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and �ŒŒG��´ FpŒŒG�� we show that the natural map K1.ƒ.G// ! K1.�.G// has a splitting
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G D Zp . We verify the vanishing condition for certain unipotent compact p-adic Lie groups.
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Introduction

This paper is motivated by the following result of Coleman ([Col]). Inside the alge-
braic closure SQp of the field of p-adic numbers Qp we fix, for any n � 0, a primitive
pn-th root of unity �n in such a way that �pnC1 D �n. We let On denote the ring of
integers in the field Qp.�n/. The groups of units O�

n in these rings form a projective
system

� � � �! O�
nC1

norm���! O�
n �! � � � �! O�

1 �! Z�
p

with respect to the Galois norms. On the other hand one considers the group of units
ZpŒŒT ��� in the formal power series ring in one variable T over the ring of p-adic
integers Zp . Coleman constructs a natural “norm” operator N on this group and
shows that the map

.ZpŒŒT ��
�/N Did Š��! lim �O

�
n ;

F 7�! .F.�n � 1//n;
is an isomorphism. This result is of basic importance in Iwasawa theory. There is a
twist added to it by Fontaine ([Fon]) which is the starting point of our investigation.
By the theory of the field of norms the group lim �O

�
n , in fact, coincides with the

group of units in the ring of integersOE of a specific local fieldE of characteristic p.
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The choice of the �n gives rise to a choice of a prime element in OE so that we
may identify OE with the ring FpŒŒT �� of formal power series over Fp . With these
identifications the Coleman map simply is the map induced by the natural projection
ZpŒŒT �� ! FpŒŒT �� of power series rings. Hence Coleman’s theorem says that the
eigenspace .ZpŒŒT ���/N Did of the norm operator N provides a natural section for the
projection map ZpŒŒT ��� ! FpŒŒT ���.

We remark that the group of units in a commutative local ring has a more concep-
tual interpretation as the algebraic K-group K1 of that ring. From this point of view
we are dealing with the natural map K1.ZpŒŒT ��/ ! K1.FpŒŒT ��/. We also recall
that the power series rings ZpŒŒT �� and FpŒŒT �� are isomorphic to the completed group
rings of the additive group G WD Zp over Zp and Fp , respectively.

In noncommutative Iwasawa theory one investigates towers of number fields
whose Galois group G is much more general, in particular possibly noncommu-
tative, than the group G D Zp . The problem of constructing p-adic L-functions in
this context is closely related to the computation of the algebraicK-groupK1.ƒ.G//
of the completed group ring ƒ.G/ of G over Zp . Clearly, Coleman’s theorem then
suggests the investigation of the natural map

K1.ƒ.G// �! K1.�.G//

where�.G/ is the completed group ring ofG over Fp . The main purpose of this paper
is to provide a list of requirements on the group G which guarantees the existence of
a splitting of the above map which is characterized by a certain “norm type” operator
equation in K1.ƒ.G//.

We let p ¤ 2 be an odd prime number and G be a pro-p p-adic Lie group. First
of all we will construct an “Adams operator”

ẑ W K1.ƒ.G// �! K1.ƒ.G//:

Next we assume that G satisfies:

(ˆ) The map � W G ! G given by �.g/ WD gp is injective, and �n.G/ is open inG
for any n � 1.

(P) �.G/ is a subgroup of G.

Then �.G/ is an open normal subgroup in G. Hence ƒ.G/ is a free module of rank
pd WD ŒG W �.G/� over ƒ.�.G//. By general principles of K-theory we therefore
have the norm map Nƒ.G/=ƒ.�.G// W K1.ƒ.G//! K1.ƒ.�.G///, and we introduce
the composite “norm operator”

NG W K1.ƒ.G//
Nƒ.G/=ƒ.�.G//�����������! K1.ƒ.�.G///

can��! K1.ƒ.G//:

In order to formulate our third axiom (SK) we also need the completed group ring
ƒ1.G/ of G over Qp . We require that:

(SK) The natural map K1.ƒ.G//! K1.ƒ
1.G// is injective.
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Our main result is the following.

Theorem. If G satisfies (ˆ), (P), and (SK) then the natural map K1.ƒ.G// !
K1.�.G// restricts to an isomorphism

K1.ƒ.G//
NG.:/D ẑ .:/pd�1 Š��! K1.�.G//:

Whereas (ˆ) and (P) are easily seen to hold for any uniform pro-p-group G the
axiom (SK) is of a more subtle nature. In the last section we will show that the group
G of lower triangular unipotent matrices in GLn.Zp/, for any n � 1, satisfies (SK).

There is the aspect of groups of local units in the original Coleman isomorphism.
In our present general setting this is disguised in the group K1.ƒ1.G//. The ring
ƒ1.G/ is a projective limit of semisimple Qp-algebras. The group K1.ƒ1.G//
therefore can be computed, via the determinant map, in purely representation theoretic
terms through a Fröhlich style Hom-description

K1.ƒ
1.G// Š HomGp

.RG ; SQ�
p /:

Here RG denotes the representation ring of G, i.e., the free abelian group on the set
of isomorphism classes of irreducible SQp-representations of G which are trivial on
some open subgroup. The homomorphisms in the right-hand side are assumed to
be equivariant for the absolute Galois group Gp WD Gal.SQp=Qp/. We extend our
operators ẑ and NG from K1.ƒ.G// to K1.ƒ1.G// and there prove them to be
equal, on the Hom-description, to the adjoints of the usual Adams operator  p and
the induction operator

�p.ŒV �/ WD �
V ˝Qp

QpŒG=�.G/�
�

on RG , respectively. Under our requirements on the group G this leads to a natural
embedding

K1.ƒ.G//
NG.:/D ẑ .:/pd�1

,�! HomGp
.RG= im.�p � pd�1 p/; SQ�

p /

which is the generalization of the Coleman map. Unfortunately, for a general group
G its cokernel is very big. The case of the group G D Zp , where the cokernel turns
out to be isomorphic to the group Z�

p of p-adic units, seems quite exceptional. At
this point it remains an open problem to determine the image of this embedding.

In the first section we will review the formalism of exponential maps which pro-
vides an identification of the kernel of the mapK1.ƒ.G//! K1.�.G//with the quo-
tientƒ.G/ab of the additive groupƒ.G/ by the additive commutators. In the second
section we will introduce the integralp-adic logarithm map� W K1.ƒ.G//! ƒ.G/ab

of Oliver and Taylor. It is a very careful analysis of the interplay between the expo-
nential map and � which will enable us to define the Adams operator ẑ and to prove
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the above theorem in this section. The third section will be devoted to the discussion
of the group K1.ƒ1.G// and its Hom-description. In the final section we establish
the axiom (SK) for unipotent radicals of Borel in GLn.Zp/.

We thank K. Kato for pointing out to us the results from [Oli], §2b. Both of us are
grateful to the Centro de Investigación en Matemáticas (CIMAT, Guanajuato, Mexico)
and the Newton Institute (Cambridge) for support and a stimulating environment while
we worked on this paper. The first, resp. second, author acknowledges support by the
DFG-Sonderforschungsbereich 478, resp. by DFG- and ERC-grants.

