 2.10. A finite subgroupG of PGL2.C/ has an isomorphic lift in GL2.C/
if and only if G is cyclic or odd dihedral.

3. Versal actions on toric varieties

In Section 4 we will use the theory of toric varieties extensively to prove Theorem 4.5.
Many of the results we use are applicable beyond the case of surfaces so we consider
the case of versal actions on toric varieties in general.

3.1. Cox Rings and universal torsors. We recall the theory of toric varieties from
[23], and Cox rings from [15]. We will also use the language of universal torsors
from [13]. Note that the similarity of the terms “universal torsor” and “versal torsor”
is merely an unfortunate coincidence.
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Given a latticeN ' Zn, a fan� inN is a set of strongly convex rational polyhedral
cones in N ˝ R such that every face of a cone in � is in � and the intersection of
any two cones in � is a face of each. Given a fan one may construct an associated
toric variety.

The associated toric variety X D X.�/ contains an n-dimensional torus T D
N ˝ C�. The variety X is non-singular if every cone in � is generated by a subset
of a basis for N . The variety X is complete if the support of the fan is all of N ˝ R.
In this paper, we will restrict our attention to complete non-singular toric varieties.

Let M D Hom.N;Z/ be the dual of the lattice N . Let DivT .X/ be the group
of T -invariant divisors of X . Let �.1/ be the set of rays in the fan �. To each ray
� 2 �.1/ we may associate a unique prime T -invariant divisor D�. In fact, �.1/ is
a basis for DivT .X/. We have the following exact sequence:

1 ! M ! DivT .X/ ! Pic.X/ ! 1

where Pic.X/ is the Picard group of X .
Denote K D Hom.Pic.X/;C�/ and apply Hom.�;C�/ to the above sequence to

obtain another exact sequence:

1 ! K ! .C�/�.1/ ! T ! 1:

From [15], any toric variety X has an associated total coordinate ring, or Cox ring,
which we denote Cox.X/. The ring Cox.X/ is a Pic.X/-graded polynomial ring

Cox.X/ D CŒx� W � 2 �.1/�
and has an inducedK-action via the grading. (Note that Cox uses G where we write
K).

The variety V D Spec.Cox.X// is isomorphic to affine space C�.1/ and there is
a closed subset Z � V obtained from an “irrelevant ideal.” The open subset V �Z
is invariant under theK-action and, since X is non-singular, the map .V �Z/ ! X

is a K-torsor. Indeed, this torsor is a universal torsor over X .
We define eAut.X/ as the normaliser of K in the automorphism group of V �Z.

From [15], Theorem 4.2, there is an exact sequence

1 ! K ! eAut.X/ ! Aut.X/ ! 1

where we denote the last map � W eAut.X/ ! Aut.X/.
Let Aut.N;�/ denote the subgroup of GL.N / which preserves the fan � (per-

mutes the cones). The group Aut.N;�/ has an isomorphic lift to eAut.X/ via per-
mutations of the basis elements fx�g. The group .C�/�.1/ is a subgroup of eAut.X/
which descends to T � Aut.X/.

More generally, if G is a group with a faithful action on X then there is a group

E D ��1.G/ � eAut.X/
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acting faithfully on V �Z. We have an exact sequence of groups

1 ! K ! E ! G ! 1: (1)

For finite groups G, the group E acts as a subgroup of GL.V /:

Lemma 3.1. Let G be a finite group acting faithfully on X . Then E acts linearly
on V .

Proof. The linear algebraic group eAut.X/ is of the form .Ru Ì Gs/ � Aut.N;�/
where Ru is unipotent and Gs is reductive. (See Section 4 in [15]. Note that Cox’s
notation Gs has nothing to do with the group G in our context). Since G is finite
and K consists of semisimple elements, all elements of E are semisimple. Thus
E � Gs � Aut.N;�/. The group Gs is of the form

Gs D
Y

GL.S 0̨
i
/

where the S 0̨
i
s are the weight-spaces of the action ofK on V (as a vector space). The

group Aut.N;�/ permutes the basis vectors of V . ThusGs � Aut.N;�/ acts linearly
on V . Thus the subgroup E acts linearly. �

The versal property is related to Cox rings by the following result:

Theorem 3.2. Suppose G is a finite group and X is a complete non-singular toric
faithful G-variety. Then X is versal if and only if the exact sequence (1) splits.

Proof. Suppose the exact sequence splits. The map from V �Z toX may be viewed
as a dominant rational map  W V Ü X . Since E is linear for any finite group G,
we obtain an E-equivariant rational map from a linear E-variety to X . Since there
is a section G ,! E the map  may be viewed as a G-equivariant dominant rational
map from a linear G-variety. Thus X is versal.

For the other implication, we assume X is versal and want to show (1) splits.
Since X is versal there exists a G-equivariant rational map f W W Ü X where

W is a faithful linear G-variety. Let P ! U be the K-torsor obtained by pulling
back  along the restriction of f to its domain of definition U . From the universal
property of pullbacks we obtain an E-action on P compatible with the G-action
on U .

Note that Pic.U / D 0 since U is open in the affine space W . Thus, from the
exact sequence (2.0.2) in [13], we see that the étale cohomology group H 1.U;K/ is
trivial. In particular, the torsor P ! U is trivial.

SinceX is proper andU is normal, the indeterminacy locus off is of codimension
� 2. Thus, all invertible global functions on U are constant and the space of sections
of P ! U is isomorphic to K. Thus E has an induced action on K and the desired
splitting follows from Lemma 3.3 below. �
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Lemma 3.3. Suppose E is an algebraic group with closed normal subgroup K and
quotient G D E=K. Suppose E acts on K such that the restricted action of K on
itself is translation. Then E splits as K ÌG.

Proof. Take any point p 2 K and consider the stabiliser S D StabE .p/. For any
g 2 G we have a lift h 2 E. There is an element k 2 K such that kh.p/ D p.
Thus kh 2 S and it follows that S=.S \ K/ D G. Since K acts freely on itself,
S \K D 1. Thus S ' G and we have a splitting of E. �

Remark 3.1. Cox rings and universal torsors can be defined in more generality
than the context of toric varieties (see, for example, [13], [26] and [35]). The Cox
rings of minimal rational surfaces have been extensively studied. For example, conic
bundles are considered in [13], §2.6; del Pezzo surfaces, in [19] and [49]. It would
be interesting to investigate versality using these constructions.

