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1. Introduction

The problem of the existence of separatrices is a central theme in the local theory of
singular holomorphic foliations. On a neighborhood of a singularity in dimension 2,
the existence of separatrices was settled in [C-S] completing a classical work of Briot
and Bouquet. Here a separatrix for a singular holomorphic foliation is by definition
an (germ of) analytic curve passing through the singularity and invariant under the fo-
liation in question. However, as we increase the dimension and consider foliations on
manifolds having dimension equal to 3, it becomes necessary to distinguish between
foliations of dimension 1 and foliations of dimension 2 (or of codimension 1). By
using local coordinates, we can place ourselves on a neighborhood of the origin in C3.
Then, in the case of a 1-dimensional foliation, a separatrix still is an (germ of) analytic
curve passing through the origin and invariant by the foliation. As to codimension 1

foliations, a separatrix in this context should be understood as a germ of surface (i.e.
2-dimensional analytic set) passing through the origin and invariant by the foliation.
Unfortunately, the existence of separatrices is no longer valid for all foliations as
above. In [GM-L] the reader will find examples of 1-dimensional foliations without
separatrices. For codimension 1 foliations the existence of counterexamples goes
back to Jouanolou [J-1]. By studying the existence of invariant curves for foliations
in the complex projective plane, it is easy to produce examples of codimension 1

foliations without separatrices as it will be discussed below. The existence of separa-
trices for codimension 1 foliations was also the object of the remarkable papers [Ca],
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[C-C] where it is proved, in particular, that a non-dicritical codimension 1 foliation
on a neighborhood of C3 always possesses a separatrix (for the definition of non-
dicritical foliation see Section 2). As it follows from the preceding discussion, the set
of foliations that fail to be non-dicritical is not negligible. For completeness, let us
also mention the work of Sancho de Salas [S] concerning invariant sets for a vector
field having a singularity of high codimension. Similarly Stolovitch has investigated
normal forms for certain families of commuting vector fields having rank at least 2

and their applications to the existence of invariant sets [St].
In the present paper we consider codimension 1 foliations that are generated by

an action of C2 of rank 2 on a complex manifold of dimension 3. More precisely we
shall work on a neighborhood of the origin in C3. In this local setting, we consider
the foliation spanned by two commuting holomorphic vector fields that are linearly
independent at generic points. The main result of this paper is as follows.

MainTheorem. Consider holomorphic vector fields X , Y defined on a neighborhood
of the origin of C3. Suppose that they commute and are linearly independent at
generic points so that they span a codimension 1 foliation denoted by D . Then D

possesses a separatrix.

Note that the foliation D can be much more degenerate than the vector fields X , Y

themselves since their k-jets may coincide to an order higher than the first non-trivial
homogeneous component of X , Y . This is a considerable source of difficulty in the
proof of our theorem. Also, if D is defined by the differential 1-form induced by
the vector product of X , Y , this form may have a singular set of codimension 1 even
though the singular sets of X , Y are of codimension � 2.

An interesting application of the above theorem concerns the case of a C2-action
having rank 2 on a complex manifold of dimension 3. By a rank 2 action, it is
simply meant an action of C2 whose orbits have dimension 2 at generic points. On
a neighborhood of a singular point for this action, the vector fields X , Y can, in
addition, be chosen semi-complete. A good deal of information about these vector
fields can then be derived from their restrictions to the separatrix of D since semi-
complete vector fields in dimension 2 are well understood. A particularly remarkable
example of this situation can be found in [G]. This example was first discovered
by Lins-Neto [LN] in connection with the so-called Painlevé problem, whereas the
corresponding geometry and dynamics was described in [G]. It consists of choosing
X , Y respectively as the vector fields
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These vector fields correspond to an action of C2 on a suitable 3-manifold. The
family spanned by them is such that a generic element has an isolated singularity at the
origin. Yet some elements, such as Z1, possesses a singular set with codimension 2.

Let us now indicate how to construct numerous examples of codimension 1

foliations on a neighborhood of .0; 0; 0/ 2 C3 without separatrices. Consider
a homogeneous polynomial vector field Z defined on C3 and having an isolated
singularity at .0; 0; 0/ 2 C3. Unless Z is a multiple of the radial vector field
R D x@=@x C y@=@y C z@=@z, it induces a 1-dimensional holomorphic foliation
FCP.2/ of dimension 1 on CP.2/. Conversely every 1-dimensional foliation on
CP.2/ is induced by a homogeneous vector field on C3. Next we consider the 2-
dimensional distribution of planes on C3 which is spanned by Z and by R. The Euler
relation (Equation 3) shows that Z; R generates a Lie algebra isomorphic to the Lie
algebra of the affine group. The corresponding distribution is therefore integrable
and hence yields a codimension 1 foliation that is going to be denoted by D . Clearly
the punctual blow-up zD of D does not leave the exceptional divisor ��1.0/ invariant
(for details see Lemma 1). In fact, the intersections of the leaves of zD with ��1.0/

coincide with the leaves of FCP.2/.
As far as the existence of separatrices for D is concerned, the upshot of the

preceding construction is as follows: if D possesses a separatrix, the tangent cone
of this separatrix yields an algebraic curve in ��1.0/ which must be invariant under
FCP.2/. Nonetheless it is known that, in a very strong sense, most choices of Z leads
to a foliation FCP.2/ that does not leave any proper analytic set invariant (cf. for
example [LN-S], [L-R]). As a result the codimension 1 foliation obtained by means
of Z, R, for a generic choice of Z, does not have separatrices. We also note that, for
these examples, no separatrix can be produced by adding “higher order terms” to D .

To show that this phenomenon cannot take place in our context, we shall consider
the intersection of our codimension 1 foliation with a given component of the ex-
ceptional divisor. Unless this component is invariant by the codimension 1 foliation,
this intersection defines a foliation of dimension 1 on it. Except for some rather
special situations that are already “linear” in a suitable sense, we are going to show
that all the leaves of the latter foliation are properly embedded (in particular they
are compact provided that the mentioned component of the exceptional divisor is
so). This statement is, indeed, equivalent to saying that the corresponding foliation
admits a non-constant meromorphic first integral as it follows from [J-2]. In general
we shall directly work with the existence of a non-constant meromorphic first inte-
gral for foliations as above. Next we will be led to consider the special situations of
“linear” foliations that may not possess any non-constant meromorphic first integral.
Fortunately in these cases the existence of a separatrix can be established by more
direct methods. An example of a “linear case” would consist of a pair of vector fields
X , Y with X linear and Y equal to the radial vector field x@=@x C y@=@y C z@=@z.
These two vector fields commute and span a codimension 1 foliation whose (punctual)
blow-up at the origin does not leave the corresponding exceptional divisor invariant.
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Furthermore the foliation induced on the corresponding exceptional divisor by the
mentioned blown-up foliation coincides with the foliation induced on CP.2/ by X .
In particular X can be chosen so that the “generic” leaf is not compact. However,
in this situation the foliation induced by X on CP.2/ still has a compact leaf which
“immediately” leads to the existence of the desired separatrix. Apart from these so-
called “linear situations”, the fact that the above mentioned leaves are all compact
will be obtained by exploiting the mutual symmetries of X , Y yielded by their com-
mutativity and by the fact that their proper transform should vanish identically over
the whole exceptional divisor.

A similar example concerning blow-ups centered at a curve (as opposed to a single
point) was pointed out to us by D. Cerveau. It serves to illustrate both the problem
about the existence of first integrals as above and the contents of Lemmas 2 and 5
which are crucial for establishing the existence of these first integrals. This example
goes as follows. Consider the pair of vector fields X , Y given by

X D zy
@

@y
C z2 @

@z
and Y D x2 @

@x
C axy

@

@y
:

These two vector fields commute and span a codimension 2 foliation denoted by
D . They also leave the axis fy D z D 0g invariant. Consider the blow-up of
D , X , Y centered over fy D z D 0g. The transform zD of D does not leave
the exceptional divisor invariant. Furthermore the leaves of the foliation induced
on the non-compact exceptional divisor by intersecting it with the leaves of zD are
themselves non-compact. The explanation for this phenomenon is that the blow-up of
X is regular at generic points of the exceptional divisor. Indeed, X is already regular
at generic points of the axis fy D z D 0g. Hence this case must be considered as
“linear” (indeed even “regular”). As it will be clear in Section 3, the appropriate
notion of order of a vector field relative to a curve is such that the resulting order for
X as above is zero. This is totally coherent with the fact that X is regular at generic
points of this axis. With these definitions the situations that were called “linear” in
the above discussion essentially coincides with the cases where the vector fields X ,
Y have order strictly less than 2 at the center of some blow-up map.

The organization of the paper is as follows. In Section 2 we consider the case of a
single punctual blow-up. The condition for the proper transforms of X , Y to vanish
over the corresponding exceptional divisor amounts to saying that the linear parts at
the origin of X , Y are zero (i.e. the Taylor series of X , Y at the center of the blow-up
must begin with terms whose order is at least 2). Under this condition we prove
that, if the codimension 1 foliation spanned by X , Y does not leave the exceptional
divisor invariant, then all (1-dimensional) leaves induced by it on the exceptional
divisor are compact (Proposition 1). Section 3 is devoted to obtaining an analogue
of Proposition 1 for the case of blow-ups centered at a (smooth, irreducible) curve.
In particular, this will require a suitable analogue of the “linear parts” of X , Y which
is adapted to the curve in question. This is going to raise some minor additional
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difficulties as indicated by the above example. After introducing the appropriate
setting, the main result of Section 3 will be Proposition 2 which is a faithful analogue
of Proposition 1.

Since it is hard to imagine a theorem about arbitrarily degenerate singularities
being proved without resorting to a suitable “desingularization” theorem, the funda-
mental results of [C-C], [Ca] about reduction of singularities of codimension 1 foli-
ations will play a role in this paper. They will be brought to bear in Section 4. First
we shall prove that the desired separatrix must exist provided that the 1-dimensional
foliations induced on the non-invariant compact components of the (total) excep-
tional divisor have only compact leaves (in other words, provided that each of these
foliations possesses a non-constant meromorphic first integral). In these cases, the
existence of the separatrix will follow from the combination of the compactness of
the mentioned (1-dimensional) leaves with the fact that the “reduced singularities”
are simple enough to allow for a total understanding of their (local) separatrices. To
prove our main result, we are then led to discuss the effect of the blow-up procedure
of [C-C], [Ca] on the initial vector fields X , Y . The outcome of this discussion
is that, to a large extent, Propositions 1 and 2 can be applied to guarantee that the
(1-dimensional) leaves in question are compact. Thus, at this point, we shall have
the existence of the separatrix established except for some “special” cases in which
the assumptions of Propositions 1 and 2 are not fulfilled. These remaining cases are
however simple enough to be amenable to more direct integration methods.

Acknowledgements. Many thanks to the anonymous referee for alerting us of some
obscure points in the original version and for suggesting simplifications in several
proofs, immensely contributing to clarify the exposition. We are also indebted to our
colleagues D. Cerveau, A. Guillot and J.-F. Mattei for several comments and questions
that helped us to improve on the preliminary versions.

This work was written during a long-term visit of the second author to the Institut
de Mathématiques de Toulouse, Université Paul Sabatier. She wants to thank this
institution for its hospitality.

