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Abstract. A foliation is R-covered if the leaf space of the lifted foliation to the universal cover
is homeomorphic to the set of real numbers. We show that, up to topological conjugacy, there
are at most two pseudo-Anosov flows transverse to a fixed R-covered foliation. If there are two
transverse pseudo-Anosov flows, then the foliation is weakly conjugate to the stable foliation of
an R-covered Anosov flow. The proof uses the universal circle for R-covered foliations.
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1. Introduction

Pseudo-Anosov flows are extremely common amongst 3-manifolds [GK1], [Mo2],
[Fe2], [Cal2], [Cal3] and they yield important topological and geometrical informa-
tion about the manifold. For example they imply that the manifold is irreducible
and the universal cover is homeomorphic to R3 [Ga-Oe], [Fe-Mo]. There are also
relations with the atoroidal property [Fe3]. Finally there are consequences for the
large scale geometry of the universal cover when the manifold is atoroidal: In that
case it follows that the fundamental group is Gromov hyperbolic [GK2] and in cer-
tain cases the dynamics structure of the flow produces a flow ideal boundary to the
universal cover which is equivariantly homeomorphic to the Gromov boundary and
yields many geometric results [Fe7].

As for the existence of pseudo-Anosov flows, it turns out that many classes of
Reebless foliations in atoroidal 3-manifolds admit transverse or almost transverse
pseudo-Anosov flows which are constructed using the structure of the foliation. For
example this occurs for: 1) fibrations over the circle [Th1], 2) finite depth foliations
[Mo2], 3) R-covered foliations [Cal2], [Fe2] and 4) Foliations with one sided branch-
ing [Cal3]. Pseudo-Anosov flows also survive under the majority of Dehn surgeries
on closed orbits [Fr], [GK1], which makes them extremely common. On the other
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hand there are some examples of non existence of pseudo-Anosov flows in certain
specific manifolds: see [Br] for examples in Seifert fibered spaces and [Ca-Du], [Fe5]
for examples in hyperbolic manifolds.

In this article we consider the uniqueness question for such flows: Up to topo-
logical conjugacy, how many pseudo-Anosov flows are there in a closed 3-manifold?
Topological conjugacy means that there is a homeomorphism of the manifold sending
orbits to orbits. The less flows there are, the more rigid these flows are and conse-
quently more likely to give information about the manifold. In this generality the
question is, at this point, very hard to tackle. Here we start the study of this question
and we consider how many pseudo-Anosov flows are there transverse to a given fo-
liation. This is very natural, since as explained above, many pseudo-Anosov flows
are constructed from the foliation and are transverse to it. We will consider a class
of foliations called R-covered: this means that the leaf space of the lifted foliation
to the universal cover is homeomorphic to the set of real numbers [Fe1]. This is the
simplest situation with respect to this question. The uniqueness analysis involves a
detailed understanding of the topology and geometry of the foliation and flow in this
case.

There are many examples of R-covered foliations: 1) Fibrations over the circle.
2) Many stable and unstable foliations of Anosov flows, which are then called R-
covered Anosov flows. These include geodesic flows of hyperbolic surfaces and
many examples in hyperbolic 3-manifolds [Fe1]; 3) Uniform foliations [Th2]: this
means that given any two leaves of the lifted foliation in the universal cover, they
are a bounded distance from each other. Obviously the bound depends on the pair of
leaves. This is associated with slitherings over the circle [Th2]. 4) Many examples
foliations which are R-covered but not uniform in hyperbolic 3-manifolds [Cal1].

We should stress that in this article pseudo-Anosov flows include flows without
singularities, that is (topological) Anosov flows. On the other hand, we do not allow
1-prong singularities. With 1-prongs almost all control is lost, for example S2 � S1

has a pseudo-Anosov flow with 1-prongs and the manifold is not even irreducible.
A flow transverse to a foliation is regulating if an arbitrary orbit in the universal

cover intersects every leaf of the lifted foliation. In particular this implies that the fo-
liation is R-covered. This is strongly connected with the atoroidal property: Given an
R-covered foliation with a transverse, regulating pseudo-Anosov flow, it follows that
either the manifold is atoroidal or it fibers over the circle with fiber a torus andAnosov
monodromy [Fe3]. Conversely if the manifold is atoroidal and acylindrical and the
foliation is transversely orientable, then there is a regulating, pseudo-Anosov flow
transverse to the R-covered foliation [Fe2], [Cal2]. So transverse pseudo-Anosov
flows are as general as possible in this situation and the uniqueness question is a very
natural one in this setting.

There is one case where the uniqueness question for transverse flows is known,
which is the simplest case of foliations: a fibration over the circle. It is easy to see
that any transverse flow is regulating. Any two transverse flows induce homotopic
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and hence isotopic monodromies of the fiber S . This works even if the flow is not
pseudo-Anosov. If the flow is pseudo-Anosov, then the associated monodromy is
a pseudo-Anosov homeomorphism of S [Th1]. In particular the fiber cannot be
the sphere or the projective plane. If the fiber is Euclidean, then the flow has no
singularities and is a topological Anosov flow. In this case it is not hard to prove
that there is at most one transverse pseudo-Anosov flow up to conjugacy. Suppose
then that the fiber is hyperbolic and therefore the monodromy is pseudo-Anosov
with singularities. It is proved in [FLP], exposé 12, that any two homotopic pseudo-
Anosov homeomorphisms are in fact conjugate. This implies that the corresponding
flows are also topologically conjugate and consequently in this case there is only one
transverse pseudo-Anosov flow up to conjugacy.

This result turns out to be very close to what happens in general for R-covered
foliations:

Main theorem. Let G be an R-covered foliation in M 3 closed. Then up to topological
conjugacy there is at most one transverse pseudo-Anosov flow which is regulating for
G . In addition, up to conjugacy, there is also at most one non regulating transverse
pseudo-Anosov flow to G . If there is a transverse pseudo-Anosov flow which is non
regulating for G , then this flow has no singular orbits and is a topological Anosov flow
which is R-covered. In addition in this case, after a blow down of foliated I -bundles
of G , then the resulting foliation G 0 is conjugate to either the stable or the unstable
foliation of the Anosov flow.

Consequently if G is not a blow up of the stable/unstable foliation of an R-covered
Anosov flow then up to topological conjugacy, there is at most one pseudo-Anosov
flow transverse to G . Furthermore there is one such flow if M is atoroidal.

A foliated I -bundle of G is an I -bundle V embedded in M so that V is a union
of leaves of G , which are transverse to the I -fibers in V . In particular the boundary
of V is an union of leaves of G . In general the base of the bundle is not a compact
surface. The blow down operation collapses a foliated I -bundle onto a single leaf,
by collapsing I -fibers to points. In the theorem above one may need to do this blow
down operation a countable number of times. With reference to the abstract of this
article, the phrase G is weakly conjugate to a foliation F , means that some blow
down G 0 of G is topologically conjugate to F .

This theorem generalizes the result for fibrations, because as explained above in
that case any transverse flow is regulating.

In order to prove the theorem we split into two cases: the regulating and non
regulating situations. The non regulating case was studied in [Fe4] where all of the
statements concerning non regulating flows were proved except for the uniqueness of
the transverse pseudo-Anosov flow. In the last section of this article we use the con-
structions and results of [Fe4] to finish the proof of uniqueness in the non regulating
case. For completeness here is an outline of the proof of the other statements in the
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non regulating case. In the universal cover zM of M , the lifted flow has stable and
unstable foliations. Since G is R-covered there is only one transverse direction to the
lift zG of the foliation G to zM . After a considerable analysis, using the topological
theory of pseudo-Anosov flows [Fe4], [Fe6], this implies that there is only one trans-
verse direction to the stable and unstable foliations of the flow in the universal cover.
In particular we show that there are no singularities of the flow – it is a (topological)
Anosov flow. In addition we prove that the stable and unstable foliations of the flow
– which now are non singular foliations – are R-covered foliations. Therefore the
flow is an R-covered Anosov flow.

The next step is to show that for each leaf of zG there is a well defined stable
(or unstable) leaf in the universal cover associated to it and these two leaves (one
stable/unstable and the other a leaf of zG ) are a bounded Hausdorff distance from
each other. For simplicity assume they are stable leaves. After collapsing foliated
I -bundles of G , this correspondence between leaves of the stable foliation in the
universal cover and leaves of zG is a bijection. Since the leaf of zG and the corresponding
stable leaf are a bounded Hausdorff distance from each other, there is a map between
them which sends a point in one leaf to a point at a bounded distance in the other
leaf. As both foliations are R-covered then this map is a quasi-isometry. Since leaves
of the stable foliation are Gromov hyperbolic [Pl], [Su] and any leaf of zG is quasi-
isometric to a stable leaf, it follows that the leaves of zG are also Gromov hyperbolic.
In particular in the non regulating case, there are no parabolic leaves in G . In [Fe4]
the analysis was done under the assumption that leaves of G are Gromov hyperbolic.
The argument above shows that this assumption is not necessary. Using a result of
Candel [Can], we can assume that the leaves of G are hyperbolic leaves.

The next step is to show that for each flow line in a fixed leaf of the stable foliation
in the universal cover there is a unique geodesic in the corresponding leaf of zG , so that
they are a bounded Hausdorff distance from each other. These geodesics in leaves of
zG jointly produce a flow, which projects to a flow in M whose flow lines are contained
in leaves of G . In [Fe4] we show that this new flow is conjugate to the originalAnosov
flow and therefore G is topologically conjugate to the stable foliation of the original
Anosov flow. Essentially what is left to prove is the uniqueness of the new flow.

We remark that it is very easy to construct non regulating examples for certain
foliations: let G be the stable foliation of a smooth R-covered Anosov flow ‰, so that
G is transversely orientable. Perturb the flow ‰ slightly along the unstable leaves, to
produce a new Anosov flow ˆ which is transverse to G and non regulating for G –
see details in [Fe4].

The bulk of this article concerns the regulating situation, whose analysis is com-
pletely different from the non regulating case: in that case the proof was internal
to zM – we only used the topology of the pseudo-Anosov flow and showed that sta-
ble/unstable leaves in zM and leaves of zG are basically parallel to each other. Clearly
this cannot happen in the regulating situation. In the regulating case we use the
asymptotics of the foliation, contracting directions between leaves, the universal cir-
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cle for foliations and relations of these with the flow. We show that the universal
circle of the foliation can be thought of as an ideal boundary for the orbit space of
a regulating pseudo-Anosov flow and this can be used to completely determine the
flow from outside in – from the universal circle ideal boundary to the universal cover
of the manifold in an equivariant way.