In fact, the proof of Theorem 3.2 still applies in one direction: if a G-action on
a complete non-singular variety is versal then an analogous exact sequence to (1)
would still split. However, the analog of V is linear if and only if X is toric [26],
Corollary 2.10. Thus, in general, one does not have an obvious compression from a
linear G-variety as above.

Recall that the standard projection Cn Ü P n�1 is an example of  obtained
from the Cox ring. We point out a special case of the preceding proposition:

Corollary 3.4. Let G be a finite group acting faithfully on X D P n�1. Then X
is G-versal if and only if there exists an embedding G ,! GLn.C/ such that the
composition with the canonical map GLn.C/ ! PGLn.C/ gives the G-action on
P n�1.

Remark 3.2. Theorem 3.2 and Corollary 3.4 were inspired by Ledet’s classification
of finite groups of essential dimension 1 over an infinite ground field k [36]. Indeed,
Theorem 1 of [36] states that a finite group G has essential dimension 1 if and only
if there is an embedding G ,! GL2.k/ such that the image of G contains no scalar
matrices ¤ 1. Such a group descends isomorphically to a subgroup of PGL2.k/. In
other words, the action of G on P 1

k
lifts to A2

k
.

The following is a useful tool for showing that a variety is versal.

Corollary 3.5. Suppose G is a finite group acting faithfully on a complete non-
singular toric variety X . If G has a fixed point then X is G-versal.

Proof. We have an action of E on the fibre of the fixed point, so the result follows
from Lemma 3.3. �
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Remark 3.3. We note that Corollary 3.5 fails when X is not toric. Consider a
hyperelliptic curve C with its involution (generating a group G ' C2). This is a
faithful G-variety with a fixed point. However, C cannot be versal since the image
of a rational map from a linear variety to C must be a point.

The following corollary is also inspired by Ledet [36]:

Corollary 3.6. Let G be a finite group acting faithfully on a complete non-singular
toric variety X . Then X is G-versal if and only if, for any prime p, X is Gp-versal
for a Sylow p-subgroup Gp of G.

Proof. Using Theorem 3.2 this follows from a well-known result in group cohomol-
ogy. Consider the product

Q
p ResG

Gp
of the restriction maps ResG

Gp
W H 2.G;K/ !

H 2.Gp; K/ over all primes p and some choice of Sylow p-subgroupsGp for each p.
From [9], Section III.10, this product is an injection. Thus E ! G has a section if
and only if every Gp has a section. �

We remark on one application of this corollary that is not immediately obvious,
but extremely useful. Suppose X is a G-variety and we want to determine whether
or not it is versal. For each prime p, let Gp be a p-Sylow subgroup of G. Suppose
X is Gp-equivariantly birational to a Gp-variety Xp for each prime p. The versality
property may be easier to determine on the new varieties Xp than on the original
variety X .

This corollary is our main tool in the proof of Theorem 4.5. In particular, we
will show that the versality question on all toric surfaces can be reduced to studying
3-groups acting on P 2 and 2-groups acting on P 1 � P 1.

There does not seem to be any compelling reason why Corollary 3.6 should only
be true for toric varieties since versality is a birational invariant. One might conjecture
that this theorem holds for any variety:

Conjecture 3.7. Let G be a finite group acting faithfully on a variety X . Then X
is G-versal if and only if, for any prime p, X is Gp-versal for a Sylow p-subgroup
of G.

3.2. Monomial actions. We make the following observation:

Lemma 3.8. Suppose X is a toric variety with a faithful action of a finite group G
contained in the torus T . Then X is G-versal. Furthermore, if X is complete, then
X has a G-fixed point.

Proof. First, suppose X is complete; by the Borel fixed point theorem X has a T -
fixed point and, thus, a G-fixed point. In general, X is T -equivariantly birationally
equivalent to a complete non-singular toric variety (say P n). Consequently, this
birational equivalence is G-equivariant. Thus X is G-versal by Corollary 3.5. �
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Consider a toric varietyX with torusT , fan� and latticeN . Recall that Aut.N;�/
is the subgroup of GL.N / preserving the fan�. Note that the group Aut.N;�/ has a
natural action on X which is T -stable. We say a group G has a multiplicative action
on X if G � Aut.N;�/.

Lemma 3.9. Suppose X is a toric variety with a faithful multiplicative action of a
finite group G. Then X has a G-fixed point and X is G-versal.

Proof. Any element of Aut.N;�/ fixes the identity of the torus T inX . The versality
of X is well-known (see Lemma 3.3(d) of [12] or [1]). �

Note that both T -actions and multiplicative actions are T -stable – they preserve
T as a subvariety of X . Any particular T -stable automorphism of X is a product
of an element of T and an element of Aut.N;�/. Thus, the group of T -stable
automorphisms of X is precisely

AutT .X/ D T Ì Aut.N;�/ :

Given such a subgroup of AutT .X/ there is a natural map

!T W G ! Aut.N;�/ � GL.N /

given by the projection G ! G=.G \ T /. We denote this map !T to emphasize its
dependence on T (even though, strictly speaking, it depends on N ).

Despite the fact that T -actions and multiplicative actions are always versal, this
does not hold for T -stable actions in general. Nevertheless, they are much more
manageable than general actions.

Definition 3.1. LetG be a group acting faithfully on a toric varietyX . We say that the
action is monomial if there exists a fan� in a latticeN inducing a torus T D N ˝C�
such that the associated toric variety isG-equivariantly biregular toX and g.T / D T

for all g 2 G.

Such actions are also called “twisted multiplicative” in the literature.
Note that, for a linear variety X ' Cn, monomial actions are precisely the same

as monomial representations. Recall that all linear representations of supersolvable
groups are monomial [50], Section 8.5, Theorem 16. This result has a natural gener-
alisation for toric varieties.

Proposition 3.10. Suppose G is a supersolvable finite group acting on a complete
non-singular toric variety X . Then G is monomial.

