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A well-established principle of Mumford asserts that all moduli spaces of curves of
genus g > 2 (with or without marked points), are varieties of general type, except
a finite number of cases occurring for relatively small genus, when these varieties
tend to be unirational, or at least uniruled, see [HM], [EH1], [FL], [Log], [V] for
illustrations of this fact. In all known cases, the transition from uniruledness to being
of general type is quite sudden. The aim of this paper is to determine the Kodaira
dimension of the universal Jacobian of degreeg over xMg for any genusg, in particular
to highlight the surprising transition cases g D 10; 11.

Let xCg;n WD xMg;n=Sn be the universal symmetric product of degree n. Since
the fibre of the projection map ' W xCg;n ! xMg over a smooth curve ŒC � 2 Mg is
birational to the n-th symmetric product Cn, it follows trivially that xCg;n is uniruled
when n > g. The global Abel–Jacobi map

ag W xCg;g Ü Picg
g ;

establishes a birational isomorphism between xCg;g and (a compactification of) the
degree g universal Picard variety ˛g W Picg

g ! xMg . For a smooth curve C of
genus g, the map '�1.ŒC �/ ! Picg�1.C / factors through Cg : the Abel–Jacobi map
Cg ! Picg.C / is the blow-up of Picg.C / along the Fitting ideal corresponding to
the subscheme W 1

g .C /, whereas '�1.ŒC �/ ! Cg is an iterated blow-up along the

diagonals. Thus, we may regard xCg;g as a global blow-up of Picg
g . Applying the

additivity of Kodaira dimensions for abelian fibrations [U] to the fibre space ˛g , we
obtain that �.Picg

g/ D 3g � 3 whenever xMg is of general type. It is natural to

wonder whether the equality �.Picg
g/ D �. xMg/ holds for every g. We answer this
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question in the negative. Our most picturesque result, concerns the transition cases
in the birational classification of universal Jacobians:

Theorem 0.1. The universal Jacobian Pic10
10 is a variety of Kodaira dimension zero.

The Kodaira dimension of Pic11
11 equals 19.

It is well-known that both xM10 and xM11 are unirational varieties, see [AC2] and
[CR] respectively. We note that when g � 11, these are the only cases when xCg;n has
non-negative Kodaira dimension. Using the existence of certain Mukai models of the
moduli space of curves of genus g < 10, it easily follows that Picg

g is unirational for
g � 9. In fact more can be said:

Theorem 0.2. The moduli space xCg;n is unirational for all g < 10 and n � g.
Furthermore, xC10;n is uniruled for all n ¤ 10; the space xC11;n is uniruled for all
n ¤ 11.

For higher g, we show that xCg;g is of the maximal Kodaira dimension it could
possibly have, in view of Iitaka’s easy addition inequality for fibre spaces

�. xCg;g/ � dim. xMg/C �
�
'�1.ŒC �/

� D 3g � 3:

Theorem 0.3. For g > 11, the Kodaira dimension of Picg
g is equal to 3g � 3.

Theorems 0.1, 0.2, 0.3 highlight the fact that Picg
g does not capture the intri-

cate transition of xMg from uniruledness to general type that occurs in the range
17 � g � 21.

We describe the main steps in the proof of Theorems 0.1, 0.2 and 0.3. A key role
is played by the effective divisor

Dg WD fŒC; x1; : : : ; xg � 2 Mg;g W h0
�
C;OC .x1 C � � � C xg/

� � 2g:

The class of the closure of Dg inside xMg;g has been computed, see [Log], Theo-
rem 5.4, or [F1], Theorem 4.6, for an alternative proof:

xDg � ��C
gX

iD1

 i �
Œg=2�X
iD0

X
T �f1;:::;gg

�j#.T / � i j C 1

2

�
ıi WT 2 Pic. xMg;g/:

The divisor xDg is Sg -invariant under the action permuting the marked points, thus
if � W xMg;g ! xCg;g is the quotient map, there exists an effective divisor zDg 2
Eff. xCg;g/ such that xDg D ��. zDg/. Note that zDg is an exceptional divisor of the
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rational Abel–Jacobi map ag W xCg;g Ü Picg
g , and as such, it is uniruled and an

extremal point of Eff. xCg;g/
1.

In Theorem 1.1, we prove that for g � 4 pluri-canonical forms on xCg;g;reg extend
to any desingularization of xCg;g . Thus in order to bound �. xCg;g/ from below, it
suffices to exhibit sufficiently many global sections ofK xCg;g

. To that end, we choose

an effective divisor class D � a� � PŒg=2�
iD0 biıi 2 Eff. xMg/ of small slope

s.D/ WD a=minŒg=2�
iD0 bi :

For composite gC 1, one can takeD D xMr
g;d

to be the closure of the Brill–Noether
divisor of curves with a gr

d
, where �.g; r; d/ D g� .r C 1/.g� d C r/ D �1; there

exists a constant cg;r;d > 0, such that [EH2],

xMr
g;d � cg;r;d � bng W� cg;r;d

�
.gC 3/�� g C 1

6
ı0 �

Œg=2�X
iD1

i.g� i/ıi

�
2 Pic. xMg/;

where the previous formula is used to define the class bng proportional to all Brill–
Noether divisors on xMg . In particular s. xMr

g;d
/ D 6 C 12=.g C 1/. By linear

interpolation, we find an effective divisorE on xCg;g supported along zDg , '�.D/ and
the boundary of xCg;g , such that

K xCg;g
D �

14 � 2s.D/� '�.�/CE:

Whenever s.D/ < 7 (and such a divisor D � xMg can be chosen exactly when
g � 12, see [FV1], Theorem 6.1, for the particularly difficult case g D 12), the
following inequality holds:

�. xCg/ � �
� xCg ; .14 � 2s.D//'�.�/

� D �. xMg ; �/ D 3g � 3:
Since the opposite inequality is immediate, this proves Theorem 0.3. We summarize
this discussion by linking xCg;g to the slope s. xMg/ WD inffs.D/ W D 2 Eff. xMg/g of
the moduli space of curves.

Proposition 0.4. Assume s. xMg/ < 7 for a given genus g. Then �. xCg;g/ D 3g � 3.
This highlights that the birational geometry of xCg;g is governed by a linear series

on xMg of slope 7, rather than the canonical linear series, for which s.K xMg
/ D 13=2.

We discuss some of the cases g � 11. When 7 � g � 9, there exists a birational
contraction of xDg under a birational map

fg W xMg;g Ü Mg;g ;

1We recall that if f W X Ü Y is a birational contraction between Q-factorial normal projective varieties,
the irreducible components of the exceptional locus of f give rise to edges of NE1.X/. In the case of the
divisor zDg we shall also prove this assertion directly using the geometry of xCg;g , see Proposition 1.2.
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where Mg;g is a GIT model of xMg;g emerging from Mukai’s constructions of canon-
ical curves as sections of homogeneous varieties [M1], [M3], [M4]. In genus 11, we
prove a stronger result, concerning the birational type of both xC11;11 and its covering
xM11;11:

Theorem 0.5. One has that �. xM11;11/ D �. xC11;11/ D 19.

Note that dim. xM11;11/ D 41, and xM11;11 is the first example of a moduli space
xMg;n with g � 2, having intermediate Kodaira dimension. It is known [Log] that
xM11;n is uniruled for n � 10 and of general type for n � 12. To interpret such

results, for a genus g � 2 we define the invariant

�.g/ WD minfn 2 Z�0 W �. xMg;n/ � 0g:
We think of �.g/ as measuring the complexity of the general curve of genus g. It
is known that the relative dualizing sheaf of the forgetful map xMg;n ! xMg;n�1 is
big, see for instance [CHM], p. 19, thus it follows that xMg;n is of general type for
n > �.g/. Then results in [HM], [EH2], [F2] imply that �.g/ D 0, for g � 22.
From [FP], Proposition 7.5, one obtains the value �.10/ D 10, whereas Theorem 0.5
implies that �.11/ D 11. This indicates, in precise terms, that counter-intuitively,
algebraic curves of genus 10 are more complicated than curves of genus 11!

