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Introduction

The theory of rationally connected varieties is quite recent and was formalized in
[10], [36] and [35], although these varieties were intensively studied from different
points of view by classical algebraic geometers, see for example [19], [59], [56], [6],
[5], [42].

An important result in this theory, see Theorem IV.3.9 in [35], asserts that throughn
general points of a smooth rationally connected complex varietyX there passes an ir-
reducible rational curve, which can be taken also to be smooth as soon as dim.X/ � 3.
From this one deduces that for dim.X/ � 3 a fixed smooth curve of arbitrary genus
can be embedded intoX in such a way that it passes through n arbitrary fixed general
points. When a (rationally connected) varietyX is embedded in some projective space
PN (or more generally when a polarization or an arbitrary Cartier divisor is fixed on
X ), one can consider the property of being generically n-(rationally) connected by
(rational) curves of a fixed degree ı.

This stronger condition depends on the embedding, on the number n � 2, on the
degree ı � 1 and natural constraints for the existence of such varieties immediately
appear.

In this paper we shall study complex irreducible projective varieties X D X.r C
1; n; ı/ � PN of dimension dim.X/ D r C 1 such that through n � 2 general
points there passes an irreducible curve C of degree ı � 1 or more generally pairs
.X;D/ with D a Cartier divisor on a proper irreducible complex variety X which
is n-covered by irreducible curves C such that .D � C/ D ı � n � 1. It is well
known that a X.r C 1; 2; 1/ � PN is necessarily a P rC1 linearly embedded in PN
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and that a non-degenerate X.r C 1; n; n � 1/ � PnCr�1 is a variety of minimal
degree n � 1. The smooth X.r C 1; 2; 2/’s were recently classified in [33] (see also
[48] for a generalization to the polarized case). Without some reasonable restrictions
the classification of varieties X.r C 1; n; ı/ � PN becomes immediately extremely
difficult and out of reach, especially for singular varieties.

Recently (see [63], [51] and also [49]), it has been realized that the study of these
varieties is also closely related to an important question in web geometry, namely
the algebraization of webs of maximal rank. In order to solve this problem of web
geometry, it was proved in [52] that the dimension of the linear span of such varieties
satisfies the inequality

dim
�hX.r C 1; n; ı/i� � x�.r; n; ı/ � 1; (0.1)

see Section 1. Here x�.r; n; ı/ D �.r; n; d/withd D ıCr.n�1/C2where�.r; n; d/
stands for the Castelnuovo–Harris bound function for the geometric genus of non-
degenerate irreducible r-dimensional projective varieties Y � PnCr�1 of degree d ,
see [30] and also Section 4.2 for some details and definitions. The bound (0.1) is
proved geometrically via the iteration of projections from general osculating spaces to
X.rC1; n; ı/ determined by the irreducible curves of degree ıwhichn-cover the vari-
ety. This is a classical tool used also by del Pezzo, Enriques and Castelnuovo to bound
the dimension of linear systems on surfaces, see [11], [12], [22], Section 7 in [16] and
[52]. The above bound also reveals a connection with Castelnuovo theory of linear
systems on curves and with the so-called Castelnuovo varieties, see [30] and [14].
From this point of view, non-degenerate varietiesX D X.r C 1; n; ı/ � P x�.r;n;ı/�1,
denoted from now on by X D xX.r C 1; n; ı/, are the extremal ones and they are
subject to very strong restrictions – e.g. they are rational and through n general points
there passes a unique rational normal curve of degree ı, see [52] and Theorem 2.2 and
Theorem 2.4 below. Due to these numerous geometrical properties, it is possible in
many cases to obtain a complete classification, see for example [52] or Theorem 2.2,
Theorem 5.7, Corollary 5.9 and Corollary 5.12 below in this paper.

Some basic results of [52] are generalized here in Theorem 2.4. One proves the
bound h0.OX .D// � x�.r; n; ı/ for a Cartier divisorD on a proper irreducible variety
X of dimension rC1,n-covered by irreducible curvesC such that .D�C/ D ı � n�1.
We also show that equality holds if and only if �jDj maps X birationally onto a
xX.r C 1; n; ı/. Furthermore, if h0.OX .D// D x�.r; n; ı/ then X is rational and

through n � 2 general points there passes a unique smooth rational curveC such that
.D � C/ D ı.