Proof. By Lemma 3.11 below, there exists a change of basis ˛ W V ! V such that
E D ��1.G/ has a monomial action on ˛.V / with K acting diagonally. Since K
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acts diagonally in both coordinates, if V� is the weight space in V corresponding to
some character � W K ! C� then ˛.V�/ � V�. These V� are precisely the S 0̨

i
of

[15], Section 4. This means that ˛ 2 Gs where

Gs D
Y

GL.S 0̨
i
/ � eAut.X/:

Thus ˛ descends to an automorphism of X . In the new basis, we have an embedding
E ,! .C�/�.1/ Ì Aut.N;�/. Taking the quotient by K we obtain G � T Ì
Aut.N;�/. �

Lemma 3.11. Suppose we have an exact sequence of algebraic groups (over C)

1 ! K ! E ! G ! 1

where K is diagonalisable and G is finite supersolvable. For any representation V
of E there exists a choice of coordinates such that E is monomial with K diagonal.
Furthermore, any irreducible representation has dimension dividing the order of G.

Proof. This is a straight-forward generalisation of [50], Section 8.5, Theorem 16. We
proceed by induction on the dimension of V . For any normal subgroup N C E the
quotient � W E ! E=N sits in an exact sequence

1 ! �.K/ ! �.E/ ! �.E/=�.K/ ! 1

with �.K/ diagonalisable and �.E/=�.K/ finite supersolvable. Thus it suffices to
assume V is a faithful irreducible representation of E.

Suppose E is abelian. There are no non-trivial unipotent elements in G or K, so
E consists of semisimple elements. Thus E is diagonalisable (thus monomial). This
also takes care of the base case dim.V / D 1.

SupposeE is non-abelian. We claim there exists a normal diagonalisable subgroup
A containingK which is not contained in the centre ofE. IfK is not central we may
takeA D K. IfK is central then there exists a normal cyclic subgroupC ofE=Z.E/
by supersolvability of E=K. In this case, take A to be the inverse image of C in E.
We see that A is abelian (thus diagonalisable sinceK is diagonalisable), containsK,
and is not contained in the centre of E.

We have a decomposition V D ˚Vi into distinct weight spaces for the action of
A. Since A is normal in E, the group E permutes the spaces Vi . In fact, the action
of E is transitive since V is irreducible. Since E acts faithfully on V and A is not
central inE, there is more than one weight space Vi . LetH be the maximal subgroup
of E such thatH.V0/ D V0. We see that the E-representation V is induced from the
H -representation V0.

Since dim.V / D ŒE W H� dim.W / and H contains K the result follows from the
induction hypothesis. �



Vol. 88 (2013) Finite groups of essential dimension 2 569

Recall thatp-groups are supersolvable. Thus, in particular, actions ofp-groups on
toric varieties are always monomial. This is particularly useful in light of Corollary 3.6
above.

4. Del Pezzo surfaces of degree � 5

The main goal of this section is to prove Theorem 4.5: a classification of all finite
groups which act versally on one of the four surfaces P 2, P 1 � P 1, DP6 (the del
Pezzo surface of degree 6) or DP5 (the del Pezzo surface of degree 5).

Recall that the automorphism group of P 2 is PGL3.C/; that of P 1 � P 1 is

.PGL2.C/ � PGL2.C// Ì S2

where S2 swaps the two copies of PGL2.C/; that of DP6 is .C�/2 Ì D12 (see
Section 6.2 in [20]); and that of DP5 is S5 (see Section 6.3 in [20]).

The surfaces P 2, P 1 � P 1 and DP6 are toric. The monomial actions on these
surfaces will be particularly important. For example, we have the following lemma:

Lemma 4.1. All versal actions of finite groups on P 1 � P 1 are monomial.

Proof. Recall that � W eAut.X/ ! Aut.X/ is the group homomorphism induced from
the Cox ring construction. For G � Aut.X/ we have the lift E D ��1.G/ in

eAut.X/ ' .GL2.C/ � GL2.C// Ì S2

with the exact sequence (1) from Section 3.
Let H D G \ .PGL2.C/ � PGL2.C//. The group H is the image in G of the

centralizer of K in E. We see that H is a normal subgroup of G of index at most 2.
Let H1 and H2 be the projections of H to the first and second copies of PGL2.C/.
We note that there is a natural embedding H � H1 �H2. When H ¤ G we have
isomorphisms H1 ' H2 induced by the actions of elements in G �H .

We may consider the action of E on V ' C4 as a 4-dimensional representation
�. Let EH D ��1.H/. Note that EH � GL2.C/ � GL2.C/. Thus, the restriction
�jEH

is a direct sum of 2-dimensional subrepresentions 	1 and 	2. Informally, one
may consider 	1 as the preimage of H1 and 	2 as the preimage of H2. If G ¤ H

then � is induced from 	1.
If G is versal then there is a section from G to E. Recall that a finite subgroup

of PGL2.C/ lifts isomorphically to GL2.C/ if and only if it is cyclic or odd dihedral
(Proposition 2.10). All 2-dimensional representations of lifts of such groups are
monomial. Thus 	1 and 	2 are monomial. IfG D H then � D 	1 ˚	2 is monomial.
If G ¤ H then � D IndG

H 	1 is monomial. �
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4.1. Monomial actions on toric surfaces. Recall the classification of conjugacy
classes of finite subgroups of GL2.Z/. We use the list in Lorenz’s book [37], page 30.
The list comes with explicit representatives for each conjugacy class in terms of
explicit matrix generators. We use the Gi notation to denote this explicit representative
in each conjugacy class. (Lorenz uses Gi to denote the class, not the representative).
Since it is used so extensively in what follows, we reproduce the list in Table 1.

Table 1. Conjugacy classes of non-trivial finite subgroups of GL2.Z/.