The proof of the theorem goes as follows. Let ˆ be a transverse flow which is
regulating for the foliation G . Suppose first that there is a parabolic leaf in G . Then
we show that there has to be a compact leaf which is parabolic. Hence the manifold
fibers over the circle with fiber this leaf and the flow is topologically conjugate to
a suspension Anosov flow. In this case there is at most one pseudo-Anosov flow
transverse to G , since there cannot be a non regulating transverse pseudo-Anosov
flow. This is done in Section 2.

In the case that all leaves are Gromov hyperbolic, we use Candel’s theorem [Can]
and assume the leaves are hyperbolic. The orbit space of a pseudo-Anosov flow is the
space of orbits in the universal cover. It is always homeomorphic to the plane [Fe-Mo]
and the fundamental group of the manifold acts naturally on this orbit space. Given
two regulating pseudo-Anosov flows transverse to G we produce a homeomorphism
between the corresponding orbit spaces, which is group equivariant. This is the main
step here. Using the foliation zG which is transverse to each lifted flow, this produces
a homeomorphism of the universal cover of the manifold, which takes orbits of one
flow to orbits of the other flow and is group equivariant. This produces the conjugacy.

In order to produce the homeomorphism between the orbit spaces, we use in
an essential way the universal circle for foliations as introduced by Thurston [Th2],
[Th3], [Th4]. For R-covered foliations, the universal circle is canonically identified
to the circle at infinity of any leaf of zG [Fe2], [Cal2]. Notice that the universal circle
depends only on the foliation and not on the particular the transverse pseudo-Anosov
flow. We first consider only one pseudo-Anosov flow transverse to G . We show
that the orbit space of the flow in zM can be compactified with the universal circle
of the foliation to produce a closed disk. This is canonically identified with the
standard compactification of any hyperbolic leaf of zG . Here one has to show that the
topology of the orbit space of the flow in zM union the universal circle of the foliation
is compatible with the topology of the compactification of the leaves of zG and also
that this topology is independent of the particular leaf of zG . To prove this fact, one
has to distinguish between uniform and non uniform foliations. Recall that uniform
means that any two leaves of zG are a finite Hausdorff distance from each other – for
example fibrations over the circle. The uniform case is simple. The non uniform case
requires arguments involving the denseness of contracting directions between leaves,
after a possible blow down of foliated I -bundles. Using the same ideas we analyse
how stable/unstable leaves in the universal cover intersect leaves of zG , particularly
with relation to the universal circle. We proved in [Fe6] that for any pseudo-Anosov
flow transverse to a foliation with hyperbolic leaves the following happens: given
any ray in the intersection of a stable/unstable leaf (in the universal cover) with a leaf
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of zG , then this ray limits to a single point in the circle at infinity of this leaf of zG .
In this article we show if G is R-covered then given a fixed stable (or unstable) leaf
and varying the leaves of zG , then the ideal points of these intersections in different
leaves of zG follow the identifications prescribed by the universal circle. So clearly
the universal circle is intrinsically connected with any regulating, transverse pseudo-
Anosov flow. This is done in Section 4. These two results are the key tools used in
the analysis of the theorem.

The next step is to analyse how an element of the fundamental group acts on the
universal circle. If an element of the fundamental group is associated with a closed
orbit of the flow, then we show that some power of it acts on the universal circle with
a finite even number � 4 of fixed points and vice versa. This key result depends on
the analysis in Section 4 and on further properties of the intersections of leaves of zG
and stable/unstable leaves, which is done in Section 5.

Finally in Section 6 we consider two pseudo-Anosov flows transverse and regu-
lating for G . We first prove that for each lift of a periodic orbit of the first flow, there
is a unique periodic orbit of the second flow associated to it. This depends essentially
on the study of group actions in Section 5. This produces a map between the orbit
spaces of the two flows restricted to lifts of closed orbits. The final step is to show
that this can be extended to an equivariant homeomorphism between the orbit spaces.
This finishes the proof of the main theorem.

At the end of the article we also study the following two questions: 1) Given
ˆ, ‰ pseudo-Anosov flows transverse to a foliation G which is R-covered, when is
there a topological conjugacy between ˆ and ‰ which also preserves direction along
flowlines? Given the analysis of the main theorem, if this happens, then either both
ˆ and ‰ are regulating or they are both non regulating. By the main theorem again,
this question reduces to asking whether there is a topological conjugacy between ˆ

and its inverse ˆ�1 which preserves the direction along flow lines. Here ˆ�1 is the
same flow ˆ traversed in the opposite direction. We show that all possibilities can
occur. 2) The other question we analyse is whether the conjugating homeomorphism
can be chosen to be isotopic to the identity. We show that this is always the case.

We thank the reviewer for several useful suggestions, in particular the simplifica-
tion of the proof of Theorem 2.1 and also the implied suggestion of the isotopy result.
We also thank Lee Mosher who asked the same isotopy question and also helped with
conjugacy issues in the mapping class group of surfaces, which was useful to address
question 1) above.

2. The case of parabolic leaves

Leaves of the foliation G are conformally either spherical, Euclidean or hyperbolic.
In this section we quickly rule out the first option and prove the main theorem in the
second option. We say that a leaf is parabolic if it is conformally Euclidean.
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The stable and unstable foliations of ˆ induce 1-dimensional perhaps singular
foliations in any leaf of G . There are no 1-prongs in the stable foliation and no
centers, so Euler characteristic arguments disallow the existence of spherical leaves.

Theorem 2.1. Let G be an R-covered foliation transverse to a pseudo-Anosov flow
ˆ. If G has a parabolic leaf, then there is a compact leaf C which is parabolic and
M fibers over the circle with fiber C . In this case the flow is an Anosov flow and is
conjugate to a suspension flow with fiber C . Therefore if an R-covered foliation G has
a parabolic leaf, then up to topological conjugacy, there is at most one pseudo-Anosov
flow transverse to G .

Proof. If the pseudo-Anosov flow ˆ is not regulating for G then as explained in the
introduction, the leaves of G are Gromov hyperbolic and therefore not conformally
Euclidean. Therefore ˆ has to be regulating.

We assume first that M is orientable.
Let L be a parabolic leaf of G .
Suppose first that G has a compact leaf. Since G is R-covered, it was shown by

Goodman and Shields [Go-Sh] that any compact leaf is a fiber of M over the circle.
We show that there is a compact leaf which is parabolic. This is not true in general,
but it holds for R-covered foliations. We may assume that L is not compact. Using
the R-covered hypothesis we show that L limits on a compact leaf. Consider the
component of the complement of the compact leaves which contains L and let O be
the closure of this component. Then O is homeomorphic to C � Œ0; 1� and in addition
we can assume that G is transverse to the I -fibration in O (see [Fe2]). Identify C

with the lower boundary of O . Look at the points that L hits in a fixed I -fiber J .
Let x be the infimum of these points. If x is in the boundary of O we are done. The
foliation in O is determined by its holonomy which is a homomorphism from �1.C /

into the group of orientation preserving homeomorphisms of J . This holonomy has
to fix x for otherwise some element would bring x closer to C and hence L would
have a point in J lower than x. Since the holonomy fixes x then the leaf through x

is compact, contrary to assumption that there are no compact leaves in the interior
of O .

We conclude that L limits on a compact leaf C and since L is parabolic, then
so is C . The flow ˆ is regulating for G and so every orbit through C intersects C

again, in other words ˆ is conjugate to a suspension flow and the cross section is an
Euclidean surface. In particular ˆ is an Anosov flow. Any two pseudo-Anosov flows
transverse to G will generate suspension flows in M transverse to C . As explained
in the introduction, any two such flows are topologically conjugate. This finishes the
analysis (in the orientable case) when there is a compact leaf.

Suppose now that there is no compact leaf. Our goal is to show that this cannot
happen. As proved in Proposition 2.6 of [Fe2] there is a unique minimal set Z in
G . Since L must limit on leaves in a minimal set, then there are parabolic leaves in
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the minimal set, and hence all leaves in the minimal set are parabolic. There are at
most countably many components in M � Z each of which has a closure which is
an I -bundle over a non compact surface. In addition the flow can be taken to be the
I -fibration in this closure [Fe2]. Therefore these I -bundles can be blown down to
single leaves and this yields a foliation which is still transverse to ˆ and now is a
minimal foliation. Clearly this happens for any pseudo-Anosov flow transverse to G .
Hence if there are no compact leaves, we may assume that G is minimal.

Let now L be an arbitrary leaf of G , which is parabolic. Since L has polynomial
growth, then Plante [Pl] showed that there is a holonomy invariant transverse measure
supported in the closure of L. Since L is dense, this shows that the support of the
measure is all of M .

The lift of this transverse measure to zM identifies the leaf space of G to R in a way
that covering translations preserve the measure, that is, act by translations. Therefore
there is a single subgroup G of �1.M/ which is the stabilizer of any leaf E of zG .
In particular all leaves of G are homeomorphic. This group G is the kernel of the
holonomy homomorphism �1.M/ ! Hom.R/ and therefore it is a normal subgroup
of �1.M/. In addition G is the fundamental group of a parabolic leaf L, which is not
compact and which is orientable, hence G is either trivial or isomorphic to Z.

If G D 1 then all leaves of G are planes. In this case Rosenberg [Ros] proved
that M is homeomorphic to the 3-torus and hence �1.M/ has polynomial growth of
degree 3. On the other hand a manifold with a pseudo-Anosov flow has fundamental
group with exponential growth [Pl-Th]. Therefore this case cannot happen.

If G D Z then since G is transversely orientable and M is orientable, the leaves
of G are orientable and hence all annuli. We show that M is a nilmanifold. Start
with a simple closed curve � in L which is not null homotopic in L and let B a small
closed annulus transverse to G and with one boundary � . Since there is no holonomy
in G the foliation induced by G in B is a foliation by circles near � and we may
assume the other boundary ˇ is also a closed curve in L as L is dense. Then ˇ is not
null homotopic in L, for otherwise � would be null homotopic in M contradicting
Novikov’s theorem [No]. Hence � and ˇ bound an annulus A in L and the union
A [ B can be perturbed to a surface S transverse to G and foliated by circles (again
by the no holonomy condition). In addition it is easy to see that S is transverse to the
flow, hence double sided and therefore has to be a torus as M is orientable.