2. On the dicritical character of D , Part I: Blowing-up a point

Consider two commuting holomorphic vector fields, X , Y , defined on .C3; 0/.
Throughout this section, the vector fields X , Y are supposed to satisfy the following
conditions:

(1) X , Y are linearly independent at generic points.

(2) The linear parts of X , Y at the origin are zero.

Next, let X D P3
iD1 Xi@=@xi and Y D P3

iD1 Yi@=@xi . Because X and Y

commute, they define a codimension 1 singular foliation D which is represented by
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the holomorphic 1-form

.X2Y3 �X3Y2/dx1 C .X3Y1 �X1Y3/dx2 C .X1Y2 �X2Y1/dx3: (1)

As usual we can assume that Sing .D/ has codimension greater than or equal to 2. In
other words, we can eliminate all non-trivial common factors from the components
of the 1-form considered above.

In this work we shall deal with the codimension 1 foliation D as well as with
the foliations FX , FY associated respectively to the vector fields X , Y . Unlike D ,
the foliations FX , FY have dimension 1. Nonetheless, their singular sets can also be
supposed to have codimension 2 or greater.

Recall that a separatrix for a foliation of dimension 1 (such as FX , FY ) is a germ
of analytic curve passing through the origin and invariant by the foliation in question.
Note that this definition does not exclude the possibility of having a separatrix entirely
contained in the singular set of the corresponding foliation.

On the other hand, if we have a codimension 1 foliation (such as D), then a
separatrix is a germ of analytic surface passing through the origin and invariant by
the corresponding foliation. We can also say that, in the latter case, a separatrix is
given by an irreducible germ of analytic function f that divides � ^ df , where �

stands for a 1-form defining the foliation. Since the singular set of any foliation has
codimension at least 2, a separatrix for a codimension 1 foliation is always obtained
from a regular leaf that accumulates on the singular set (unless it coincides locally
with the leaf of the foliation through a regular point).

As mentioned in the Introduction, in Sections 2 and 3 we shall consider the case of
a single blowing-up map leading to an exceptional divisor that is not invariant by the
corresponding blown-up foliation. Our purpose will be to find sufficient conditions
to ensure that the (1-dimensional) foliation induced on the exceptional divisor in
question must admit a non-constant meromorphic first integral. To motivate this
discussion, let us indicate how the existence of separatrices is related to this type
of behavior on dicritical divisors. Indeed, the proof of the main result in this paper
depends on a “topological” theorem for codimension 1 foliations, not necessarily
spanned by commuting vector fields, that reads as follows:

Theorem 1. Let D be a codimension 1 foliation defined on a neighborhood of the
origin in C3 and consider a reduction of singularities (cf. Section 4)

D D D0 �1 � D1 �2 � � � � �k � Dk

for D . Consider those irreducible components Ej of the total exceptional divisor
that are compact but that are not invariant by Dk . Suppose that for every component
Ej as above the (1-dimensional) foliation induced on Ej by intersecting Ej with the
leaves of Dk possesses a non-constant meromorphic first integral. Then D possesses
a separatrix.
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Theorem 1 provides a sufficient condition to guarantee the existence of separatrices
for a codimension 1 foliation which will be used to establish the theorem stated in
the Introduction. Also Theorem 1 points out a kind of “universal character” in the
previously discussed examples of codimension 1 foliations without separatrices.

Naturally the statement of the preceding theorem makes an implicit use of the
existence of a “reduction of singularities” procedure for codimension 1 foliations
defined on a neighborhood of .0; 0; 0/ 2 C3. The existence of this procedure is a
fundamental theorem appearing in [C-C] and [Ca]. The accurate form of these results
will be recalled in Section 4 where the proof of Theorem 1 will be supplied. We point
out in particular that the mentioned proof can be read independently of the material
discussed in this section and in Section 3.

Let us however mention once and for all that the procedure of reducing the sin-
gularities of D given in [C-C], [Ca] requires us to use two types of blow-up, namely
those centered at a single point and those centered at a smooth (irreducible) curve. In
either case the transform zD of D is well-defined and consists of a singular holomor-
phic foliation defined on the new (blown-up) manifold. Here is a good point to recall
some terminology that will be used throughout this paper. First a blow-up map with
center C is called a dicritical blow-up for a codimension 1 singular foliation D if
and only if C is invariant by D and the exceptional divisor introduced by this blow-up
map is not invariant by the transform zD of D (equivalently the exceptional divisor is
transverse to zD at generic points). A foliation of codimension 1 is called dicritical if
and only if there is a finite sequence of blow-ups with invariant centers such that the
last blow-up is dicritical for the corresponding transform of the initial foliation. If
such a sequence of blow-ups does not exist, the foliation is said to be non-dicritical.
Concerning deciding whether or not a given codimension 1 foliation is dicritical, the
reduction theorem of [Ca] yields a suitable condition: a foliation is dicritical if and
only if there is a dicritical blow-up in the sequence of blowing ups leading to the
reduction of singularities (more details can be found in Section 4). Finally an irre-
ducible component of a divisor in an ambient space where a codimension 1 foliation
D is defined is said to be dicritical for D if and only if this component is not invariant
by D (and thus it is transverse to D at generic points).

Consider then the transform zD of D under a dicritical blow-up as above. To
implement the strategy outlined in the Introduction and, in particular, to be able to
make use of Theorem 1, our next task is to find conditions ensuring that the folia-
tion induced on the corresponding exceptional divisor by zD admits a non-constant
meromorphic first integral. The remainder of this section is devoted to this question
in the case of a blow-up centered at a point. The case of blow-ups centered over
curves is going to be treated in Section 3. Naturally in the course of this discussion
we shall assume that D is spanned by two commuting vector fields X , Y that are
linearly independent at generic points. The desired conditions are summarized by
Propositions 1 and 2. Proposition 1 concerning punctual blow-ups is the main result
of this section. Proposition 2 is the analogue of Proposition 1 for the case of blow-
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ups centered over a curve and it will be the object of Section 3. Finally, though the
statement of Propositions 1 and 2 do not cover all foliations we are going to deal with,
it will turn out that the class of foliations failing to satisfy their conditions is rather
small: it essentially consists of foliations that are “almost linear” in an appropriate
sense. In particular the existence of separatrices for these “almost linear” foliations
can directly be checked.

From now on we fix a holomorphic 1-form � defining D and having singular
set of codimension at least 2. In particular the singular set Sing .D/ of D consists
of isolated points and analytic curves. In the remainder of this section we shall
exclusively deal with the case of punctual blow-ups.

Suppose then that the blow-up centered at the origin is dicritical for D . We are
going to prove that the foliation induced on the resulting exceptional divisor by the
transform of D possesses a non-constant meromorphic first integral provided that D

is spanned by vector fields X , Y satisfying Conditions 1 and 2 in the beginning of the
section (cf. Proposition 1). In particular observe that Condition 2 already gives some
hint on the “linear nature” of foliations failing to satisfy the assumption of Theorem 1
(or of Propositions 1 and 2).

To begin our approach to Main Theorem and, more precisely, to Proposition 1,
we are going to give a characterization of foliations for which the blow-up centered
at the origin is dicritical. With this purpose, let us denote by R the radial vector field
(Euler vector field)

R D x
@

@x
C y

@

@y
C z

@

@z
:

Given a holomorphic vector field defined about .0; 0; 0/ 2 C3, its first non-trivial
homogeneous component at the origin is the homogeneous component of lowest
degree (and not identically zero) of the Taylor series of this vector field at the origin.

Lemma 1. Suppose that D is a singular codimension 1 foliation and suppose that
the punctual blow-up � of the origin is dicritical for D . Then there is a holomorphic
vector field Z tangent to D whose first non-trivial homogeneous component at the
origin is a multiple of the radial vector field R. Conversely the existence of a vector
field Z as above ensures that the blow-up of the origin is dicritical for D .

Proof. Let D be given by the holomorphic 1-form � D F dx C G dy C H dz

whose singular set has codimension 2 or greater. Denote by �d the first non-trivial
homogeneous component of � at .0; 0; 0/. Here d stands for the degree of �d .
Furthermore set �d D F d dx C Gd dy CH d dz. A direct inspection shows that �

is dicritical for D if and only if

xF d C yGd C zH d D 0: (2)

The triple .x; y; z/ is therefore a solution of �d D 0. Hence it can be expressed
as a linear combination over the rational functions of the two independent solutions



Vol. 88 (2013) Separatrices for C2 actions on 3-manifolds 685

.Gd ;�F d ; 0/ and .H d ; 0;�F d /. Thus we have

.x; y; z/ D A.Gd ;�F d ; 0/C B.H d ; 0;�F d /

for certain rational functions A; B . Now a rational multiple Z of the vector field
A.G;�F; 0/C B.H; 0;�F / satisfies the requirements. For the converse, just note
that the first non-trivial homogeneous component of a vector field tangent to D must
yield a solution for f�d D 0g. This applies in particular to the vector field Z. It then
follows that Equation (2) is satisfied and thus that � is dicritical for D . �

Let us now return to our original setting where D is spanned by vector fields X ,
Y satisfying conditions 1 and 2.

Consider a homogeneous polynomial vector field Z of degree d � 2. The Euler
relation then provides

ŒR; Z� D .d � 1/Z: (3)

In particular R and Z do not commute. Furthermore, if Z is not a multiple of R, then
the same holds when R is replaced by a multiple hR. Indeed, we have

ŒhR; Z� D hŒR; Z� � .Z:h/ R D .d � 1/hZ �
�

@h

@Z

�
R: (4)

It is then clear that ŒhR; Z� ¤ 0 provided that R, Z are linearly independent.
Next we have a simple lemma concerning the vanishing of the Lie bracket for a

special type of vector fields.

Lemma 2. Let Z1, Z2 be commuting vector fields defined about .0; 0; 0/ 2 C3.
Suppose that the first non-trivial homogeneous component of Z1 at .0; 0; 0/ is a
multiple of R. Suppose also that the linear part of Z2 at the origin is zero. Then Z1,
Z2 are linearly dependent at every point.

Proof. Consider the punctual blow-up zZ1 (resp. zZ2) of Z1 (resp. Z2) at the origin.
Since the first non-trivial homogeneous component of Z1 is a multiple of R, we set
Zd

1 D hR where h is a homogeneous polynomial of degree d � 1. Then it follows
that the foliation associated to zZ1 is transverse to ��1.0/ away from the transform
of fh D 0g. Thus we can fix local coordinates .x; t; u/, ��1.0/ � fx D 0g, about
a generic point of ��1.0/ in which the vector field zZ1 becomes f .x; t; u/@=@x. In
these coordinates, we set zZ2 D zZ2;1@=@x C zZ2;2@=@t C zZ2;3@=@u. The equation
Œ zZ1; zZ2� D 0 then yields

@ zZ2;2

@x
D @ zZ2;3

@x
D 0:

Therefore zZ2;2 and zZ2;3 do not depend on the variable x. However, since the linear
part of Z2 equals zero at the origin, zZ2 vanishes identically on ��1.0/. Thus its
components zZ2;2, zZ2;3 must vanish everywhere since they do not depend on x. It
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follows that Z1, Z2 are linearly dependent on an open set and therefore they are so
everywhere. The lemma is proved. �

Remark 1. Considering the vector fields X , Y introduced in the beginning of the
section, let XH (resp. Y H ) denote the first non-trivial homogeneous component of
X (resp. Y ) at the origin. As a consequence of the above lemma, we conclude that
neither XH nor Y H is a multiple of the radial vector field R.