1. Exponential maps

In this section we begin by recalling the formalism of the exponential map, as devel-
oped in [Oli], §2b, for any (possibly noncommutative) Zp-algebraAwhich is finitely
generated and free as a Zp-module. Following [Oli] we call such a ring A a p-adic
order. Throughout the paper we assume p ¤ 2. Let J � A denote the Jacobson
radical. The ring A is semi-local in the sense that A=J is semisimple. It is well
known (cf. [Bas], V.9.1) that in this situation the natural map

A�=ŒA�; A�� Š��! K1.A/

is an isomorphism. In [Oli], Lemma 2.7 and Theorem 2.8, it is shown that the usual
exponential power series converges on pA inducing a bijection

pA � 1C pA
with inverse given by the equally converging logarithm power series. Moreover, if
ŒA;A� denotes the additive subgroup of A generated by all additive commutators of
the form Œa; b� D ab � ba with a; b 2 A and if E 0.A; pA/ denotes the kernel of
the natural map 1 C pA ! K1.A; pA/ into the relative K-group then the above
bijections induce isomorphisms of groups

pA=pŒA;A� � 1C pA=E 0.A; pA/ Š K1.A; pA/
which are inverse to each other and which we denote by exp and log, respectively.
Note that the second isomorphism above is a consequence of Swan’s presentation
([Oli], Theorem 1.15) which also says that E 0.A; pA/ is the subgroup generated by
all elements of the form .1Cpab/.1Cpba/�1 for a; b 2 A. SinceA isp-torsionfree
it is convenient to renormalize to the isomorphism

exp.p:/ W A=ŒA;A� Š��! K1.A; pA/:

Obviously everything is covariantly functorial in unital ring homomorphisms.
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For any n 2 N letMn.A/ denote the p-adic order of n by nmatrices overA. The
group homomorphisms

A �!Mn.A/;

a 7�!
�
a

0

�
;

and

A� �! GLn.A/;

a 7�!

0BBB@
a 0

1
: : :

0 1

1CCCA ;
then induce the commutative diagram

Mn.A/=ŒMn.A/;Mn.A/�
exp.p:/ �� K1.Mn.A/; pMn.A//

A=ŒA;A�

Š
��

exp.p:/ �� K1.A; pA/,

Š
��

where the perpendicular maps are isomorphisms by Morita invariance. In fact, the
usual matrix trace provides an inverse for the left perpendicular map (cf. [Lod],
Lemma 1.1.7).

Consider now a unital homomorphism A ! B of p-adic orders such that B is
finitely generated free of rank n as a rightA-module. Choosing a basis ofB overA the
left multiplication of B on itself gives a unital algebra homomorphism B !Mn.A/

and hence, by functoriality, a commutative diagram

B=ŒB;B�

��

exp.p:/ �� K1.B; pB/

��
Mn.A/=ŒMn.A/;Mn.A/�

exp.p:/ �� K1.Mn.A/; pMn.A//:

By combination with the previous diagram we obtain the canonical commutative
diagram

B=ŒB;B�

trB=A

��

exp.p:/ �� K1.B; pB/

NB=A

��
A=ŒA;A�

exp.p:/ �� K1.A; pA/

in which trB=A is the usual trace map and NB=A is the transfer map in K-theory (cf.
§1d in [Oli]).

Now let G be any profinite group. We then have the completed group rings

ƒ.G/ WD lim �ZpŒG=U � and �.G/ WD lim �FpŒG=U �
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of G over Zp and Fp , respectively, where U runs over all open normal subgroups of
G. Both carry a natural compact topology. The ring ƒ.G/ is also referred to as the
Iwasawa algebra of G. In the following we assume that G contains an open normal
pro-p subgroup which is topologically finitely generated. Then the rings ƒ.G/ and
�.G/ are semi-local. Any ZpŒG=U � is a p-adic order, of course. By a projective
limit argument we deduce from the previous section the isomorphism

exp.p:/ W lim �ZpŒG=U �=ŒZpŒG=U �;ZpŒG=U ��
Š�! lim �K1.ZpŒG=U �; pZpŒG=U �/.

The left-hand term clearly is equal to ƒ.G/=Œƒ.G/;ƒ.G/� where Œƒ.G/;ƒ.G/�
denotes the closure of Œƒ.G/;ƒ.G/� inƒ.G/. To understand the right-hand term we
start with the standard exact sequence of K-groups

K2.FpŒG=U �/ �! K1.ZpŒG=U �; pZpŒG=U �/

�! K1.ZpŒG=U �/ �! K1.FpŒG=U �/ �! 0,

where the zero at the end is immediate from the description of K1 of the respective
rings as a quotient of the unit group of the ring (use [Ros], Proposition 1.3.8). Using
the isomorphism ZpŒG=U �=ŒZpŒG=U �;ZpŒG=U �� Š K1.ZpŒG=U �; pZpŒG=U �/
from the previous section we see that K1.ZpŒG=U �; pZpŒG=U �/ can be viewed
as the free Zp-module over the set of conjugacy classes in G=U and hence is p-
torsionfree. On the other hand K2.FpŒG=U �/ is finite ([Oli], Theorem 1.16). Hence
already

0 �! K1.ZpŒG=U �; pZpŒG=U �/ �! K1.ZpŒG=U �/ �! K1.FpŒG=U �/ �! 0

is exact. In fact, this is an exact sequence of countable projective systems with
respect to U . The corresponding transition maps for the second and the third term
are surjective (again by their description in terms of units). This implies that the
sequence remains exact after passing to the projective limit with respect to U . So we
obtain the exact sequence

0 �! lim �K1.ZpŒG=U �; pZpŒG=U �/

�! lim �K1.ZpŒG=U �/ �! lim �K1.FpŒG=U �/ �! 0:

As a consequence of [Oli], Theorem 2.10(ii) and [FK] Proposition 1.5.1, we have the
natural isomorphisms

lim �
U

K1.ZpŒG=U �/ Š lim �
m;U

K1.Z=p
mZŒG=U �/ Š K1.ƒ.G// (1)

and
lim �
U

K1.FpŒG=U �/ Š K1.�.G//:
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Altogether we arrive at the basic exact sequence

0 �! ƒ.G/=Œƒ.G/;ƒ.G/�
exp.p:/�����! K1.ƒ.G// �! K1.�.G// �! 0: (2)

We emphasize that via the isomorphism K1.ƒ.G// Š ƒ.G/�=Œƒ.G/�; ƒ.G/�� the
map exp.p:/ in this sequence is induced by the map pƒ.G/ ! 1C pƒ.G/ given
by the exponential power series.

Consider now a fixed open subgroup H � G. Then ƒ.G/ is finitely generated
free of rank ŒG W H� as a right (or left) ƒ.H/-module and so is ZpŒG=U � over
ZpŒH=U � for any open normal subgroup U � G such that U � H . By passing to
the projective limit we obtain from the previous section and [Oli], Proposition 1.18,
the commutative diagram

0 �� ƒ.G/=Œƒ.G/;ƒ.G/�

trƒ.G/=ƒ.H/

��

exp.p:/ �� K1.ƒ.G//

Nƒ.G/=ƒ.H/

��

�� K1.�.G//

N�.G/=�.H/

��

�� 0

0 �� ƒ.H/=Œƒ.H/;ƒ.H/�
exp.p:/ �� K1.ƒ.H// �� K1.�.H// �� 0.