Cut M along S to produce a manifold M1 with an induced 2-dimensional foliation
G 1 transverse to @M1. If a leaf G 1 is non compact then there is a leaf of G not
intersecting S , contradiction. Hence every leaf of G 1 is compact and as every leaf of
G is an annulus, it now follows that every leaf of G 1 is a compact annulus. We deduce
that M1 is S � Œ0; 1� and M is obtained from M1 by a glueing which preserves circle
foliations. Hence M is a nilpotent 3-manifold. It follows that �1.M/ has polynomial
growth, again contradicting the fact that �1.M/ has exponential growth [Pl-Th]. So
again we conclude that this cannot happen.
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We conclude that if M is orientable, then G has to have a compact leaf C , which
is a fiber of a fibration of M over S1 and ˆ is topologically conjugate to a suspension.
The result is proved in this case.

If M is non orientable then it is doubly covered by an orientable manifold and
the result applies to the double cover. The fiber C 0 in the double cover projects to a
leaf C of G in M which intersects every orbit of the flow. Hence C is a fiber in M

and has to be a torus as there are no pseudo-Anosov homeomorphisms of the Klein
bottle. The rest of the proof is the same. This finishes the proof the theorem. �

3. General facts about R-covered foliations

Remark. Unless otherwise stated, from now on we assume that G has only Gromov
hyperbolic leaves.

A theorem of Candel [Can] then shows that there is a metric in M so that leaves of G

are hyperbolic surfaces. We assume this is the metric we are using. Let � W zM ! M

bee the universal covering space of M . The following facts concerning R-covered
foliations are proved in [Fe2], [Cal2]. There are two possibilities for G :

� G is uniform. Given any two leaves L; E of zG , then they are a finite Hausdorff
distance from each other. This was defined by Thurston [Th2]. If a is the
Hausdorff distance between the leaves L; E (which depends on the pair L; E),
then for any x in L choose f .x/ in E so that d.x; f .x// � a. Note that f in
general may not even be continuous. However, given the R-covered hypothesis,
then f is boundedly well defined: any two choices of f .x/ are a bounded
distance from each other. The bound depends on the pair of leaves. The map
f is a quasi-isometry between L and E and hence induces a homeomorphism
between the corresponding circles at infinity still denoted by f W @1L ! @1E.
Clearly these identifications between circles at infinity are group equivariant
under the action by �1.M/. In addition they satisfy a cocycle property: given 3

leaves L, E, S of zG , then the identifications between @1L and @1E composed
with those between @1E and @1S , induce the direct identifications between
@1L and @1S . Hence all circles at infinity are identified to a single circle,
which is called the universal circle of G or zG and is denoted by U. By the
equivariance property, �1.M/ acts on U. The fact to remember here is that
given x in @1L and q in @1E, then x; q are associated to the same point of U

if and only if a geodesic ray r in L defining x is a finite Hausdorff distance in
zM from a geodesic ray r 0 in E defining q.

� G is not uniform. If G is not a minimal foliation, then it has up to countably many
foliated I -bundles. One can collapse the I -bundles to produce a foliation which
is minimal (notice this does not work in the uniform case, for instance when G
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is a fibration). If a pseudo-Anosov flow is transverse to G , then one can do the
blow down so that the flow is still transverse to the blow down foliation [Fe2].
Sometimes we will assume in this case that G is minimal. If G is minimal then
the following important fact is proved in [Fe2], [Cal2]: for any L, E leaves of zG ,
then there is a dense set of contracting directions between them. A contracting
direction is given by a geodesic r in L so that the distance between r and E

converges to 0 as one escapes in r . Notice this only depends on the ideal point
of r in @1L as all such rays are asymptotic because L is the hyperbolic plane.
Any such direction produces a marker m. This is an embedding

m W Œ0; 1/ � Œ0; 1� ! zM

so that for each s in Œ0; 1� there is a leaf Fs of zG so that

m.Œ0; 1/ � fsg/ � Fs

is a parametrized geodesic ray in Fs . In addition, m.ftg � I / is a transversal to
zG for each t in Œ0; C1/, and for all s1; s2 2 I ,

d.m.t; s1/; m.t; s2// ! 0 as t ! 1:

Hence these geodesics of Fs1
, Fs2

are asymptotic in zM . The contracting direc-
tions between L, E induce an identification between dense sets in @1L, @1E

which preserves the circular ordering. This extends to a homemorphism be-
tween @1L and @1E. These homeomorphisms are clearly �1.M/ equivariant
and in addition they satisfy the cocycle property as in the uniform case. Hence
as before each circle at infinity is canonically identified to a fixed circle U, the
universal circle of G or zG . Finally �1.M/ acts on U.

We now explain what happens if G is not uniform and not minimal. This was
not discussed in [Fe2] but it is a simple consequence of the analysis of the minimal
case as follows: Let Z be the unique minimal set of G [Fe2]. Blow down G to a
minimal foliation G 0. The analysis above produces the universal circle U0 for G 0. Let
ı W M ! M be the blow down map sending leaves of G to leaves of G 0 and homotopic
to the identity. Lift the homotopy to produce a lift Qı of ı, which is a homeomorphism
of zM . For any A, B leaves of zG 0, there are F , E leaves in zZ so that A, B are between
F , E. Let F 0 D Qı.F /, E 0 D Qı.E/. Then in zG 0 there is a dense set of contracting
directions between F 0 and E 0. For any such there is a ray r 0 in F 0 asymptotic to a ray
l 0 in E 0. Under the blow up map, this produces corresponding rays in F , E: a ray
r in F which is a bounded distance from a ray l in E. By the R-covered property,
the ideal point of the ray l is the unique direction for which there is a ray a bounded
distance from r in zM . This provides an identification between dense sets in @1F and
@1E. This is equivariant and satisfies the cocycle property. This can be extended
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to a group equivariant homeomorphism between @1F and @1E. This produces the
universal circle in this case.

Calegari [Cal1] produced many examples of R-covered, non uniform foliations
in closed, hyperbolic 3-manifolds.

4. Intersections between leaves of zG and pseudo-Anosov foliations

The main goal of this section is to show that a pseudo-Anosov flow transverse to an
R-covered foliation interacts very well with the universal circle. We show that leaves
of zƒs are essentially vertical products with respect to the universal circle. Let ˆ

be a pseudo-Anosov flow in M 3 closed. Background on pseudo-Anosov flows can
be found in [Mo1], [Fe6]. We stress that pseudo-Anosov flows do not have 1-prong
singular orbits. Let ƒs , ƒu be the stable/unstable foliations of ˆ and ẑ , zƒs , zƒu the
lifts to the universal cover of ˆ, ƒs , ƒu respectively. Given z in zM let �W s.z/ be
the stable leaf containing z and similarly define �W u.z/. Our assumption is that ˆ is
transverse to the foliation G and is regulating for G . Therefore given any leaf L of
zG , the foliations zƒs , zƒu are transverse to L and they induce 1-dimensional singular
foliations zƒs

L, zƒu
L in L. We are in the case that leaves of zG are isometric to the

hyperbolic plane. The orbit space of ẑ is O D zM= ẑ with the quotient topology and
it is homeomorphic to R2 [Fe-Mo]. The foliations zƒs , zƒu induce 1-dim foliations
Os , Ou in O. If x is in O, then Os.x/ is the leaf of Os through x and similarly for
Ou.

One fundamental fact used here is that we proved in [Fe6] that each ray of a leaf
of zƒs

L or zƒu
L accumulates in a single point of @1L. This works even if G is not

R-covered.
A convention that will be used throughout the article is the following: the group

�1.M/ acts on several objects: the universal cover zM , the orbit space O, the universal
circle U, the foliations zƒs; zƒu; Os; Ou, etc. If g is an element of �1.M/ we still use
the same g to denote the induced actions on all these spaces zM , O, U, zƒs , zƒu, Os ,
Ou, etc.

Lemma 4.1. Suppose that a pseudo-Anosov flow ˆ is regulating for an R-covered
foliation G . Then the stable and unstable foliations zƒs , zƒu have Hausdorff leaf
space. It follows that for any leaf L of zG , the leaves of the one dimensional foliations
zƒs

L, zƒu
L are uniform quasigeodesics in L.

Proof. This is stronger than the fact that rays in these leaves limit to single points
in @1L. If we suppose on the contrary that (say) zƒs does not have Hausdorff leaf
space, then there are closed orbits ˛; ˇ of ˆ (maybe with multiplicity), so that they
are freely homotopic to the inverse of each other, see [Fe6]. Lift them coherently to
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orbits Q̨ ; Q̌ of ẑ . Since ˆ is regulating for G , then both Q̨ and Q̌ intersect every leaf
of zG .

Let g in �1.M/ non trivial with g leaving Q̨ invariant and sending points in Q̨
forward (in terms of the flow parameter). Therefore g acts in an increasing way in
the leaf space of zG . By the free homotopy, g also leaves Q̌ invariant and g acts
decreasingly in Q̌, hence also in the leaf space of zG . This is a contradiction.

Hence the leaf spaces of zƒs , zƒu are Hausdorff. As proved in Proposition 6.11
of [Fe6] this implies that for any L in zG , then all leaves of zƒs

L, zƒu
L are uniform

quasigeodesics in L. The bounds are independent of the leaf of zƒs
L, zƒu

L in L and
also of the leaf L of zG . For non singular leaves, this implies that any such leaf is a
bounded distance (in the hyperbolic metric of L) from a minimal geodesic in L. For
singular p-prong leaves of zƒs

L, zƒu
L the same is true for any properly embedded copy

of R in such leaves. �

In this section we want to show that the asymptotic behavior of leaves of zƒs
L, zƒu

L

is coherent with the identifications prescribed by the universal circle.
Let H be the leaf space of zG , which is homeomorphic to the set of real numbers.
Let A be a leaf of zƒs (or zƒu). We will show that each half leaf of A has a single

point of the universal circle associated to it. In order to do that choose an arbitrary
leaf L of zG to start with and let r be a ray of A \ L � this is a ray of zƒs

L. Let now
E be an arbitrary leaf of zG or an element of H . Since ˆ is regulating, then ẑ R.q/

intersects E for any q in r . The intersection of ẑ R.r/ and E is a ray of zƒs
E � again

because of the regulating condition. This ray also defines an unique ideal point in
@1E. Since @1E is canonically identified with the universal circle U this defines a
map

fr W H ! U;

fr.E/ Dfequivalence class in U of the ideal

point in @1E of the ray . ẑ R.r/ \ E/g:

The set ẑ R.r/ is a half leaf of A. Clearly the map fr only depends on the
equivalence class of half leaves of A, where two half leaves are equivalent if they
both contain a half leaf of A.