Also note that the assumption concerning the vanishing of the linear part of Z2

at the origin was used only to ensure that the blown-up vector field zZ2 vanishes
identically on the corresponding exceptional divisor.

Let us go back to the vector fields X , Y considered in the beginning of the section.
Recall that D stands for the codimension 1 foliation spanned by X , Y . Suppose that
the punctual blow-up � of the origin is dicritical for D . Then, according to Lemma 1,
there are holomorphic functions f , g and h such that

fX C gY D hZ; (5)

where Z is a holomorphic vector field whose first non-trivial homogeneous compo-
nent at the origin is a multiple of R. Let ord .fX/ (resp. ord .gY /, ord .hZ/) denote
the order of the vector field fX (resp. gY , hZ) at the origin, i.e. the degree of the
first jet of fX (resp. gY , hZ) that is not zero at the origin or, equivalently, the degree
of the component of lowest degree effectively appearing in the Taylor expansion of
fX (resp. gY , hZ) at the origin.

Lemma 3. With the above notations we have the following alternative

(1) ord .hZ/ > minford .fX/; ord .gY /g.
(2) the first non-trivial homogeneous component XH of X (resp. Y H of Y ) admits

a non-constant meromorphic first integral.

Proof. Suppose that ord .hZ/ D minford .fX/; ord .gY /g. All we have to do is to
show that XH possesses a non-constant first integral. Denote respectively by f H ,
gH , hH the first non-trivial homogeneous components of f , g, h. Analogously ZH

is the first non-trivial homogeneous component of Z. Without loss of generality,
we can assume that ord .fX/ � ord .gY /. We claim that, indeed, these two orders
must be equal, i.e. ord .fX/ D ord .gY /. To check this claim first recall that XH

is not a multiple of the radial vector field R, cf. Remark 1. Then just note that
the existence of a strict inequality ord .fX/ < ord .gY / would imply that f H XH ,
and thus XH itself, is a multiple of R as it can be seen by considering the first
non-trivial homogeneous component in Equation (5). From this we conclude that
ord .fX/ D ord .gY / as desired.
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Therefore, by considering again the first non-trivial homogeneous component in
Equation (5), it follows that

f H XH C gH Y H D hH qH R; (6)

where, by assumption, none of the two sides vanishes identically. Furthermore qH

is also a homogeneous polynomial.
Because X , Y commute, so do XH , Y H . Thus we have

ŒXH ; Y H � D
�
XH ;

hH qH

gH
R � f H

gH
XH

�

D
�
XH :

�
hH qH

gH

��
R � hH qH

gH
ŒR; XH � �

�
XH :

�
f H

gH

��
XH

D
�
XH :

�
hH qH

gH

��
R �

�
.d � 1/

hH qH

gH
�XH :

�
f H

gH

��
XH

D 0;

where d denotes de degree of XH . In particular
�
XH :

�
hH qH

gH

��
R D

�
.d � 1/

hH qH

gH
�XH :

�
f H

gH

��
XH

The expression between brackets on the left hand side (i.e. the expression multiplying
R) must vanish identically for otherwise XH would be a multiple of the radial vector
field. It then follows that

XH :

�
hH qH

gH

�
D 0:

In other words, hH qH =gH is a meromorphic first integral for XH .
It only remains to prove that hH qH =gH is not constant. However, if this function

is constant, then we can assume hH qH =gH D 1 without loss of generality. Hence
dividing (6) by gH , it would follow

f H

gH
XH C Y H D R:

This last equation is however impossible since Y H has degree at least 2 and the
expression f H XH =gH is homogeneous. Therefore hH qH =gH cannot be constant.
Since the argument is symmetric in the vector fields X , Y , the last assertion completes
our proof. �

We are now able to prove the main proposition of this section. It summarizes
the preceding results and clarifies the nature of the foliation induced by D on the
exceptional divisor in the case where the blow-up of the origin is dicritical for D .
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Proposition 1. Let X , Y be two commuting vector fields satisfyingConditions 1 and 2
at the beginning of the section. Denote by D the codimension 1 foliation spanned by
X , Y and suppose that the punctual blow-up � of the origin is dicritical for D . Then
one has:

(1) The foliations zFX and zFY coincide in their restriction to the exceptional divisor
��1.0/, where zFX (resp. zFY ) stands for the transform of FX (resp. FY ) by the
blow-up map � in question.

(2) The restrictions to ��1.0/ of zFX and zFY also coincide with the foliation induced
on ��1.0/ by intersecting ��1.0/ with the leaves of zD , where zD stands for the
transform of D .

(3) The restrictions of zFX ; zFY to ��1.0/ possess a meromorphic first integral. In
other words, the foliation induced by zD on ��1.0/ defines a pencil on ��1.0/ '
CP.2/.

Proof. Recall that XH , Y H denote the first non-trivial homogeneous components of
respectively X , Y at the origin. We know that none of the vector fields XH , Y H is a
multiple of the radial vector field R. In particular each of them induces a non-trivial
foliation on the exceptional divisor ��1.0/ ' CP.2/. Let us first check that these
two foliations actually coincide. The condition for these two foliations to coincide is
that either the vector fields XH , Y H are parallel or they span a 2-dimensional plane
containing the radial direction (away from a proper analytic set). If none of these
possibilities hold, then a direct inspection in the coefficients of the 1-form defining D ,
cf. Equation 1, will show that Equation 2 cannot be satisfied. In fact, the coefficients
of the mentioned 1-form are given by the vectorial product between XH ; Y H so that
they cannot satisfy Equation 2 unless one of the two possibilities above is verified. In
turn the fact that Equation 2 is not satisfied leads to a contradiction with the dicritical
character of � for D . Therefore it follows that the foliations induced by XH , Y H on
the exceptional divisor are the same. Finally it becomes equally clear that these two
foliations coincide also with the foliation obtained by intersecting ��1.0/ with the
leaves of D . This proves the first two conclusions in the statement of our proposition.

To complete the proof it suffices to show that XH admits non-constant mero-
morphic first integral. Indeed, since XH is not a multiple of the radial vector field
the mentioned first integral also yields a non-constant first integral for the foliation
induced by the projection of XH on CP.2/.

To show the existence of the desired first integral for XH , recall that Lemma 1 en-
sures the existence of a holomorphic vector field Z satisfying Equation 5 for suitable
holomorphic functions f , g, h. Furthermore the first non-trivial homogeneous com-
ponent of Z at the origin is a multiple of the radial vector field R. In turn Lemma 3
allows us to suppose that ord .hZ/ > minford .fX/; ord .gY /g (strictly) without
loss of generality. In particular, we must have ord .fX/ D ord .gY / and, in fact,

f H XH C gH Y H D 0:



Vol. 88 (2013) Separatrices for C2 actions on 3-manifolds 689

Alternatively we write
f H

gH
XH C Y H D 0:

Therefore �
XH ;

f H

gH
XH C Y H

�
D ŒXH ; 0� D 0:

However, since ŒXH ; Y H � D 0, the above equation amounts to

�
XH :

�
f H

gH

��
:XH D 0

so that XH :.f H =gH / must vanish identically. In other words f H =gH is a first
integral for XH . The statement is then proved unless f H =gH is constant. Therefore
we just need to consider this latter possibility. This means that XH and Y H differ
by a multiplicative constant. Set XH D cY H for some c 2 C�. Now note that the
order of the new vector field Y 0 D X � cY must be strictly larger than the order
of X . Besides Y 0 is not constant equal to zero since X , Y are linearly independent
at generic points. In fact, Y 0 is itself linearly independent with X at generic points.
Furthermore the vector fields X , Y 0 still commute and they span the same foliation
D as the initial pair X , Y . Therefore we can repeat the argument using X , Y 0
instead of X , Y . By construction the first non-trivial homogeneous component of
Y 0 cannot differ from XH by a multiplicative constant. Therefore XH must admit a
non-constant meromorphic first integral. The proposition is proved. �

3. On the dicritical character of D , Part II: Blowing-up a curve

The next step towards the proof of the existence of separatrices consists of obtaining an
analogue of Proposition 1 for the case of blow-ups centered over smooth (irreducible)
curves contained in Sing .D/. Indeed this section is entirely devoted to discussing
the effect of blowing-up a smooth curve contained in the singular set of D .

Consider a point p belonging to a smooth curve contained in Sing .D/. On
a neighborhood of p, there are local coordinates .x; y; z/ in which the curve in
question coincides with the z-axis, i.e. it is given by fx D y D 0g. For the blow-up
centered at fx D y D 0g, we can introduce affine coordinates .x; t; z/ and .u; y; z/

such that the resulting blow-up map �z is given by �z.x; t; z/ D .x; tx; z/ (resp.
�z.u; y; z/ D .uy; y; z/). In the context of blow-ups centered over a fixed curve,
the expression “a generic point of fx D y D 0g” is a synonymous of “except for a
finite set of points”. If the neighborhood of .0; 0; 0/ 2 C3 can be reduced without
affecting the generality of the discussion then “a generic point” becomes an expression
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equivalent to “for every point in fx D y D 0g with possible exception of the origin”.
Finally let Rz denote the vector field defined by

Rz D x
@

@x
C y

@

@y
:

In the case of punctual blow-ups, the first non-trivial homogeneous component of
X , Y played the main role in establishing the existence of a non constant meromor-
phic first integral for the foliation induced over CP .2/ under appropriate conditions.
We shall begin this section by introducing an analogue of these “first non-trivial ho-
mogeneous components" which are adapted to deal with the blow-up over the curve
fx D y D 0g. In particular, the corresponding “homogeneous” vector fields will sat-
isfy the same properties as those satisfied by the first components of X , Y in the case
of punctual blow-ups. Most notably, they will still commute and they will also encode
the information determining the dicritical/non-dicritical nature of the corresponding
blow-up for D .