(3)

2. The integral p-adic logarithm

In this section we assumeG to be a pro-p p-adic Lie group (for some p ¤ 2). In this
case the rings ƒ.G/ and �.G/ are strictly local with residue field Fp . As before U
runs over all open normal subgroups of G. The integral p-adic logarithm of Oliver
and Taylor is the homomorphism

� D �G=U W K1.ZpŒG=U �/ �! ZpŒG=U �=ŒZpŒG=U �;ZpŒG=U �� DW ZpŒG=U �ab

defined by

�.x/ WD log.x/ � 1

p
ˆ.log.x//

with the additive map

ˆ W ZpŒG=U � �! ZpŒG=U �;X
g2G=U

agg 7�!
X

g2G=U
agg

p:

We note that the latter induces an additive endomorphism of ZpŒG=U �ab; this is
an straightforward consequence of the identities gh � hg D gh � h.gh/h�1 and
ghg�1�h D .gh/g�1�g�1.gh/. According to [Oli], Theorem 6.6 and Theorem 7.3,



620 P. Schneider and O. Venjakob CMH

the sequence

0! �p�1 � .G=U /ab � SK1.ZpŒG=U �/
! K1.ZpŒG=U �/

���! ZpŒG=U �
ab !��! .G=U /ab ! 0

is exact. Here .G=U /ab denotes the maximal abelian quotient of G=U , the map ! is
defined by

!
� X
g2G=U

agg
�
WD

Y
g2G=U

gag mod ŒG=U;G=U � ;

and

SK1.ZpŒG=U �/ WD ker.K1.ZpŒG=U �/ �! K1.QpŒG=U �//:

The map �p�1 � .G=U /ab ! K1.ZpŒG=U �/ is induced by the obvious inclusion
�p�1 � G=U � ZpŒG=U ��. Clearly the above exact sequence is natural in U so
that we may pass to the projective limit with respect to U . On all terms in the exact
sequence except possibly the SK1-term the transition maps are surjective. The SK1-
terms are finite by [Oli], Theorem 2.5(i). Hence passing to the projective limit is
exact. By setting Gab WD G=ŒG;G� (note that G, by [DDMS], Theorem 8.32, is
topologically finitely generated and hence ŒG;G�, by [DDMS], Proposition 1.19, is
closed in G),

SK1.ƒ.G// WD lim �SK1.ZpŒG=U �/ ;
and using (1) we therefore obtain in the projective limit the exact sequence

1 �! �p�1 �Gab � SK1.ƒ.G//
�! K1.ƒ.G//

��! ƒ.G/=Œƒ.G/;ƒ.G/�
!�! Gab �! 1:

(4)

In Corollary 3.2 we will see that SK1.ƒ.G// coincides with the kernel of the natural
map from K1.ƒ.G// to K1.ƒ1.G//. We assume from now on that G has the fol-
lowing property.

Hypothesis (SK). SK1.ƒ.G// D 0.

Our second basic exact sequence now is

1 �! �p�1 �Gab �! K1.ƒ.G//
��! ƒ.G/=Œƒ.G/;ƒ.G/�

!�! Gab �! 1: (5)

One easily checks that � B exp.p:/ D p �ˆ holds true. Hence (2) and (5) combine
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into the commutative exact diagram

1

��
�p�1 �Gab

��

D �� �p�1 �Gab

��
0 �� ƒ.G/ab

D

��

exp.p:/ �� K1.ƒ.G//

�

��

�� K1.�.G//

��

�� 0

ƒ.G/ab p�ˆ �� ƒ.G/ab

!

��

�� ƒ.G/=.p �ˆ/ƒ.G/C Œƒ.G/;ƒ.G/�
!

��

�� 0

Gab

��

D �� Gab

��
1 1,

where we have abbreviated ƒ.G/ab WD ƒ.G/=Œƒ.G/;ƒ.G/�. Next we study the
endomorphismp�ˆ ofƒ.G/ab. It is convenient to do this is an axiomatic framework.

LetX be any compact topological space together with a continuous map‰ W X !
X which satisfies

– ‰ is injective,

– ‰n.X/ is open (and closed) in X for any n � 1, and

–
T
n�1‰n.X/ D fx0g is a one element subset.

It follows that

– ‰.x0/ D x0, and

– X n fx0g DS
n�0‰n.X/n‰nC1.X/ is a disjoint decomposition into open and

closed subsets.

We let C.X;Zp/ denote the Zp-module of all Zp-valued continuous functions onX ,
and we put ZpŒŒX�� WD HomZp

.C.X;Zp/;Zp/. The map‰ induces by functoriality
endomorphisms ‰� and ‰� of C.X;Zp/ and ZpŒŒX��, respectively. We claim that
the map

C.‰.X/;Zp/˚ ker.‰� � p/ Š��! C.X;Zp/

which on the first, resp. second, summand is the extension by zero, resp. the inclusion,
is an isomorphism. For the injectivity we note that any f 2 ker.‰� � p/ satisfies
f .‰n.x// D pnf .x/ for any x 2 X and any n � 1; if, in addition, f jX n‰.X/ D 0
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it follows that necessarily f D 0. To see the surjectivity we first introduce, for any
continuous function g W X n‰.X/! Zp the function

g] W X �! Zp;

x 7�!
´
png.y/ if x D ‰n.y/ 62 ‰nC1.X/,
0 if x D x0.

By construction g] is continuous, satisfies g]jX n‰.X/ D g, and lies in ker.‰��p/.
If now f 2 C.X;Zp/ is an arbitrary function we put g WD f jX n‰.X/ and obtain
a decomposition f D .f � g]/C g] as claimed.

The above splitting, combined with the canonical splitting

C.‰.X/;Zp/˚ C.X n‰.X/;Zp/ Š��! C.X;Zp/;

gives rise to an isomorphism

ker.‰� � p/ Š C.X n‰.X/;Zp/ ; (6)

which is nothing else than the inclusion followed by the restriction map.

Moreover, the map C.X;Zp/
‰�

���! C.X;Zp/ is surjective (to obtain a preimage
of f 2 C.X;Zp/ extend the function f B ‰�1 on ‰.X/ by zero to X ). For any
given f 2 C.X;Zp/ we set g0 WD f and choose inductively, for any n � 0, a
gnC1 2 C.X;Zp/ such that ‰�.gnC1/ D gn. Setting g WD P

n�1 pn�1gn we

obtain f D ‰�.g/ � pg. This shows that the map C.X;Zp/
‰��p�����! C.X;Zp/ is

surjective. It is even split-surjective since

C.X;Zp/ �! ker.‰� � p/;
g 7�! .gjX n‰.X//];

is a projector onto its kernel.

Dually we then obtain the split-injectivity of the map ZpŒŒX��
‰��p�����! ZpŒŒX��

and the direct sum decomposition

ZpŒŒX�� D HomZp
.ker.‰� � p/;Zp/˚ .‰� � p/ZpŒŒX��

D ZpŒŒX n‰.X/��˚ .‰� � p/ZpŒŒX�� ;
where we used the dual of (6) in the second equation.

We apply this general consideration to the spaceX WD O.G/ of conjugacy classes
in G and the map ‰ induced by �.g/ WD gp on G. Then ZpŒŒO.G/�� D ƒ.G/ab and
‰� D ˆ.

Lemma 2.1.
T
n�1 �n.G/ D f1g.
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Proof. If G is finitely generated and powerful then our assertion holds true by
[DDMS], Proposition 1.16 (iii) and Theorem 3.6 (iii). But our general pro-p p-
adic Lie group G contains an open normal subgroup N which is uniform and hence
finitely generated and powerful by [DDMS], Corollary 8.34. Let ŒG W N� D ph.
Then �nCh.G/ � �n.N /. �

It is easily verified that the space O.G/ satisfies the above conditions provided
we assume the following.