Proposition 4.2. Any leaf A of zƒs or zƒu is a product with respect to the universal
circle, that is, the ideal points of A \ L for L leaves of zG are constant in the uni-
versal circle. More specifically given a ray r of A \ L, where L is in zG , then the
corresponding map fr W H ! U defined above is a constant map.

Proof. The proof depends on whether G is uniform or not.

Case 1. G is uniform.
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Claim. If G is uniform and ˆ is transverse and regulating for G , then for any S ,
E leaves of zG , there is a bound on the length of flow lines from S to E. The bound
depends on the pair S , E.

Otherwise we find pi in S with ẑ
ti .pi / in E and ti converging to (say) infinity.

Up to subsequence assume that �.pi / converges to a point p in M . Take covering
translations gi in �1.M/ with gi .pi / converging to p0. For each i take qi in gi .E/

with d.qi ; gi .pi // < a for fixed a. This uses the uniform property. Up to subsequence
assume that qi converges and hence gi .E/ converges to a leaf E0. The orbit of ẑ
through p0 intersects E0, since the flow is regulating. Hence there is t0 with ẑ

t0.p0/

in E0. By continuity of flow lines of ẑ , then for any z in zM near p0 and G leaf of
zG near E0, then there is t near t0 so that ẑ

t .z/ is in G. But ẑ
ti .gi .pi // is in gi .E/,

which is a leaf near E0 and ti converges to infinity, contradiction. This proves the
claim. Notice that it is not necessary for ˆ to be pseudo-Anosov in this claim, just
that it is regulating.

Since r is a quasigeodesic in L, let l be the geodesic ray in L with starting point
p and a finite Hausdorff distance (in L) from r . By the above ẑ R.r/ intersects E

in a ray r 0 of zƒs
E which is a bounded distance from r in zM . The ray r 0 is also a

uniform quasigeodesic ray in E, hence r 0 is a bounded distance in E from a geodesic
ray l 0. Then l; l 0 are a finite distance from each other in zM . The definition of the
universal circle in the uniform case implies that r; r 0 define the same point in U. This
establishes this case.

Case 2. G is not uniform.

In this case, first assume that G is minimal. Therefore between any two leaves of zG ,
there is a dense set of contracting directions. The proof essentially uses that flow lines
cannot cross these contracting directions. The proof will be done by contradiction.
Let r be a ray of a leaf of zƒs

L for some L in zG with initial point p. Let a be the ideal
point of r in @1L. Suppose that for some E leaf of zG , then

r 0 D ẑ R.r/ \ E defines a distinct point in U:

Let b be the point in @1L identified to the ideal point of r 0 in @1E, by the universal
circle identification. Hence a, b are different. By density of contracting directions
between L and E, there are points c, d in @1L which separate a from b in @1L and
so that c, d correspond to contracting directions between L and E. Let m1, m2 be
markers between L and E associated to the contracting directions c; d respectively.
Let Bi D Image.mi / and let C be the union of the points in zM contained in leaves
intersecting the markers m1, m2. Removing initial pieces if necessary we may assume
that B1, B2 are disjoint. Since mi .ftg � I / is a very small transverse arc if t is big
enough, we can also assume the following: if z is in B1 or B2 then ẑ R.z/ will
intersect any leaf S in C near z, producing a small transversal from L to E passing
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through z. For each leaf S of zG intersected by the markers, let

rS D geodesic arc in S joining the endpoints

of Image.m1/ \ S and Image.m2/ \ S .

Let A be the union of the rS for such S . This is topologically a rectangle with the
bottom in L the top in E and the sides transversals from L to E. Then A [ B1 [ B2

separates C into 2 components C1, C2. Since fa; bg is disjoint from fc; dg the ray
r does not accumulate on c or d in @1L. Hence starting with a smaller ray r if
necessary we may assume also that r , r 0 are disjoint from Bi and far away from it.
In particular the flow line through any point of r will not intersect Bi , since points in
Bi are in very short transversals from L to E.

By renaming C1, C2 we may assume that r is contained in C1 and r 0 is contained
in C2. For each z in r it is in C1, then the flow line through z intersects E in r 0 which
is in C2. Therefore this flow line has to intersect A [ B1 [ B2. The above remarks
imply that this flow line cannot intersect either B1 or B2. Hence this flow line must
intersect A. Since A is compact we can choose zi in r escaping in r so that ẑ R.zi /

intersects A in
qi D ẑ

ti .zi / and qi ! q 2 A:

Since zi escapes in r , it follows that ti converges to infinity. By the regulating property
of ˆ, the orbit through q intersects L. Hence nearby orbits intersect L in bounded
time, contradicting that ti converges to infinity.

This contradiction shows that r 0 has to define the same point in U that r does.
This finishes the proof when G is minimal.

If G is not minimal, then first blow down G to a minimal foliation G 0. We can
assume that ˆ is still transverse to G 0. Now use the proof for G 0 as above. The walls
A [ B1 [ B2 for zG 0 pull back to walls for zG . Because the foliation G is a blow up
of G 0 and ˆ is transverse to both of them, it follows that flowlines of ẑ cannot cross
the two ends of the pullback walls and if necessary can only cross the compact part
of these walls. Therefore the same arguments as above prove the result in this case.
This finishes the proof of Proposition 4.2. �

A leaf F of zG is isometric to the hyperbolic plane, so we consider the canonical
compactification F [ @1F with a circle at infinity. Given any two leaves F , E

in zG , then using the universal circle analysis there is a homeomorphism between
@1F and @1E. In addition if a flow ˆ is regulating for G then there is also a
homeomorphism between F , E by moving along flow lines. We next show that these
two homeomorphisms are compatible:

Proposition 4.3. Given F , E in zG consider the map g from F [ @1F to E [ @1E

defined by: if x is in F then move along the flow line of ẑ through x until it hits E.
The intersection point is �.x/. If x is in @1F , let �.x/ be the point in @1E associated
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to x by the universal circle identification. Then � is a homeomorphism. In addition
these homeomorphisms are group equivariant and satisfy the cocycle condition.

Proof. The map � is a bijection. We only need to show that it is continuous, since the
inverse is a map of the same type. The equivariance and cocycle properties follow
immediately from the same properties for flowlines and identifications induced by
the universal circle.

We now prove continuity of �: This is very similar to the previous proposition and
we will use the setup of that proposition. The first possibility is that G is uniform.
The claim in Proposition 4.2 shows that the map � W F ! E is a quasi-isometry and
it induces a homeomorphism �� from F [ @1F to E [ @1E. The image of an ideal
point p in @1F is determined by the ideal point of �.r/ where r is a geodesic ray in
F with ideal point p. But �.r/ is a bounded distance from r in zM and this is exactly
the identification associated with the universal circle.

Suppose now that G is not uniform. Assume first that G is minimal. We know
that � restricted to both F and @1F are homeomorphisms. Since F is open in
F [ @1F all we need to do is to show that � is continuous in @1F . Let a in @1F

and .ai / converging to a in F [ @1F , so we may assume that ai is in F . Suppose
by way of contradiction that �.ai / converges to �.b/ where b is not a. Choose c; d

in @1F which separate a; b in @1F . Then construct the wall A [ B1 [ B2 as in
Proposition 4.2. The flow lines from ai to g.ai / have to intersect this wall in a compact
set, contradiction as in Proposition 4.2. This finishes the proof if G is minimal.

If G is not minimal, then use the same arguments as in the end of the previous
proposition to deal with this case. �

Topology in O [ U. Proposition 4.3 allows us to put a topology in O [U as follows:
Consider any leaf L of zG . There are homeomorphisms between L and O and @1L

and U. The combined map induces a topology in O [ U from the topology in
L [ @1L. Proposition 4.3 shows that this topology is independent of the leaf L we
start with. In addition covering translations induce homeomorphisms of O[U � this
is because if L is in zG and f in �1.M/ then f is a homeomorphism from L [ @1L

to .f .L/ [ @1f .L//, both of which are homeomorphic to O [ U. We think of this
as an action on O [ U. Given f in �1.M/, then the notation f will also denote the
induced map in O [ U. The analysis above makes it clear that f in �1.M/ acts as
an orientation preserving way on O if and only if it acts as an orientation preserving
way on U.

5. Action of elements of �1.M/

The main purpose of this section is to analyse how elements of �1.M/ act on U for
an R-covered foliation G , particularly with respect to a transverse pseudo-Anosov
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flow. We first need a couple of auxiliary results. Let

‚ W zM ! O be the projection map:

A point x in O is called periodic if there is g 6D id in �1.M/ with g.x/ D x and an
orbit ˛ of ẑ is periodic if ‚.˛/ is periodic. A line leaf of zƒs

L is a properly embedded
copy l of R in a leaf of zƒs

L of a leaf L of zG so that: if l is in a singular leaf r of
zƒs

L, then r does not have prongs on both sides of l in L. A singular leaf with a
p-prong singularity has p lines leaves. Consecutive line leaves intersect in a ray of
zƒs

L. Non singular leaves are line leaves themselves. Similarly one defines line leaves
for zƒu

L; Os; Ou; zƒs; zƒu (the last two are pullbacks to zM of line leaves of Os; Ou).
Given z in zM let �W s.z/ be the stable leaf containing z. The sectors of �W s.z/ are
the connected components of zM � �W s.z/.

Lemma 5.1. Let ˆ be a pseudo-Anosov regulating for a foliation G which is R-
covered with hyperbolic leaves. Let li be line leaves of zƒs

Li
where Li are leaves of

zG . Suppose that there are xi in li so that xi converges in zM to a point x in a leaf L

of zG . If �W s.x/ is singular assume that all xi are in the closure of a sector of �W s.x/.
Then there is a line leaf l of zƒs

L with x in l and li converging to l in the geometric
topology of zM . In addition if si are the geodesics in Li a bounded distance from li
in Li and s is the geodesic a bounded distance from l in L then si converges to s in
the geometric topology of zM .

Proof. We first prove the statement about li and l . Geometric convergence means
that if z is in l then there are zi in li with the sequence .zi / converging to z and in
addition if zik is in lik and .zik / converges to w in zM then w is in l .