Label Generators Structure

G1

�
1 �1
1 0

�
;
�

0 1
1 0

�
D12

G2

� �1 0
0 1

�
;

�
0 1
1 0

�
D8

G3

�
0 �1
1 �1

�
;

�
0 �1�1 0

�
D6

G4

�
0 �1
1 �1

�
;

�
0 1
1 0

�
D6

G5

� �1 0
0 1

�
;

�
1 0
0 �1

�
C2 � C2

G6

�
0 1
1 0

�
;

�
0 �1�1 0

�
C2 � C2

G7

�
1 �1
1 0

�
C6

G8

�
0 �1
1 0

�
C4

G9

�
0 �1
1 �1

�
C3

G10

� �1 0
0 �1

�
C2

G11

� �1 0
0 1

�
C2

G12

�
0 1
1 0

�
C2

One checks that Figure 1 contains the finite subgroup lattice structure in GL2.Z/
where an arrow means “contains a subgroup in the conjugacy class of”. We omit
composite arrows for clarity.

From this subgroup lattice structure we make some useful observations about p-
groups in GL2.Z/. For p > 3, there are no non-trivial p-subgroups of GL2.Z/. All
2-subgroups of GL2.Z/ are conjugate to a subgroup of G2. All non-trivial3-subgroups
of GL2.Z/ are conjugate to G9.

Let N D Z2 be our lattice. There are standard realisations of P 2, P 1 � P 1 and
DP6 as the toric varieties associated to the complete fans in N from Figure 2.

Let T D N ˝ C� be the torus associated to the lattice N . Choose coordinates
such that .�1; �2/ 2 .C�/2 ' T corresponds to

.�1 W �2 W 1/ 2 P 2
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Figure 1. Lattice of finite subgroups in GL2.Z/.

Figure 2. Standard fans for P 2, P 1 � P 1 and DP6.

and
.�1 W 1 I �2 W 1/ 2 P 1 � P 1:

Thus the maximal cones in �P2 and �P1�P1 correspond to the T -fixed points indi-
cated in the diagram.

Recall that the group of T -stable automorphisms AutT .X/ of a surface X is
T Ì Aut.N;�X /where Aut.N;�X / is the group of automorphisms of the associated
fan �X . We have the following automorphism groups:

Aut.N;�P2/ D G4; Aut.N;�P1�P1/ D G2; Aut.N;�DP6
/ D G1:

Since G1 and G2 are the maximal finite subgroups of GL2.Z/ up to conjugacy (see
Figure 1), all monomial group actions on toric surfaces are equivariantly birational
to actions on P 1 � P 1 or DP6. (Note, however, that this is not the case for general
actions.)

By Lemma 3.8, this means that all faithful p-group actions on toric surfaces are
automatically versal for p > 5. For 3-groups and 2-groups the theory is a bit more
involved. For 3-groups, the versal property can be determined by considering actions
on P 2:
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Lemma 4.2 (3-groups acting on toric surfaces). SupposeG3 is a finite 3-group acting
faithfully on a toric surface X . Then X is G3-birationally equivalent to Y D P 2

with G3 � T Ì G9 and the following are equivalent:

1. Y has a G3-fixed point,

2. X is G3-versal,

3. the following conditions hold:

(a) if !T .G3/ D 1 then there are no conditions,

(b) if !T .G3/ D G9 then G3 \ T D 1.

Proof. Recall that allp-groups are monomial and G9 is the maximal finite 3-subgroup
of GL2.Z/ up to conjugacy. Thus we may assumeG3 � T Ì G9 in some coordinates
by Proposition 3.10. Furthermore, selecting a new fan in the same lattice induces a
birational map. Thus X is G3-birationally equivalent to Y D P 2. Since versality is
a G-birational invariant, it suffices to assume X D Y for the remainder of the proof.

The implication .1/ H) .2/ is immediate by Corollary 3.5. In case (a), all
remaining implications are immediate by Lemma 3.8. It remains to consider case (b)
with !T .G3/ D G9.

Assume .2/: that X is versal. Since G3 is a 3-group of essential dimension 2, it
is abelian by Proposition 2.6. Note that G9 does not fix any of the cones of the fan
�P2 except for the trivial cone f0g. Thus any G3-fixed point must be on the torus.
Note the action of any non-trivial element of G3 \ T does not fix any point on the
torus. If G3 \ T ¤ 1 then we have an abelian subgroup without a fixed point. This
contradicts Proposition 2.3. So .3/ must hold and we have .2/ H) .3/.

If .3/ holds, then G3 ' C3. Any finite cyclic group acting on P 2 has a diagonal-
isation. So there exists a G3-fixed point. We have .3/ H) .1/. �

Similarly, we determine which 2-groups are versal by studying P 1 � P 1.

Lemma 4.3 (2-groups acting on toric surfaces). SupposeG2 is a finite 2-group acting
faithfully on a toric surfaceX . ThenX isG2-birationally equivalent to Y D P 1 �P 1

with G2 � T Ì G2 and the following are equivalent:

1. Y has a G2-fixed point,

2. X is G2-versal,

3. the following conditions hold:

(a) if !T .G2/ is conjugate to 1 or G12 then there are no conditions,

(b) if !T .G2/ is conjugate to G11 then (after choosing coordinates such that
!T .G2/ D G11), for any t 2 G2 \ T , t D .1; �/ for some � 2 C�,

(c) in all remaining cases we require G2 \ T D 1.



Vol. 88 (2013) Finite groups of essential dimension 2 573

Proof. Recall that G2 is the maximal finite 2-subgroup of GL2.Z/ up to conjugacy.
Similarly to Lemma 4.2 above, we may assume G2 � T Ì G2 and X D Y .

The implication .1/ H) .2/ is immediate by Corollary 3.5. We prove the remain-
ing implications by restricting to each case in .3/.

Case (a): !T .G2/ is conjugate to 1 or G12. There are no additional conditions so
it suffices to show .1/ always holds. When !T .G2/ D 1, this is immediate from
Lemma 3.8. For !T .G2/ conjugate to G12 we choose coordinates so that !T .G2/ D
G12 and use the fan�P1�P1 as above. The cone 	 spanned by f.1; 0/; .0; 1/g is fixed
by the action of G12 and, since it is a maximal cone, corresponds to a T -fixed point.
Thus the T -orbit corresponding to 	 is a G-fixed point.

Case (b): !T .G2/ is conjugate to G11. It suffices to assume that !T .G2/ D G11

and Y is constructed from the fan�P1�P1 . Assume .3/ does not hold; we will show
that this implies .2/ cannot hold. There exists an element t 2 G2 \ T of the form
t D .�1; �2/ � .C�/2 where �1 ¤ 1. Furthermore, by taking appropriate powers,
we may assume �1 has order 2. Now consider g 2 G2 such that !T .g/ ¤ 1. The
group A D hg; ti is an abelian subgroup of G2.