Hypothesis (ˆ). The map � W G ! G is injective, and �n.G/ is open in G for any
n � 1.

For example, any uniform G satisfies this hypothesis by [DDMS], Proposi-
tion 1.16(iii), Theorem 3.6(iii), and Lemma 4.10.

Henceforth assuming both (SK) and (ˆ) the above diagram therefore can be
completed to the commutative exact diagram:

1

��

1

��
�p�1 �Gab

��

D �� �p�1 �Gab

��
0 �� ƒ.G/ab

D

��

exp.p:/ �� K1.ƒ.G//

�

��

�� K1.�.G//

��

�� 0

0 �� ƒ.G/ab p�ˆ �� ƒ.G/ab

!

��

�� ƒ.G/=.p �ˆ/ƒ.G/C Œƒ.G/;ƒ.G/�
!

��

�� 0

Gab

��

D �� Gab

��
1 1.

(7)
Moreover, the subgroup ZpŒŒO.G/n‰.O.G//�� � ƒ.G/ab provides a section for the
lower short exact sequence. It follows that the subgroup

Kˆ1 .ƒ.G// WD ��1.ZpŒŒO.G/ n‰.O.G//��/ � K1.ƒ.G//
provides a section for the upper short exact sequence, i.e., that the natural map

Kˆ1 .ƒ.G//
Š��! K1.�.G//

is an isomorphism.
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In order to characterize the group Kˆ1 .ƒ.G// in a different way we make the
following further assumption.

Hypothesis (P). �.G/ is a subgroup of G.

Then�.G/necessarily is a normal subgroup and is open by (ˆ/. Let ŒG W �.G/� D
pd . We introduce the homomorphism

ẑ W K1.ƒ.G// �! K1.ƒ.G//;

x 7�! exp.p�.x//�1xp

(thinking in terms of units we write the groups K1 multiplicatively). The diagram

0 �� ƒ.G/ab

ˆ

��

exp.p:/ �� K1.ƒ.G//

ẑ
��

�� K1.�.G//

:p

��

�� 0

0 �� ƒ.G/ab exp.p:/ �� K1.ƒ.G// �� K1.�.G// �� 0

(8)

is easily checked to be commutative, and we have the identity

� B ẑ D ˆ B �: (9)

On the other hand, as a consequence of [Oli], Theorem 6.8, we have the commu-
tative diagram

K1.ƒ.G//

Nƒ.G/=ƒ.�.G//

��

�G �� ƒ.G/ab

tr0
G=�.G/

��
K1.ƒ.�.G///

��.G/ �� ƒ.�.G//ab,

(10)

where the modified trace map tr0
G=�.G/

W ƒ.G/ab ! ƒ.�.G//ab is the unique contin-
uous Zp-linear map which on group elements g 2 G is given by

tr0
G=�.G/.g/ WD

´Ppd�1

iD1 hig
ph�1

i if g 62 �.G/,Ppd

iD1 high�1
i if g 2 �.G/,

where in each case the hi run over a set of representatives for the left cosets of
�.G/ < g > inG. We extend the above diagram (10) by the canonical maps induced
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by the inclusion of groups �.G/ � G to the commutative diagram:

K1.ƒ.G//

Nƒ.G/=ƒ.�.G//

��

�G �� ƒ.G/ab

tr0
G=�.G/

��
K1.ƒ.�.G///

can

��

��.G/ �� ƒ.�.G//ab

can
��

K1.ƒ.G//
�G �� ƒ.G/ab.

(11)

The left, resp. right, composed vertical endomorphism of K1.ƒ.G//, resp. ƒ.G/ab,
will be denoted by NG , resp. tr0

G . Then

tr0
G.g/ D

´
pd�1gp if g 62 �.G/,
pdg if g 2 �.G/.

Hence with respect to the decomposition

ƒ.G/ab D ZpŒŒO.G/ n‰.O.G//��˚ ZpŒŒ‰.O.G//��

we have

tr0
G restricted to

´
ZpŒŒO.G/ n‰.O.G//�� D pd�1ˆ;

ZpŒŒ‰.O.G//�� D pd :
Lemma 2.2. We have

ZpŒŒO.G/ n‰.O.G//��
D .ƒ.G/ab/tr

0
G

Dpd�1ˆ WD fy 2 ƒ.G/ab W tr0
G.y/ D pd�1ˆ.y/g:

Proof. The above discussion shows that ZpŒŒO.G/ n ‰.O.G//�� is contained in the
kernel of tr0

G �pd�1ˆ. It also shows that it remains to establish the vanishing of any
y 2 ƒ.G/ab such that pd�1ˆ.y/ D pdy. Since ƒ.G/ab is torsion free this means
that ˆ.y/ D py. But we know the injectivity of ˆ � p from the diagram (7). �

Using Lemma 2.2 together with (9) and (11) we deduce that

K1.ƒ.G//
NG.:/D ẑ .:/pd�1

WD fx 2 K1.ƒ.G// W NG.x/ D ẑ .x/pd�1g � Kˆ1 .ƒ.G//:
Proposition 2.3. LetH be an arbitrary pro-p-group andN � H be an open normal
subgroup; then the composed map

K1.�.H//
N�.H/=�.N /���������! K1.�.N //

can��! K1.�.H//

coincides with the map x ! xŒH WN�.
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Proof. Step 1: We assume that ŒH W N� D p. Let x 2 �.H/� be an arbitrary
element. Its image inK1.�.H// under the asserted map can be obtained as follows.
The �.H/-bimodule �.H/ ˝�.N/ �.H/ is free of rank ŒH W N� as a left �.H/-
module. We choose any corresponding basis. Right multiplication by x is a left
�.H/-linear endomorphism, and we may form the associated matrix with respect to
the chosen basis. This matrix represents inK1.�.H// the image of x we are looking
for. In order to make a clever choice for the basis we use the bimodule isomorphism

�.H/˝�.N/ �.H/ Š��! �.H/˝Fp
�.H=N/ D �.H �H=N/;

h1 ˝ h2 7�! .h1h2; h2N/;

where H acts on the right-hand side from the left by left multiplication on the first
factor and from the right by diagonal right multiplication. We also choose an element
g 2 H such that the 1; g; : : : ; gp�1 are coset representatives forN inH . If we write
x D Pp�1

iD0 xigi with xi 2 �.N/ then the right multiplication by x on �.H/˝Fp

�.H=N/ is given by

.y ˝ z/x D
p�1X
iD0

yxig
i ˝ z.gN/i :

Obviously, 1˝1; 1˝gN; : : : ; 1˝.gN /p�1 is a basis of�.H/˝Fp
�.H=N/ as a left

�.H/-module. But we use the elements 1˝ 1; 1˝ .gN � 1/; : : : ; 1˝ .gN � 1/p�1
which also form a basis since the coefficients in the binomial equations .gN �1/m DPm
jD0

�
m
j

	
.�1/m�j .gN /j form an integral, triangular matrix with 1 on the diagonal.