Since the flow ˆ is regulating for G , then li flows into line leaves ri of zƒs
L. The

points xi flow to qi in L and clearly qi converges to x. Hence there is a line leaf l

of zƒs
L through x, so that any point z in l is the limit of a sequence .z0

i / with z0
i in

ri . If �W s.x/ is singular, this uses the fact that the xi are all in the closure of a sector
of �W s.x/. Otherwise it could easily be that different subsequences of ri converge to
distinct line leaves of zƒs

L. Let zi D ẑ R.z0
i / \ li . Then zi converges to z. This shows

that any z in l is the limit of a sequence in li .
Now suppose that .zik / is a sequence converging to z with zik in Lik . Here xik

is in Lik and x is in L and hence Lik converges to L in the leaf space H of zG . Since
H is Hausdorff then no sequence of points in Lik converges to a point in another leaf
of zG . If follows that z is in L. Let

Vk D �W s.xik /; V D �W s.x/:

Then Vk converges to V . By Lemma 4.1 the leaf space of zƒs is also Hausdorff. It
follows that z is in V . Hence z is in L \ V D � . It was also proved in [Fe6] that
L \ V is connected and hence � is exactly the leaf of zƒs

L containing x.
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If � is non singular this finishes the proof of the first statement. Suppose then that�W s.x/ is singular. Since the xi are in the closure of a sector of �W s.x/ then so are
the lik and hence the zik . Consequently the same is true of z. The boundary of this
sector is a line leaf of �W s.x/ and so z is in the corresponding line leaf of zƒs

L, which
is l . This finishes the proof of the first statement of Lemma 5.1.

We now consider the second part of Lemma 5.1. By Lemma 4.1 the leaves of zƒs
E

are uniform quasigeodesics in E for any E leaf of zG . Let then b > 0 so that any
line leaf of zƒs

E is � b from the corresponding geodesic in E and likewise for arcs
in such leaves. Let li be line leaves of zƒs

Li
, l its limit in a leaf L of zG as in the first

part of the lemma. Let si be the geodesics in Li corresponding to li and let s be the
geodesic in L corresponding to l .

For any � > 0 there is fixed �.�/ > 0 so that if two geodesic segments in the
hyperbolic plane have length bigger than 3�.�/ and the corresponding endpoints are
less than 2b C 2 from each other, then except for segments of length �.�/ adjacent
to the endpoints, then the rest of the segments are less than �=3 from each other.

Let then z in s. Given � > 0, find w0, u0 in s which are exactly .3�.�/ C 2b C 1/

distant from z. There are w, u in l with

dL.w; w0/ < b C 1

2
; dL.u; u0/ < b C 1

2
:

Let � be the segment of l between w, u. There is a corresponding segment of �i of
li between points wi , ui so that the Hausdorff distance in zM from � to �i is << 1.
The corresponding geodesic segment mi from wi to ui in Li is less than b from �i

and by choice of w0, u0 then the midpoint of mi is less than �=3 from a point vi in
si . Hence vi is less than � from z. By adjusting the � to converge to 0 and the i to
increase, one finds vi in si with vi converging to z.

Suppose now that zik are in sik with sik contained in Lik . Suppose that the
sequence zik converges to z in zM . The proof is very similar to the above: Fix � > 0.
Choose big segments in sik centered in zik . The length is fixed and depends on �.
There are geodesic arcs of Lik with endpoints in the leaves lik whose midpoints are
very close to zik . Very close depends on � and the length above. There are arcs in li
with these endpoints so that the above arcs converge up to a subsequence to a segment
in l by the first part of the lemma. The geodesic arcs above converge to a geodesic
arc with endpoints in l . Up to subsequence the midpoints of the geodesic arcs (which
are � close to the zik ) converge to a point (this point is z) which is close to a point
in s, closeness depending on �. Now make � converge to 0 and prove that z is in s.
This finishes the proof of Lemma 5.1. �

At this point it is convenient to do the following: for the remainder of this section
we fix a leaf L of zG . The bijection L [ @1L ! O [ U is a homeomorphism.
Therefore the action of �1.M/ on O [ U induces an action by homeomorphisms on
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L [ @1L under this identification. This action leaves invariant the foliations zƒs
L,

zƒu
L, because Os; Ou are �1.M/ invariant and Os; Ou are identified with zƒs

L, zƒu
L by

the bijection above.
We need one more auxiliary fact. This is a technical result concerning ideal points

of leaves of zƒs
L, zƒu

L.

Lemma 5.2. Let E be a leaf of zG and l1, l2 distinct leaves of zƒs
E or zƒu

E . Then l1,
l2 do not share an ideal point in @1E.

Proof. Roughly the proof goes like this: rays in zƒs
E with same ideal points are a

bounded distance from each other. Zoom in to the ideal point and use covering
translations to bring it back to a compact region and produce line leaves of say zƒs

L

(for appropriate L) with both ideal points identified. Then use the transitive property,
pseudo-Anosov dynamics and the regulating property to derive a contradiction. Here
are the details:

Suppose first by way of contradiction that there are l1, l2 rays in leaves of zƒs
E

for some E in zG with the same ideal point a in @1E and so that l1, l2 do not share
a subray. We can assume that l1, l2 do not have singularities. Let uj , j D 1; 2 be
the starting points of lj . Let rj , j D 1; 2 be a line leaf of zƒs

E containing lj . Choose
points xi in l1 escaping in l1. As explained before the leaves of zƒs

E are uniform
quasigeodesics in E and hence they are at a bounded distance in E from geodesics
in E. This implies that there are qi in l2 so that qi are a bounded distance from xi in
E. Up to taking a subsequence we may assume that �.xi / converges in M . Let then
gi in �1.M/ with gi .xi / converging to x0. For simplicity of explanation we assume
that the leaf of zG containing x0 is the fixed leaf L as above. Let v1 be the line leaf
of zƒs

L containing x0 and which is the limit of the gi .r1/ as proved in the previous
lemma. If �W s.x0/ is singular then, up to taking a subsequence, we may assume that
the gi .xi /; gi .ri / satisfy the requirements of the previous lemma.

Since the distance in gi .E/ from gi .xi / to gi .qi / is bounded we may assume up
to subsequence that gi .qi / also converges and let q0 be its limit. It follows that q0 is
also in L and let v2 be the line leaf of zƒs

L containing q0 which is the limit of gi .r2/.
Here the rays

gi .l1/, gi .l2/ in E have the same ideal point gi .a/ in @1.gi .E//.

The line leaves rj are uniform quasigeodesics in E and a bounded distance from a
geodesic sj in E. Hence the geodesics gi .s1/; gi .s2/ share an ideal point in @1gi .E/.
By the second part of the previous lemma gi .sj / converges to a geodesic tj in L with
same ideal points as vj for both j D 1; 2. By continuity of geodesics in leaves of zG ,
it follows that t1 and t2 share an ideal point. Therefore v1, v2 share an ideal point
in @1L.
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We claim that v1, v2 also share the other ideal point. The line leaves gi .r1/; gi .r2/

have big segments from

gi .u1/ to gi .xk/ and gi .u2/ to gi .qk/

which are boundedly close to each other. Here k � i and so gi .xi / is in these
segments. Also gi .xi / converges to x0. The corresponding geodesic arcs between
the points above have endpoints which are boundedly close to each other. As explained
in the proof of the previous lemma they have middle thirds which are arbitrarily close
to each other. The limits of the geodesic arcs are contained in t1 and t2. This shows
that t1 and t2 have infinitely many points in common and therefore are the same
geodesic.

Suppose first that v1, v2 are distinct. The two line leaves v1, v2 of zƒs
L have the

same two ideal points, which we denote by a1, a2. The line leaves

v1, v2 bound a region R in L.

For any stable leaf l of zƒs
L in R then l has ideal points which can only be a1, a2.

But l is a quasigeodesic in L. Therefore this leaf is non singular and has ideal points
exactly a1, a2. Now consider a periodic orbit ˛ of ẑ intersecting L in R very close to
v1 so that the unstable leaf �W u.˛/ intersects v1. Notice that the set of periodic orbits
of ˆ is dense in M when ˆ is transitive as proved by Mosher [Mo1]. In addition
if M is atoroidal then ˆ is transitive [Mo1]. In the situation here, ˆ is regulating
and G has hyperbolic leaves, which implies that M is atoroidal as mentioned in the
introduction.

We now use that L [ @1L is identified with O [ U. Let g in �1.M/ non trivial
so that g.˛/ D ˛ and in addition g leaves invariant all components of �W s.˛/ � ˛.
Under the identifications above then

g fixes a1 and a2 in @1L.

Notice that a1, a2 are the ideal points of �W s.˛/\L in @1L. Assume that gn. �W s.v1//

moves away from �W s.˛/ when n converges to infinity. Since v1 (line leaf of zƒs
L) has

ideal points a1, a2, it follows that the same happens for all leaves gn. �W s.v1// \ L.
These line leaves are nested in L and they are uniform quasigeodesics in L, so they
cannot escape compact sets in L. Hence they have to limit in a line leaf v of zƒs

L. Since
the leaf space of zƒs

L is Hausdorff, the limit is unique, which implies that g.v/ D v.
The leaf z of Os corresponding to v is also invariant under g. This produces a point
y of O in z which is invariant under g. Let ˇ be the orbit of ẑ with ‚.ˇ/ D y.
But g also leaves invariant the point w D ‚.˛/. This shows that there are 2 fixed
points in O under g. Then �.˛/; �.ˇ/ are closed orbits of ẑ which up to powers
are freely homotopic to the inverse of each other. Since ˆ is regulating, this is
impossible: notice that g is associated to the negative flow direction in ˛ � as it acts
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as an expansion in the set of orbits of �W u.˛/. The regulating property applied to ˛

implies that g acts freely and in an decreasing fashion on the leaf space H of zG . The
property that �.ˇ/ is freely homotopic to the inverse of �.˛/ implies that g would
have to act in an increasing way on H , contradiction. Notice that the last argument is
about the leaf space of zG and not of zƒs . This contradiction shows that l1, l2 cannot
have the same ideal point in E. This finishes the analysis if v1, v2 are distinct.

If v1 D v2, then for i big enough we may assume that xi is very closed to qi .
Then one can choose ˛ periodic with �W u.˛/ intersecting both l1 and l2. It follows
that �W s.˛/ \ L has one endpoint a. Then one applies the same arguments as in
the case v1, v2 distinct to produce a contradiction. This finishes the first part of the
lemma.