Another consequence of the previous bound is that under the same hypothesis we
haveDrC1 � ırC1=.n�1/r ifD is nef, see Theorem 3.1. This is a generalization of
a result usually attributed to Fano in the case n D 2, see for example Proposition V.2.9
of [35].

The classical roots of this type of results go back to C. Segre, [59], who proved
that dim.hX.2; 2; 2/i/ � 5 and that xX.2; 2; 2/ � P5 is projectively equivalent to the
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Veronese surface. Bompiani generalized this result in [6] to dim.hX.r C 1; 2; ı/i/ ��
rC1Cı

rC1

��1with equality holding if and only if xX.rC1; 2; ı/ is projectively equivalent
to the ı-Veronese embedding of P rC1, see Theorem 2.2 here and also [32] and [64].

A lot of examples of xX.rC1; n; ı/ (for arbitrary n � 2, r � 1 and ı � n�1) have
been described in [52] via the theory of Castelnuovo varieties and their construction
will be briefly recalled in Section 4.2. The main result of [52] ensures that these
examples of Castelnuovo type are the only ones except possibly when n > 2, r > 1
and ı D 2n � 3.

Here we consider in detail the last open case, that is the classification of varieties
xX.r C 1; n; 2n � 3/, especially for n D 3. We immediately point out that there

are examples of xX.r C 1; n; 2n � 3/ of dimension at least 3 that are not of Castel-
nuovo type. For n D 3 these varieties share very special structures being related to
the theory of cubic Jordan algebras, see Section 4.3. Indeed interesting examples of
xX.rC1; 3; 3/ � P2rC3 are the so-called twisted cubics over complex Jordan algebras
of rank 3, see [46]. There is an infinite family of such varieties: the Segre embed-
dings P1 �Qr � P2rC3, whereQr � P rC1 is an irreducible hyperquadric, and also
four smooth exceptional examples associated to the four simple cubic Jordan alge-
bras (these four varieties are also known as Lagrangian Grassmannians) and other
examples constructed by considering cubic Jordan algebras naturally arising from
associative algebras, see Section 4.3. For an arbitrary xX.r C 1; 3; 3/ � P2rC3 we
consider the birational projection onto P rC1 from a general tangent space. By study-
ing the geometry of this birational map we are able to give an explicit parametrization
of these varieties and also to associate to them a quadro-quadric Cremona transfor-
mation from the projectivization of a general affine tangent space onto a hyperplane
in P rC1, see Theorem 5.2. From this unexpected connection we deduce the clas-
sification of arbitrary xX.r C 1; 3; 3/ for r � 3 (even if our method actually works
also for r D 4 or for bigger values of r), see Corollary 5.9 and Corollary 5.12.
As a consequence we also prove that the base locus of a quadro-quadric Cremona
transformation and the base locus of its inverse are projectively equivalent so that
essentially these transformations are involutions, Corollary 5.3, a fact which seems
to have been overlooked as far as we know. Moreover in Theorem 5.7 we provide the
classification of all smooth xX.r C 1; 3; 3/, showing that they are either smooth ratio-
nal normal scrolls (hence of Castelnuovo type) or the Segre embeddings of P1 �Qr

or one of the four Lagrangian Grassmannians. Our approach yields also a geomet-
rical direct proof of the classification of all cubic Jordan algebras whose associated
variety is smooth, showing that they are either simple (Lagrangian Grassmannian) or
semi-simple (P1 �Qr with Qr smooth).

The paper is organized as follows. In Section 1 we introduce some definitions and
explain the notation. We also recall the main steps for the proof of the bound (0.1).
In Section 2, a modern version of Bompiani’s theorem [6] is proved, Theorem 2.2.
Then, inductively via osculating projections and the study of the rational map �jDj
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we prove in Theorem 2.4 the bound on the dimension of linear systems of Cartier
divisors described above and the consequences of the maximality of this dimension.
In Section 3 we deduce from the bound on the dimension of the linear span a general
bound for the degree of nef divisors on varieties n-covered by irreducible curves. In
Section 4, after describing the xX.r C 1; n; ı/ of Castelnuovo type in Section 4.2, we
construct new examples of xX.r C 1; n; ı/ when r > 1, n > 2 and ı D 2n � 3.
In particular we describe in detail examples of xX.r C 1; 3; 3/ of Jordan type in
Section 4.3. In Section 4.5 we present some examples of xX.3; n; 2n � 3/ which
are not of Castelnuovo type for n D 4; 5; 6. Section 5 concerns the classification of
several classes of xX.rC1; 3; 3/ under different assumptions either on r , Corollary 5.9
and Corollary 5.12, or on the smoothness of the variety, Theorem 5.7. We also discuss
some open problems pointing towards the equivalence of these apparently unrelated
objects: varieties xX.rC1; 3; 3/, quadro-quadric Cremona transformations of P r and
complex Jordan algebras of rank three and of dimension r C 1.