For this basis we compute

.1˝ .gN � 1/m/x D
p�1X
iD0

xig
i ˝ .gN � 1/m.gN /i

D
p�1X
iD0

xig
i ˝ .gN � 1/m..gN � 1/C 1/i

D
p�1X
iD0

X
j�0

xig
i ˝ .gN � 1/m

�
i

j

�
.gN � 1/j

D
p�1�mX
jD0

� p�1X
iD0

�
i

j

�
xig

i
	˝ .gN � 1/mCj

2 x.1˝ .gN � 1/m/C
p�1X

kDmC1
�.H/.1˝ .gN � 1/k/;

where the last identity comes from the fact that .gN � 1/p D 0. This shows that in
this basis the matrix of right multiplication by x on�.H/˝Fp

�.H=N/ is triangular
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and has the element x everywhere on the diagonal. Its class in K1.�.H// therefore
coincides with the class of xp (cf. [Sri], p. 4/5).

Step 2: In the general case we choose a sequence of normal subgroups N D
N0 � N1 � : : : � Nr D H such that all indices satisfy ŒNi W Ni�1� D p. The
assertion now follows by applying the first step successively to the composite maps
can BN�.N1/=�.N/; can BN�.N2/=�.N1/; : : : ; can BN�.H/=�.Nr�1/. �

Proposition 2.4. Kˆ1 .ƒ.G// D K1.ƒ.G//NG.:/D ẑ .:/pd�1

.

Proof. Let x 2 Kˆ1 .ƒ.G// and put y WD NG.x/ ẑ .x/�pd�1
. As a consequence of

(9) and (11) we have the commutative diagram:

K1.ƒ.G//

NG.:/ ẑ .:/�pd�1

��

� �� ƒ.G/ab

tr0
G

�pd�1ˆ

��
K1.ƒ.G//

� �� ƒ.G/ab.

Lemma 2.2 therefore implies that �.y/ D 0. Moreover, by (3), (8), and Propo-
sition 2.3 (applied to H WD G and N WD �.G/) we also have the commutative
diagram:

K1.ƒ.G//

NG.:/ ẑ .:/�pd�1

��

�� K1.�.G//

1

��
K1.ƒ.G// �� K1.�.G//.

Hence y is mapped to 1 2 K1.�.G//. Finally, as part of (7) we have the commutative
exact diagram:

0 �� ƒ.G/ab

D
��

exp.p:/ �� K1.ƒ.G//

�

��

�� K1.�.G//

0 �� ƒ.G/ab p�ˆ �� ƒ.G/ab.

The element y in the upper middle term has trivial image in both directions. It follows

that necessarily y D 1, which means that x 2 K1.ƒ.G//NG.:/D ẑ .:/pd�1

. �

At this point we have established the theorem stated in the introduction.
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3. The ring ƒ1.G/

We now introduce for our pro-p p-adic Lie group G (with p ¤ 2) the ring

ƒ1.G/ WD lim �QpŒG=U �

withU running again over all open normal subgroups ofG. There is an obvious unital
ring monomorphismƒ.G/! ƒ1.G/. The ringƒ1.G/ in fact is of a rather simple
nature. As the projective limit of the semisimple finite group algebras QpŒG=U � it
decomposes into the product

ƒ1.G/ D
Y
�

A�

of two sided ideals A� where 	 D ŒV � runs over the set IrrQp
.G/ of isomorphism

classes of all irreducible Qp-representations V of G which are trivial on some open
subgroup. Each A� is a matrix algebra over the skew field L� WD EndQpŒG�.V /.
But since G is pro-p the Schur indices of all its finite quotient groups are trivial (cf.
[Roq]). This means that each L� is in fact a field and is a finite extension of Qp

generated by some p-power root of unity. In particular,L� does indeed only depend,
up to unique isomorphism, on the class 	 of V . We obtain the homomorphism

K1.ƒ
1.G// �!

Y
�

K1.A�/ Š
Y
�

K1.L�/ D
Y
�

L�
� :

It is surjective since in the commutative diagram

ƒ1.G/�

��

Š ��
Q
� A�

�

��
K1.ƒ

1.G// ��
Q
� K1.A�/

the right vertical map is surjective.

Proposition 3.1. The natural map K1.ƒ1.G// Š��!Q
� L

�
� is an isomorphism.

Proof. It remains to establish the injectivity of the map. Let x be an element in
its kernel. We may lift x to an element in GLn.ƒ1.G//, for a sufficiently big
integer n, which we again denote by x. We write x D .x�/� according to the
decomposition GLn.ƒ1.G// D Q

� GLn.A�/. Let A� D Mm.�/.L�/. Then the
Morita invariance isomorphism reads

L�
�

Š��! GLnm.�/.L�/=SLnm.�/.L�/

D GLn.A�/=ŒGLn.A�/;GLn.A�/�
Š��! K1.A�/:
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That x lies in the kernel therefore means that, for any 	 , we have

x� 2 SLnm.�/.L�/ D ŒGLn.A�/;GLn.A�/�:

By a result of Thompson ([Tho]) any element in SLnm.�/.L�/ is a commutator.
Hence we find y� ; z� 2 GLn.A�/ such that x� D Œy� ; z� �. We put y WD .y�/� and
z WD .z�/� in GLn.ƒ1.G//. It follows that

x D Œy; z� 2 ŒGLn.ƒ
1.G//;GLn.ƒ

1.G//�

which means that x maps to zero in K1.ƒ1.G//. �

Corollary 3.2. SK1.ƒ.G// D ker
�
K1.ƒ.G//! K1.ƒ

1.G//
	
.

Proof. This is a consequence of (1) and Proposition 3.1. �

It leads to a more conceptual point of view if we rewrite the isomorphism in
Proposition 3.1 in the style of the so called Hom-description of Fröhlich for finite
groups. Let Gp WD Gal.SQp=Qp/ denote the absolute Galois group of the field Qp .
Moreover, let RG denote the free abelian group on the set IrrSQp

.G/ of isomorphism

classes ŒV � of all irreducible SQp-representations V of G which are trivial on some
open subgroup. Then the map

K1.ƒ
1.G// Š��! HomGp

.RG ; SQ�
p /;

Œa� 7�! �
ŒV � 7! detSQp

.a�IV /�; (12)

where the class Œa� 2 K1.ƒ1.G// is represented by a unit a 2 ƒ1.G/�, is an
isomorphism. This can easily be deduced from Proposition 3.1 (compare [Tay],
Chapter 1, for the case of a finite group). The group G being compact any 	 D ŒV �
in Irr.G/ contains a G-invariant lattice over the ring of integers o� � L� . The
isomorphism in Proposition 3.1 therefore extends to a commutative diagram

K1.ƒ.G//

��

��
Q
� o

�
�

�
��

K1.ƒ
1.G// Š ��

Q
� L

�
� .

In terms of the Hom-description this amounts to the commutative diagram

K1.ƒ.G//

��

DET �� HomGp
.RG ; xZ�

p /

�
��

K1.ƒ
1.G// Š �� HomGp

.RG ; SQ�
p /,
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where xZp denotes the ring of integers in SQp; the upper horizontal map henceforward
will be denoted by DET.

Additively we have the isomorphism

ƒ1.G/ab WD ƒ1.G/=Œƒ1.G/;ƒ1.G/� Š��! HomGp
.RG ; SQp/;

x 7�! �
ŒV � 7! trSQp

.x�IV /�;
where the closure on the left-hand side is formed with respect to the product topology
onƒ1.G/ ŠQ

� A� . For the same reason as before it induces a map TR W ƒ.G/ab !
HomGp

.RG ; xZp/.
On RG we have the classical Adams operator  p which is characterized by the

character identity

tr.gI pŒV �/ D tr.gpI ŒV �/ for any g 2 G
(cf. [CR], §12B). Its adjoints on HomGp

.RG ; SQp/ and on HomGp
.RG ; SQ�

p / as well as
the corresponding (via (12)) operator onK1.ƒ1.G//will be denoted by p (compare
[CNT] for the case of a finite group).