To motivate the definition, note that the first non-trivial homogeneous component
of X can be recovered as

lim
�!0

1

�d�1
��

�X;

where ��
�

X denotes the pull-back of X by the homothety

�� W .x; y; z/ 7! .�x; �y; �z/

and d stands for the degree of the first non-trivial homogeneous component of X . In
the present case we shall consider an adapted notion of homothety, namely the one
obtained through the family of automorphisms given by

ƒ� W .x; y; z/ 7! .�x; �y; z/:

In this case, the pull-back of X by ƒ� becomes

ƒ�
�X D 1

�

�
X1.�x; �y; z/

@

@x
CX2.�x; �y; z/

@

@y

�
CX3.�x; �y; z/

@

@z

Denote by k (resp. l) the maximal power of � that divides X1.�x; �y; z/@=@x C
X2.�x; �y; z/@=@y (resp. X3.�x; �y; z/@=@z). It corresponds to the degree of the first
non-trivial homogeneous components relative to the variables x, y in each expression.
Then

ƒ�
�X D �k�1

�
.Xk

1 .x; y; z/C � xX1;�.x; y; z//
@

@x

C .Xk
2 .x; y; z/C � xX2;�.x; y; z//

@

@y

�

C �l.X l
3.x; y; z/C � xX3;�.x; y; z//

@

@z
;



Vol. 88 (2013) Separatrices for C2 actions on 3-manifolds 691

where X
j
i stands for the homogeneous component of degree j , of Xi , relative to the

variables x, y. Since the powers of � in the different components do not coincide,
three cases must be considered according to the possibilities l > k � 1, l D k � 1

or l < k � 1. The expression for the limit vector field xX will change accordingly.
Naturally, when it comes to blow-ups centered over a smooth curve, the vector field
xX is going to represent the desired analogue of the “first non-trivial homogeneous

component” as considered in the preceding section.

a) Suppose l > k � 1. In this case we consider the vector fields

X� D 1

�k�1
ƒ�

�X

and the limit
xX D lim

�!0
X�:

The vector field xX has the form

xX D Xk
1 .x; y; z/

@

@x
CXk

2 .x; y; z/
@

@y

and it can be thought of as the “first non-trivial homogeneous component in the
variables x, y”.

b) If l D k � 1 we still consider the vector field X� D ƒ�
�
X=�k�1 and define xX

as above. A similar argument shows that xX has the form

xX D Xk
1 .x; y; z/

@

@x
CXk

2 .x; y; z/
@

@y
CXk�1

3 .x; y; z/
@

@z
:

c) Finally, if l < k � 1 we let

X� D 1

�l
ƒ�

�X

and consider xX D lim�!0 X� which, in this case, is a “vertical" vector field

xX D X l
3.x; y; z/

@

@z
:

As mentioned, the vector field xX represents the analogue of the first non-trivial
homogeneous component of X under the adapted homothety ƒ�. Given a vector field
X as above, throughout this section the first non-trivial homogeneous component of X

in the variablesx, y is, by definition, the vector field xX constructed above. The degree
w.r.t. the variables x, y (or simply degree when no misunderstanding is possible) of
xX is by definition the minimum between k and l C 1. Similarly the order of X in the



692 J. C. Rebelo and H. Reis CMH

variables x, y will be degree w.r.t. the variables x, y of xX . Finally note that xX may
also be viewed as a homogeneous polynomial vector field in the variables x, y with
coefficients in CŒz� (except that the degree of the third component may differ from
the degree of the other two cf. below).

The vector field xY is analogously defined. The commutativity of xX and xY follows
easily from the commutativity between X and Y . In fact, ƒ�

�
X commutes with ƒ�

�
Y

for every �. The same being true when these two vector fields are multiplied by
arbitrary constants. Hence, by taking a suitable limit, we conclude that the vector
fields xX and xY must commute as well.

A similar notion of “first non-trivial homogeneous component” is also natural for
a codimension 1 foliation given by a holomorphic 1-form FdxCGdyCHdz. Again
this “first non-trivial homogeneous component in the variables x, y” is obtained as
an appropriate limit of pull-backs of Fdx C Gdy C Hdz by the automorphisms
ƒ� W .x; y; z/ 7! .�x; �y; z/. Details are left to the reader. We point out, however,
that the resulting component can equally well be seen as a polynomial 1-form in the
variables x, y with coefficients in CŒz�. Nonetheless the case analogous to the case
“b)” (where l D k � 1) of vector fields in which this “first non-trivial homogeneous
component in the variables x, y” may have non-trivial components in all the directions
dx; dy; dz is now associated to the possibility l D k C 1.

Consider now the codimension 1 foliation D spanned by X , Y . The following
lemma will play, in the context of blow-ups centered over curves, a role analogous to
the role played by Lemma 1 in the preceding section.

Lemma 4. Suppose that D is singular over fx D y D 0g and denote by �z the blow-
up map centered over this curve. Suppose that �z is dicritical for D . Then there
exists a holomorphic vector field Z tangent to D whose first non-trivial homogeneous
component xZ in the variables x, y is a multiple of Rz having the form Pz.x; y/Rz ,
where Pz stands for a homogeneous polynomial in the variables x, y with coefficients
in CŒz�.

Proof. To prove the statement let us consider a holomorphic 1-form ! D Fdx C
GdyCHdz defining D and having singular set of codimension at least 2. Denote by
N! D fd;zdx C gd;zdy C hd;zdz the first non-trivial homogeneous component of !

relative to the variables x, y. Recall that fd;z , gd;z (resp. hd;z) are either identically
zero or homogeneous polynomials of degree d (resp. d � 1) in the variables x, y

with coefficients in CŒz�. The dicritical nature of �z for D is equivalent to saying
that the vector field Rz is tangent to the leaves of the foliation defined by N! i.e. �z is
dicritical for D if and only if

xfd;z C ygd;z D 0:

Though this statement is slightly less known than its analogous in the case of punctual
blow-ups, it can explicitly be checked. Recalling the existence of affine coordinates
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.x; t; z/ for the blow-up of C3 over fx D y D 0g in which the blow-up map �z

becomes �z.x; t; z/ D .x; tx; z/, the transform ��
z . N!/ of N! is

��
z . N!/ D Œfd;z.1; t/C tgd;z.1; t/�dx C xgd;z.1; t/dt C xhd;z.1; t/dz: (7)

Thanks to the above formula, it becomes immediate to check that the exceptional
divisor (locally given by fx D 0g) will be invariant by the transform of D if and only
if fd;z.1; t/C tgd;z.1; t/ vanishes identically. In turn this establishes our claim.

To complete the proof of the lemma, we still need to construct the vector field
Z. This however goes as in Lemma 1. The triple .x; y; 0/ is a solution for N! D
fd;zdxCgd;zdyChd;zdz D 0 and therefore it must be given as a linear combination
over rational functions of the two independent solutions that can be obtained by means
of the expression for N! D 0 (assuming for example that none of the polynomials fd;z ,
gd;z , hd;z vanishes identically, these solutions may be chosen as .gd;z;�fd;z; 0/ and
.hd;z; 0;�fd;z/). The rest of the proof is analogous to the proof of Lemma 1. �

Next let FX be the foliation associated to X . We assume that the axis fx D y D 0g
is invariant by X . This is a good point to note the difference between being invariant
by FX and being invariant by X . To be invariant by FX , the axis fx D y D 0g
must be contained in the singular set of FX or contained in a regular leaf of FX or
yet contained in the union of a regular leaf with the singular set. If fx D y D 0g
is invariant by FX then it is automatically invariant by X as well. The converse
however is not true: for example, we might have X D x@=@x. The axis fx D y D 0g
is invariant by X since it is contained in the zero-set of X , however it is not invariant
by FX which is induced by @=@x. Let k and l be as defined above (in connection
with the first non-trivial homogeneous component xX in the variables x, y of X ).

The notion of dicritical blow-up (resp. dicritical component of a divisor in the
ambient space) for foliations of dimension 1 is analogous to the corresponding notion
for foliations of codimension 1. Thus a blow-up with center C is said to be dicritical
for a 1-dimensional foliation F if and only if C is invariant by F and the transform
of F is transverse to the corresponding exceptional divisor at generic points. A
component of a divisor in the ambient space is dicritical for F if and only if F is
transverse to this component at generic points.

Going back to X , FX , a direct inspection in the formulas related to the preceding
possibilities a), b) and c) for the nature of xX makes it clear that the blow-up �z is
dicritical for FX if and only if xX is a multiple of Rz at points in fx D y D 0g,
i.e. if and only if xX has the form Pz.x; y/.x@=@xC y@=@y/ for some homogeneous
polynomial Pz in the variables x; y with coefficients in CŒz�.

Next we state:

Lemma 5. Suppose that Z1, Z2 are two commuting vector fields defined on .C3; 0/.
Suppose that the first non-trivial homogeneous component of Z1 in the variables x, y

at points in fx D y D 0g has the form Pz.x; y/.x@=@xCy@=@y/ for a homogeneous
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polynomial P in the variables x, y with coefficients in CŒz�. Suppose also that the
order of Z2 relative to the variables x, y at points in fx D y D 0g is at least 2. Then
Z1, Z2 are linearly dependent everywhere.

Proof. Keeping the preceding notations, consider the blow-up map �z . The trans-
forms zZ1, zZ2 of Z1; Z2 under �z are holomorphic on a neighborhood of the cor-
responding exceptional divisor ��1

z .0/. Besides the foliation associated to zZ1 is
transverse to ��1

z .0/ at generic points. Thus, on a neighborhood of a generic point
of ��1

z .0/, we can introduce coordinates .x; t; u/ such that:

(1) The foliation associated to zZ1 is given by @=@x.

(2) fx D 0g � ��1
z .0/ is contained in the set of zeros of zZ2.

It then follows that zZ1 is given in these coordinates by f @=@x for some holomorphic
function f . The rest of the proof goes exactly as in the proof of Lemma 2. More
precisely, the condition on the vanishing of the Lie bracket of zZ1, zZ2 ensures that
the components of zZ2 in the coordinates t; z do not depend on the variable x. Since
zZ2 equals zero over the exceptional divisor, locally given by fx D 0g, it follows that
these components must be identically zero. In other words, zZ1, zZ2 must be parallel
on an open set and hence everywhere. �

Remark 2. Note that the assumptions concerning the order of Z2 and the first non-
trivial homogeneous component of Z1 in the variables x, y were used only in the
items 1 and 2 in the above proof. The assumption on the order of Z2 relative to the
variables x, y at points in fx D y D 0g was necessary to guarantee that zZ2 must
be equal to zero on all of the exceptional divisor ��1

z .0/. In view of the examples
discussed in the Introduction, it is clear that this assumption cannot be removed from
the statement. Here it might be a good point to remind the reader that the order of the
vector field X D zy @

@y
Cz2 @

@z
in the variables y; z over the axis fy D z D 0g equals

indeed zero. Similarly the blow-up of X over fy D z D 0g yields a holomorphic
vector field which does not vanish at generic points of the resulting exceptional divisor.

On the other hand the assumption on Z1 simply means that the blow-up �z is
dicritical for the foliation associated to Z1.

Before being able to state and prove Proposition 2, we are going to need the
corresponding analogue of Lemma 3.

Again we go back to the vector fields X , Y that span the codimension 1 foliation
D . However now we suppose that fx D y D 0g is contained in Sing .D/ and that
the blow-up map �z centered over fx D y D 0g is dicritical for D . Then, according
to Lemma 4, there are holomorphic functions f , g and h such that

fX C gY D hZ; (8)

where Z is a holomorphic vector field whose first non-trivial homogeneous compo-
nent xZ in the variables x, y at points in fx D y D 0g is a multiple of Rz . Let
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ord .fX/ (resp. ord .gY /; ord .hZ/) denote the order of the vector field fX (resp.
gY; hZ) in the variables x, y at a generic point in fx D y D 0g.

Lemma 6. With the above notations, we have the following alternative:

(1) ord .hZ/ > minford .fX/; ord .gY /g:
(2) xX , the first homogeneous component in the variables x, y of X , admits a non-

constant meromorphic first integral.