We make a few comments on Theorem 0.5. We note that K xM11;11
is an effective

combination of the pull-back to xM11;11 of the 6-gonal divisor xM1
11;6 on xM11, the

divisor xD11, and certain boundary classes ıi WS . Then we construct (cf. Proposi-
tion 1.4), rational curves R � xM11;11 passing through a general point of xD11, such
that (i) �R � xD11 > 0 equals precisely the multiplicity of xD11 in the above mentioned
expression ofK xM11;11

, and (ii)R is disjoint from all boundary divisors�i WT . There-

fore, n xD11 is a fixed component of the pluri-canonical linear series jnK xM11;11
j for

all n � 1. The equality �. xM11;11/ D 19 is related to the Mukai fibration

q11 W xM11;11 Ü xF11;

over the 19-dimensional moduli space xF11 of polarized K3 surfaces of degree 20. The
map q11 associates to a general element ŒC; x1; : : : ; x11� 2 xM11;11 the unique K3 sur-
faceS containingC , see [M2]. According to Mukai,S is precisely the Fourier–Mukai
dual K3 surface to the non-abelian Brill–Noether locus corresponding to semistable
vector bundles of rank 2

S_ D �UC .2;KC ; 7/ WD fE 2 �UC .2;KC / W h0.C;E/ � 7g:
An analysis of the fibration q11 shows that the differenceK xM11;11

� xD11 is essen-

tially the pull-back of an ample class on xF11. Eventually, this leads to the equality
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�. xM11;11/ D �. xM11;bn11/ D 19, where the last symbol stands for the Iitaka dimen-
sion of the linear system generated by the Brill–Noether divisors xM1

11;6 and xM2
11;9

on xM11.

In the final section of this paper we study the uniruledness of xMg;n when g � 9.

Theorem 0.6. The space xMg;n is uniruled for n � f .g/, where f .g/ is given in the
table below:

g 5 7 8 9 10

f .g/ 13 13 12 10 9

h.g/ 15 15 14 13 11

New here is the statement regarding the uniruledness of xMg;n. For the sake of
comparison, we have copied from [Log] and [F1], Theorem 1.10, the bound h.g/, for
which xMg;n is known to be of general type when n � h.g/. We note that moreover,
�. xM7;14/ � 2, thus �.7/ D 14. Nothing appears to be known about the Kodaira
dimension of xM5;14 and xM8;13, which are the missing cases from the classification,
when g � 8. The case g D 6, where a complete solution is known, cf. [Log], [CF],
is omitted from the table.

In order to prove Theorem 0.6, it suffices to establish that K xMg;n
is not pseudo-

effective and then use [BDPP] (see also [L], Section 11.4.C, for a transparent pre-
sentation), to conclude that xMg;n is uniruled. The non-effectiveness of K xMg;n

is

established by exhibiting one or two extremal uniruled divisors on xMg;n, satisfying
certain numerical properties, see Proposition 5.2.

We close the introduction by pointing out that, shortly after this paper was pub-
lished on arXiv, the paper [BFV] by Bini, Fontanari and Viviani appeared, where the
Kodaira dimension of Caporaso’s [C] compactification Pd;g of the universal Picard
variety Picd

g is determined for all g � 4 and degrees d such that

gcd.d C g � 1; 2g � 2/ D 1:

In the case d D g, the result from [BFV] overlaps with our Theorem 0.3. Their
methods are however quite different from ours. The difference lies in that two different
birational models are used to compactify the universal Jacobian. These models are
related via the birational Abel–Jacobi map ag W xCg;g Ü Pg;g , which is a blow-
up of a codimension 2 locus in Pg;g and has zDg as its exceptional divisor. This
also explains the discrepancy between the canonical classes K xCg;g

and KPg;g
(cf.

[BFV], Theorem 1.4) respectively. In view of [BFV], we would also like to point
out the existence of our earlier preprint [FV2]. In the second half of [FV2] (which
will not be published having been incorporated in Sections 3–5 of this paper), the
birational classification of Pic

g

d
for g � 11 is carried out to a very large extent. In

particular, the intermediate case g D 11 and the connection to the Mukai fibration
q11 W xM11;11 Ü xF11, appears already in [FV2], Theorem 0.3.
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1. An extremal effective divisor on xMg;g

We begin by setting notation and terminology. If M is a Deligne–Mumford stack we
denote by M its associated coarse moduli space. Whenever we refer to the Picard
group of one of the moduli spaces M 2 f xMg;n; xCg;ng, to keep things simple we
denote Pic.M/ WD Pic.M/Q D Pic.M/Q for the rational Picard group. This allows
us to make no distinction between divisor classes on the stack and the associated
coarse moduli space.

Let X be a complex Q-factorial variety. A Q-Weil divisor D on X is said to be
movable if codim

�T
m BsjmDj; X� � 2, where the intersection is taken over all m

which are sufficiently large and divisible. We say thatD is rigid if jmDj D fmDg, for
allm � 1 such thatmD is an integral Cartier divisor. The Kodaira–Iitaka dimension
of a divisorD onX is denoted by �.X;D/. As usual, we set �.X/ WD �.X;KX /. We
say that a curve 	 � X is a covering curve for a divisorD � X , when 	 deforms in
a family of 1-cycles f	tgt2T , such that

S
t2T 	t D D.

We recall the notation for boundary divisor classes on the moduli space xMg;n, cf.
[AC1]. For an integer 0 � i � Œg=2� and a set of labels T � f1; : : : ; ng, we denote
by �i WT the closure in xMg;n of the locus of n-pointed curves ŒC1 [ C2; x1; : : : ; xn�,
where C1 and C2 are smooth curves of genera i and g � i respectively, and the
marked points lying on C1 are precisely those labeled by T . As usual, we define
ıi WT WD Œ�i WT � 2 Pic. xMg;n/. For 0 � i � Œg=2� and 0 � c � g, we set

�i Wc WD
X

#.T /Dc

ıi WT ; ıi Wc WD Œ�i Wc�Q 2 Pic. xMg;n/:

By convention, ı0Wc WD ;, for c < 2. If 
 W xMg;n ! xMg is the morphism forgetting
the marked points, we set � WD 
�.�/ 2 Pic. xMg;n/ and ıirr WD 
�.ıirr/ 2 Pic. xMg;n/,
where ıirr WD Œ�irr� 2 Pic. xMg/ denotes the class of the locus of irreducible nodal
curves. Furthermore,  1; : : : ;  n 2 Pic. xMg;n/ are the cotangent classes correspond-
ing to the marked points. The canonical class of xMg;n can be computed by using
Grothendieck–Riemann–Roch for the universal curve over xMg;n:

K xMg;n
� 13� � 2ıirr C

nX
iD1

 i � 2
X

T �f1;:::;ng
i�0

ıi WT � ı1W;: (1)

On the universal symmetric product xCg;n, we denote by Q�; Qıirr; Qıi Wc WD Œz�i Wc� 2
Pic. xCg;n/ the divisor classes corresponding to the same symbols on xMg;n. The
general point from the z�0W2 corresponds to a marked curve with automorphism group
isomorphic to Z=2Z, therefore Qı0W2 D Œz�0W2�Q D Œz�0;2�=2. Let � W xMg;n ! xCg;n

and ' W xCg;n ! xMg be the quotient and forgetful maps respectively, thus 
 D ' B� .
Clearly, ��. Q�/ D �; ��. Qıirr/ D ıirr, ��. Qıi Wc/ D ıi Wc , where the last formula, in the
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case i D 0; c D 2, takes into account the branching of the map � along the divisor
z�0W2 � xCg;n.