Note that G11 (and thus g) only fixes the cones spanned by f.0; 1/g, f.0;�1/g
and f0g in �P1�P1 . The element t acts non-trivially on the T -orbits corresponding
to those cones (and so has no fixed points there). We have an abelian subgroup A
without a fixed point. This contradicts Proposition 2.3. Thus .2/ does not hold. We
have shown .2/ H) .3/.

Now assume .3/ holds. Recall the definitions ofH ,H1 andH2 from the proof of
Lemma 4.1. In this caseG2 D H ; andH1,H2 are cyclic. ThusH1 has a fixed point
p1 on the first P 1 andH2 has a fixed point p2 on the second. The point .p1; p2/ is a
G2-fixed point of Y . Thus .3/ H) .1/ H) .2/.

Case (c): all remaining cases. Assume .3/ does not hold. Recall the subgroup
structure of G2 from figure 1. We must have G10 � !T .G2/. If G2 \ T ¤ 1 then
there exists an element t 2 G2 \ T of order 2. The element t commutes with the
action of G10. Let g 2 G2 be an element such that 1 ¤ !T .g/ � G10. The group
A D hg; ti is an abelian subgroup of G2.

Note that G10 only fixes the trivial cone f0g in�P1�P1 so any A-fixed point must
be on the torus. The element t does not fix any point on the torus. We have an abelian
subgroup A without a fixed point. This contradicts Proposition 2.3. Thus .2/ does
not hold. We have shown .2/ H) .3/.

Now assume .3/ holds. In this case, H1 and H2 are cyclic. A cyclic subgroup of
PGL2.C/ lies in some torus C�. Thus we may find new coordinates with a different
torus T 0 � Y such that H � T 0. Note that, for any g 2 G2, g2 2 T 0 so !T 0.g/ has
order 2. Also, G10 and G11 are contained in H . Thus, any g 2 G2 � H must have
!T 0.g/ conjugate to the non-trivial element in G12. SoG2 � T 0 ÌG12 and has a fixed
point by case (a). We have shown (3) H) (1) H) (2). �
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Lemma 4.4. All finite subgroups G of the following groups have versal monomial
actions on a toric surface:

(1*) T Ì G12,

(2) T Ì G1 with jG \ T j coprime to 2 and 3,

(3) T Ì G2 with jG \ T j coprime to 2,

(4) T Ì G3 with jG \ T j coprime to 3,

(5) T Ì G4 with jG \ T j coprime to 3.

Furthermore, any finite group with a versal monomial action on a toric surface is of
this form.

Proof. Recall that when deciding whether a groupG has a versal action on a complete
non-singular toric variety it suffices to check Sylow p-subgroupsGp (Corollary 3.6).
For all the forms above,Gp is always versal when p � 5 by Lemma 3.8. So one only
needs to check the Sylow 3- and 2-subgroups.

Any finite G with a monomial action can be written in the form G � T Ì Gi

where Gi is from Table 1. From Lemma 4.2 and Lemma 4.3 we have necessary and
sufficient conditions for G2 and G3 to be versal.

We note G3 \ T D 1 is equivalent to jG \ T j coprime to 3 and similarly for G2.
By selecting appropriate Sylow subgroups we have Table 2 where the last row gives
the necessary and sufficient conditions for G to be versal.

One sees that any group G listed in the theorem is versal.
For the converse, we show that all of the other possibilities for !T .G/ are already

contained in a group appearing in the list. The cases G5, G6, G8 and G10 are all covered
by form (3); G7, by form (2); G9, by forms (4) and (5); and !T .G/ D 1 by form (1*).

It remains to eliminate the special case G11. Here, G D H � H1 � H2 in the
language of the proof of Lemma 4.1. Thus any finite subgroup G of T Ì G11 must
be a subgroup of D2n � Cm for sufficiently large integers n and m. From case (3b)
of Lemma 4.3, if G is versal we can assume n is odd. We show that any such group
is actually isomorphic to a group of form (1*) above.

Indeed, consider the following subgroup of GL2.C/:
D� �n 0

0 ��1
n

�
;
�

�m 0
0 �m

�
;
�

0 1
1 0

�E

where 
n and 
m are nth andmth roots of unity, respectively. This group is isomorphic
to D2n � Cm and has an embedding into T Ì G12. �

4.2. Versal actions on the four surfaces

Theorem 4.5. Suppose a finite group G has a versal action on P 2, P 1 � P 1, DP6,
or DP5. Then G is finite subgroup of one of the following groups:
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Table 2. Versality conditions for monomial actions on surfaces.

!T .G/ !T .G3/ !T .G2/ jG \ T j coprime to

G1 G9 G6 2, 3

G2 1 G2 2

G3 G9 G12 3

G4 G9 G12 3

G5 1 G5 2

G6 1 G6 2

G7 G9 G10 2, 3

G8 1 G8 2

G9 G9 1 3

G10 1 G10 2

G11 1 G11 special

G12 1 G12 none

1 1 1 none

(1) GL2.C/,

(2) T Ì G1 with jG \ T j coprime to 2 and 3,

(3) T Ì G2 with jG \ T j coprime to 2,

(4) T Ì G3 with jG \ T j coprime to 3,

(5) T Ì G4 with jG \ T j coprime to 3,

(6) PSL2.F7/,

(7) S5.

Furthermore, all finite subgroups of the above groups act versally on one of those
surfaces.

Proof. Recall that any finite subgroup of GL2.C/ acts versally on P 2. We note that
any finite subgroup of T Ì G12 is a subgroup of GL2.C/. So form (1*) in Lemma 4.4
is wholly contained in form (1) of this theorem.

By Lemma 4.4, the versal monomial actions on any toric surface are contained in
forms (1)–(5) above. Recall that the automorphism group of DP6 is T Ì G1 and the
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group of monomial automorphisms of P 1 � P 1 is T Ì G2. Forms (1)–(5) all have
versal actions on one of the 4 surfaces.