The diagram

ƒ.G/ab

ˆ

��

�� ƒ1.G/ab

ˆ

��

�� HomGp
.RG ; SQp/

 p

��
ƒ.G/ab �� ƒ1.G/ab �� HomGp

.RG ; SQp/

is commutative. It suffices to check the latter on group elements where it is immediate
from the definitions. Since the logarithm log W xZ�

p ! SQp transforms the determinant
into the trace we deduce the commutative diagram

K1.ƒ.G//

DET
��

� �� ƒ.G/ab

TR
��

HomGp
.RG ; xZ�

p /
�Hom �� HomGp

.RG ; SQp/,

where the map �Hom is defined by

�Hom.f / WD 1

p
log B f p

 p.f /
D 1

p
.p �  p/.log Bf /:

We now introduce the subgroup

Hom.1/

Gp
.RG ; xZ�

p / WD ff 2 HomGp
.RG ; xZ�

p / W
f p

 p.f /
2 HomGp

.RG ; 1C pxZp/g:
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On the one hand it is a result of Snaith ([Sna], Theorem 4.3.10) that the image of
DET lies in Hom.1/

Gp
.RG ; 1C pxZp/. On the other hand log.1C pxZp/ � pxZp . We

therefore obtain the commutative diagram

K1.ƒ.G//

DET
��

� �� ƒ.G/ab

TR
��

Hom.1/

Gp
.RG ; xZ�

p /
�Hom �� HomGp

.RG ; xZp/:

(13)

It is easily seen that the operator  p respects the subgroup Hom.1/

Gp
.RG ; xZ�

p /.

Proposition 3.3. The diagram

K1.ƒ.G//

ẑ
��

DET �� Hom.1/

Gp
.RG ; xZ�

p /

 p

��

K1.ƒ.G//
DET �� Hom.1/

Gp
.RG ; xZ�

p /

is commutative.

Proof. (We note that the definition of our map ẑ did not need any of our additional
hypotheses on the group G.) Introducing the map

ẑHom W Hom.1/

Gp
.RG ; xZ�

p / �! HomGp
.RG ; xZ�

p /;

f 7�! .exp Bp�Hom.f //
�1f p;

we obtain from (13) the commutative diagram

K1.ƒ.G//

��

ẑ �� K1.ƒ.G//

��
Hom.1/

Gp
.RG ; xZ�

p /
ẑ Hom �� HomGp

.RG ; xZ�
p /:

But

exp Bp�Hom.f // D exp B log B f p

 p.f /
D  p.f /�1f p

for any f 2 Hom.1/

Gp
.RG ; xZ�

p / since exp B log D id on 1 C pxZp . It follows that
ẑHom D  p . �
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Next we turn to the norm map assuming again our hypothesis (P) that �.G/ is a
subgroup of G. By a slight abuse of notation we let NG also denote the composed
map

K1.ƒ
1.G//

Nƒ1.G/=ƒ1.�.G//��������������! K1.ƒ
1.�.G/// can��! K1.ƒ

1.G//:

This is justified by the identityƒ1.G/ D ƒ.G/˝ƒ.�.G//ƒ1.�.G//which implies
the commutativity of the diagram

K1.ƒ.G//

NG

��

�� K1.ƒ
1.G//

NG

��
K1.ƒ.G// �� K1.ƒ

1.G//:

We need to understand this mapNG onK1.ƒ1.G// in terms of the Hom-description
(12). The induction functor IndG�.G/ induces a map R�.G/ ! RG . Since �.G/ is
normal in G the composite map

�p W RG restriction������! R�.G/
induction������! RG

is explicitly given by �p.ŒV �/ D �
V ˝Qp

QpŒG=�.G/�
�

withG acting diagonally on
the tensor product.

Proposition 3.4. The diagram

K1.ƒ
1.G//

NG

��

Š �� HomGp
.RG ; SQ�

p /

HomGp .�
p ;SQ�

p /

��
K1.ƒ

1.G// Š �� HomGp
.RG ; SQ�

p /

is commutative.

Proof. The left vertical mapNG is induced by the functor which sends a (left) finitely
generated projectiveƒ1.G/-moduleP toƒ1.G/˝ƒ1.�.G//P . On the other hand,
fix a class ŒV � 2 IrrSQp

.G/. The corresponding component

K1.ƒ
1.G// �! K1.SQp/ D SQ�

p ;

Œa� 7�! detSQp
.a�IV /;

in (12) is the composed map

K1.ƒ
1.G// �! K1.EndSQp

.V //
Š��! K1.SQp/
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where the left arrow is induced by the base change functorP 7! EndSQp
.V /˝ƒ1.G/P

and the right Morita isomorphism by Q 7! V � ˝EndSQp
.V / Q. Hence the composite

is given by P 7! V � ˝ƒ1.G/ P . Here V � WD HomSQp
.V; SQp/ denotes the contra-

gredient representation. Going through the left lower corner in the asserted diagram
therefore comes from the functor which sends P to

V � ˝ƒ1.G/ ƒ
1.G/˝ƒ1.�.G// P

D V � ˝ƒ1.�.G// P

D V � ˝ƒ1.�.G// ƒ
1.G/˝ƒ1.G/ P

D IndG�.G/.V /
� ˝ƒ1.G/ P

D
M

ŒW �2IrrSQp
.G/

HomSQpŒG�
.W; IndG�.G/.V //˝SQp

.W � ˝ƒ1.G/ P /: �

Assuming (P) the above Propositions 3.3 and 3.4 lead to the isomorphism

K1.ƒ
1.G//NG.:/D p.:/

pd�1 Š HomGp
.RG= im.�p � pd�1 p/; SQ�

p /: (14)

induced by (12) and, in particular, to the map

K1.ƒ.G//
NG.:/D ẑ .:/pd�1 DET���! Hom.1/

Gp
.RG= im.�p � pd�1 p/; xZ�

p / (15)

where

Hom.1/

Gp
.RG= im.�p � pd�1 p/; xZ�

p /

WD HomGp
.RG= im.�p � pd�1 p/; xZ�

p / \ Hom.1/

Gp
.RG ; xZ�

p /:

Therefore, assuming (SK), (ˆ), and (P), and using (7) and Corollary 3.2 the map (15)
embeds into the commutative exact diagram

1

��

1

��
1 �� �p�1 �Gab DET ��

��

HomGp
.RG=

�
im.�p � pd�1 p/C im.p �  p/

	
; xZ�

p /

�

��
1 ��

K1.ƒ.G//
NG.:/D ẑ .:/pd�1

�

��

DET �� Hom.1/

Gp
.RG= im.�p � pd�1 p/; xZ�

p /

�Hom

��
1 �� ƒ.G/ab TR �� HomGp

.RG ; xZp/:

(16)
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The example of the group G D Zp: We recall from the introduction our choice
.�n/n�0 of compatible primitive pn-th roots of unity. Let 
n 2 IrrSQp