Acknowledgements. Both authors are grateful to Ciro Ciliberto for some discussions
at different stages of the preparation of the paper and for a lot of suggestions leading to
an improvement of the exposition. The first author has considered the problem studied
here when developing a research on webs in common with Jean-Marie Trépreau. He
learned a lot from the numerous discussions with him on this subject during last years.
The second author expresses his gratitude to Paltin Ionescu for a direct or indirect but
undoubtedly rich intellectual exchange of ideas and points of view on some contents
of the paper, for his interest in the results and for a lot of remarks which improved
the presentation.

1. Preliminaries and notation

We shall consider irreducible varieties X which are projective, or proper, over the
complex field C.

We will use the following notation: r , n and ı are positive integers such that
n � 1 � ı. Then one defines � D �

ı
n�1

˘
and � D ı � �.n � 1/ 2 f0; : : : ; n � 2g.

One also defines m D � C 1 > 0 and m0 D n� 1�m � 0 so that mCm0 D n� 1.
Finally, for any integer k, one sets kC D maxf0; kg.

For classification results there is no restriction in supposing that an irreducible
variety X � PN is non-degenerate. Otherwise hXi � PN will denote the linear
span of X in PN , that is the smallest linear subspace of PN containing X . For
computational reasons, when dealing with classification results, we shall define r
such that dim.X/ D r C 1 .

Let x be a smooth point of X . For any ` 2 N, we denote by Osc`
X .x/ � PN

the `-th order osculation space of X at x. If  W .CrC1; 0/ ! .X; x/, u 7!  .u/

is a regular local parametrization of X at x, then Osc`
X .x/ can be defined as the
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projective subspace
˝
@j˛j .0/=@u˛ j˛ 2 NrC1; j˛j � `

˛ � PN . This space can
also be defined more abstractly as the linear subspace spanned by the `-th order
infinitesimal neighborhood of X at x and also generalized to the case of arbitrary
Cartier divisors D on X . Indeed, for every integer ` 2 N, let P `

X .D/ denote the
`-th principal part bundle (or `-th jet bundle) of OX .D/. For every linear subspace
V � H 0.X;OX .D// we have a natural homomorphism of sheaves

�` W V ˝ OX ! P `
X .D/; (1.1)

sending a section s 2 V to its `-th jet �`
x.s/ evaluated at x 2 X , that is �`

x.s/ is
represented in local coordinates by the Taylor expansion of s at x, truncated after the
order `. Taking a smooth point x 2 X � PN D P.V / (Grothendieck’s notation)
and OX .D/ D OX .1/, it is easily verified that Osc`

X .x/ D P.Im.�`
x//: If x 2 X

is a smooth point, the previous definitions yield dim .Osc`
X .x// � rk.P `

X / � 1 D�
rC1C`

rC1

� � 1 and in general it is expected that equality holds at general points of

X � PN as soon as N � �
rC1C`

rC1

� � 1. In this case, we shall say that the osculation
of order ` of X at x is regular.

A curve C � PN is a rational normal curve of degree ı if it is rational, smooth,
of degree ı and its linear span in PN has dimension ı. In other terms: the restriction
of jOPN .1/j to C is the complete linear system of degree ı on C ' P1.

Let us define the following Castelnuovo–Harris function which bounds the geo-
metric genus of irreducible projective varieties, see Theorem 4.2 below:

�.r; n; d/ D
X
��0

�
� C r � 1

�

��
d � .� C r/ .n � 1/ � 1�C: (1.2)

We will also use the following function that is closely related to �.r; n; d/:

x�.r; n; ı/ WD m

�
r C �C 1

r C 1

�
Cm0

�
r C �

r C 1

�
; (1.3)

for ı � n � 1 fixed with � D b ı
n�1

c, m D ı � � .n � 1/C 1 and m0 D n � 1 �m.
It is not difficult to prove that x�.r; n; ı/ D �.r; n; d/, see [52] for details.
An irreducible projective varietyX � PN of dimension rC1 that is n-covered by

a family of irreducible curves of degree ı will be denoted byX.rC1; n; ı/ � PN . In
most of the cases we shall also assume that X.r C 1; n; ı/ � PN is non-degenerate.