Proof. Suppose for a contradiction that the above estimate does not hold. For fX ,
gY and hZ we are going to consider their first homogeneous components in the
variables x, y. Denote by xX , xY the respective non-trivial homogeneous components
of X , Y and by Nf , Ng, Nh the homogeneous components of f , g, h (all these homoge-
neous components are to be understood as relative to the variables x, y). With these
notations, one has:

Nf xX C Ng xY D Nh NqRz; (9)

where Nq is a homogeneous polynomial in the variables x, y with coefficients in CŒz�.
Since X , Y commute, it follows that xX , xY commute as well. Therefore

Œ xX; xY � D
�
xX;
Nh Nq
Ng Rz �

Nf
Ng
xX

�

D
�
xX:

� Nh Nq
Ng

��
Rz �

Nh Nq
Ng ŒRz; xX� �

�
xX:

� Nf
Ng

��
xX

D 0:

The commutator ŒRz; xX� is given by

ŒRz; xX� D
�

x
@ xX1

@x
C y

@ xX1

@y
�X1

�
@

@x

C
�

x
@ xX2

@x
C y

@ xX2

@y
�X2

�
@

@y
C

�
x

@ xX3

@x
C y

@ xX3

@y

�
@

@z
:

As previously seen, the components xX1, xX2 are homogeneous of degree k in the
variables x, y while xX3 is homogeneous of degree k � 1, if not identically zero.
In fact, the remaining case in which xX has only a component in the direction of
@=@z obviously admits a non-constant first integral so that it can be ignored in this
discussion. Therefore

x
@ xXi

@x
C y

@ xXi

@y
D kXi

for i D 1; 2, while

x
@ xX3

@x
C y

@ xX3

@y
D .k � 1/X3
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unless xX3 is identically zero. In all cases, the equation ŒRz; xX� D .k � 1/ xX holds.
Combined to the above equations, it follows that

�
xX:

� Nh Nq
Ng

��
Rz D

�
.k � 1/

Nh Nq
Ng C

xX:

� Nf
Ng

��
xX:

If the expression multiplying xX on the right-hand side does not vanish identically,
then xX is a multiple of Rz . This is however impossible since it would imply that X

and Y are linearly dependent everywhere, cf. Lemma 5. Therefore the mentioned

expression is constant equal to zero and hence xX:
� Nh Nq

Ng
�

is identically zero as well.

This implies that Nh Nq= Ng is a meromorphic first integral for xX . The same argument of
Lemma 3 proves that this first integral is not reduced to a constant. �

Thanks to the preceding lemmas, the desired analogue of Proposition 1 can finally
be stated.

Proposition 2. Let X , Y be two commuting vector fields that are linearly independent
at generic points. Denote by D the codimension 1 foliation spanned by X , Y . The
foliation D is supposed to be singular over the axis fx D y D 0g and, besides, the
blow-up map �z centered over this axis is supposed to be dicritical for D . Finally
we also suppose that the order of X , Y in the variables x, y at points in fx D y D 0g
is greater than equal to 2. Then one has:

(1) The transforms zFX , zFY of the foliations FX , FY coincide in their restriction to
the exceptional divisor ��1

z .0/.

(2) The restrictions to ��1
z .0/ of zFX and zFY also coincide with the foliation induced

on ��1
z .0/ by intersecting ��1

z .0/ with the leaves of zD , where zD stands for the
transform of D .

(3) The restrictions of zFX ; zFY to ��1
z .0/ possess a non-constant meromorphic first

integral.

Proof. All the material was prepared so that the proof of Proposition 1 applies word-
by-word in the present setting. It suffices to replace “first homogeneous component”
(at a point) by “first homogeneous components in the variables x, y” (over the curve
fx D y D 0g). �

4. Reduction of singularities and proper transforms of vector fields

In this section we shall first give a simplified statement of the reduction procedure of
[Ca] which will be sufficient to establish Theorem 1. Then we shall consider the trans-
forms of the (initial) vector fields X , Y , defined on a neighborhood of .0; 0; 0/ 2 C3,
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under the corresponding sequence of blow-up maps. The discussion of these trans-
forms of X , Y is obviously important since Propositions 1 and 2 can only be applied
to those components of the (total) exceptional divisor at which the corresponding
transformed vector fields vanish identically. The section closes with a much more
detailed account of the results in [Ca] so as to prepare the way for the proof of our
Main Theorem.

Let us however remind the reader that, by means of the construction explained
in the Introduction, “almost all homogeneous polynomial vector fields in three vari-
ables” yield a codimension 1 foliation without separatrix at the origin of C3. Not
surprisingly the proof of our Main Theorem relies heavily on the fact that the cor-
responding foliation is spanned by two commuting vector fields, i.e. by two vector
fields generating an abelian Lie algebra. The examples provided by the foliations
spanned by a polynomial homogeneous vector field and by the radial vector field
R also show that the statement of Main Theorem does not generalize to the case of
vector fields generating an affine Lie algebra without further conditions.

4.1. Reduction of singularities of codimension 1 foliations and proof of Theo-
rem 1. Recall that Cano and Cerveau have proved a theorem of reduction of singu-
larities for codimension 1 foliations on .C3; 0/ that are non-dicritical [C-C]. More
recently, Cano obtained a general reduction theorem for singularities of codimen-
sion 1 foliations on .C3; 0/ [Ca]. The latter theorem asserts the existence of a finite
sequence of blowing-up maps along with the corresponding transforms of D ,

D D D0 �1 � D1 �2 � � � � �k � Dk (10)

such that:

(1) The center of each blow-up map is invariant by the corresponding transform of
D and it has normal crossings with the corresponding exceptional divisor.

(2) Dk has only simple singularities.

The total exceptional divisor arising from the above procedure is going to be
denoted by .�1 B � � � B �k/�1.0/ even though the center of �1 may, in principle, be
a curve rather than the origin itself. As mentioned a more accurate version of this
theorem will be stated later. For the time being, it suffices to remind the reader that
the above theorem also yields a test to check whether or not a foliation is dicritical.
Namely D is dicritical if and only if in the above procedure there is at least one
irreducible component of .�1 B � � � B �k/�1.0/ that is not invariant by Dk (i.e. the
exceptional divisor contains a component that is dicritical for Dk). In other words, if
all the irreducible components of .�1 B � � � B�k/�1.0/ are invariant by Dk , then D is
non-dicritical what means that for every sequence of blow-ups satisfying Condition 1
above, the resulting foliation will leave the exceptional divisor fully invariant.
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The notion of simple singularities for a codimension 1 foliation defined on a com-
plex 3-manifold was introduced in [C-C]. For the convenience of the reader, we briefly
recall the possible models below referring to [C-C], [Ca] for further information.

Models of Type A. in this case, the foliation is locally given by a pair of commut-
ing vector fields Z1, Z2, having the general form: Z1 D @=@z, Z2 D x@=@x C
a.x; y/@=@y, a.0; 0/ D 0.

In addition, the eigenvalues of the linear part of Z2 at the origin are such that their
quotient is not positive rational. The restriction of Z2 to the invariant plane fz D 0g
is then a simple singularity in the usual sense of vector fields in dimension 2. In
particular, if this singularity is not a saddle-node (i.e. if both eigenvalues are different
from zero), then the vector field obtained as restriction of Z2 to fz D 0g has exactly 2

separatrices. Considering the special form of the vector field Z1, it becomes obvious
that these separatrices give rise to (codimension 1) separatrices for the corresponding
(codimension 1) foliation. Actually the foliation spanned by Z1, Z2 is nothing but
the cylinder over the foliation induced by Z2 on the plane fz D 0g.
Models of Type B. Here there are still locally defined commuting vector fields Z1,
Z2 spanning the foliation and given by Z1 D x@=@x C a.x; y; z/@=@z and Z2 D
y@=@y C b.x; y; z/@=@z, with a.0; 0; 0/ D b.0; 0; 0/ D 0.

In the present case, we can assume that the eigenvalues of both Z1, Z2 possess a
quotient lying in the complement of QC.

Remark 3. As mentioned the statement of Cano’s reduction theorem will further
be detailed in the next paragraph, however we can already mention that, in the final
statement of his theorem, only singularities of Type A may intersect a dicritical
component of the total exceptional divisor.

Having explained what is meant by “simple singularities” in Condition 2, we need
to say a few additional words about the nature of the centers of the above mentioned
blow-ups. In particular, to obtain Conditions 1 and 2 stated above, it may be necessary
to blow-up points lying away from the singular set of the foliation in question. The
centers of a blow-up map that are not contained in the singular set of the corresponding
foliation are however invariant by the foliations. In other words, the part of this center
lying away from the singular set of the mentioned foliations is still contained in a
single leaf of this foliation. This fact has an important consequence that will be used
in our proofs.

In the reduction procedure (10), those blow-up maps whose center are not invariant
by the (corresponding transforms of the) vector fields X , Y have a special role in our
discussion. Their special character is related to the fact that, in this case, the (new)
transforms of X , Y will be meromorphic over the component of the exceptional
divisor added by the blow-up map in question. In particular, a priori, blow-ups
centered at regular points of (the transforms of) D are natural candidates to yield
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meromorphic vector fields. This issue will be detailed discussed later. For the time
being, let us just make some easy remarks concerning blow-ups that are not centered
at the singular set of our codimension 1 foliations. Hence suppose that �i is a blow-up
whose center in not fully contained in the singular set of D i�1. Suppose also that the
center of �i is a curve Ci�1 (necessarily irreducible and smooth). This center may also
intersect non-trivially the singular set of D i�1. This intersection however consists of
finitely many points fq1; : : : ; qrg. Since D i�1 is regular on Ci�1 n fq1; : : : ; qrg we
have:

Lemma 7. With the preceding notations, the blow-up map �i is non-dicritical
for the foliation D i�1. Furthermore all the singularities of D i lying over
��1

i .Ci�1 n fq1; : : : ; qrg/ are simple and, in fact, non-dicritical.

Proof. Note that on a neighborhood of a regular point of D i�1 this foliation admits
a holomorphic first integral and this property is clearly stable by all types of blow-up
maps. In particular the singularity is non-dicritical. To check that singularities of D i

lying over ��1
i .Ci�1 n fq1; : : : ; qrg/ are simple and non-dicritical, just note that the

blow-up map �i is essentially two-dimensional and the two-dimensional situation is
question is such that the corresponding blow-up possesses a unique (2-dimensional)
singularity over the exceptional divisor which has eigenvalues 1;�1. The statement
follows at once. �

Remark4. Note that the above argument applies equally well to the case of a punctual
blow-up at a regular point of D i�1.

To finish this brief review on reduction of singularities, let us point out a minor
issue concerning the compactness of the exceptional divisor arising from proceeding
the reduction of singularities of D D D0. In general this divisor is not compact
due to the fact that the singularities of D D D0 need not be isolated. In particular,
in the local context of a neighborhood of the origin in C3, the exceptional divisor
arising from blowing-up a curve of singularities of D D D0 is already non-compact.
In turn, this non-compact component may lead to further non-compact components
and this constitutes the source for the lack of compactness for the total exceptional
divisor.

To abridge notations let … D �1 B � � � B �k and observe that in any event the
preimage …�1.0/ of the origin under the total blow-up map … is necessarily compact
and constituted by strata of dimension either 1 or 2 depending on whether the center
of the corresponding blow-up was a point or a curve. Moreover whenever E is a non-
compact component of the total exceptional divisor the intersection E \…�1.0/ (if
not empty) yields a stratum of dimension 1 of …�1.0/. In particular all components of
the exceptional divisor that are collapsed to the origin by … are necessarily compact.

Let us close this paragraph with the proof of Theorem 1.
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Proof of Theorem 1. We need to prove the existence of a separatrix for D containing
the origin of C3. Since it was proved in [C-C] that a non-dicritical foliation has a
separatrix, we can assume that the total exceptional divisor appearing in (10) is not
fully invariant by Dk . Nonetheless we are going to show that the strategy of proof
used in [C-C] can still be carried out in our case.

Let us then consider an irreducible component E of this total exceptional divisor
associated to the procedure (10) which is transverse to the leaves of Dk at generic
points. Next we denote by Dk

jE the 1-dimensional foliation induced on E by inter-

secting E with the transverse leaves of Dk . Let us first consider the case in which
E can be chosen compact. Since E is compact, our assumption says that Dk

jE has a
non constant meromorphic integral.