We introduce the tautological line bundle L on xCg;n, having fibre

LŒC; x1 C � � � C xn� D T _
x1
.C /˝ � � � ˝ T _

xn
.C /;

over a point ŒC; x1 C � � � C xn� WD �.ŒC; x1; : : : ; xn�/ 2 xCg;n. We set Q WD c1.L/,
and let �i W xMg;n ! xMg;1 be the morphism forgetting all expect the i -th marked
point. Then

��. Q / D
nX

iD1

��
i . / D

nX
iD1

�
 i �

X
i2T �f1;:::;ng

ı0WT
�

D
nX

iD1

 i �
nX

cD2

c ı0Wc 2 Pic. xMg;n/:

(2)

From the Riemann–Hurwitz formula K xMg;n
D ��.K xCg;n

/ C ı0W2 applied to the

quotient map � , after observing that the pull-back map �� W Pic. xCg;n/ ! Pic. xMg;n/

is injective, we obtain the formula:

K xCg;n
� 13 Q��2 Qıirr C Q �2

X
i�1;c�0

.i;c/¤.1;0/

Qıi Wc �3 Qı1W0� Qı0W2C
nX

cD3

.c�2/ Qı0Wc 2 Pic. xCg;n/:

(3)

In order to obtain lower bounds on the Kodaira dimension of xCg;n, we need
to control its singularities. We fix a point ŒC; x1 C � � � C xn� 2 xCg;n, and de-
note by Def.C; x1; : : : ; xn/ the versal deformation space of the n-pointed curve
.C; x1; : : : ; xn/, viewed as an open neighborhood of the origin in the tangent space
to the moduli stack TŒC;x1;:::;xn�.SMg;n/ D Ext1.�1

C ;OC .�x1 � � � � � xn//. We set

Aut.C; Nx/ WD ˚
� 2 Aut.C / W �.fx1; : : : ; xng/ D fx1; : : : ; xng�:

An analytic neighbourhood of ŒC; x1 C � � � C xn� 2 xCg;n is isomorphic to the space

Def.C; x1; : : : ; xn/=Aut.C; Nx/ � H 0
�
C;!C ˝�1

C .x1 C � � � C xn/
�_
=Aut.C; Nx/;

where the last identification uses Serre duality. To describe the action of Aut.C; Nx/
on the tangent space of the moduli stack, we recall the concept of age.

Let .V; �/ be a finite dimensional complex representation of a finite groupG. If the
eigenvalues of �.g/ 2 GL.V / are exp.2�iri /, where 0 � ri < 1 for i D 1; : : : ; d ,
then following [R], we define the age of the element g 2 G as

age.g/ WD r1 C � � � C rd :
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According to the Reid–Tai criterion, the singularities of V=G are canonical, if and
only if for each element g 2 G which does not act as a quasi-reflection, the inequality
age.g/ � 1 holds, cf. [HM], p. 27. Next we show that the singularities of xCg;n are
no worse that those of xMg . In particular, one can bound the Kodaira dimension of
xCg;n by bounding the number of global sections of K xCg;n

.

Theorem 1.1. Fix integers g � 4 and n; l � 0, and let  W zCg;n ! xCg;n be any
resolution of singularities. Then l-canonical forms of xCg;n;reg extend, that is, there
are group isomorphisms

� W H 0
� xCg;n;reg; K

˝l
xCg;n

� ��!Š H 0
� zCg;n; K

˝l
zCg;n

�
:

Proof. Let us choose a point ŒC; x1 C � � � C xn� 2 xCg;n which violates the
Reid–Tai criterion, that is, there exists an automorphism � 2 Aut.C; Nx/ which per-
mutes the points x1; : : : ; xn, such that with respect to the action of � on the space
H 0

�
C;!C ˝�1

C .x1 C � � � C xn/
�
, we have that age.�/ < 1. If fC˛g˛ are the nor-

malizations of the components of C and fp˛ˇ gˇ are the points on C˛ whose images
in C are either nodes of C or marked points x1; : : : ; xn, we recall that there exists an
exact sequence:

0 !
M

p2Sing.C /

Torp ! H 0
�
C;!C ˝�1

C .x1 C : : :C xn/
�

!
M

˛

H 0
�
C˛; !

˝2
C˛
.
X

ˇ

p˛ˇ /
� ! 0;

(4)

where Torp � H 0
�
C;!C ˝�1

C .x1 C� � �Cxn/
�

is the 1-dimensional space of torsion
differentials based at p 2 Sing.C /. It is proved in [HM], p. 34, that Torp contributes
at least 1=ord.�/ to age.�/, for each node p 2 Sing.C /. We distinguish two cases:

(i) � acts non-trivially only on exceptional componentsR ofC , which are smooth
rational curves such that #.R \ .C � R// � 2. In other words, � induces the trivial
automorphism on the stable model of C . Let R be an exceptional component, and
for simplicity we assume that R meets the rest of C at only one point. We set
fpg WD R \ C and denote by P � R � fpg the marked points lying on R. Since
� 2 Aut.R/ has finite order, say l , one finds that � has precisely two fixed points
p D 0;1 2 R, and that �.z/ D � �z, where � ¤ 1 is an l-th root of unity. The points
in P � f1g can be grouped in orbits of l elements, and an immediate calculation
shows that the contribution to age.�/ coming from H 0.R; !˝2

R .p C P // is at least

.l�1/=lC�
l�3

2

�
. Since as mentioned above, there is a further contribution to age.�/of

at least 1=l , coming from Torp.!C ˝�1
C .x1 C� � �Cxn//, it follows that age.�/ � 1,

and this case corresponds to a canonical singularity. The case #.R \ .C � R// D 2

is analogous, also leading to a canonical singularity.
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(ii) There exists a non-exceptional component of C on which � acts non-trivially.
Since age.�C / (with respect to the action on H 0.C; !C ˝ �1

C /) cannot exceed
age.�/ < 1, the analysis from [HM], pp. 34–40, shows that in this caseC D C1 [E,
C1 \E D fpg, where C1 is a smooth curve of genus g� 1 andE is an elliptic curve.
Moreover �C1

D IdC1
, and one distinguishes between the cases when ord.�E / D

2; 4; 6. If at least one of the points xi lies on E, an immediate calculation shows
that age.�/ � 1, thus this case too corresponds to a canonical singularity. When
fx1; : : : ; xng � C1�fpg, then ifU � xMg is the analytic neighbourhood of ŒC1[pE�

constructed in [HM], p. 41–43, any pluri-canonical form defined on xCg;n;reg extends
over '�1.U /. This completes the proof. �

We turn to the study of the divisor zDg � xCg;g defined as the closure of the locus
of points ŒC; x1 C � � � C xg � 2 Cg;g moving in a pencil. First we note that its class is
given by

zDg � �Q�C Q �
X

i�1;c�0

�jc � i j C 1

2

�
Qıi Wc �

gX
cD2

�
c

2

�
Qı0Wc 2 Pic. xCg;g/: (5)

We construct rational curves ` � xCg;g sweeping-out the divisor zDg : We fix a
curve ŒC � 2 Mg , a complete base point free pencilA 2 W 1

g .C /, and define ` � xCg;g

as being the closure in moduli of the locus

fŒC; x1 C � � � C xg � 2 Cg;g W h0.C;A.�x1 � � � � � xg// � 1g � Cg;g :

Proposition 1.2. One has that ` � Q D 2g � 2, ` � Qı0W2 D 2g � 1, whereas ` has
intersection number 0with all remaining standard generators of Pic. xCg;g/. It follows
that ` �K xCg;g

D ` � zDg D �1. It follows that zDg is an extremal non-movable divisor

in Eff. xCg;g/.

Proof. Let Q̀ � Cg , be the image of ` under the blow-up map '�1.ŒC �/ ! Cg of the
diagonals. Then, using e.g. [K], Proposition 2.6, we have that Q̀ �KCg

D �1. On the

other side, Q̀ �KCg
D ` �K xCg;g

D ` � Q � ` � Qı0W2 (one may assume that A 2 W 1
g .C /

has only simple ramification points, hence ` � Qı0Wc D 0 for c � 3). Furthermore,
` � Qı0W2 equals the half of the number of ramification points of A, that is, 2g � 1, and
the rest is immediate. �

As explained in the Introduction, for g � 12 the estimate s. xMg/ < 7 holds, and
from (5) one finds that

K xCg;g
2 Q>0

˝ Q�; Œ zDg �; fQıi Wcg.i;c/¤.0;2/; '
�Eff. xMg/

˛
: (6)

Coupled with Theorem 1.1, this implies that �. xCg;g/ D 3g � 3. Furthermore, we
note that zDg appears with multiplicity 1 in the stable base locus of K xCg

.
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Proposition 1.3. Set g � 11. Then jnK xCg;g
j D n zDg C jnK xCg;g

� n zDg j, for all
n � 1.