.G/ be the
corresponding character of G such that 
n.1/ D �n. The set f
ngn�0 is a set of
representatives for the Gp-orbits in IrrSQp

.G/. It is straightforward to check that the
map

HomGp
.RG= im.�p �  p/; xZ�

p /
Š��! .lim �O

�
n / � Z�

p ;

f 7�! �
.f .
n//n�1; f .
0/

	
/;

is an isomorphism. As a consequence of Coleman’s theorem we have the commutative
diagram

K1.ƒ.G//
NGD ẑ

DET
��

Š
Col

�� lim �O
�
n

HomGp
.RG= im.�p �  p/; xZ�

p /
Š �� .lim �O

�
n / � Z�

p :

pr

��

We, in particular, see that, for any f WD DET.�/ in the image of DET, the value
f .
0/ is already determined by all the other values f .
n/; n � 1. Indeed, from the
well known fact that

1

ŒG W Gn�
X

�2 bG=Gn


 D charGn

is the characteristic function of the subgroup Gn WD Gpn
, 1G=Gn denoting the char-

acter group of G=Gn, and since

DET.�/.
/ D
Z
G


d� ;

where we consider � 2 ƒ.G/� � ƒ.G/ as a measure on G, we obtain

f .
0/ D ŒG W Gn�
Z
G

charGn
d� �

X
�2 bG=Gn;�¤�0

f .
/:

Letting n pass to infinity, we arrive at

f .
0/ D � lim
n!1

X
�2 bG=Gn;�¤�0

f .
/

D �
X
n�1

traceQp.	n/=Qp
.f .
n//

due to the Galois invariance of f: Note that the last series on the right-hand side
converges for any f in HomGp

.RG= im.�p � p/; xZ�
p / (not necessarily in the image
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of DET/ as a consequence of [Ser], III§3, Proposition 7, IV§1, Proposition 4, and
IV§4, Proposition 18. Moreover, for any such f the commutativity of the above
diagram implies that

DET.Col�1..f .
n//n�1//.
0/

D �
X
n�1

traceQp.	n/=Qp
.DET.Col�1..f .
n//n�1//.
n//

D �
X
n�1

traceQp.	n/=Qp
.f .
n//:

Hence the map

f 7! �
X
n�1

traceQp.	n/=Qp
.f .
n//

is multiplicative in f , a fact which seems very surprising to us and which we were
not able to show without using Coleman’s result! Finally, consider the (surjective)
homomorphism

h W HomGp
.RG= im.�p �  p/; xZ�

p / �! Z�
p ;

f 7�! f .
0/

�P
n�1 traceQp.	n/=Qp

.f .
n//
:

The above discussion immediately implies that f belongs to the image of DET if
and only if h.f / D 1, i.e., the homomorphisms f in the image of DET are precisely
characterized by the additional relation

f .
0/ D �
X
n�1

traceQp.	n/=Qp
.f .
n//:

Last but not least one checks that

Hom.1/

Gp
.RG= im.�p � pd�1 p/; xZ�

p / D h�1.1C pZp/:

We finish this section by a discussion of the upper horizontal arrow

�p�1 �Gab DET���! HomGp
.RG=

�
im.�p � pd�1 p/C im.p �  p/	; xZ�

p /

in the above diagram (16). It is not difficult to see that already for the groupG D Z2p
the cokernel of this map is rather big. But, in fact, there is an intrinsic characterization
of its image. Let 1G 2 RG denote the class of the trivial representation.

Remark 3.5. Note thatRG= im.p� p/ is a torsion group whose prime to p part is
Z=.p � 1/Z � 1G .



636 P. Schneider and O. Venjakob CMH

Proof. On the one hand we have .p � 1/ � 1G D .p � p/1G . On the other hand let
ŒV � 2 RG be the class of an arbitrary representation V . Since some open subgroup of
G acts trivially onV we find some integer n � 0 such that p

n
.ŒV �/ D dimSQp

V �1G .
�

The tensor product of representations makes RG into a commutative ring with
unit 1G . The augmentation is the ring homomorphism

˛ W RG �! Z;

ŒV � 7�! dimSQp
V;

and the augmentation ideal IG WD ker.˛/ is its kernel. We obviously have the additive
decomposition

RG D Z � 1G ˚ IG :
The exterior power operations on representations equip RG with the structure of a
special �-ring (cf. [Sei]). As such RG carries the so called � -filtration

RG D RG;0 � IG D RG;1 � RG;2 � � � � � RG;i � � � � :
Lemma 3.6. i. The map DET induces an isomorphism

Gab Š��! HomGp
.RG=.Z � 1G ˚RG;2/; �p1/ D HomGp

.IG=RG;2; �p1/

where �p1 denotes the group of all roots of unity of p-power order.
ii. im.p �  p/ � .p � 1/Z � 1G ˚RG;2.

Proof. i. If ŒV � 2 RG is the class of an arbitrary representation V , m WD dimSQp
V ,

and det.V / denotes the maximal exterior power of V (which is a character of Gab)
then [Ati], Lemma (12.7), implies that

ŒV � �m � 1G � Œdet.V /� � 1G mod RG;2:

This shows that the natural map

IGab=RGab;2 �! IG=RG;2

is surjective and reduces us to the case that the groupG D Gab is abelian. In this case
we haveRG;2 D I 2G by [Ati], Corollary (12.4). The representation ringRG becomes

the integral group ring ZŒbG� of the character group bG ofG. If I.bG/ � ZŒbG� denotes
the usual augmentation ideal then it is well known that the mapbG �! I.bG/=I.bG/2;


 7�! 
 � 1C I.bG/2;
is an isomorphism (cf. [Neu], p. 48/49).

ii. We have p1G D 1G and, by the second lemma in [Sei], .p� p/IG � RG;2.
�
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Using Remark 3.5 and Lemma 3.6 we conclude that

DET.�p�1 �Gab/ D HomGp
.RG=..p � 1/Z � 1G ˚RG;2/; xZ�

p /

D �p�1 � HomGp
.IG=RG;2; xZ�

p /:

4. Unipotent compact p-adic Lie groups

We fix an integer d � 2. Inside the group GLd .Qp/ we consider the Borel subgroup
B of lower triangular matrices. It satisfies B D TN with T the diagonal matrices
and N the unipotent radical of B . The unipotent compact p-adic Lie group which
we will study in this section is

G WD N \ GLd .Zp/:

Let us recall right away the basic structural features of this group which will be used
at several subsequent places. For any d � i > j � 1 and any a 2 Zp we introduce,
as usual, the matrix Eij .a/ with ones on the diagonal, the entry a where the i th row
and j th column intersect, and zeroes elsewhere. We also abbreviate Eij WD Eij .1/.
Then:

Eij .a/Eij .b/ D Eij .aC b/ I (17)

in particular, the matrixEij is a topological generator of the “integral” root subgroup
Gij WD fEij .a/ W a 2 Zpg Š Zp . The basic commutation relations are:

ŒEij .a/; Ekl.b/� D 1 if i ¤ l and j ¤ k;
ŒEij .a/; Ejl.b/� D Eil.ab/;
ŒEij .a/; Eki .b/� D Ekj .�ab/I

(18)

in particular, Eij .a/ is an .i � j � 1/-fold iterated commutator. If G.0/ WD G,
G.m/ WD ŒG;G.m�1/� denotes the descending central series of G then the above
relations imply the following list of properties:

(a) G.m/ D Q
i�j>mGij (set theoretically, and for any fixed total ordering of the

roots .i; j /; in particular, G.d�1/ D f1g.
(b) The matrices EmC2;1; EmC3;2; : : : ; Ed;d�.mC1/ generate G.m/ topologically.