As in [C-C] consider a local analytic curve � transverse to the total exceptional
divisor and satisfying the following conditions:

� � is not contained in the singular set of Dk .

� � is an invariant analytic space for Dk .

The existence of � is obvious since there is an irreducible component E of the total
exceptional divisor which is not invariant by Dk . Naturally � can be chosen so
that its intersection with the total exceptional divisor is a point p 2 E. In addition,
since E is supposed to be compact, it follows that ….p/ D .0; 0; 0/ (recall that
… D �1 B � � � B �k).

Now let us consider the (germ of) invariant surface S obtaining by “sliding” �

over the leaf through p of the foliation Dk
jE . The statement amounts to proving

that this germ can be extended to an analytic set invariant by Dk and defined on a
neighborhood of the total exceptional divisor. First it is clear that the surface S can
be extended over the regular part of Dk . By using the compactness of the leaves
of the foliations induced by Dk on the compact dicritical components of the total
exceptional divisor, the argument employed in [C-C] works word-by-word in our
context modulo checking that S can be extended over a neighborhood of singularities
of Type A. In fact, since the foliations considered in [C-C] are all non-dicritical, only
singularities of Type B were discussed in the paper in question.

Thus consider that S accumulates on a point q belonging to a dicritical component
E1 of the total exceptional divisor. Though this is not important for the argument,
let us point out that this extension is needed only if ….q/ D .0; 0; 0/. Let then Dk

jE1

denote the foliation induced on E1 by Dk . We need to show that S can be extended
over q. Clearly we can assume that q is a singular point for Dk and therefore, it is
a singularity of Type A (recall that singularities of Type B do not intersect dicritical
components of the exceptional divisor, cf. Remark 3). This means that Dk is locally
spanned by a pair of vector fields Z1, Z2 given in local coordinates .x; y; z/ by

Z1 D @=@z and Z2 D x@=@x C a.x; y/@=@y;
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where a.0; 0/ D 0 and fz D 0g � E1. Denoting by Sing .Dk/ the singular set of Dk ,
it follows that Sing .Dk/\E1 has an isolated point at q. In particular the intersection
S \ E1 locally coincides with a separatrix of Dk

jE1
so that the intersection S \ E1

can be continued through q. To finish the proof it suffices to check that the resulting
extension of S through q over the mentioned separatrix is not “pinched at q” and,
indeed, that it defines a local analytic surface containing q. This is however clear since
the vector field Z1 shows that Dk is (locally) a cylinder over the (1-dimensional)
foliation induced on E1. This establishes the existence of a separatrix.

To finish the proof of the theorem, we just need to consider the case in which none
of the components of the exceptional divisor that are dicritical for Dk is compact. First
we need a local analytic curve � satisfying the previous conditions and, in particular,
intersecting the exceptional divisor at a point p satisfying ….p/ D .0; 0; 0/. The
existence of this curve � can be obtained as in [C-C], by resorting to a 2-dimensional
consideration relying in [C-S]. The above discussion can then be repeated to yield a
germ of invariant surface S . Here it is convenient to point out that, if S happens to
intersect a component of the exceptional divisor that is not compact, we only need to
extend S locally over the singularities that are, indeed, projected to the origin by …

(i.e. no information concerning the global character of the foliation induced by Dk

on a dicritical non-compact component of the exceptional divisor is needed). Now
it is clear that the above constructed (germ of) invariant surface S is projected by …

onto a separatrix for D containing the origin. The theorem is proved. �

4.2. The blowing-up strategy. Consider a reduction procedure for the singularities
of D D D0 as in (10). In addition to obtaining a foliation Dk all of whose singular-
ities are simple, to prove the existence of separatrices for D it will also be important
to keep track of the choice of the centers for each of the blow-up maps �i appearing
in (10). This paragraph is essentially devoted to further detail the results of [Ca] by
explaining the strategy for choosing the above mentioned centers as well as their role
in the proof of existence of separatrices for D .

To begin with, consider the vector fields X , Y spanning D and denote by zX i , zY i

their respective transforms under the composition �1 B � � � B�i . The general principle
to ensure the existence of a separatrix for D is to reduce the statement as much as
possible to Theorem 1. This requires us to show that the foliation induced by Dk

on every (compact, irreducible) dicritical component of the total exceptional divisor
.�1 B � � � B�k/�1.0/ has a non-trivial meromorphic first integral. In turn, to prove the
existence of these first integrals we may resort to Propositions 1 and 2 what, finally,
leads us to consider the vector fields zX i , zY i and their zero-sets. Ultimately we shall
look for conditions ensuring that zXk , zY k must vanish identically on every compact,
dicritical component of .�1 B � � � B �k/�1.0/.

So far all that has been mentioned about the center Ci�1 of the blow-up map
�i is its invariance under D i�1 and the fact that it is smooth. In particular it may
happen that Ci�1 is not contained in the singular set of D i�1. This already poses a
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difficulty for us since the blow-up of a holomorphic vector field Z centered at a set
that is not invariant under Z yields a meromorphic vector field having poles over
the corresponding exceptional divisor. Conversely we have:

Lemma 8. Let Z be a holomorphic vector field and denote by zZ the transform of Z

with respect to a blow-up � of center C . If C is invariant by Z, then zZ is holomorphic
as well.

Proof. C being invariant by Z, the local flow generated by Z naturally acts on the
tangent bundle of C . It then follows that zZ is holomorphic. �

Next denote by FZ the foliation associated to the above mentioned vector field Z.
Recall that the singular set of FZ has codimension at least 2 though the zero-set of Z

may have components with codimension equal to 1. A useful refinement of Lemma 8
reads as follows.

Lemma 9. Let Z, zZ, � and C be as in Lemma 8. Suppose that

(1) C is invariant under the foliation FZ .

(2) C is contained in a codimension 1 component of the zero-set of Z.

Then zZ is holomorphic and it vanishes identically over the corresponding exceptional
divisor.

Proof. Consider a point p 2 C . Our assumptions imply the existence of local
coordinates .x; y; z/ about p in which Z is given by f .x; y; z/Z1 where Z1 is a
holomorphic vector field having singular set of codimension 2 or greater that leaves
C invariant. Besides f is a holomorphic function satisfying f .p/ ' f .0; 0; 0/ D 0.
The vector field zZ is therefore given by the product between the transform of f and
the blow-up of Z1. Since the blow-up of Z1 is itself holomorphic thanks to Lemma 8,
the statement follows at once. �

Going back to the reduction procedure (10), it is clear that blow-up maps �

centered at regular points of D i�1 will be hard to handle since there is a priori no
reason why these centers should be invariant by either zX i�1 or zY i�1. As far as
the foliation D i�1 is concerned, one such blow-up is never dicritical. Besides the
singularities of D i lying over ��1

i .Ci�1 n fq1; : : : ; qrg/ are simple and do not give
rise to any dicritical component of .�1 B � � � B �k/�1.0/, cf. Lemma 7. Analogous
statements hold also for the case of a punctual blow-up at a regular point of D i�1,
cf. Remark 4. Yet, as pointed out by the referee, there is still one difficulty that
might possibly arise: using the notations of Lemma 7, let �i be as above and suppose
that �iC1 happens to be a dicritical blow-up for D i which is centered at a singular
point Q1 of Di lying over ��1

i .q1/. Since the vector fields zX i , zY i have divisors of
poles containing ��1

i .Ci�1/ and thus passing through Q1, the above lemmas cannot



Vol. 88 (2013) Separatrices for C2 actions on 3-manifolds 703

be used to ensure that zX iC1, zY iC1 vanish identically over ��1
iC1.Q1/. A similar

problem arises, more generally, if a center that is not invariant by the corresponding
transforms of X or of Y is blown-up. Here it should be noted that, in principle, even
a center contained in the singular set of D may fail to be invariant by X or by Y .

Strictly speaking, the blowing-up of regular points of proper transforms of D are
only performed at the last steps of the reduction procedure (10). More precisely, there
is a reduction subprocedure

D D D0 �1 � D1 �2 � � � � �n � Dn (11)

leading to a foliation Dn with simple singularities but for which the total exceptional
divisor may not be a normal crossing divisor. Blow-ups centered at regular points
are only required to turn the preceding exceptional divisor into a divisor with normal
crossings, cf. [Ca], pages 914 and 1007. In particular no dicritical component
arise after performing the first blow-up �i with a regular center. Summarizing, for
our purposes it suffices to consider a reduction procedure as in (11) where all the
centers C0; : : : ; Cn�1 are contained in the singular sets of the corresponding foliations
D D D0; : : : ; Dn�1. Therefore in the rest of this paper we shall focus exclusively
on the procedure (11) rather than in the procedure (10).

To close this section, let us collect below some further information on the choice
of the centers C0; : : : ; Cn�1 according to the general procedure of [Ca]. To keep the
technical details to a minimum, we are not going to reproduce all the definitions and
invariants involved in the procedure, for which the reader is referred to [Ca]. In fact,
our primary purpose is to split the procedure in a few steps carried out according to
certain specific rules so that the amount of information provided here will be enough
for the applications in the next section.

First, we shall restrict the procedure (11) to the case of presimple singularities.
The passage from presimple singularities to simple singularities is subsequently done
in a rather explicit way, cf. pages 998–1008 of [Ca]. This part of the proof can
independently be read and do not add new difficulties to our discussion.

Let Sing .D/ the singular set of D and consider the subset Sing�.D/ of Sing .D/

consisting of those singularities that are not presimple. Naturally the aim of the
reduction procedure (11) is to eliminate the latter set modulo modifying D by means
of suitable blow-ups. The reduction procedure (11) can now be summarized as
follows.

(1) The set Sing�.D/ is split into the disjoint union of the set of good points and
the set of bad points. The definition of a good point can be found on page 938
of [Ca]. A bad point is a point that is not good.

(2) The set of bad points is finite (page 947 of [Ca]).

(3) The first step of the procedure (11), to reach presimple singularities, is therefore
the destruction of the set of bad points. Let us mention here that this step actually



704 J. C. Rebelo and H. Reis CMH

corresponds to the core of the paper [Ca]. The elimination of bad points can
further be divided as follows.

� Blow-up the foliation to obtain “weak normal crossing” and to destroy
the “cycles” (Proposition 23, Proposition 25 and “proof of Theorem 1” on
page 955 of [Ca]). These blow-ups are centered at “good centers” whose
definition is given on page 948 of [Ca]. In particular all punctual blow-ups
performed at this stage are centered at bad points since “good points are
not good centers”.

� Continue the reduction procedure following the “global criteria of blowing-
up” described on pages 954 and 955 until all the bad points are eliminated.
Once again it follows from the mentioned criteria that during this step all
punctual blow-ups performed are centered at bad points.

(4) We have now obtained a foliation whose singular set is entirely constituted
by good points or by presimple singularities. The next step is to obtain only
presimple singularities. This is done by means of the equi-reduction sequence
(Proposition 19). The reduction of good points to presimple singularities is es-
sentially 2-dimensional and it essentially amounts to blowing-up “permissible”
centers.

(5) Finally, the passage from presimple to simple singularities is easy and carried
out explicitly on pages 998–1008. In particular the above rules for the equi-
reduction sequence are still fulfilled.