Proof. The coefficient of zDg in the expression (6) is equal to 1. Since ` � zDg is a
covering curve, such that ` �K xCg;g

D ` � zDg D �1, whereas ` has intersection number
zero with the remaining classes appearing in (6), the conclusion follows. �

We are thus left with the study of xDg WD ��. zDg/ � xMg;g , in the range g � 11.

Proposition 1.4. For 3 � g � 11, the irreducible divisor xDg is filled up by rational
curves R � xMg;g such that R � xDg < 0. It follows that xDg 2 Eff. xMg;g/ is an
extremal rigid divisor. Moreover, when g ¤ 10, one can assume that R � ıi WT D 0

for all i � 0 and T � f1; : : : ; gg.
Proof. We first treat the case g ¤ 10, and start with a general point ŒC; x1; : : : ; xg � 2
Dg . We assume that the points x1; : : : ; xg 2 C are distinct and that

h0.C;KC .�x1 � � � � � xg// D 1:

Let us consider the .g � 2/-dimensional linear space

ƒ WD hx1; : : : ; xgi � P
�
H 0.C;KC /

_� D Pg�1:

Since 
.Dg/ D Mg , we may assume that ŒC � 2 Mg is a general curve. In particular,

C lies on a K3 surface S
jOS .C /j
,�����! Pg , which admits the canonical curve C as

a hyperplane section, cf. [M1]. We intersect S with the pencil of hyperplanes
fH� 2 .Pg/_g�2P1 such thatƒ � H�. Since (i) the locus of hyperplanesH 2 .Pg/_
such that the intersection S \ H is not nodal has codimension 2 in .Pg/_, and (ii)
the pencil fH�g�2P1 can be viewed as a general pencil of hyperplanes containing
P

�
H 0.C;KC /

_�
as a member, we may assume that all the curves H� \ S are nodal

and that the nodes stay away from the fixed points x1; : : : ; xg . In this way we obtain
a family in xMg;g

R WD fŒC� WD H� \ S; x1; : : : ; xg � W ƒ � H�; � 2 P1g;
inducing a fibration f W zS WD Bl2g�2.S/ ! P1, obtained by blowing-up the base
points of the pencil, together with g sections given by the exceptional divisorsExi

�
zS corresponding to the base points x1; : : : ; xg . The numerical parameters of R are
computed using, for instance, [FP], Section 2. Precisely, one writes that

R �� D .
�.R/ ��/ xMg
D gC1; R �ıirr D .
�.R/ �ıirr/ xMg

D 6gC18; R �ıi WT D 0;

(7)
for i � 0 and T � f1; : : : ; gg. Finally, from the adjunction formula, R �  i D
�.E2

xi
/ zS D 1 for 1 � i � g. Thus, R � xDg D �1. Since R is a covering curve for

the divisor xDg , it follows that xDg is a rigid divisor on xMg;g .
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We turn to the case g D 10, when the previous argument breaks down because the
general curve ŒC � 2 M10 no longer lies on a K3 surface, see [M1], Theorem 0.7. More
generally, we fix a genus g < 11; g ¤ 9 and pick a general point ŒC; x1; : : : ; xg � 2
Dg . We denote by X WD Cij the nodal curve obtained from C by identifying xi and
xj , where 1 � i < j � g. Since ŒX� 2 �0 � xMgC1 is a general 1-nodal curve of
genus g C 1, using e.g. [FKPS], there exists a smooth K3 surface S containing X .
We denote by � W C ! X � S the normalization map and set �.xi / D �.xj / D p.
The linear system jOS .X/j embeds S in PgC1 and ��.OS .X// D KC .xi C xj /.
Let  W S 0 WD Blp.S/ ! S be the blow-up of S at p and E � S 0 the exceptional
divisor. Note that C viewed as an embedded curve in S 0 belongs to the linear system
j�OS .1/˝OS 0.�2E/j andC �E D xi Cxj . LetZ � S 0 the reduced 0-dimensional
scheme consisting of marked points of C with support fxi ; xj gc .

Since h0.C;OC .x1 C � � � C xg// D 2, we find that Z together with the tangent
plane Tp.X/ D Tp.S/ span a .g � 1/-dimensional linear space ƒ � PgC1. We
obtain a 1-dimensional family in xDg by taking the normalization of the intersection
curves on S with hyperplanes H 2 .PgC1/_ passing through ƒ. Equivalently, we
note that

h0.S 0;�Z=S 0.C // D h0.S 0;OS 0/C h0.C;KC .�x1 � � � � � xg// D 2;

that is, j�Z=S 0.C /j is a pencil of curves onS 0. We denote by Q W zS WD Bl2g�4.S
0/! S 0

the blow-up of S 0 at the .�.H/ � 2E/2 D 2g � 4 base points of j�Z=S 0.C /j, by
f W zS ! P1 the induced fibration with .g�2/ sections corresponding to the points of
Z, as well as with a 2-section given by the divisorE WD Q�1.E/. Since deg.fE / D 2,
there are precisely two fibres of f , say C1 and C2, which are tangent to E. We make
a base change or order 2 via the morphism fE W E ! P1, and consider the fibration

q0 W Y 0 WD zS �P1 E ! E:

Thus p W Y 0 ! zS is the double cover branched along C1 CC2. Clearly q0 admits two
sectionsE1; E2 � Y 0 such that p�.E/ D E1 CE2 andE1 �E2 D 2. By direct calcu-
lation, it follows thatE2

1 D E2
2 D �3. To separate the sectionsE1 andE2, we blow-

up the two points of intersection E1 \E2 and we denote by q W Y WD Bl2.Y 0/ ! E

the resulting fibration, which possesses everywhere distinct sections �i W E ! Y 0 for
1 � i � g, given by the proper transforms of E1 and E2 as well as the proper trans-
forms of the exceptional divisors corresponding to the points in Z. The numerical
characters of the family 	ij WD fŒq�1.t/; �1.t/; : : : ; �g.t/� W t 2 Eg � xMg;g are
computed as follows:

	ij � � D 2.g C 1/; 	ij � ıirr D 2.6g C 17/; 	ij �  l D 2 for l 2 fi; j gc ;

	ij �  i D 	ij �  j D �.E2
i /Y 0 C 2 D 5;

	ij � ı0Wfi;j g D 2;

	ij � ılWT D 0

for l � 0; T � fi; j gc :
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We take the Sg -orbit of the 1-cycle 	ij with respect to permuting the marked points,

	 WD 1

g.g � 1/
X
i<j

	ij 2 NE1. xMg;g/;

and note that 	 � xDg D �1. Each component 	ij fills-up xDg , which finishes the
proof. �

We keep all the notation from the proof of Proposition 1.4 and set zR WD ��.R/
and z	 WD ��.	/ 2 NE1. xCg;g/. Note that z	 D ��.	ij /=2 for all 1 � i < j � g.

Corollary 1.5. The following intersection identities on xCg;g hold true:

zR � Q� D gC1; zR � Qıirr D 6gC18; zR � Q D g and zR � Qıi Wc D 0 for all pairs .i; c/;

z	 � Q� D g C 1; z	 � Qıirr D 6g C 17; z	 � Q D g C 1

and z	 � Qı0W2 D 1; z	 � Qıi Wc D 0
for .i; c/ ¤ .0; 2/:

It follows that zR �K xCg;g
D 2g � 23 and z	 �K xCg;g

D 2g � 21.