We now prove that if l1 is a ray in a leaf of zƒs
L and l2 is ray in a leaf of zƒu

L then
they cannot share an ideal point in @1L. Suppose this is not the case. Apply the same
limiting procedure as above to produce a stable line leaf s1 in zƒs

L and an unstable
line leaf s2 in zƒu

L which share two ideal points. Clearly in this case they cannot be
the same leaf and they bound a region R in L with ideal points a1, a2. Consider a
non singular stable leaf l intersecting s2. Then it enters R and cannot intersect the
boundary of R (in L) again. Therefore it has to limit in either a1 or a2 and share an
ideal point with a ray of s1. This is disallowed by the first part of the proof. �

Given these facts the following happens: For any L in zG and leaf l in zƒs
L if l is

non singular let l� be the geodesic in L with same ideal points as l . If l is a p-prong
leaf, let ı1; : : : ; ıp be the line leaves of l and let ı�

i be the corresponding geodesics.
In this case let l� be the union of the ı�

i , which is a p-sided ideal polygon in L. Let
zLs

L be the union of such l� for l in zƒs
L and similarly define zLu

L.

Lemma 5.1 implies that zLs
L, zLu

L are closed subsets of L and so are geodesic
laminations in L. Lemma 5.1 also implies that the complementary regions of zLs

L

are exactly those associated to p-prong leaves of zƒs
L, and so these complementary

regions are finite sided ideal polygons. As leaves of zƒs
L are uniform quasigeodesics

(Lemma 4.1), then zLs
L varies continuously if L varies in zG . This produces a lamina-

tion in M which intersects leaves of G in geodesic laminations. As zƒs
L, zƒu

L have no
rays which share an ideal point, it follows that zLs

L is transverse to zLu
L. It now follows

that for any y in @1L, then y has a neighborhood system in L [ @1L defined by
a sequence of leaves in either zLs

L or zLu
L. Therefore the same holds for zƒs

L, zƒu
L as

these are uniform quasigeodesics.
We are now ready to analyse the properties of the action of �1.M/ on U.

Proposition 5.3. LetG beanR-covered foliationwith a transverse regulatingpseudo-
Anosov flow ˆ. Let g in �1.M/ be a non trivial element. Then one of the following
options must happen:
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I. If g fixes 3 or more points in U, then g does not act freely on O and has a
unique fixed point x in O. Here g is associated to a closed orbit of ˆ. In addition g

acts by an orientation preserving homeomorphism of O and g leaves invariant each
prong of Os.x/, Ou.x/ when acting on O. Hence g fixes the ideal points of Os.x/,
Ou.x/ in U which are even in number. These are the only fixed points of g in U and
they are alternatively repelling and attracting;

II. g fixes exactly two points in U. Then, either 1) g acts freely on O and there
is one attracting and one repelling fixed point in U; or 2) g fixes a point x in O

and leaves invariant exactly two prongs of (say) Os.x/ but not those of Ou.x/ or
any other possible prongs of Os.x/ (or vice versa). Here g reverses orientation in
O. The orbit associated to x may be non singular in which case all prongs of Os.x/

are left invariant and there are 4 fixed points in U under the square of g. The orbit
associated to x may be singular. Then the square of g has more than 4 fixed points
in U.

III. g has no fixed point in U. Then g fixes a single point x in O and a power of
g fixes an even number � 4 of points in U.

Consequently, g always fixes a finite even number of points in U (it may be zero).

Proof. Since g acts on O and leaves invariant the foliation Os , then it acts on the leaf
space H s of Os . This is the same as the leaf space of zƒs

L (under the identification of
O with L), and is also the same as the leaf space of zƒs . Recall that in our situation
the leaf space of Os is Hausdorff. Therefore the leaf space H s of Os (same as the
leaf space of zƒs) is a topological tree [Fe3]. The same happens for the leaf space
of Ou.

Given any g in �1.M/ it induces a homeomorphism of this topological tree H s .
Z actions on such trees are well understood [Ba3], [Fe3], [Ro-St]. There are two
options:

� g acts freely and has an axis v. Elements in the axis are those z in H s for which
g.z/ separates z from g2.z/, or

� g fixes a point in H s .
Suppose first that g acts freely on H s . Then g has an axis v for its action on

H s and consequently an axis for its action on the leaf space of zƒs
L. Because H s is

Hausdorff it follows that the axis v is properly embedded in H s [Fe3]. Let l be a
leaf of zƒs

L in the axis and we may assume that l is non singular again because H s is
Hausdorff [Fe3]. By the axis properties it follows that the leaves

fgn.l/; n 2 Zg
are nested in L and they are uniform quasigeodesics. Since they escape when viewed
in the leaf space of zƒs

L, the same is true in L. As they are uniform quasigeodesics
and nested, then there are unique points y, z in @1L so that gn.l/ converges to y

if n converges to infinity and to z if n converges to minus infinity. Hence under the
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identification of U with @1L, then y, z are the unique fixed points of (any power of)
g in U, where y is attracting and z repelling. In this case the action of g in O could
be orientation preserving or not. This is case II, 1).

From now on in the proof we assume that g has a fixed point in H s , so there is a
leaf C of H s with g.C / D C . Then the leaf

‚.C / of Os contains unique x in O with g.x/ D x.

If g has no fixed points in U then it acts as an orientation preserving homeomorphism
on U and hence the same happens for the action on O.

There is a smallest positive integer i0 so that h D gi0 leaves invariant all prongs
of Os.x/; Ou.x/. If there are 2n such prongs, each generates an ideal point of L and
also a point of U. By Lemma 5.2 any two distinct prongs have different ideal points
in U. Hence h has at least 2n fixed points in U. Let ˛ be the flow line of ẑ with
‚.˛/ D x. Without loss of generality assume that the prongs above are circularly
ordered with corresponding ideal points

a1; b1; : : : ; an; bn in U

where

@Os.x/ D fa1; a2; : : : ; ang; and @Ou.x/ D fb1; b2; : : : ; bng:
Suppose that g is associated to the positive flow direction in ˛. Fix a prong � of
Os.x/ and let I be the maximal interval of U � @Ou.x/ containing the ideal point
of � . Let now � be an arbitrary unstable leaf of Ou intersecting � . Then as � gets
closer to prongs of Ou.x/, the ideal points of � approach the endpoints of I . The
action of h on � is as follows: h fixes x and for a leaf � as above then h takes it to
a leaf farther away from x. This is because in zM the flow lines along stable leaves
move closer in forward time. It follows that h acts as an expansion in � with a single
fixed point in x. Given � as above then hn.�/ \ � escapes in � as n converges to
infinity. These also form a nested collection of leaves. If the sequence hn.�/ does
not escape compact sets in O, then it limits in a collection

W D fWi ; i 2 J g
of leaves of Ou, where J is an interval in Z either finite or all of Z [Fe6]. In addition
h leaves invariant W . If W is not finite, then in particular it is not a single point and
then the leaf space of Ou is not Hausdorff, contrary to our situation. If on the other
hand W is a single leaf W , then h.W / D W and there is a single periodic point z in
W with h.z/ D z. Then h fixes x and z and this is also impossible as seen previously.

It follows that hn.�/ escapes compact sets in O and as seen in the free action
case, they can only limit in a single point of U, which corresponds to the ideal point
t of � . This shows that h acts as a contraction in I with fixed point t . Hence the
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points ai ; 1 � i � n are attracting fixed points of h in U. Using h�1 one shows that
the bi ; 1 � i � n are repelling fixed points and these are the only fixed points of h in
U. Hence h fixes exactly 2n points in U, where n � 2.

We now return to g. If g is orientation reversing on U, then so is the action on
O. In this case there are exactly 2 fixed points of g in U. The square of g is now
orientation preserving on U and it has fixed points. In particular any fixed point of
g2i is a fixed point of g2. It follows that h is equal to g2 and this is case II, 2).

Suppose finally that g is orientation preserving on U. Since h D gi0 has fixed
points in U, then either g has no fixed points in U or g has exactly the same fixed
points in U as h does. In the second case h is equal to g and g has exactly 2n fixed
points in U, which are alternatively attracting and contracting. This is case I). In the
first case g acts essentially as a rotation in U and O. This is case III).

This finishes the proof of Proposition 5.3. �

Notice that cases I, II and III are mutually exclusive.

6. Construction of the conjugacy

We are now ready to prove the main theorem. Let then ˆ; ‰ be two pseudo-Anosov
flows transverse to the R-covered foliation G and both regulating for G . Fix a trans-
verse orientation to G and we assume that both ˆ; ‰ are positively transverse to G .
We may assume that because as we defined conjugation, the identity is a topological
conjugacy between a flow and its inverse. We want to show that ˆ and ‰ are topo-
logically conjugate. Let O be the orbit space of ẑ and T be the orbit space of z‰.
The first and main step is to construct a �1.M/-equivariant homeomorphism from O

to T . Let
‚1 W zM ! O and ‚2 W zM ! T

be the corresponding orbit space projection maps. Let Os , Ou be the projections of
the stable and unstable foliations of ẑ to O and T s , T u the corresponding objects
for z‰. Recall that � W zM ! M is the universal covering map.

The main property to note here is that the universal circle U depends only on G

and not on ˆ or ‰. The same is true for the action of �1.M/ on U. This will allow
us to go from ˆ to U and then back to ‰, using Proposition 5.3. Before we prove
the theorem, we first construct an identification between closed orbits of ˆ and ‰.

Lemma 6.1. Let ˛ be an orbit of ẑ so that �.˛/ is a closed orbit of ˆ. Let g be the
element of �1.M/ associated to the closed orbit �.˛/. Then there is a unique orbit
ˇ of z‰ so that �.ˇ/ is a closed orbit of ‰ and associated to g, that is, �.ˇ/ is freely
homotopic to �.˛/.
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Proof. Let x D ‚1.˛/ and g non trivial in �1.M/ with g.x/ D x and indivisible with
respect to this property, hence g is associated with ˛. Suppose that g is associated to
the forward flow direction of �.˛/. Let h be the smallest power of g so that h leaves
invariant all prongs of Os.x/; Ou.x/. Proposition 5.3, Case I shows that h has 2n

fixed points in U, with n � 2. Now apply this proposition to h and ‰. Since h has
2n fixed points in U and n � 2, Proposition 5.3 implies that there is a unique y in T

with h.y/ D y. Let

ˇ be the orbit of z‰ with ‚2.ˇ/ D y, so h.ˇ/ D ˇ.