For reader’s convenience we reproduce here some basic results of [52] on varieties
X D X.r C 1; n; ı/ � PN . For an irreducible curve C � PN of degree ı, for non-
negative integers a1; : : : ; a� , with � > 0 fixed and such that

P�
iD1.ai C 1/ � ı C 1

and for x1; : : : ; x� 2 C pairwise distinct smooth points, one has:

hC i D hOscai

C .xi / j i D 1; : : : ; �i (1.4)
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(otherwise there would exist a hyperplane H ¨ hC i containing hOscai

C .xi / j i D
1; : : : ; �i and ı D deg.C / D deg.H \ C/ � P�

iD1.ai C 1/, contrary to our
assumption).

LetX D X.rC1; n; ı/ � PN and let† be a fixedn-covering family of irreducible
curves of degree ı on X . If x1; : : : ; xn�1 are distinct general points on X one can
consider the subfamily †x1;:::;xn�1

D fC 2 † j xi 2 C for i D 1; : : : ; n � 1g.
Since † is n-covering, the family †x1;:::;xn�1

covers X and we can also assume that
the general curve in this family is non-singular at x1; : : : ; xn�1. Let fa1; : : : ; an�1g
be a set of n � 1 non-negative integers such that

Pn�1
iD1.ai C 1/ � ı C 1. By

(1.4) and since Oscai

C .xi / � Oscai

X .xi / for every i D 1; : : : ; n � 1, it comes that
hC i � hOscai

X .xi / j i D 1; : : : ; n � 1i for a general C 2 †x1;:::;xn�1
. Since the

elements of †x1;:::;xn�1
cover X , one obtains

hXi D hOscai

X .xi /
ˇ̌
i D 1; : : : ; n � 1i: (1.5)

Therefore for these varieties we deduce that dim.hXi/C1 � Pn�1
iD1

�
rC1Cai

rC1

�
. Taking

a1 D � � � D am D � and amC1 D � � � D an�1 D � � 1 and recalling (1.3), we obtain
the following result for arbitrary X D X.r C 1; n; ı/, see [52]:

dim.hXi/ � x��r; n; ı/ � 1: (1.6)

Recall that for x�.r; n; ı/ defined in (1.3) we have x�.r; n; ı/ D �.r; n; d/, where
the Castelnuovo–Harris bound �.r; n; d/ is defined in (1.2) and where d is defined
as a function of ı by d D ıC r.n� 1/C 2. Since dim.Osc`

X .x// � �
rC1C`

rC1

�� 1 for
any point x 2 X and for any integer ` 2 N, we deduce an immediate consequence
of (1.5) that for a non-degenerate X D X.r C 1; n; ı/ � P x�.r;n;ı/�1 the following
hold:

(i) the osculation of order � of X at a general point x 2 X is regular, that is

dim
�
Osc�

X .x/
� D

�
r C 1C �

r C 1

�
� 1I (1.7)

(ii) if x1; : : : ; xn�1 are general points of X , then

hXi D
� mL

iD1

Osc�
X .xi /

�
˚
� m0L

j D1

Osc��1
X .xmCj /

�
D P x�.r;n;ı/�1: (1.8)

From now on an irreducible non-degenerate projective variety X D X.r C
1; n; ı/ � P x�.r;n;ı/�1 will be denoted by xX.r C 1; n; ı/ � P x�.r;n;ı/�1 or simply
by xX.r C 1; n; ı/. In the next sections we shall describe the notable geometric
properties of these varieties and of their covering families.
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2. Rationality of xX.r C1; n; ı/ and of the general curve of the n-covering family

The following simple remark, which is surely well known to the experts, will play
a central role several times in our analysis, see also Lemma 2.2 in [32] and [52] for
related statements. Since we were unable to find a precise reference for the generality
needed, we also include a proof.

Lemma 2.1. Let � W X Ü X 0 be a dominant rational map between proper varieties
of the same dimension, let† be an irreducible n-covering family of irreducible curves
on X and let †0 be the induced n-covering family on X 0. If X 0 is projective, if the
restriction of � to a general curve C 2 † induces a morphism birational onto its
image and if through n-general points of X 0 there passes a unique curve C 0 2 †0,
then the same is true for † on X and moreover � is a birational map.