2. The Mukai model of xMg;g

Having showed that the divisor xDg 2 Eff. xMg;g/ is extremal when g � 11, our next
aim is to construct a “modular” birational contraction of xMg;g , such that xDg appears
among its exceptional divisors. We achieve this goal for 7 � g � 9, using Mukai’s
fundamental work on classification of Fano varieties. We recall that for 6 � g � 9,
there exists a ng -dimensional Fano variety Vg � PNg of index ng �2 and �.Vg/ D 1,
where Ng WD g C ng � 2, such that general 1-dimensional complete intersections
of Vg are canonical curves ŒC � 2 Mg with general moduli. One has the following
table, see [M1] or [M3], p. 256:

g ng Ng Vg

6 5 9 Quadric section of G.2; 5/

7 10 15 Spinor variety OG.5; 10/

8 8 14 Grassmannian G.2; 6/

9 6 13 Symplectic Grassmannian SG.3; 6/

The automorphism group Aut.Vg/ acts in a natural way on the product V g
g and we

choose the polarization L WD OVg
.1/� � � � � OVg

.1/ 2 Pic.V g
g /. For 7 � g � 9,

we call the GIT-quotient

Mg;g WD .V g
g /

ss.L/==Aut.Vg/



Vol. 88 (2013) The classification of universal Jacobians over the moduli space of curves 599

the Mukai model of xMg;g . For g D 6, it is not clear that Aut.V6/ is a reductive group
and leave the question of the nature of M6;6 aside for further study (We are grateful
to the referee for pointing this issue out to us). When 7 � g � 9, there exists a
birational rational map

fg W xMg;g Ü Mg;g ; fg

�
ŒC; x1; : : : ; xg �

� WD .x1; : : : ; xg/ mod Aut.Vg/:

The inverse map is given by f �1
g .x1; : : : ; xg/ WD Œhx1; : : : ; xgi \Vg ; x1; : : : ; xg �. It

is not hard to see that fg contracts all boundary divisors�i WT , where i � 1. The point
is that a stable curve with a disconnecting node cannot appear as a linear section of
Vg , that is, stable curves from the divisors�i � xMg where i > 0, correspond to non-
nodal curvilinear sections of Vg . Accordingly, the locus of planesƒ 2 G.g;Ng C1/

such that ƒ \ Vg is not an irreducible curve with at worst nodal singularities, has
codimension at least 2 in G.g;Ng C 1/ (see also [FV1], Proposition 4.2). From
[M1], [M4], it also follows that fg also blows-down the pull-back of the unique
Brill–Noether divisor on xMg when g ¤ 4; 6 (respectively the Petri divisor on xM4

and xM6). By comparing Picard numbers, the exceptional divisor Exc.fg/ must
contain one extra component:

Proposition 2.1. For 7 � g � 9, the rational morphism fg contracts the divisor
xDg .

Proof. It suffices to note that fg blows-down the covering curves R � xDg � xMg;g

constructed in the course of proving Proposition 1.4. �

We use the existence of the Mukai variety Vg , to establish Theorem 0.2.

Proof of Theorem 0.2. In the range 6 � g � 9; n � g, the unirationality of xCg;n

follows from that of xMg;n. Indeed, the parameter space

† WD ˚�
.x1; : : : ; xn/;ƒ

� 2 V n
g �G.g;Ng C 1/ W xi 2 ƒ; for i D 1; : : : ; n

�

maps dominantly onto xMg;n via the map
�
.x1; : : : ; xn/;ƒ

� 7! ŒVg \ƒ; x1; : : : ; xn�.
Since † is a Grassmann bundle over the rational variety V n

g , the conclusion follows.

It is proved in [FP] that xM11;n (thus xCg;n as well), is uniruled for n � 10. Similarly,
xM10;n is uniruled for n � 9, cf. loc. cit. �

These results can be improved when g � 6 using plane models of minimal degree:

Proposition 2.2. xCg;n is unirational for all g � 6 and n � 0.

Proof. One used the representation of the general curve ŒC � 2 Mg as a plane model
of degree d WD Œ.2g C 8/=3� with ı WD �

d�1
2

� � g nodes in general position, cf.
[AC2]. We describe the details for the case g D d D 6. We choose general points
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p1; : : : ; p4 2 P2 and fix an integer l � 3 such that 6l � 20 < n � 6l � 14. On the
normalization C of a curve 	 2 jOP2.6/.�2P4

iD1 pi /j, the complete linear series
KC .l � 3/ D g6l�14

6l�8
is cut out by degree l curves passing through p1; : : : ; p4. We

define the incidence correspondence

U WD
n�
	;Xl ; faig6l�8�n

iD1

� 2
ˇ̌ˇOP2.6/

�
� 2

4X
iD1

pi

�ˇ̌ˇ�
ˇ̌ˇOP2.l/

�
�

4X
iD1

pi

�ˇ̌ˇ� .P2/6l�8�n W

	 �Xl � 2.p1 C � � � C p4/C a1 C � � � C a6l�8�n

o
:

We note that U is rational. The residuation map r W U Ü xC6;n defined by

r
�
	;Xl ; faig6l�8�n

iD1

� WD ŒC;D�; where 	 �Xl D 2

4X
iD1

pi C
6l�8�nX

iD1

ai CD;

and C ! 	 is the normalization map, is dominant. Thus xC6;n is unirational. �

3. The Kodaira dimension of xM11;11

On xM11 there exist two divisors of Brill–Noether type consisting of curves with
special linear series, namely the closure of the locus of 6-gonal curves

M1
11;6 WD fŒC � 2 M11 W G1

6.C / ¤ ;g
and the closure of the locus M2

11;9 WD fŒC � 2 M11 W G2
9.C / ¤ ;g. The divisors

xM1
11;6 and xM2

11;9 are irreducible, distinct, and their classes are proportional, cf.
[EH2]. Precisely, there are explicit constants c11;1;6; c11;2;9 2 Z>0, such that

bn11 W� 1

c11;1;6

xM1
11;6 � 1

c11;2;9

xM2
11;9

� 7� � ı0 � 5ı1 � 9ı2 � 12ı3 � 14ı4 � 15ı5 2 Pic. xM11/:

By interpolating, we find the following explicit canonical divisor:

K xM11;11
� xD11 C 2 � 
�.bn11/C

5X
iD0

11X
cD0

di Wc ıi Wc ; (8)

where

d0Wc D c2 C c � 4
2

for c � 2; d1Wc D 8C
�jc � 1j C 1

2

�
for c � 1;
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d1W0 D 7; d2Wc D 16C
�jc � 2j C 1

2

�
; d3Wc D 22C

�jc � 3j C 1

2

�
;

d4Wc D 26C
�jc � 4j C 1

2

�
; and d5Wc D 28C

�jc � 5j C 1

2

�
:

Similarly, at the level of the universal symmetric product xC11;11 one has the relation

K xC11;11
� zD11 C 2 � '�.bn11/C

X
.i;c/¤.0;2/

di Wc Qıi Wc : (9)

One already knows that multiples of xD11 are non-moving divisors on xM11;11.
We show that xD11 does not move in any multiple of the canonical linear system on
xM11;11.

Proposition 3.1. For each integer n � 1, one has an isomorphism

H 0
� xM11;11;O xM11;11

.nK xM11;11
/
� Š H 0

� xM11;11;O xM11;11
.nK xM11;11

� n xD11/
�
:

In particular, �. xM11;11/ D �. xM11;11; K xM11;11
� xD11/. Furthermore, on xC11;11, one

has that �. xC11;11/ D �. xC11;11; K xC11;11
� zD11/.

Proof. Using the notation and results from Proposition 1.4, we recall that we have
constructed a curve R � xM11;11 moving in a family which fills-up the divisor xD11,
such that R � xD11 D �1 and R � ıi WS D 0, for all i � 0 and T � f1; : : : ; gg. All
points in R correspond to nodal curves lying on a fixed K3 surface S , which by the
generality assumptions, can be chosen such that Pic.S/ D Z. Applying [Laz], all
underlying genus 11 curves corresponding to points in R satisfy the Brill–Noether
theorem, in particular R � 
�.bn11/ D 0, that is, R � K xM11;11

D R � xD11 D �1.