If g acts freely on T then the analysis of Proposition 5.3 shows that h can have only
2 fixed points in U, impossible (this is case II.1 of Proposition 5.3). It follows that
g cannot act freely on T and therefore the only fixed point of g in T is y � as it is
fixed by a power of g. This implies that g.ˇ/ D ˇ and consequently �.˛/ is freely
homotopic to a power of �.ˇ/. Reversing the roles of ˛ and ˇ implies that �.˛/

and �.ˇ/ are freely homotopic to each other or their inverses. The action of h on U

shows that the first option is the one that happens � this is because they both have
attracting fixed points in U in the same points. This finishes the proof of the lemma.

�

This defines a map from the periodic points of O to the periodic points of T .
Notice that in the lemma above @Os.x/ D @T s.y/ as points in U and similarly for
Ou.x/; T u.y/. This is the key property which will characterize the map between
orbit spaces as shown in the next result.

Theorem 6.2. Let ˆ; ‰ be pseudo-Anosov flows, which are transverse and regulating
for an R-covered foliation G . Then ˆ, ‰ are topologically conjugate.

Proof. Given a transversal orientation to G we may suppose that both ˆ, ‰ are
positively transverse to G . Fix a leaf L of zG . We first define a map 	 from O to T

which extends the correspondence between periodic points obtained previously. The
map 	 will assign to any point in the orbit space O a corresponding point in T so that
corresponding stable and unstable leaves in O and T have the same ideal points in
U. More specifically, given x in O, we will let y be the unique point of T with

@T s.y/ D @Os.x/; @T u.y/ D @Ou.x/: .1/

If x is periodic the previous lemma shows that there is an unique such a y.
Now consider x not periodic and let xn in O which are periodic and converging

to x. We want to show that the yn associated to xn converge to a single point y. We
may assume that no xn is singular since the singular orbits form a discrete subset of O.
We can also assume that .Os.xn// forms a nested sequence, and so does .Ou.xn//.
Let zn, qn points in U with

@Os.xn/ D fzn; qng and let fz; qg D @Os.x/:
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Then up to renaming we can assume that zn converges to z in U and qn converges to
q in U. Let yn in T periodic with @T s.yn/ D fzn; qng. Notice that the ln D T s.yn/

are leaves of T s , which are nested in T because their ideal points are nested in U. By
the identification of L with O, then the ln are associated to uniform quasigeodesics
in L which have ideal points which converge to distinct points in @1L (associated to
z, q in U). Therefore these quasigeodesics converge to a single quasigeodesic in L

and consequently
T s.yn/ converges to a leaf l of T s:

Similarly T u.yn/ converges to a leaf s of T u. For all n, the pairs @Os.xn/, @Ou.xn/

link each other in U, so the same happens for @T s.yn/; @T u.yn/. It follows that
the ideal points of l , s link each other in U, for otherwise we would have a leaf of
T s sharing an ideal point with a leaf of T u � which is disallowed by Lemma 5.2.
Therefore

yn D T s.yn/ \ T u.yn/

converges to a point y in T . Clearly @T s.y/ contains @Os.x/ and similarly @T u.y/

contains @Ou.x/. If y is a singular orbit, one could apply the inverse process to
produce x0 in O, x0 singular so that @Os.x0/ contains @T s.y/. But then @Os.x0/
contains @Os.x/ and x is non singular. This is disallowed by Lemma 5.1. Therefore
y is non singular and hence equation (1) holds for y and x. In addition y is well
defined, that is, given x in O there is a unique y in T satisfying equation (1): If
y1 and y2 satisfy (1), then @T s.y1/ D @T s.y2/ and @T u.y1/ D @T u.y2/. By
Lemma 5.2 the first fact implies that T s.y1/ D T s.y2/ and the second fact implies
that T u.y1/ D T u.y2/. Therefore their intersection is y1 D y2.

This defines a map 	 W O ! T , given by 	.x/ D y, if x, y satisfy equation (1).
The same argument as above that shows that 	 is well defined, also shows that 	 is
injective � when one applies the argument to the domain rather than to the range. In
addition, the map 	 clearly has an inverse by applying the same procedure from ‰ to
ˆ. Therefore 	 is a bijection.

We claim that 	 is continuous and by symmetry, then the inverse will also be
continuous. Let then x in O and .xn/ a sequence in O converging to x. Assume first
that x is non singular. Then

Os.xn/ converges to Os.x/ in O and @Os.xn/ converges to @Os.x/ in U:

Hence @T s.	.xn// D @Os.xn/ converges to @T s.	.x// D @Os.x/ and similarly for
@T u.	.xn//. This shows that 	.xn/ converges to 	.x/ in T .

Suppose finally that x is singular. Up to subsequence we may assume that .xn/

are all in a sector of Os.x/ bounded by the line leaf l (contained in Os.x/). Then
Os.xn/ converges to l and @Os.xn/ converges to @l in U. It follows that

@T s.	.xn// converges to @l – a subset of U
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which is contained in @T s.	.x//. The same happens if xn are in Os.x/, that is, if
@T s.	.xn// is contained in @T s.	.x//. This shows that @T s.	.xn// only accumu-
lates in @T s.	.x//. The same is true for @T u.	.xn//, which only accumulates in
@T u.	.x//. Then

	.xn/ D T s.	.xn// \ T u.	.xn//

only accumulates in
	.x/ D T s.	.x// \ T u.	.x//

This shows that 	.xn/ has to converge to 	.x/. This shows that 	 is a homeomor-
phism from O to T .

In addition 	 is �1.M/ equivariant, and in fact it commutes with the action of
�1.M/ on O. Again this is because of property (1) above. Here is a detailed expla-
nation: If g is in �1.M/ and x is in O, then the stable and unstable leaves

g.Os.x// D Os.g.x//; g.Ou.x// D Ou.g.x//

have ideal points in U

@Os.g.x// and @Ou.g.x//

respectively. Hence these are also the ideal points of

T s.	.g.x///; T u.	.g.x///:

In addition

@T s.	.x// D @Os.x/ and @.g.T s.	.x//// D @T s.g.	.x///:

Hence they are the same as @T s.	.g.x//. Since this is also true for the unstable
foliations, it follows that

	.g.x// D g.	.x//, commutation with �1.M/ action (2).

In other words, equation (1) says that 	 is defined by having the same ideal points
in the universal circle U. Since the action of �1.M/ on U is independent from the
flow, then one expects the commuting relation above.

We now finish the proof of topological conjugacy between ˆ and ‰. We define a
map Qh W zM ! zM as follows. Given z in zM , then z is in a leaf L of zG . Define

Qh.z/ D z‰R.	.‚1.z/// \ L;

here ‚1.z/ is in O and 	.‚1.z// is in T . Essentially we look at the orbit ˛ D ẑ R.z/

of the flow ẑ through z and consider the corresponding orbit of z‰ under the map 	:
that is the orbit z‰R.	.‚1.z/// of z‰. Then we intersect this orbit of z‰ with L. This
map Qh preserves the leaves of zG � not just the foliation zG , but the leaves themselves.
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In addition Qh sends orbits of ẑ to orbits of z‰. By the first part of the proof the
map Qh is clearly continuous and hence defines a homeomorphism of zM . From the
commuting property (2) of 	 the same follows for Qh, that is, for any g and z in zM ,
then Qh.g.z// D g. Qh.z//. Therefore h induces a homeomorphism of M , which sends
orbits of ˆ to orbits of ‰. Hence ˆ and ‰ are topologically conjugate. This finishes
the proof of Theorem 6.2. �

We now improve this result and prove that the conjugating homeomorphism is
actually isotopic to the identity. Here we also must consider the case with parabolic
leaves.

Proposition 6.3. Let ˆ and ‰ be pseudo-Anosov flows transverse to an R-covered
foliation G and assume they are both regulating for G and both (say) positively
transverse to G . Then there is a topological conjugacy h between ˆ and ‰ which is
a homeomorphism isotopic to the identity.

Proof. Suppose first that G has parabolic leaves. In the proof of Theorem 2.1 we
showed the following facts: 1) G has a compact leaf C , 2) Any two pseudo-Anosov
flows ˆ and ‰ transverse to G are Anosov flows and their monodromies are maps of
C which are homotopic. Homotopic homeomorphisms of surfaces are isotopic, and
this implies that the conjugating homemorphism between ˆ and ‰ is isotopic to the
identity.

From now on assume that the leaves of G are hyperbolic. We start with the
topological conjugacy h defined in Theorem 6.2 and we let Qh be the lift to zM as in the
proof of Theorem 6.2. For every z in zM then z and Qh.z/ are in the same leaf L which
is isometric to the hyperbolic plane. Hence there is an unique geodesic �z in L from
z to Qh.z/, parametrized with constant speed passing through z at time 0 and through
Qh.z/ at time 1. Define Qht .z/ to the �z.t/. The map Qh is continuous and geodesics
in leaves of zG vary continuously, because the hyperbolic metrics in leaves of G vary
continuously [Can]. It now follows that Qht is a homotopy in zM , preserving leaves
of zG . Clearly the homotopy Qht ; 0 � t � 1 is �1.M/ equivariant and so induces a
homotopy ht ; 0 � t � 1 in M between the identity and h.

Since ˆ is a regulating pseudo-Anosov flow for G and the leaves of G are hyper-
bolic, then the flow ˆ has singularities [Fe2], [Cal2]. Blowing up the singularities
produces an essential lamination [Ga-Oe], which is genuine, that is, the complemen-
tary regions are not all I -bundles. In addition since there is a regulating pseudo-
Anosov flow for G and G does not have parabolic leaves, then M is atoroidal [Fe2],
[Fe3]. Given these conditions Gabai and Kazez [GK3] proved that if a homemor-
phism h of M is homotopic to the identity, then h is in fact isotopic to the identity.
This finishes the proof of Proposition 6.3. �

Remarks (The question of preserving the flow direction). 1) Notice again that by
definition the conjugating homeomorphism h is not required to preserve flow direction
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along flowlines. In particular the identity is a topological conjugacy between a flow
ˆ and its inverse ˆ�1.