It remains to study actions that are not monomial. All actions on DP6 are mono-
mial, and by Lemma 4.1, this is also true of versal actions on P 1 � P 1. Thus these
surfaces require no more consideration.

We consider DP5. Recall from Section 6.2 in [20] that a del Pezzo surface of
degree 5 can be described as a quotient .P 1/5=PSL2.C/. The automorphism group
of DP5 is S5 and its action is versal by the construction in [10]. Thus, all subgroups
of S5 act versally on DP5.

It remains to classify all finite groups acting versally on P 2. Recall that, by Corol-
lary 3.4, it suffices to determine whether there is an isomorphic lift from PGL3.C/ to
GL3.C/. We refer to Blichfeldt’s classification of finite subgroups of GL3.C/ in [7],
Chapter V. Using Blichfeldt’s notation, we note that groups of types A and B descend
to subgroups of GL2.C/, and groups of type C and D descend to monomial actions
on P 2. These groups have already been considered.

Finally, we consider the exceptions E–J in the classification. Blichfeldt appends
the symbol “�” to the order of a subgroup of GL3.C/ when there is no isomorphic
lift of its image in PGL3.C/. Consequently, only types H and J descend to versal
actions – these correspond to the groups A5 and PSL2.F7/. �

5. Conic bundle structures

Recall Manin and Iskovskikh’s classification of minimal rational G-surfaces into
conic bundles and del Pezzo surfaces from Section 2.2. In this section, we establish
the conic bundles case of Theorem 1.2. The del Pezzo surfaces case will be considered
in Section 6.

Theorem 5.1. If G has a versal action on a minimal conic bundle X then G has a
versal action on P 1 � P 1 or P 2.

All of the following facts about conic bundle structures can be found in Section 5 of
[20] or in [28]. A conic bundle structure on a rationalG-surfaceX is aG-equivariant
morphism � W X ! B such that B ' P 1 and the fibres are isomorphic to reduced
conics in P 2. Note that, unlike del Pezzo surfaces, the G-action is required for this
definition to make sense. There may exist other group actions whereX does not have
such a structure (for example, not all actions on P 1 � P 1 respect the fibration).

A fibre F of the morphism � is either isomorphic to P 1 or to P 1 ^P 1 (two copies
of P 1 meeting at a point). In the first case, Aut.F / ' PGL2.C/; in the second,
Aut.F / has a monomial representation of degree 2 (in particular, it is a subgroup of
GL2.C/).
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Let Fn be the ruled surface P .OP1 ˚ OP1.n// for a non-negative integer n (see,
for example, [25], Section V.2). A conic bundle is either isomorphic to some Fn or
to a surface obtained from some Fn by blowing up a finite set of points, no two lying
in a fibre of a ruling.

Let � W G ! PGL2.C/ be the map induced by the action ofG on B under �. Let
GB D im.�/ and GK D ker.�/. One may consider GK as the largest subgroup of
G which preserves the generic fibre. Note that every fibre of � is GK-invariant. It is
useful to think of GK as the group that “acts on the fibre” and GB as the group that
“acts on the base.” Both GK and GB are polyhedral groups since they act faithfully
on rational curves.

Let † D fp1; : : : ; prg be the set of points on B whose fibres are singular. Let
R be the set of components of singular fibres fR1; R

0
1; : : : ; Rr ; R

0
rg where Ri and

R0
i are the two components of the fibre ��1.pi / for each pi 2 †. We have a natural

map � W G ! Aut.R/ where Aut.R/ is the group of permutations of R. Let us
denote G0 D ker.�/ \GK (note that this differs slightly from the definition in [20],
Section 5.4).

Proof of Theorem 5.1. We prove the theorem by considering the different possibilities
for GK . We suggest reviewing the results of Section 2.3.

Note that if GK contains a characteristic subgroup of order 2 then G has a non-
trivial centre and, thus, a versal action on P 2 by Proposition 2.5. The polyhedral
groups with characteristic subgroups of order 2 are the dihedral groups D4n with
n � 2, and the cyclic groups of even order. It remains to considerGK of the following
types: odd cyclic, odd dihedral, C2 � C2, A4, S4 and A5.

By Lemma 5.3 below, G0 acts faithfully on every component of every fibre of �.
If S has no singular fibres then X is a ruled surface and we may apply Lemma 5.2.
Consequently, we may assume � has a singular fibre F . So G0 acts faithfully on an
irreducible component of F with a fixed point. Any such component is isomorphic
to P 1. The only polyhedral groups with fixed points are the cyclic groups, so G0 is
odd cyclic.

Note that GK can only permute components of the same fibre, thus �.GK/ �
.C2/

r . We have a normal structure with G0 C GK cyclic and GK=G0 � .C2/
r .

This excludes GK ' A4, GK ' S4 and GK ' A5. Thus it remains only to consider
groups GK that are odd cyclic, odd dihedral or isomorphic to C2 � C2.

These remaining cases are handled by the lemmas below. If GK is odd cyclic
then the result follows by Lemma 5.4 below; this case corresponds to X being a
ruled surface. If GK is odd dihedral then Lemma 5.5 applies; these surfaces are the
“exceptional conic bundles” of [20], Section 5.2. Finally, if GK ' C2 � C2 then
Lemma 5.6 applies; these are all “non-exceptional conic bundles” as in Section 5.4
of [20]. �
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Lemma 5.2. If X is a ruled surface with a versal G-action then G acts versally on
P 1 � P 1 or P 2.

Proof. If X is P 1 � P 1 then we are done. Otherwise, from [20], Theorem 4.10, we
see that any finite group acting on a ruled surface is a central extension of a finite
subgroup of PGL2.C/ or SL2.C/. Any finite subgroup G of such an extension has a
versal action on P 2. Indeed, it suffices to consider G with trivial centre. Any such
G then embeds into PGL2.C/ or SL2.C/. All polyhedral groups have versal actions
on P 2 (see proof of Theorem 4.5); as do all finite subgroups of SL2.C/. �

Lemma 5.3. The group G0 acts faithfully on every component of every fibre of �.

Proof. LetR be a component of a fibre of�. SinceG0 preserves components of fibres,
we may G0-equivariantly blowdown X to a ruled surface such that R is isomorphic
to a fibre of the blowdown variety. Thus, it suffices to prove the theorem for X when
all fibres are isomorphic to P 1.