Proof. There exists a desingularization˛ W zX ! X with zX projective and a morphism
Q� W zX ! X 0 solving the indeterminacies of �. Thus without loss of generality we
can assume X smooth and projective, that � is a morphism and that � restricted
to a general C 2 † is a morphism birational onto its image. The morphism �

is generically étale by generic smoothness, i.e. there exists an open set U 0 � X 0
such that letting U D ��1.U 0/, then �jU W U ! U 0 is an étale morphism. Let
d D deg.�/ D deg.�jU / � 1. We shall prove that d D 1.

Fix x1; : : : ; xn�1 2 U general points. There exists an open subset U1 � U such
that for every x 2 U1, there passes exactly s � 1 curves in † through x1; : : : ; xn�1

and x. Since � is a proper morphism we can also take U1 D ��1.U 0
1/ with U 0

1 � U 0
open. Let x0 2 U 0

1 be a (general) point and let ��1.x0/ D f Qx1; : : : ; Qxd g. Let
x0

l
D �.xl/, l D 1; : : : ; n � 1, and let zCi;1; : : : ; zCi;s be the curves of † passing

through x1; : : : ; xn�1; Qxi . Then for every j D 1; : : : ; s, the curves �. zCi;j / belong
to †0 and they pass through x0

1; : : : ; x
0
n�1; x

0 so that they coincide with the unique
curve C 0 2 †0 having this property. Since � is a local isomorphism near Qxi , we
deduce s D 1. In particular through n general points of X there passes a unique
curve belonging to †.

Then Qxi 2 zCi , x1 2 zCi and �. zCi / D C 0 for every i D 1; : : : ; d . Since � is also
a local isomorphism at x1 since x1 2 U , we see that zC1 D � � � D zCd D C . Since
C 2 † is general, by hypothesis �jC W C ! C 0 is a morphism birational onto its
image, yielding d D 1 because Qxi 2 C , �. Qxi / D x0 for every i D 1; : : : ; d , and by
the generality of x0 we can also suppose that ��1.x0/ consists only of a point. �

We begin to study general properties of xX.r C 1; n; ı/’s starting from the case
n D 2. This case was classically considered by Bompiani in [6], where the proof
was essentially provided for surfaces. Under the assumption that the general 2-
covering curve is smooth and rational, this result was also obtained by Ionescu in
[32], Theorem 2.8. A similar but stronger result holding in the analytic category
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and not only for complex algebraic varieties has been proved recently by Trépreau
in [64]1.

Theorem 2.2. An irreducible projective varietyX D xX.rC1; 2; ı/ � P.
rC1Cı

rC1 /�1 is
projectively equivalent to the Veronese manifold �ı.P

rC1/. In particular every curve
in the 2-covering family is a rational normal curve of degree ı in the given embedding
and there exists a unique such curve passing through two distinct points of X .

Proof. By definition � D ı so that by (1.7), for x 2 X general we have

dim.Oscı�1
X .x// D

�
r C ı

r C 1

�
� 1 and Oscı

X .x/ D P.
rC1Cı

rC1 /�1:

Now let x 2 X be a fixed general point and let T D Oscı�1
X .x/ D P.

rCı
rC1/�1.

Let pT W X Ü P x�.r�1;2;ı/�1 be the restriction to X of the projection from T . The
rational mappT is given by the linear system jDxj cut onX by hyperplanes containing
T so that the corresponding hyperplane sections have a point of multiplicity ı at
x 2 X . A general irreducible curve of degree ı passing through x is thus contracted
by pT . LetXT D pT .X/. We have hXT i D P x�.r�1;2;ı/�1 since hXi D P x�.r;2;ı/�1.

We claim that XT is projectively equivalent to �ı.P
r/ � P x�.r�1;2;ı/�1. Indeed,

let � W Blx.X/ ! X be the blow-up ofX at x, letE D P r be the exceptional divisor
and let p0

T D pT B � W Blx.X/ Ü XT be the induced rational map. The restriction
of p0

T to E is a rational dominant map from P r to XT � P x�.r�1;2;ı/�1 given by a
sublinear system of jOPr .ı/j of dimension x�.rC1; 2; ı/�1 so that it is given by the
complete linear system jOPr .ı/j (since Oscı

X .x/ D P x�.r;2;ı/�1, the restriction of the
strict transform of the linear system of hyperplane sections containing Oscı�1

X .x/ to
E is not zero). Thus the restriction of p0

T to E induces an isomorphism between E
andXT given by jOPr .ı/j, proving the claim. Moreover since a general curveC 2 †
is not contracted by pT , we have that pT .C / is a curve onXT of degree ı0 � ı. Thus
pT .C / is a smooth rational curve of degree ı, T \ C D ;, the rational map pT is
defined along C and it gives an isomorphism between C and pT .C /.