2) If in addition one requires the conjugating homeomorphism to preserve flow
direction along orbits, then there may be two transverse regulating flows for G , that
is, ˆ and its inverse ˆ�1. For example if G is a fibration, the question of whether
ˆ is direction preserving conjugate to its inverse boils down to a question about the
holonomy g of the fibration G . In particular it depends on whether g is conjugate to
its inverse in the mapping class group of the fiber. This question has been analysed by
Mosher and others. In the case of torus fiber this question has a well known and fairly
simple characterization [Mo3]: Given a matrix representative A of g, the conjugacy
invariant has two parts: A cyclic word W in the letters R (for right) and L (for left)
and the sign of the trace. First find an element in the conjugacy class in SL.2; Z/ of
the form M � .˙I /, where M is a positive matrix, that is, all entries of M are positive.
This is possible if and only if the conjugacy class is Anosov. The sign of the trace is
the ˙ sign in this expression. Then one factors the positive matrix M as a product of
matrices

R D
�

1 1

0 1

�
; L D

�
1 0

1 1

�
:

The word W obtained in R’s and L’s is unique up to cyclic permutation [Mo3].
The cyclic word for the inverse conjugacy class is obtained from W by writing it
backwards and replacing each R with an L and each L with an R. The sign of the
trace is invariant under inverse. Using this characterization it is easy to see that both
possibilities occur. For example given representative matrices for g below

A D
�

2 1

1 1

�
; B D

�
2 3

1 2

�
:

Then the conjugacy class of A has cyclic word W D RL and the inverse A�1 has the
same cyclic word. In this case the corresponding suspension flow ˆ is conjugate to
ˆ�1 by a conjugacy which preserves direction along orbits. As for B , its conjugacy
class has cyclic word W D RLR and the one for B�1 is W 0 D LLR. This shows
that the associated monodromies g and g�1 are not in the same conjugacy class. In
this case the resulting suspension Anosov flow is not direction preserving conjugate
to its inverse. We remark that the higher genus case is much more unclear because
the conjugacy invariants in the higher genus case are much more complicated [Mo3].

7. The non regulating case

In order to finish the analysis of the non regulating case we first need some information
about the structure of R-covered Anosov flows. Let G be an R-covered foliation and
let ˆ a pseudo-Anosov flow transverse to G and non regulating. We also need to



Vol. 88 (2013) Rigidity of pseudo-Anosov flows transverse to R-covered foliations 671

understand the projection of leaves of zG to the orbit space O of ẑ . Since the flow is
not regulating, this projection is not the whole orbit space, in particular the boundary
of this projection is relevant to us here. Recall that ‚ W zM ! O is the projection
map to the orbit space O. Details of the results here are in [Fe1], [Fe4]. As proved
in [Fe4] the non regulating hypothesis implies that ˆ is an R-covered Anosov flow.
Therefore there are 2 options for the flow ˆ. In both cases we describe the structure
of the foliations in the orbit space O.

� Skewed type. The orbit space is homeomorphic to the strip U in the plane
bounded by x D 0 and x D 1. Stable leaves are horizontal segments and
unstable leaves are segments making oriented angle �=4 with the positive x

axis. A stable leaf and an unstable leaf which have a common “ideal point" z

in @U are said to form a perfect fit [Fe3], [Fe4]. They do not intersect, but just
barely.

In this case given a leaf L of zG , then its projection ‚.L/ to the orbit space is an
open subset whose boundary is an union of exactly two leaves: one stable leaf
E and another unstable leaf S and the leaves E; S form a perfect fit. The leaf E

is denoted by �s.L/ and if the foliation G is minimal then the map �s W H ! H s

is a homeomorphism [Fe4]. Similarly L ! S defines �u W H ! H u, another
homeomorphism.

� Product type. Here the orbit space is also homeomorphic to U as above. Stable
leaves are horizontal segments and unstable leaves are vertical lines. Notice
that any stable leaf intersects every unstable leaf and vice versa. This does not
occur in the skewed case. In this case the flow is topologically conjugate to a
suspension Anosov flow [Ba1].

In this case given a leaf L of zG , its projection ‚.L/ is an open subset of the orbit
space O, whose boundary is a single leaf which is either stable or unstable.

Theorem 7.1. Let G be an R-covered foliation.
1) If there is a pseudo-Anosov flow ˆ transverse to G , but non regulating for G

then ˆ is an R-covered Anosov flow and G is weakly conjugate to either the stable
or the unstable foliation of ˆ. In addition,

2) up to topological conjugacy there is at most one such flow ˆ. If ˆ has skewed
type then there is only one such flow up to direction preserving conjugacy, whereas
if ˆ is product there may be two such flows, that is, ˆ and its inverse.

Proof. Part 1) of the theorem was proved in [Fe4] and most of part 2) as well. As
explained in the introduction one can blow down G to a minimal foliation, still
transverse to ˆ. Also the leaves of G can be assumed to be hyperbolic.

Suppose first that ˆ has skewed type. As described above we proved in [Fe4]
that for each leaf L of zG there is a unique leaf E D �s.L/ of zƒs associated to it,
producing a homeomorphism between the leaf spaces of zG and zƒs . This uses the
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skewed hypothesis. The leaf E projects to the stable boundary of ‚.L/. In addition
the orbits of ẑ in E are in one to one correspondence with a pencil of geodesics of L

with ideal point cE in @1L and also each orbit of ẑ in E is a fixed bounded distance
(in zM ) from a single geodesic with ideal point cE in L. One constructs a flow ẑ 0

in zM where the flowlines are tangent to the pencil of geodesics in L with forward
ideal point cE . This induces a flow ˆ0 in M by geodesics in leaves of G . The above
describes a homeomorphism between the orbit spaces of ẑ and ẑ 0

.
Unlike in the regulating case this does not easily produce a homeomorphism to zM

sending orbits of ẑ to orbits of ẑ 0
. Still using the homeomorphism between the orbit

spaces one can produce a homotopy equivalence of M which sends orbits of ˆ to orbits
of ˆ0 but may not be injective along orbits [Gh], [Ba2]. Using averaging techniques
along orbits of ˆ, ˆ0, this homotopy can be deformed into a homeomorphism h which
sends orbits of ˆ to those of ˆ0 [Gh], [Ba2]. The topological conjugacy h preserves
the flow direction along orbits [Fe4].

Claim. There is only one flow ˆ0 no matter what flow ˆ we start with.
Clearly the flow ˆ0 is completely determined by the ideal points cE in leaves L

of zG . We claim that these points depend only on L and not on ˆ or E. It was proved
in [Fe4] that the flow ˆ0 in M which is by geodesics in leaves of G , is an Anosov
flow. For every point q in @1L which is not cE then q is the endpoint of a geodesic
l of L with q as the negative ideal point of the associated flow line of ẑ 0. Since
l is contained in an unstable leaf of the flow ẑ 0

then this direction is a contracting
direction for the foliation zG . Therefore there is a single non contracting direction in
L, which must be cE . Hence cE is uniquely determined by L and so is the flow ˆ0.

This shows that any non regulating flow ˆ is topologically conjugate to ˆ0 by a
conjugacy preserving the flow direction. This finishes the proof of 2) in the skewed
case. In particular this shows that ˆ is direction preserving conjugate to its inverse
ˆ�1, unlike the situation in the regulating case.

Now consider the case that ˆ is product. The difference here is that the corre-
sponding projection ‚.L/ has boundary which is a single leaf and can be either a
stable or unstable leaf. In [Fe4] the analysis was done assuming that the boundary of
‚.L/ is a stable leaf. If now this boundary is an unstable leaf, then the analysis in
[Fe4] would consider ˆ�1 instead of ˆ � which then produces stable boundary for
‚.L/. Once this is done, the analysis proceeds as above. Therefore the same argu-
ments as in the skewed case above show that either ˆ or ˆ�1 is direction preserving
conjugate to ˆ0 and this proves 2) in the product case. However as explained in the
previous section there are examples where ˆ is not direction preserving conjugate
to ˆ�1 in this case. In particular there are such examples when ˆ is a suspension
Anosov flow. This finishes the proof of Theorem 7.1. �

Finally we again consider the question as to whether the conjugacy between the
flows is isotopic to the identity, now in the non regulating situation.
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Proposition 7.2. Suppose that ˆ, ‰ are non regulating pseudo-Anosov flows trans-
verse to an R-covered foliation G , which are direction preserving conjugated by a
homeomorphism h0. Then h0 is isotopic to the identity.

Proof. Let ˆ0 be the flow by geodesics in leaves of G constructed in [Fe4] and
described above. Let h be the conjugacy between ˆ and ˆ0 described in the previous
theorem. First we need some additional information about Qh: by its definition, the
homeomorphism �s between the leaf spaces H of zG and H s of zƒs is group equivariant:
g.�s.L// D �s.g.L// for any L in zG and any g in �1.M/. Notice that here we are
assuming that ‚.L/ has stable boundary � but exactly the same proof works when
‚.L/ has only unstable boundary. Given L in zG the identification between orbits of
ẑ in �s.L/ and a fixed pencil of geodesics in L is by bounded distance, so this is
also group equivariant. Therefore the homeomorphism between the orbit spaces of ẑ
and ẑ 0

commutes with the action of �1.M/. By doing the averaging steps carefully
it follows that the lift of the conjugacy Qh also commutes with the action of �1.M/

[Gh], [Ba2], [Fe4].
Under appropriate identifications of �1.M/ with �1.M; y/ and �1.M; h.y// for

a given y in M , this implies that h induces the identity in the fundamental group
level. Because M has a pseudo-Anosov flow it follows that M is a K.�; 1/ and this
implies that h is homotopic to the identity.

If M is toroidal then Waldhausen’s theorem shows that h is isotopic to the identity
[He]. If M is atoroidal, then since G has hyperbolic leaves it was proved in [Fe2],
[Cal2] that G has a transverse pseudo-Anosov flow 
 which is regulating for G .
Notice that 
 is completely different from the non regulating transverse flows ˆ; ‰.
In particular this pseudo-Anosov flow 
 has singularities [Fe2], [Cal2]. Then exactly
as proved in Proposition 7.2, the result of Gabai and Kazez [GK3] implies that h is
isotopic to the identity. In the same way there is another homeomorphism h�, isotopic
to the identity, so that h� conjugates ˆ0 to ‰ preserving flow direction. This finishes
the proof of the proposition. �

Remark. In some cases it is very easy to see that the conjugating homeomorphism
between ˆ and ˆ�1 is isotopic to the identity. For example let ˆ be the geodesic flow
in the unit tangent bundle M of a closed, orientable hyperbolic surface S . We first
construct the isotopy: let ht be the homeomorphism in M that corresponds to turning
each vector in S by an angle t� . This uses the fact that S is orientable. Then ht is an
isotopy in M . Projecting to S , the homeomorphism h1 sends geodesics to the same
geodesics, but with the opposite direction. However they are going backwards, and
hence they are going forwards for the inverse flow ˆ�1. In this case h1 is a conjugacy
between ˆ and ˆ�1 which preserves direction along flow lines and h1 is isotopic to
the identity.
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