It follows that for any effective divisor E on xM11;11 such that E � nK xM11;11
, one

has that R � E D �n. Moreover, the class E � n xD11 is still effective and then
jnK xM11;11

j D n xD11 C jnK xM11;11
� n xD11j. The proof in the case of xC11;11 is

similar. One uses that ��. zD11/ D xD11, hence zR � zD11 D R � xD11 D �1, as well as
zR �K xC11

D �1. The rest of the argument is identical. �

We are in a position to complete the proof of Theorem 0.5:

Theorem 3.2. We have that

�
� xM11;11; 2 � 
�.bn11/C

X
i;c

di Wc � ıi Wc
�

D �
� xC11;11; 2 � '�.bn11/C

X
.i;c/¤.0;2/

di Wc � Qıi Wc
� D 19:

It follows that the Kodaira dimension of both xM11;11 and xC11;11 equals 19.
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Proof. To simplify the proof, we define a few divisors classes on xM11;11:

A WD 2 � 
�.bn11/C
X

i�0;c

di Wc ıi Wc � K xM11;11
� xD11 and A0 WD A�

11X
cD2

d0Wc ı0Wc ;

as well as, B WD bn11 C 4ı3 C 7ı4 C 8ı5 2 Pic. xM11/.
We claim that for all integers n � 1, one has isomorphisms,

H 0
� xM11;11;O xM11;11

.nA/
� Š H 0

� xM11;11;O xM11;11
.nA0/

�
:

Indeed, we fix a set of labels T � f1; : : : ; 11g such that #.T / � 2 and consider a
pencil ˚

ŒCt ; xi .t/; p.t/ W i 2 T c�
�

t2P1 � xM11;12�#.T /;

of .12 � #.T //-pointed curves of genus 11 on a general K3 surface S , with marked
points being labeled by elements in T c as well by another label p.t/. The pencil
is induced by a fibration obtained from a Lefschetz pencil of genus 11 curves on S ,
with regular sections given by .12 � #.T // of the exceptional divisors obtained by
blowing-up S at the .2g�2/ base points of the pencil. To each element in this pencil,
we attach at the marked point labeled by p.t/, a fixed copy of P1 together with fixed
marked points xi 2 P1 � f1g, for i 2 T . The gluing identifies the point p.t/ 2 Ct

with 1 2 P1. If RT � xM11;11 denotes the resulting family, we compute

RT �� D gC 1; RT � ıirr D 6.gC 3/; RT � ı0WT D �1; RT � i D 1 for i 2 T c ;

RT �  i D 0 for i 2 T:
Moreover, RT is disjoint from all remaining boundary divisors of xM11;11. One finds
that RT � 
�.bn11/ D 0. Thus for any effective divisor E � xM11;11 such that
E � nA, we find that RT �E D �nd0;c .

Since for all T , the pencilRT fills-up the divisor�0WT , we can deform the curves
RT � �0WT , to find that E � P11

cD2 nd0Wc � ı0Wc is still an effective class, that is,

jnAj D
11X

cD2

nd0Wc ��0Wc C jnA0j;

which proves the claim. Next, by direct calculation we observe that the class A0 �
2
�.B/ is effective. Zariski’s Main Theorem gives that 
�
�O xM11

.B/ D O xM11
.B/,

thus
�. xM11;11; A

0/ � �
� xM11;11; 


�.B/
� D �. xM11; B/ D 19:

The last equality comes from [FP], Proposition 6.2: The classB contains the pull-back
of an ample class under the Mukai map [M2]

q11 W xM11;11 Ü xF11; ŒC; x1; : : : ; x11� 7! ŒS 	 C; OS .C /�;
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to a compactification of the moduli space of polarized K3 surfaces of degree 20.
On the other hand, since 
�.ıi / D P

S ıi WS for 1 � i � 5, there is a divisor class
on xM11 of type B 0 WD 2 � bn11 C P5

iD1 aiıi 2 Pic. xM11/, with ai � 0, such that

�.B 0/ � A0 is an effective divisor. It follows that

�. xM11;11; A
0/ � �

� xM11;11; 

�.B 0/

� D �. xM11; B
0/:

IfR11 � xM11 is the family corresponding to a Lefschetz pencil of curves of genus 11
on a fixed K3 surface, then R11 �B 0 D 0. The pencil R11 moves in a 11-dimensional
family inside xM11 which is contracted to a point by any linear series jnB 0j on xM11

with n � 1 (in fact a general curveR11 is disjoint from the base locus of jnB 0j). One
finds that �. xM11; B

0/ � 19, which completes the proof. The case of xC11;11 proceeds
with obvious modifications. �

4. The Kodaira dimension of xC10;10

The geometry of xM10 is governed to a large extent by the divisor xK10 of curves lying
on K3 surfaces. It is shown in [FP] that xK10 is an irreducible divisor of class

xK10 � 7� � ı0 � 5ı1 � 9ı2 � 12ı3 � 14ı4 � b5ı5 2 Pic. xM10/;

where b5 � 6. Furthermore, s. xK10/ D 7 is the minimal slope of an effective
divisor on xM10. The irreducible divisor xK10 is rigid. Indeed, if R10 � xK10 is
the covering family obtained by blowing-up the base points of a pencil of curves of
genus 10 on a fixed K3 surface, then R10 � xK10 D �1 (see [FP] Lemma 2.1). Since
R10 � ıi D 0 for 1 � i � 5, this argument proves that any divisor D 2 Eff. xM10/

with s.D/ D s. xK10/, is rigid as well.
Comparing the expression of Œ xK10� with that of K xC10;10

, we obtain the formula

K xC10;10
� zD10 C 2 � '�. xK10/C

X
.i;c/¤.0;2/

di Wc Qıi Wc ; (10)

where remarkably, the coefficients di Wc have exactly the same values as in formula
(10) for 1 � i � 4, while d5Wc D 2b5 � 2C �jc�5jC1

2

�
, for 0 � c � 10. We point out

that the coefficient d0W2 of Qı0W2 in formula (10), equals 0.

Theorem 4.1. For each n � 1, there is an isomorphism of groups

H 0
� xC10;10;O xC10;10

.nK xC10;10
/
� Š H 0

� xC10;10;O xC10;10
.nK xC10;10

� n zD10/
�
:

Proof. We use Corollary 1.5. Through a general point of the divisor xD10 on xM10;10

there passes a curve z	 � xC10;10 such that z	 � zD10 D z	 �K xC10;10
D �1 and	 � Qıi Wc D 0

for .i; c/ ¤ .0; 2/. One obtains that jnK xC10;10
j D n zD10 C jnK xC10;10

�n zD10j. �
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End of proof of Theorem 0.1 when g D 10. We define the following divisor classes
on xC10;10:

A WD 2�'�. xK10/C
X

.i;c/¤.0;2/

di Wc Qıi Wc � K xC10;10
� zD10 and A0 WD A�

10X
cD3

d0Wc Qı0Wc :

We claim that H 0
� xC10;10;O xC10;10

.nA/
� Š H 0

� xC10;10;O xC10;10
.nA0/

�
for all n� 1.

Indeed, we fix a set of labels T � f1; : : : ; 10g with c WD #.T / � 3, as well as two
indexes i; j 2 T c and consider the 1-cycle 	ij � xM10;11�c constructed in Propo-
sition 1.4. We label by fp.t/; xl.t/ W t 2 P1gl2T c the sections of the family. We
obtain a covering curve 	 0

ij for the divisor �0WT � xM10;10, by attaching along the
section p.t/ a fixed .c C 1/-pointed rational curve to each of the curves in 	ij , in
a way that the marked points labeled by T are precisely those lying on the rational
component. Then z	0Wc WD ��.	 0

ij / � xC10;10 is a covering curve for z�0Wc . From

Corollary 1.5, z	0Wc � Qı0Wc < 0 and z	0Wc has intersection number 0 with all the compo-
nents of supp.A/� z�0Wc (Note that z�0W2 does not appear among these components).
We repeat this argument for all divisors z�0Wc , where 3 � c � g, and the claim
becomes obvious. We finish the proof by using the same argument as at the end of
the proof of Theorem 3.1: There exists an effective class B 0 2 Eff. xM10/ such that
B 0 � xK10 is effective, s.B 0/ D s. xK10/ D 7, and such that '�.B 0/ � A0 is effective.
Then �. xC10;10/ D �. xC10;10; A

0/ � �. xC10;10; '
�.B 0// D �. xM10; B

0/ D 0. �

5. The uniruledness of xMg;n

We formulate two general principles which we use in proving the uniruledness of
some moduli spaces xMg;n. We begin with the following consequence of [BDPP]:

Proposition 5.1. Let X be a normal projective Q-factorial variety and D � X an
irreducible divisor filled-up by curves 	 � X , such that 	 �D � 0 and 	 �KX < 0.
Then X is uniruled.