(c) G.m�1/=G.m/ is the center of G=G.m/.

Proposition 4.1. SK1.ZpŒG.pn/�/ D 0 where G.pn/ denotes, for any n � 1, the
image of G in GLd .Z=pnZ/.

Proof. We fix n and write xG WD G.pn/. More generally, we let xEij and xG.m/ denote
the image of Eij and G.m/, respectively, in xG. The commutation relations and their
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consequences recalled at the beginning of this section remain valid for these images
in xG. In particular, xG.m/ is the descending central series of xG, and we have the central
extensions

1 �! xG.m�1/= xG.m/ �! xG= xG.m/ �! xG= xG.m�1/ �! 1:

For each m there is the exact sequence (cf. [Oli], Theorem 8.2)

xG.m�1/= xG.m/ ˝ xG= xG.1/ 
m��! H2. xG= xG.m/;Z/
�! H2. xG= xG.m�1/;Z/

ım�1����! xG.m�1/= xG.m/:

We see, in particular, that the image of the natural map

H2. xG;Z/ �! H2. xG= xG.m/;Z/;

form � 0, lies in the kernel of ım. In order to recall the definition of the map �m we
choose a free presentation 1! R! F ! xG= xG.m/ ! 1 and use Hopf’s formula

H2. xG= xG.m/;Z/ Š
�
R \ ŒF; F �	=ŒF;R�:

Then

�m.g xG.m/ ˝ h xG.1// WD Œ Qg; Qh� mod ŒF;R�

where, quite generally, we let Qg 2 F denote any lift of g 2 xG= xG.m/. Following [Oli]
we let H ab

2 .
xG;Z/ denote the sum of the images of the natural maps H2. xH;Z/ !

H2. xG;Z/ where xH runs over all abelian subgroups of xG. In fact, in terms of Hopf’s
formula the subgroup H ab

2 .
xG= xG.m/;Z/ is generated by all

g xG.m/ ^ h xG.m/ WD Œ Qg; Qh� mod ŒF;R�

where g xG.m/; h xG.m/ run over all pairs of commuting elements in xG= xG.m/. The
restriction of ım to H ab

2 .
xG= xG.m/;Z/ then can be explicitly described by

ım.g xG.m/ ^ h xG.m// D Œg xG.mC1/; h xG.mC1/�:

We also see that the image of �m is contained in H ab
2 .
xG= xG.m/;Z/ which makes it

possible to compute the composite ım B �m as

ım B �m W xG.m�1/= xG.m/ ˝ xG= xG.1/ �! xG.m/= xG.mC1/;
g xG.m/ ˝ h xG.1/ 7�! Œg xG.mC1/; h xG.mC1/�:

For all of this see [Oli], p. 187. We combine this information into one commutative
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diagram

xG.m�1/= xG.m/

H ab
2
. xG;Z/ �� ker.ım�1/

� �� H2. xG= xG.m�1/;Z/

ım�1

��

H ab
2
. xG;Z/

D

��

�� ker.ım/

��

� �� H2. xG= xG.m/;Z/

��

ım �� xG.m/= xG.mC1/

ker.ım B �m/

��

� �� xG.m�1/= xG.m/ ˝ xG= xG.1/

�m

��

ımB�m �� xG.m/= xG.mC1/

D

��

whose two middle columns are exact. We claim that the two arrows emanating from
the left most term H ab

2 .
xG;Z/ for any m � 1 are surjective. Let us first suppose that

this indeed is the case. For m D d � 1 we then obtain the equality

H ab
2 .
xG;Z/ D H2. xG;Z/:

But according to Theorem 8.7 of [Oli] there always is an isomorphism

SK1.ZpŒ xG�/ Š H2. xG;Z/=H ab
2 .
xG;Z/:

Hence the assertion of the present proposition follows. To check the claimed surjec-
tivity it suffices, by induction with respect to m, to show that

�m
�

ker.ım B �m/
	 � im

�
H ab
2 .
xG;Z/ �! H2. xG= xG.m/;Z/

	
:

We know from the property (b) in the list at the beginning of this section that
xG.m�1/= xG.m/ ˝ xG= xG.1/ is the free Z=pnZ-module generated by

xEmCi;i xG.m/ ˝ xEkC1;k xG.1/ for 1 	 i 	 d �m and 1 	 k 	 d � 1:
By the commutation relation (18) the image under ım B �m of this generator is equal
to 8̂<̂

:
xEmCi;i�1 xG.mC1/ if i D k C 1,

� xEmCiC1;i xG.mC1/ if mC i D k,

0 otherwise.

It follows that the kernel of ım B �m is the free Z=pnZ-module generated by the
elements

xEmCiC1;iC1 xG.m/ ˝ xEiC1;i xG.1/ C xEmCi;i xG.m/ ˝ xEmCiC1;mCi xG.1/
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for 1 	 i 	 d �m � 1, and

xEmCi;i xG.m/ ˝ xEkC1;k xG.1/

for 1 	 i 	 d �m, 1 	 k 	 d � 1, and k ¤ i � 1;mC i .
In the latter case xEmCi;i and xEkC1;k commute in xG so that xEmCi;i xG.m/ ^xEkC1;k xG.m/ 2 H ab

2 .
xG= xG.m/;Z/ obviously lifts to H ab

2 .
xG;Z/. To deal with the

former elements we fix a 1 	 i 	 d �m � 1 and abbreviate

A WD xEmCiC1;iC1; B WD xEiC1;i ; C WD xEmCi;i ; and D WD xEmCiC1;mCi :

We need to show that A xG.m/ ^B xG.m/CC xG.m/ ^D xG.m/ lifts toH ab
2 .
xG;Z/. First

of all we note that in the case m D 1 this element actually is equal to zero so that
there is nothing to prove. We therefore assume in the following thatm > 1. We have

E WD xEmCiC1;i D ŒA; B� D ŒC;D��1 2 xG.m/

and

ŒA; C � D ŒA;D� D ŒB; C � D ŒB;D� D ŒE;A� D ŒE; B� D ŒE; C � D ŒE;D� D 1:
From this one easily derives that

ŒA; BD� D E; ŒC;BD� D E�1; ŒAC;BD� D 1:
The operation ^ being bi-additive as long as all terms in the respective identities are
defined we compute

AC xG.m/ ^ BD xG.m/
D A xG.m/ ^ BD xG.m/ C C ^ BD xG.m/
D A xG.m/ ^ B xG.m/ C A xG.m/ ^D xG.m/ C C xG.m/ ^ B xG.m/ C C xG.m/ ^D xG.m/

and hence

A xG.m/ ^ B xG.m/ C C xG.m/ ^D xG.m/
D AC xG.m/ ^ BD xG.m/ � A xG.m/ ^D xG.m/ � C xG.m/ ^ B xG.m/:

In all three summands on the right-hand side the two group elements already commute
in xG. It follows that the right-hand side lifts to H ab

2 .
xG;Z/. �

Corollary 4.2. The group G satisfies the hypothesis (SK).

Proof. We have G D lim �nG.p
n/. �

Added in proof. Meanwhile we have obtained more general results concerning the
vanishing of SK1.ƒ.G// in [SV].
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