Let g be any non-trivial element of G0. There exists an open cover of B by open
sets U such that ��1.U / ' U � P 1. Let V be the subset of distinct triples of points
in .P 1/3. There is an isomorphism V ! PGL2.C/ by taking the automorphism
determined by the images of the three points 0, 1 and 1. By composing this isomor-
phism with the restrictions gjU � f0g, gjU � f1g and gjU � f1g, we obtain a map
�g;U W U ! PGL2.C/ which takes each point to the action of g on the fibre of �.

Let ˛ W PGL2.C/ ! C be the map defined by

˛ W A 7! Tr.A0/2

det.A0/

where A0 is any lift of A to GL2.C/. One easily checks that ˛ is well-defined and is
invariant on conjugacy classes. Furthermore, for any A 2 PGL2.C/ of finite order,
˛.A/ D 4 if and only if A D 1 (by diagonalisation).

The isomorphism ��1.U / ' U � P 1 is only determined up to conjugacy in
PGL2.C/. Gluing together each �g;U after composing with ˛ we obtain a map
�g W B ! C. Since C is affine and B ' P 1, the image of �g is a point. Since G0

acts faithfully on X , there must be at least one fibre on which g acts non-trivially.
Thus �g ¤ 4 and g acts non-trivially on every fibre. ThusG0 acts faithfully on every
fibre. �

Lemma 5.4. Suppose G acts versally on X and GK is odd cyclic. Then G acts
versally on P 1 � P 1 or P 2.

Proof. It suffices to considerG-minimalX . WhenX is a ruled surface then the result
follows from Lemma 5.2. As we shall see, this is the only case that occurs.
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Suppose X is not a ruled surface. We will show that GK must contain an involu-
tion, contradicting the assumption thatGK has odd order. We use the same reasoning
as the proof of Lemma 5.6 in [20].

Since X is G-minimal, there must exist an element g 2 G that swaps two com-
ponents, R and R0, of a singular fibre of �. By taking an odd power, we may assume
that g has order m D 2a.

Consider a D 1. The intersection point p of R and R0 is in the fixed locus
Xg . Any involution acting on a surface with an isolated fixed point must act via
.x; y/ 7! .�x;�y/ in some local coordinates about that point. Thus, if p is an
isolated fixed point then g cannot swapR andR0. This contradiction insures thatXg

contains a curve other than the fibres of �. Thus, g is contained in GK .
Now, consider the remaining case a > 1. Consider h D gm=2. Suppose Xh

contains R. Then hg.y/ D gh.y/ D g.y/ applies for all y 2 R. This means that
R0 is contained in Xh as well, contradicting the smoothness of Xh. Thus, neither
component is contained in Xh.

There exists exactly one fixed point y onR other than its intersection withR0. If y
was an isolated h-fixed point on X then its image q would still be an isolated h-fixed
point upon blowing downR. But thenR has a trivial h-action: a contradiction. Thus
h fixes a curve not contained in the fibres of �. We obtain h 2 GK . �

Lemma 5.5. Suppose G acts versally on X and GK is odd dihedral. Then G acts
versally on P 1 � P 1.

Proof. Recall that G0 ' Cn and GK ' D2n for some n odd as in the proof of
Theorem 5.1. Consider any g 2 GB , we shall prove that H D ��1.hgi/ is a direct
product GK � hgi.

Since hgi is cyclic there is a fixed point on B . Thus � has an H -fixed fibre F .
Recall that G0 acts faithfully on F . If F is non-singular then Aut.F / ' PGL2.C/.
If F is singular then Aut.F / � GL2.C/ and we have a natural map Aut.F / !
PGL2.C/ with central kernel. The group G0 is not in the centre of GK , so we have
map � W H ! PGL2.C/ which is injective on G0.

Since � is injective on G0 it must be injective on GK . The image of � must be a
polyhedral group with a normal subgroup isomorphic to GK ' D2n for some odd
n. From Lemma 2.9, the only possibilities are �.H/ ' GK or �.H/ ' D4n '
GK �C2 (since n is odd). Either way, there exists a retractH ! GK of the inclusion
GK ,! H . Thus H ' GK � hgi.

Recall that GK has a trivial centre. By [9], Corollary IV.6.8, there is only one
extension of GK by GB associated to a map GB ! Out.GK/ (up to equivalence).
Since g has a trivial action on GK for any g 2 GB , the map GB ! Out.GK/ is
trivial. Thus we must have G ' GK �GB .

The group GK contains an involution. If GB contains a subgroup isomorphic to
C2 � C2 then G contains .C2/

3. This would contradict ed.G/ � 2. So GB must be
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cyclic or odd dihedral. Thus, G ' GK � GB has a versal action on P 1 � P 1 where
GK acts on one P 1, and GB , the other. �

Lemma 5.6. SupposeG acts versally onX andGK ' C2 �C2. ThenG acts versally
on P 2.

Proof. It suffices to considerG with a trivial centre, since otherwise we immediately
have a versal action on P 2 by Proposition 2.5. We have a mapGB ! Aut.GK/ ' S3

with kernel J . We note that, by construction, if g 2 G maps to J � G=GK then g
commutes with GK .

Suppose J D 1. If G ! S3 is not surjective then G is abelian or isomorphic to
A4. Both of these have versal actions on P 2 so it suffices to assumeG is an extension
of C 2

2 by S3. A 2-Sylow subgroup of G is not normal, since we would obtain a
non-trivial map from S3 to C3 (which cannot exist). A 3-Sylow subgroup ofG is not
normal since A4 � G and C3 is not normal in A4. The only group G of this form
is S4 [27], Theorem 1.33. The group S4 has a versal action on P 2 by the proof of
Theorem 4.5.

It remains to consider J ¤ 1. We shall see that this case cannot occur.
Suppose J contains a subgroup M ' C2 � C2. The group M 0 D ��1.M/ � G

has essential dimension � 2 and a non-trivial centre (it is a 2-group). Thus, there
is an embedding � W M 0 ,! GL2.C/. This representation � is faithful and, since
GK � Z.M 0/, has a non-cyclic centre. It cannot be irreducible by Schur’s lemma.
Thus, M 0 is abelian and must have a fixed point on X (since it is versal).