Proof. First note that KX is not pseudo-effective. Assume that on the contrary, KX

lies in the closure Eff.X/ of the effective cone of X , set

˛ WD supft 2 Q�0 W KX � tD 2 Eff.X/g;
and write A WD KX � ˛D 2 Eff.X/. The curve 	 deforms in a family filling-up D,
so because of the maximality of ˛, one has	 �A � 0 and	 �KX D ˛	 �DC	 �A � 0,
which is a contradiction. Thus KX … Eff.X/ and we claim that this implies that X
is uniruled. Indeed, let us consider a resolution � W X 0 ! X of X . It is enough to
prove that X 0 is uniruled and according to [BDPP] this is equivalent to showing that
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KX 0 is not pseudo-effective. But KX 0 � ��.KX / C P
i aiEi , where ai 2 Q and

the divisors Ei � X 0 are the components of the exceptional locus Exc.�/. Since the
divisorsEi are �-exceptional andKX is not pseudo-effective, we find that no divisor
of the form ��.KX / C P

i a
0
iEi , where a0

i � 0, can be pseudo-effective either. In
particular, KX 0 is not pseudo-effective, hence X 0 is uniruled. �

We can extend this principle to the case of several divisors as follows:

Proposition 5.2. Let X be a normal projective Q-factorial variety and suppose
D1;D2 � X are irreducible effective Q-divisors such that there exist covering curves
	i � Di , with 	i � Di < 0 for i D 1; 2 (in particular both Di 2 Eff.X/ are non-
movable divisors). Assume furthermore that

ˇ̌ˇ̌	1 �D1 	1 �D2

	2 �D1 	2 �D2

ˇ̌ˇ̌ � 0;

ˇ̌ˇ̌	1 �KX 	1 �D1

	2 �KX 	2 �D1

ˇ̌ˇ̌ < 0: (11)

Then X is uniruled.

Proof. According to [BDPP], it suffices to prove thatKX is not pseudo-effective. By
contradiction, we choose ˛; ˇ 2 R�0 maximal such thatKX �˛D1 �ˇD2 2 Eff.X/.
Then we can write down the inequalities

	1 �KX � ˛.	1 �D1/C ˇ.	1 �D2/ and 	2 �KX � ˛.	2 �D1/C ˇ.	2 �D2/:

Eliminating ˛, the resulting inequality contradicts the assumption ˇ � 0. �

We turn our attention to the proof of Theorem 0.6 which we split in three parts:

Theorem 5.3. xM5;n is uniruled for n � 13.

Proof. A general 2-pointed curve ŒC; x; y� 2 M5;2 carries a finite number of lin-

ear series L 2 W 2
6 .C /, such that if �L W C jLj��! 	 � P2 is the induced plane

model, then �L.x/ D �L.y/ D p1. Note that 	 has nodes, say p1; : : : ; p5, and
dim jOP2.	/.�2P5

iD1 pi /j D 12.
We pick general points fxig11

iD1 and fpj g5
j D1 � P2, then consider the pencil of

sextics passing with multiplicity 1 through x1; : : : ; x11 and having nodes (only) at
p1; : : : ; p5. The pencil induces a fibration f 0 W S ! P1, where S WD Bl21.P2/ is
obtained from P2 by blowing-up p1; : : : ; p5, x1; : : : ; x11, as well as the remaining
unassigned base points of the pencil. The exceptional divisors Exi

� S provide
11 sections of f 0. The exceptional divisor Ep1

induces a 2-section. Making a base
change via the map f 0

Ep1
W Ep1

! P1, the 2-section Ep1
splits into two sections

Ex and Ey meeting at 2 points. Blowing these points up, we arrive at a fibration
f W Y ! Ep1

, carrying 13 everywhere disjoint sections, zEx; zEy ; zEx1
; : : : ; zEx11

,
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where zExi
� Y denotes the inverse image of Exi

, and zEx; zEy denote the proper
transforms ofEx andEy respectively. This induces a family of pointed stable curves

	 WD ˚
ŒC� WD f �1.�/; zEx � C�; zEy � C�; zEx1

� C�; : : : ; zEx11
� C�� W � 2 Ep1

�
� xM5;13:

We compute the numerical characters of 	 (see also the proof of Proposition 1.4):

	 � � D deg.fEp1
/
�
�.S;OS /C g � 1� D 10;

	 � ıirr D deg.fEp1
/
�
c2.S/C 4g � 4� D 80;

	 �  x D 	 �  y D 5; 	 �  x1
D � � � D 	 �  x11

D 2; 	 � ı0Wxy D 2;

whereas 	 is disjoint from the remaining boundary divisors. One finds, 	 �K xM5;13
D

�2, which completes the proof. �

Remark 5.4. It is known that xM5;15 is of general type, [F1], p. 865. Using the fact
that 12 general points in P4 determine a canonical curve of genus 5, it is proved in
[CF] that xM5;n is rational when n � 12. Hence Theorem 5.3 settles the cases xM5;13.

Theorem 5.5. xM8;n is uniruled for n � 12.

Proof. We apply Proposition 5.2 whenD1 is a suitable multiple of the Brill–Noether
divisor on xM8 consisting of curves with a g2

7, that is,

D1 � 2 � bn8 WD 2

c8;2;7

xM2
8;7 � 22��3ı0 �14ı1 �24ı2 �30ı3 �32ı4 2 Pic. xM8/:

We also setD2 WD �irr 2 Eff. xM8;n/. To construct a covering curve 	1 � D1, we lift
to xM8;n a Lefschetz pencil of 7-nodal plane septics. The fibration f W Bl28.P2/ ! P1

obtained by blowing-up the 21C 7 base points of a general pencil of 7-nodal plane
septics, induces a covering curvem W P1 ! xM8 for the irreducible divisor xM2

8;7. The
numerical invariants of this pencil are

m�.�/ D �.S;OS /C g � 1 D 8 and m�.ı0/ D c2.S/C 4.g � 1/ D 59;

while m�.ıi / D 0 for i D 1; : : : ; 4. Moreover, for n as above, f carries n sections
given by the exceptional divisors corresponding to n of the unassigned base points.
If 	1 � xM8;n denotes the resulting, then

	1 �� D 
�.	1/ �� D 8; 	1 � ıirr D 
�.	1/ � ıirr D 59; 	1 � i D 1 for i D 1; : : : ; n;

and	1 �ıi WT D 0. It follows that	1 �D1 D �1; 	1 �K xM8;n
D n�14 and	1 �D2 D 59.
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We construct a covering curve 	2 � D2 and start with a general pointed curve
ŒC; x1; : : : ; xnC1� 2 xM7;nC1. We identify xnC1 with a moving point y 2 C , that is,
take

	2 WD
²	

C

y 
 xnC1

; x1; : : : ; xn



W y 2 C

³
� xM8;n:

It is easy to compute that 	2 � � D 0, 	2 � ıirr D �2g.C / D �14, 	2 � ı1W; D 1,
	2 �  i D 1, for i D 1; : : : ; n; and 	2 � ıi WT D 0 for .i; T / ¤ .1;;/. Therefore
	2 � D1 D 28 and 	2 � K xM8;n

D 25 C n. The assumptions of Proposition 5.2 are
satisfied when n � 12. �

Remark 5.6. The results of Theorem 5.5 are almost optimal. The space xM8;14 is
of general type, [Log]. Note that it was already known [Log], [CF], that xM8;n is
unirational for n � 11, thus the improvement here is the case xM8;12.

Proposition 5.7. xM9;n is uniruled for n � 10 (in fact unirational for n � 9).