5. Proof of the existence of a separatrix

In this last section we are going to complete the proof of the existence of a separatrix
for the foliation D . To begin with, and in view of the discussion carried out in the
preceding section, we fix once and for all a procedure of reduction of singularities

D D D0 �1 � D1 �2 � � � � �n � Dn (12)

such that all the singularities of Dn are simple. Furthermore the centers C0; : : : ; Cn�1

of the above indicated blow-up maps are supposed to be contained in the singular
sets of the corresponding transforms of D . Finally the choice of these centers is
made in accordance with the strategy detailed in Paragraph 4.2. In particular each Cj

(j D 0; : : : ; n� 1) is either a single point or a smooth curve. Furthermore when the
center Cj is reduced to a single point there cannot exist a holomorphic vector field
tangent to the foliation (Dj ) and regular at Cj , otherwise Cj would not be a bad point.
In fact, since Cj is a singular point its orbit for the local flow ˆT of a vector field
tangent to the foliation and regular at Cj would entirely be constituted by singular
points of Dj . Nonetheless ˆ induces a family of diffeomorphisms preserving the
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foliation Dj since the vector field is tangent to Dj . Hence, if Cj were a bad point,
all the points in its orbit by ˆ would also be bad points what is not possible since
there are only finitely many of these.

Recall that zX i , zY i stand for the transforms of X , Y under the composition �1 B
� � � B �i . Their associated foliations are denoted by F i

X ; F i
Y . Finally the singular set

of D i will be denoted by Sing .D i /.
It is clear that the singular set Sing .D i / of D i is globally invariant by the vector

fields zX i , zY i . Let us begin with a sharper statement.

Lemma 10. If Z is a vector field tangent to D i , then the center Ci is invariant
by Z. In particular Ci is invariant by the vector fields zX i , zY i and also for the
(1-dimensional) foliations F i

X ; F i
Y associated to them, i D 0; : : : ; n � 1.

Proof. Recall that Ci � Sing .D i / and that Ci is either a single point or a smooth
irreducible curve. Suppose first that Cj is a (smooth) curve. Consider a holomorphic
vector field Z tangent to D i . We are going to show that Z must leave Cj invariant
what will clearly imply that Cj is invariant by both zX i and F i

X (since the vector
field zX i can be divided by a suitable holomorphic function in the case where the
zero-set of zX i has components with codimension equal to 1). To check this, note
that at a generic point of Cj the analytic set Sing .D i / is smooth as well. Therefore
there are local coordinates .x; y; z/ where this singular set is given by fy D z D 0g
and, in particular, it locally coincides with Cj . Now a vector field Z as above must
preserve the singular set Sing .D i / of D i so that it (locally) preserves Cj in the
.x; y; z/-coordinates. It then follows that Z must globally preserve Cj as claimed.

If Cj is reduced to a single point, then we have seen that there is no holomorphic
vector field tangent to D i and regular at Cj . It then follows that both the vector field
zX i and the foliation F i

X must be singular at Cj . The statement follows. �

The following corollary will be useful in the sequel.

Corollary 1. If �iC1 is a punctual blow-up belonging to the procedure (12), then its
center Ci is a singular point for both foliations F i

X , F i
Y . �

In view of Lemma 8, we conclude that both zXn, zY n are holomorphic vector fields.
Also Lemma 9 combined with the preceding discussion implies the following.

Lemma 11. Suppose that Ci is contained in a codimension 1 component of the
zero-set of zX i (resp. zY i ). Then zXn vanishes identically over the divisor

.�iC1 B � � � B �n/�1.Ci /: �

Before starting the proof of the existence of separatrices for D , let us summarize
the contents of the preceding lemmas. Recall that our aim is to reduce as far as possible
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the proof of the Main Theorem to the statement of Theorem 1. Consider again the
resolution procedure (12). To conclude the existence of a separatrix, it would be
sufficient to show that for every irreducible component E of the total exceptional that
is simultaneously compact and dicritical for Dn, the foliation induced on E by Dn

possesses a non-constant meromorphic first integral. As a further step towards the
existence of separatrices in full generality, let us prove:

Theorem 2. Let X , Y and D be as in the statement of Main Theorem. Suppose that
the linear parts of both X , Y at the origin are zero. Then D possesses a separatrix
passing through the origin.

Proof. Let us begin with the reduction procedure (12). The first observation con-
cerning procedure (12) is that the origin .0; 0; 0/ 2 C3 can be chosen as the center C0

of the first blow-up map. In fact, if a punctual blow-up centered at .0; 0; 0/ 2 C3 is
not compatible with the strategy of [Ca], then .0; 0; 0/ is a good point for D D D0.
Thus, modulo reducing the neighborhood of .0; 0; 0/ 2 C3, we can assume that all
singular points of D D D0 are good points since there are only finitely many bad
points. This means that the reduction of the singularities of D D D0 can be obtained
by means of the equi-reduction procedure. This is a 2-dimensional situation (in fact,
there is a regular vector field tangent to D D D0) so that the existence of the desired
separatrix is already known. Thus we suppose henceforth that �1 is the (punctual)
blow-up of .0; 0; 0/ 2 C3.

Next recall that the existence of a separatrix will be established provided that the
foliation induced by Dn on every compact, dicritical component of the exceptional
divisor has a non-constant meromorphic first integral. Because they are compact,
these components either coincide with ��1

1 .0; 0; 0/ ' CP.2/ or are projected in

��1
1 .0; 0; 0/ by the sub-procedure D1

�2 �� � � � �n �� Dn. Because the linear parts of
X , Y at the origin are zero, the transformed vector fields zX1, zY 1 vanish identically
over ��1

1 .0; 0; 0/. If, in addition, �1 is dicritical for D D D0, then it follows
from Proposition 1 that the foliation induced on this component by D1 possesses a
non-constant first integral. Naturally this latter foliation coincides with the foliation
induced by Dn on the same component. Now a simple induction argument based on
Lemma 11 shows that both vector fields zXn, zY n vanish identically over all compact
components of the total exceptional divisor. If E is one of these components that
happen to be dicritical for Dn, then Propositions 1 and 2 ensure that the foliation
induced on E by Dn admits a non-constant first integral. The existence of the
separatrix then follows from Theorem 1. �

Let us now consider the cases in which one of the vector fields X , Y have a non-
zero linear part at the origin of C3. The existence of a separatrix for D can directly
be established in many cases. For example if the linear part of X at the origin is
hyperbolic and belongs to the Poincaré domain then X is linearizable or conjugate to
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its Poincaré–Dulac normal form. In any event it follows that X is tangent to finitely
many smooth surfaces passing through the origin. Since Y commutes with X , these
invariant surfaces must be invariant by Y as well so that they constitute separatrices
for D . However a systematic analysis of the vector field X is rather involved since
there are well-known subtleties concerning, for example, singularities in the Siegel
domain.

To establish the existence of a separatrix for D in the above case, we shall adapt
the proof of Theorem 2. The difficulty in doing so lies in the fact that the transforms
of X (resp. Y ) may not vanish identically over (dicritical) compact components of the
total exceptional divisor what prevents us from applying Propositions 1 and 2. We are
then led to understanding dicritical blow-ups giving rise to (1-dimensional) foliations
without non-constant meromorphic integrals. Our first aim will be to characterize
these situations. The discussion can naturally be split in two cases according to
whether the center of the blow-up map in question is a point or a curve.

The case of a punctual blow-up. Let us begin with a simple lemma.

Lemma 12. Let Z1, Z2 be vector fields defined about .0; 0; 0/ 2 C3. Suppose that
the linear part of Z1 at .0; 0; 0/ is a (constant, non-zero) multiple of R. Suppose, in
addition, that ŒZ1; Z2� D 0. Then in suitable coordinates Z1 coincides with R and
Z2 becomes a linear vector field. In particular, if the first non-trivial homogeneous
component of Z2 is itself a multiple of R, then Z1, Z2 are parallel everywhere.

Proof. Since the linear part of Z1 is a non-zero multiple of the radial vector field,
there exists coordinates in which X D R. The assumption on the commutativity of
Z1, Z2 together with the Euler relation (3) implies that the terms of order greater
than or equal to 2 of Z2 must vanish. Hence Z2 is linear. The lemma is proved. �

So we are in the following situation: Z1, Z2 are two commuting holomorphic
vector fields defined on a neighborhood of .0; 0; 0/ 2 C3 and satisfying the following
conditions:

(1) The linear part of Z1 at .0; 0; 0/ 2 C3 is not zero and is not a (constant) multiple
of the radial vector field.

(2) Z1, Z2 span a codimension 1 foliation D .

(3) The blow-up � of .0; 0; 0/ 2 C3 is dicritical for D . Besides the foliation
induced by the transform zD of D on ��1.0; 0; 0/ does not admit a non-constant
meromorphic first integral.

We shall prove:

Lemma 13. Under the preceding assumptions, the foliation induced on ��1.0; 0; 0/

by zD coincides with the foliation induced on ��1.0; 0; 0/ by the blow-up of Z1.
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Proof. Lemma 12 allows us to suppose that the linear part of Z1 at the origin is not
a (constant) multiple of R. In particular the blow-up of Z1 does induce a foliation
on ��1.0; 0; 0/. The lemma then follows from the fact that � is dicritical for D :
the foliation associated to the blow-up of Z1 is tangent to the leaves of zD . In turn
the intersection of the leaves of zD with ��1.0; 0; 0/ are of dimension 1 (at generic
points). �

Whereas zD may not possess a non-constant meromorphic first integral, it pos-
sesses the following property:

Corollary 2. The foliation zDj��1.0/ induced on ��1.0; 0; 0/ by zD is such that for

each singularity p 2 ��1.0; 0; 0/ of zDj��1.0/ and each (irreducible) separatrix �

for zDj��1.0/ at p, the separatrix � is contained in an algebraic curve invariant by
zDj��1.0/.

We are going to see that Corollary 2 will be enough to prove our Main Theorem.
The last step before starting its proof consists of obtaining a version of this corol-
lary valid for the case of (dicritical) blow-ups centered over curves. In the sequel
the blown-up singularity leading to the situation described above will be called a
singularity of type SING-1 for the corresponding foliation.

The case of a blow-up centered over a curve C . Let us now consider the case
of a blow-up �z centered over a compact curve C and dicritical for D . Again D

is spanned by a pair of commuting holomorphic vector fields Z1, Z2 leaving C

invariant. We suppose that the foliation induced on the exceptional divisor ��1
z .C /

by the transform zD of D does not admit a non-constant meromorphic first integral.
Next consider local coordinates .x; y; z/ about a generic point of C and such that

C is locally given by fx D y D 0g. In particular the first homogeneous component
Z1 (resp. Z2) in the variables .x; y/ can be considered as in Section 3. Here the order
of Z1 with respect to the variables x, y is supposed to be either 1 or zero. First we
need an analogue of Lemma 12.

Lemma 14. Let Z1, Z2 be as above. Suppose that Z1 vanishes identically over C

and that the linear part of Z1 w.r.t. the variables x, y is a (constant, non-zero) multiple
of Rz . Suppose, in addition, that ŒZ1; Z2� D 0 and that they span a codimension 1

foliation D . Then the linear part of Z2 w.r.t. the variables x, y is not zero. Besides
this linear part is not a (constant) multiple of Rz .