Under the projection to B this becomes a fixed point for M . But M has rank 2
and cannot have a fixed point on B ' P 1, a contradiction. Thus we cannot have a
subgroupC2 �C2 in J . We have a morphismGB ! S3 whose kernel cannot contain
C2 �C2. Considering the normal structure ofGB (a polyhedral group), this excludes
GB isomorphic to A4, S4 or A5.

It remains to consider GB cyclic or dihedral. The involutions in Aut.GK/ all fix
a non-trivial element of GK . Since G has a trivial centre, we must have an element
g 2 G that descends to an element of order 3 in Aut.GK/.

If GB is cyclic then J and �.g/ generate GB . If GB is dihedral then J and �.g/
generate the maximal normal cyclic subgroup of GB . Indeed, there is no non-trivial
map from a dihedral group to C3 so GB surjects onto Aut.GK/ ' S3. The kernel
of the composition GB ! Aut.GK/ ! C2 is generated by J and �.g/ as desired.
Note that �.g/3 2 J in either case.

Let L D h��1.J /; gi. Consider any j 2 ��1.J /. Since �.j / and �.g/ com-
mute, we have .g; j / D k for some k 2 GK . Thus j 2 2 Z.L/ since gj 2g�1 D
k2j 2 D j 2.

Suppose J has even order. Note thatZ.L/\GK D 1 so there exists j 2 ��1.J /

with j … GK such that j 2 D 1. In this case, we have a subgroup GK � hj i '
.C2/

3 � G. This cannot have essential dimension 2 so we have a contradiction.
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We may assume J has odd order. Note that Z.L/ � ��1.J / since any element
mapping non-trivially toL=��1.J / � Aut.GK/ cannot be central. We want to show
that � maps Z.L/ onto J . For any y 2 J there exists x 2 J such that x2 D y

(since jJ j is odd). There is a lift l 2 L such that �.l/ D x. We have l2 2 Z.L/ and
�.l2/ D x2 D y as desired. SinceGK \Z.L/ D 1we have a splitting J ,! Lwith
image Z.L/. Thus we may identify J and Z.L/

Since ed.L/ � 2 and J D Z.L/ ¤ 1, there is an embedding L ,! GL2.C/. We
then compose this with the natural map GL2.C/ ! PGL2.C/. Note that L=J '
.GK Ì C3/ ' A4. Since Z.L/ D J , we have a map L ! PGL2.C/ with image A4

and kernel J . Any subgroup of GL2.C/ mapping onto A4 � PGL2.C/ must have a
central involution by Proposition 2.10. So J has even order; a contradiction. �

6. Del Pezzo surfaces of degree � 4

We are finally in a position to prove Theorem 1.1. It remains only to show that groups
with versal actions on del Pezzo surface of degree � 4 have already been seen acting
versally on the surfaces of Theorem 4.5. Indeed, the main theorem is an immediate
consequence of the following:

Theorem 1.2. If G is a finite group of essential dimension 2 then G has a versal
action on P 2, P 1 � P 1, DP6, or DP5.

Proof. All groupsG of essential dimension 2 have versal actions on minimal rational
G-surfaces by Proposition 2.8. Thus, it suffices to prove that, for any minimal rational
versal G-surface X , there exists a versal action on one of the 4 surfaces listed above.
Recall that any minimal rational G-surface X is a del Pezzo surface or has a conic
bundle structure by Theorem 2.7.

Theorem 5.1 proves the theorem for surfaces with a conic bundle structure. We
recall from [20], Section 6, that the only minimal rational G-surfaces of degree � 5

are precisely those listed in the statement of the theorem. Thus it suffices to consider
degrees � 4. In the following X is a del Pezzo surface with a versal G-action.

Case degree 4: The minimal groups of automorphisms of del Pezzo surfaces X of
degree 4 are listed in Theorem 6.9 of [20]. We know that G must be from this list
and that ed.G/ � 2. If G is abelian or a 2-group then it acts versally on P 2. All
remaining groups have abelian subgroups with ranks � 3 (note that C2 �A4 contains
C 3

2 ); thus they cannot be versal.
An alternative proof that does not rely directly on [20], Theorem 6.9, can be found

in the appendix of [21].

Case degree 3: The minimal groups of automorphisms of del Pezzo surfaces X of
degree 3 are listed in Theorem 6.14 of [20]. It suffices to consider G from this list.
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All groups with non-trivial centres and essential dimension � 2 have versal actions
on P 2 by Proposition 2.5. Thus we may assume G has a trivial centre. In particular,
we may eliminate all abelian groups from the list. Next, we may eliminate all groups
with abelian subgroups of rank � 3 since they cannot be versal by Proposition 2.4 (b).
Similarly, we eliminate G containing a non-abelian 3-subgroup by Proposition 2.6.
Also, if G is a subgroup of S5 then G has a versal action on DP5 by the proof of
Theorem 4.5.

All that remains to consider are G of the form C 2
3 Ì C2 and C 2

3 Ì C 2
2 . It suffices

to consider G ' C 2
3 Ì C 2

2 . We may view this group as a representation of C 2
2 on

the vector space F2
3 . Since the centre is trivial, we may assume the representation is

faithful. The representation is diagonalisable, so G is isomorphic to S3 � S3. This
group has a versal action on P 1 � P 1 by the proof of Theorem 4.5.

An alternative proof can be found in the appendix of [21].

Case degree 2: We have a finite G-equivariant morphism of degree 2 to P 2 (see
Section 6.6 in [20]). If the induced action of G on P 2 is faithful then we are done.
Otherwise, the groupG contains a central involution (a Geiser involution). Any such
group has a non-trivial centre and sits inside GL2.C/ by Corollary 2.5.

Casedegree1: This case proceeds the same way as degree 2 via the Bertini involution.
The only difference is that the finite morphism of degree2maps onto a singular quadric
cone in P 3 (see Section 6.7 in [20]). The automorphism group of a singular quadric
cone is the same as the minimal ruled surface F2 (see [25], Example V.2.11.4). Any
versal action on such a surface must also act versally on P 2 or P 1�P 1 (see Lemma 5.2
above). �
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