By solving the indeterminacies of p0
T , we can suppose that there exists a smooth

variety zX , a birational morphism � W zX ! X and a morphism QpT W zX ! XT '
�ı.P

r/ such that pT B� D QpT . Let ��.jDxj/ D Fx Cj zDxj with j zDxj base point free
and let j xDxj D Qp�

T .jOPr .1/j/. Then zDx 	 ı xDx and dim.j xDxj/ � r . Moreover for
the strict transform of a general curveCx in† passing through x we have . zDx �Cx/ D
0 and .Fx �Cx/ D ı while for the strict transform of a general curve C 2 † we have
. zDx � C/ D ı. Thus . xDx � Cx/ D 0 and . xDx � C/ D 1.

1Trépreau’s version of Bompiani’s theorem is the following: let .X; x/ � PN be a smooth germ of a
.r C 1/-dimensional analytic variety with regular ı-th order osculation (at x). Assume that X is 1-covered
by (germs of ) rational curves of degree ı passing through x that are (generically) smooth at this point. Then
X � �ı.PrC1/.
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Letting T 0 D Oscı�1
X .x0/ with x0 2 X general and performing the same analysis

we can also suppose that on zX the rational map pT 0 B � D QpT 0 is defined and that
there exists a linear system j xDx0 j such that dim.j xDx0 j/ � r , . xDx0 � Cx0/ D 0 for
general Cx0 2 †x0 and . xDx0 � C/ D 1 for general C 2 †. Since a general Cx0 in
†x0 does not pass through x we have j xDxj ¤ j xDx0 j. On the other hand for x 2 X

general, the linear systems j xDxj vary in the same linear system jDj on zX since zX is
rationally connected.

Thus dim.jDj/ � r C 1, .D � C/ D 1 for the strict transform of a general curve
C in † and C does not intersect the base locus of jDj by the previous analysis. Let
s C 1 D dim.jDj/ and let  D  jDj W zX Ü zX 0 � P sC1 be the associated rational
map. Since  .C/ is a line passing through two general points of X 0, we deduce
X 0 D P sC1 and r D s. Moreover by Lemma 2.1 the rational map  is birational.
Hence there exists a birational map ' D � B  �1 W P rC1 Ü X sending a general
line in P rC1 onto a general curve of degree ı in †. Composing ' with the inclusion
X � P x�.r;2;ı/�1 we get a birational map from P rC1 given by a sublinear system of
jOPrC1.ı/j of dimension

�
rC1Cı

rC1

��1, that is ' is given by the complete linear system

jOPrC1.ı/j. In conclusionX � P x�.r;2;ı/�1 is projectively equivalent to the Veronese
manifold �ı.P

rC1/. �

The rationality and the smoothness of the general member † of the 2-covering
family of a xX.rC1; 2; ı/ can also be deduced differently. Indeed in the previous proof
we saw that the linear system of hyperplane sections having a point of multiplicity
greater than or equal to ı at a general x 2 X cuts a general C 2 †x in the Cartier
divisor ıx. By varying x on C we see that this property holds for the general point of
C . Thus the smoothness and rationality of a general element of † are consequences
of the following classical and surely well-known result, which seems to go back to
Veronese, [65], at least in the projective version. The proof is well known and left to
the reader.

Lemma 2.3. Let C be an irreducible projective curve. Then:

(1) if C � PN is non-degenerate and of degree ı, then N � ı and the following
conditions are equivalent:

(a) N D ı and C � Pı is a rational normal curve of degree ı;

(b) for a general x 2 C there exists a hyperplaneHx � PN such thatHx \X D
ı � x as schemes.

(2) The following conditions are equivalent:

(a0) C is a smooth rational curve;

(b0) there exists aCartier divisorD of degree ı � 1onC such thatdim.jDj/ D ı.