Proof. We apply Proposition 5.1, when D WD 
�. xM1
9;5/ is the pull-back of the 5-

gonal locus inside xM9. If ŒC � 2 xM1
9;5 is a general 5-gonal curve and A 2 W 1

5 .C /,
then there exists an effective divisor D 2 C3, such that h0.C;A˝ OC .D// � 3, cf.
[AC2]. In particular, A ˝ OC .D/ 2 W 2

8 .C / induces a plane model of C having a
3-fold point, such that jAj can be retrieved by projecting from this point.

To obtain a covering curve forD, we start with general pointsp0; p1; : : : ; p9 2 P2

and consider the surface  W S WD Blp0;:::;p9
.P2/ ! P2 together with the line bundle

L WD �OP2.8/˝ OS .�3Ep0
� P9

iD1Epi
/ 2 Pic.S/. Note that dim jLj D 11. We

fix 10 general points x1; : : : ; x10 2 S , hence the pencil j�fx1;:::;x10g=S ˝ Lj induces
a curve 	 � xM9;10. Standard calculations yield that 	 � � D 9, 	 � ıirr D 64 and
	 � i D 1 for i D 1; : : : ; 10. Therefore 	 �K xM9;10

D �1, while 	 � 
�. xM1
9;5/ > 0.

Since 	 � 
�. xM1
9;5/ is a covering curve, this finishes the proof. �

Finally, we turn to the case of genus 7. In order to establish the uniruledness of
xM7;n, we consider the following effective divisors on xM7;n:

D1 WD fŒC; x1; : : : ; xn� 2 M7;n W 9L 2 W 2
7 .C / with h0.C;L.�x1 � x2// � 1g;

and D2 WD 3
2c7;1;4


�. xM1
7;4/ � 15� � 2ı0 � 9ı1 � 15ı2 � 18ı3 2 Pic. xM7/ is (a

rational multiple of) the divisor of 4-gonal curves on xM7. Before computing the
class Œ xD1�, we need a calculation, which may be of independent interest:

Proposition 5.8. Let g � 1 mod 3 be a fixed integer and set d WD .2g C 7/=3, so
that the Brill–Noether number �.g; 2; d/ D 1. One considers the effective divisor of
nodes of plane curves

Nodeg WD fŒC; x; y� 2 Mg;2 W 9L 2 W 2
d .C / such that h0.C;L.�x � y// � 2g:
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The class of its closure in xMg;2 is given by the formula

Nodeg � cg

�
.gC4/�Cg C 2

6
. 1C 2/�g C 2

6
ıirr�gı0Wf1;2g�� � �

�
2 Pic. xMg;2/;

where

cg WD 24.g � 2/Š
.g � d C 5/Š .g � d C 3/Š .g � d C 1/Š

:

Proof. We denote by 
1 W xMg;2 ! xMg;1 the morphism forgetting the second marked
point. The divisor Cug WD .
1/�.Nodeg � ı0Wf1;2g/ coincides with the cusp locus
in xMg;1, that is, the locus of pointed curves ŒC; x� 2 Mg;1, such that there exists
L 2 W 2

d
.C / with h0.C;L.�2x// � 2.

In order to compute its class, we fix a general elliptic curve ŒE; x� 2 xM1;1 and
consider the map j W xMg;1 ! xMgC1, given by j.ŒC; x�/ WD ŒC [x E�. Then

Cug D j �. xM2
gC1;d /;

where xM2
gC1;d

is the Brill–Noether divisor on xMgC1 consisting of curves with a

g2
d

. Since the class Œ xM2
gC1;d

� 2 Pic. xMgC1/ is known, cf. [EH2], and j �.�/ D �,
j �.ıirr/ D ıirr, j �.ı1/ D � C ıg�1W1, we find the following expression:

Cug � cg

�
.g C 4/�C g � g C 2

6
ıirr �

g�1X
iD1

.i C 1/.g � i/ıi W1
�

2 Pic. xMg;1/:

Using the formulas

.
1/�.� � ı0Wf1;2g/ D �; .
1/�.ı2
0Wf1;2g/ D � ; .
1/�.ıirr � ı0Wf1;2g/ D ıirr

and

.
1/�. i � ı0Wf1;2g/ D 0 for i D 1; 2;

one finds that the ı0Wf1;2g-coefficient of Nodeg equals the  1-coefficient of Cug ,
while the �; ıirr-coefficients coincide.

One still has to determine the  1-coefficient in ŒNodeg �. To this end, we fix a
general point ŒC; q� 2 Mg;2 and consider the test curve C2 WD fŒC; q; y� W y 2 C g �
xMg;2. Then, C2 �  1 D 1, C2 �  2 D 2g � 1 and obviously C2 � ı0Wf1;2g D 1. On

the other hand, C2 � Nodeg equals the number of points y 2 C , such that for some
(necessarily complete and base point free) L 2 W 2

d
.C /, the morphism

�.L; y/ W L_
jyCq ! H 0.C;L/_

fails to be injective. The map�.L; y/ globalizes to a morphism of vector bundles over
C �W 2

d
.C /, and the number in question is the Chern number of the top degeneracy

locus of � and is computed using [HT]. We omit the details. �
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Proposition 5.9. The class of the closure of D1 in xM7;n is given by the formula

xD1 � 44�C6. 1C 2/�6ıirr�28ı0Wf1;2g�6
nX

j D3

.ı0Wf1;j gCı0Wf2;j g/�� � � 2 Pic. xM7;n/:

Proof. We denote by
12 W xM7;n ! xM7;2 the morphism retaining the first two marked
points. Then xD1 D 
�

12.Node7/, and the conclusion follows from Proposition 5.8
using the pull-back formulas for generators of Pic. xM7;2/, see e.g. [Log], Theorem 2.3.

�

Theorem 5.10. xM7;n is uniruled for n � 13.

Proof. We start by constructing a covering curve for xD1. Choose general points
p1; : : : ; p8, x3; : : : ; x12 2 P2, and a general line l � P2. Then consider the pencil of
plane septics of geometric genus 7 passing through x3; : : : ; x12 and having nodes at
p1; : : : ; p8. Blowing-up the nodes as well as the base points of the pencil, we obtain
a fibration f W S ! P1, where S WD Bl25.P2/. We observe that f has sections
fExi

giD3;:::;12, given by the respective exceptional divisors, a 2-section given byEp1

and a 7-section induced by the proper transform of l . We make base changes of order
2 and 7 respectively, to arrive at the 1-cycle

	1 WD ˚
ŒCt ; x1.t/; : : : ; x13.t/� W t 2 P1

� � xM7;13;

where x1.t/ and x2.t/ map to the fixed node p1 2 P2, whereas the image of x13.t/

lies on the line l . One finds that

	1 � � D 14 � g D 98; 	1 �  1 D 	1 �  2 D 35;

	1 �  3 D � � � D 	1 �  12 D 14; 	1 �  13 D 22:

Furthermore, 	1 � ı0Wf1;2g D 14; 	1 � ıirr D 14 � 52 D 728, and finally 	1 � ıj WT D 0

for all pairs .j; T / ¤ �
0; f1; 2g�. Clearly 	1 is a covering curve for xD1.

Next, we construct a covering curve for D2 and use that if ŒC � 2 M1
7;4 and

A 2 W 1
4 .C / is the corresponding pencil, then there exists a divisor D 2 C3 such

that A˝ OC .D/ 2 W 2
7 .C /. One fixes general points p; fpig5

iD1, fxj g13
j D1 2 P2 and

considers the pencil of genus 7 septics with a 3-fold point at p, nodes at p1; : : : ; p5

and passing through x1; : : : ; x13. This induces a covering curve 	2 � 
�. xM1
7;4/with

the following invariants:

	2 � � D 7; 	2 � ıirr D 53; 	2 �  i D 1 for i D 1; : : : ; 13;

and

	2 � ıj WT D 0 for all .j; T /:
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Thus, 	1 � xD1 D �28; 	2 � D2 D �1; 	1 � D2 D 14; 	2 � xD1 D 2, as well as
	1 � K xM7;13

D 22 and 	2 � K xM7;13
D �2. The assumptions of Proposition 5.2 are

thus fulfilled. �
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