Proof. The assumption concerning the linear part (w.r.t. the variables x, y) of Z1

ensures that the transform of the foliation associated to Z1 itself is transverse to
the exceptional divisor ��1

z .C /. In particular, since Z1, Z2 span a codimension 1

foliation D , the argument of Lemma 5 implies that the linear part of Z2 (w.r.t.
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the variables x, y) cannot be zero. Besides, since the transforms of the higher
order homogeneous components of Z2 (w.r.t. the variables x, y) vanish identically
over ��1

z .C /, the same argument also shows that the linear parts of Z1, Z2 (w.r.t.
the variables x, y) cannot coincide up to a multiplicative factor. The lemma is
proved. �

Lemma 14 allows us to suppose that the linear part of Z1 (w.r.t. the variables x,
y) is neither zero nor a multiple of Rz . In particular the transform of Z1 induces a
foliation on ��1

z .C /. In turn this foliation coincides with the foliation induced on
��1

z .C / by the transform zD of D . Now we have the following:

Lemma 15. If the foliation induced by zD on ��1
z .C / does not admit a non-constant

meromorphic first integral, then, modulo permuting the names of Z1, Z2, it follows
that Z1 does not vanish identically over C .

Proof. As mentioned above, we can assume that the foliation induced by zD on
��1

z .C / coincides with the foliation induced on ��1
z .C / by the transform of Z1.

Next assume that Z1 vanishes identically over C . Then in the coordinates .x; t; z/

for the blow-up �z , it becomes clear that the leaves of the foliation induced on
��1

z .C / by the transform of Z1 are contained in the curves fx D 0 I z D cteg. This
contradicts the fact that this foliation does not admit a non-constant meromorphic
first integral. �

Summarizing what precedes, we just need to consider the cases in which Z1 does
not vanish identically over C . Since C is compact and Z1 is holomorphic, it follows
that C is either a rational curve or an elliptic curve. Let us separately consider each
possibility.

a) Case of a rational curve: The exceptional divisor ��1
z .C / is a Hirzebruch

surface (i.e. a fibration over CP.1/ with fiber isomorphic to CP.1/). The vector field
Z1 has singularities on C . The foliation induced on ��1

z .C / by the transform of Z1

is transverse to the natural fibration of ��1
z .C / over C . In other words, this foliation

can be viewed as a Riccati foliation on ��1
z .C /. In fact, it is tangent to a non-trivial

holomorphic vector field that projects on Z1. The nature of the generic leaf of this
foliation is therefore determined by the holonomy representation of the fundamental
group of C n Sing .Z1; C / in PSL .2; C/, where Sing .Z1; C / stands for the zero-set
of Z1 restricted to C . In particular, if Sing .Z1; C / is reduced to a single point,
then C n Sing .Z1; C / is simply connected so that the holonomy representation in
question is trivial. It then follows that all the leaves of the mentioned Riccati foliation
on ��1

z .C / are compact and hence that this foliation has a meromorphic first integral.
It remains to discuss the case where Sing .Z1; C / consists of two points q1, q2. In

this case the image of the holonomy representation is the cyclic group generated by an
element � of PSL .2; C/. Besides the singularities of the Riccati foliation in question
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are contained in the invariant fibers sitting over q1, q2. Each of these invariant fibers
contains one or two singularities of the Riccati foliation. Now we have the following
possibilities:

(1) If � has finite order in PSL .2; C/. Then all leaves of the Riccati foliation are
compact and this foliation possesses a non-constant meromorphic first integral.

(2) If � has infinite order and fixes two points in CP.1/. A direct inspection
using blow-up coordinates .x; t; z/ shows that, in this case, the vector field
projecting on Z1 and tangent to the Riccati foliation in question admits a non-
trivial component tangent to the fibers of the fibration. For a fixed fiber, this
component is naturally a linear vector field with two singular points.

It then follows that, apart from the invariant fibers, the resulting Riccati foliation
possesses exactly two compact curves (associated to the two fixed points of � ).
Each of these compact curves intersect each invariant fiber at a singular point
for the foliation in question. In particular the Riccati foliation has exactly four
singular points. Furthermore the foliation has two eigenvalues different from
zero at each of these singular points. Finally through each singular points, there
pass two compact curves invariant by the foliation itself, namely the invariant
fiber and one of the two compact leaves that are not fibers.

(3) If � has infinite order and fixes a single point in CP.1/. Again a direct inspection
shows that the vector field projecting on Z1 and tangent to the Riccati foliation
in question admits a non-trivial component tangent to the fibers of the fibration.
For a fixed fiber, this component is naturally a linear vector field with a unique
singular point.

In this case, each invariant fiber of the fibration contains a unique singular point
of the Riccati foliation. This singularity is a 2-dimensional saddle-node at it
possesses exactly two separatrices (one of them being contained in the invariant
fiber). Besides, the fixed point of � in CP.1/ represents a third compact leaf
L of the Riccati foliation (the other two being the invariant fibers). In total the
Riccati foliation possesses two singularities (contained in the invariant fibers)
and three compact leaves. Besides L intersect each invariant fiber at its singular
point so that L defines a separatrix for each of these singular points.

In the cases 2 and 3 above, we are going to say that C represents a singularity of
type SING-2 for the corresponding foliation. The corollary below summarizes the
above discussion by retaining the information needed for the proof of Main Theorem.

Corollary 3. Suppose that C represents a singularity of type SING-2 for the foliation
D (for a fixed dicritical blow-up �z). Then the 2-dimensional foliation zDj��1.C /

induced on ��1
z .C / by the transform of D satisfies the following condition: given

a singularity p 2 ��1.C / of zDj��1.C / and a local (irreducible) separatrix � for
zDj��1.C / at p, there exists an compact curve invariant by zDj��1.C / that contains � .
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Remark 5. Here is a minor complement to the statements of Corollaries 2 and 3.
Both statements concern certain “linear” (1-dimensional) foliations on a compact
surface E. In turn E is embedded in a 3-dimensional ambient equipped with a
codimension 1 foliation D whose intersection with E induces the initial “linear”
foliation on E. Because these “linear” foliations on E do not admit non-constant
meromorphic first integrals, their singularities cannot have both eigenvalues in ZC.
In other words, these singularities are not dicritical (in dimension 2). This implies
that 3-dimensional blow-ups over centers containing the mentioned singularities will
lead to an exceptional divisor whose intersection with the transform of E is a curve
simultaneously invariant by the foliations induced on E and (if any) by the foliation
induced on the created exceptional divisor (in case the latter is dicritical for the
transform of D). In particular, if a leaf of the transformed foliation is followed from
E to this exceptional, it must pass through a singularity of the mentioned transform
lying over the intersection curve and there are only finitely many of such singularities.

b) Case of an elliptic curve: In this case the restriction of Z1 to C must be
a nowhere zero holomorphic vector field. The terminology corresponding to this
case will consist of saying that C represents a singularity of type SING-3 for the
corresponding foliation. The only thing we need to know about this case is that the
foliation induced on ��1

z .C / by the transform of D has no singular points.
We are finally able to prove the main result of this paper.

Proof of Main Theorem. We resume the context used in the proof of Theorem 1 and
of Theorem 2. Let the reduction procedure (12) be fixed. In particular �1 is supposed
to be the blow-up of the origin of C3. The compact irreducible components Ej of
the total exceptional divisor satisfy one of the following conditions:

(1) Ej is invariant by Dn

(2) Ej is dicritical (i.e. non-invariant) for Dn but the 1-dimensional foliation in-
duced on Ej by Dn possesses a non-constant meromorphic first integral.

(3) Ej is dicritical (i.e. non-invariant) for Dn and the 1-dimensional foliation in-
duced on Ej by Dn does not admit any non-constant meromorphic first integral.

As previously seen, the components Ej belonging to the third group above arise from
blowing-up a singularity of type SING-1, SING-2 or SING-3 (for the corresponding
foliation) in the reduction procedure (12). Besides we can assume the existence of
irreducible components in the third group since otherwise Theorem 1 ensures the
existence of the desired separatrix.

Next consider a local analytic curve � transverse to the total exceptional divisor
and satisfying the same conditions stated in the proof of Theorem 1. We can choose
� such that its intersection with the exceptional divisor lies in a component Ej that is
invariant by Dn (for example add to the procedure (12) a “superfluous” non-dicritical
blow-up and resort to a 2-dimensional consideration as in [C-C] to guarantee the
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existence of �). As in the proof of Theorem 1, let us consider the (germ of) invariant
surface S obtaining by “sliding” � over the leaf of Dn. We need to prove that S

can be globalized in an analytic set invariant by Dn. This has already been done
unless S intersects a component Ej of the total exceptional divisor belonging to the
third group above. This intersection however can only happen at a singularity of
Dn of type A (since type B singularities do not intersect dicritical components). In
this case, the “regular direction @=@z” of a type A singularity is transverse to the
component Ej in question. The local continuation of S is always possible and it
is performed by continuing S as one of the two separatrices of Dn containing the
direction @=@z. In particular the local intersection of S with Ej is contained in a
separatrix of a singularity of the foliation Dn

jEj
induced by Dn on Ej . To deduce the

statement, it suffices to check that the (local) separatrix S \Ej of the foliation Dn
jEj

is actually contained in a (global) compact leaf of Dn
jEj

. For this, note that Ej must
arise from a singularity of type SING-1 or SING-2 (since the type SING-3 gives rise
to regular foliations on the exceptional divisor). Now Corollaries 2 and 3 ensure that
the mentioned local separatrix is contained in a compact curve invariant by Dn

jEj
.

The theorem is proved. �

Motivated by the classical situation of vector fields in dimension 2, it is natural
to ask whether there must exist infinitely many separatrices for a foliation having
dicritical components. Simple linear examples involving the radial vector field R and
another linear vector field X shows that this is not true in general.

Suppose however that we are in the context of Theorem 1, i.e. we begin with
“sufficiently non-linear” vector fields X , Y so as to be able to ensure that the condition
of the theorem in question is satisfied. For example, we assume that both X , Y have
zero linear parts at a chosen singular point of the foliation D spanned by X , Y

(this singular point will be identified with .0; 0; 0/ 2 C3). Consider the reduction
procedure (10). Then a careful reading of the proof of Theorem 1 makes it clear
that infinitely many separatrices must always exist provided that there is a dicritical
component for Dk that, in addition, is compact.

If none of the components of the total exceptional divisor that are dicritical for Dk

is compact, then the existence of infinitely many separatrices may fail in accordance
with the following specific situation: suppose that the intersection of …�1.0/ with
a dicritical component E (of the total exceptional divisor) is reduced to a curve that
is invariant by the restriction of Dk to E. Indeed, this curve should be contained in
the singular set of Dk . Here the existence of a separatrix for D may be obtained
from the argument in [C-C] if there is no other dicritical component. In some sense
this situation means that, although the exceptional divisor may contain dicritical
components, its intersection with …�1.0/ is “essentially non-dicritical”.

An interesting remark concerning the case where this situation actually takes
place, so that in particular the separatrices for D at the origin are obtained with the
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help of the method used in [C-C], is as follows: the separatrices obtained through
[C-C] do not pass through a “generic” point of a singular curve of D (note that this
curve has to exist otherwise …�1.0/ will contain only 2-dimensional components).
In particular, these “generic” singular points of D will themselves have separatrices
due to the preceding result even though X , Y have non-trivial linear parts at these
latter singularities. With little extra effort, one can show the existence of infinitely
many (germs of ) surfaces invariant by D and passing through “generic” singular
points of D . Naturally, in the above situation, the origin is not “generic” among the
singularities of D .
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