(c0) OC .ı � x1/ ' OC .ı � x2/ for some ı � 1 and for x1; x2 2 C general points.
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Via Lemma 2.3 one could also prove differently Theorem 2.2 above following
the steps of Mori’s characterization of projective spaces given in [45] because in this
case the family of smooth rational curves †x is easily seen to be proper.

We now investigate the higher dimensional versions of Lemma 2.3 from the point
of view of proper varieties n-covered by irreducible curves of degree ı with respect
to some fixed divisor D, providing generalizations of Theorem 2.8 in [32] and of
Theorem 4.4 in [1]. Part (1) below has been obtained in [52] while (i) is an abstract
version of (0.1).

Theorem 2.4. Let X be an irreducible proper variety of dimension r C 1 and letD
be a Cartier divisor on X . Suppose that through n � 2 general points of X there
passes an irreducible curve C such that .D � C/ D ı � n � 1. Then:

(i) h0.X;OX .D// � x�.r; n; ı/;
(ii) Equality holds in (i) if and only if �jDj maps X birationally onto a xX.r C

1; n; ı/ � P x�.r;n;ı/�1. In this case the general deformation of C does not
intersect the indeterminacy locus of �jDj.

(iii) If equality holds in (i), then

(a) the variety X is rational;

(b) the general deformation xC of C is a smooth rational curve and through n
general points ofX there passes a unique smooth rational curve xC such that
.D � xC/ D ı.

In particular:

(1) a xX.r C 1; n; ı/ � P x�.r;n;ı/�1 is rational, the general curve of the n-covering
family is a rational normal curve of degree ı and through n general points ofX
there passes a unique rational normal curve of degree ı;

(2) a xX.r C 1; n; ı/ � P x�.r;n;ı/�1 is a linear birational projection of �ı.P
rC1/ (or

equivalently, a xX.r C 1; n; ı/ is the birational image of P rC1 given by a linear
system of hypersurfaces of degree ı and dimension x�.r; n; ı/ � 1).

Proof. Suppose h0.OX .D// � x�.r; n; ı/ � 2 and let

� D �jDj W X Ü X 0 � P.H 0.OX .D// D PN :

The variety X 0 � PN is irreducible, non-degenerate, of dimension dim.X 0/ D
sC 1 � r C 1 and is n-covered by irreducible curves of degree ı0 � ı. Therefore by
(1.6) one gets

h0.OX .D// � x�.s; n; ı0/ � x�.r; n; ı/;
yielding h0.OX .D// D x�.r; n; ı/ and X 0 D xX.r C 1; n; ı/. We have thus proved
the bound (i) and also that if equality holds then X 0 D xX.r C 1; n; ı/.
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One implication of the first part of (ii) is trivial and we shall prove only the non-
trivial implication and the second part of (ii). If h0.OX .D// D x�.r; n; ı/, then by the
previous analysis dim.X 0/ D r C 1 and deg.�. xC// D ı for a general deformation
xC of C .

Now we shall prove the birationality of � and part (iii) for n D 2. Later we
shall treat the general case n > 2. If n D 2, it follows from Theorem 2.2 that
X 0 D xX.r C 1; 2; ı/ is projectively isomorphic to �ı.P

rC1/ so that �. xC/ is the
unique rational normal curve of degree ı passing through two general points of X 0.
Let j xDj be the linear system on xC obtained by restricting jDj to xC . Then deg. xD/ D ı

and dim.j xDj/ D ı since �. xC/ is a rational normal curve of degree ı. Part (2) of
Lemma 2.3 implies that xC is a smooth rational curve, that � is defined along xC and
that the restriction of � to xC is an isomorphism onto its image. Thus from Lemma 2.1
we deduce that � is birational and that through 2 general points of X there passes a
unique smooth rational curve xC such that .D � xC/ D ı.

Suppose n > 2 and recall the following notation, see Section 1: � D bı=.n � 1/c,
m D ı�� .n�1/C1 andm0 D n�1�m. Let x1; : : : ; xn�1 be n�1 general points on
X 0 D xX.r C 1; n; ı/ � P x�.r;n;ı/�1. By (1.7) and (1.8), we know that the osculating
spaces Osc�

X 0.xi / and Osc��1
X 0 .xmCj / (for i D 1; : : : ; m and j D 1; : : : ; m0) have

the maximal possible dimension and are in direct sum in the ambient space, yielding
a decomposition

P x�.r;n;ı/�1 D hX 0i D Osc�
X 0.x1/˚ S;

where

S D � mL
iD2

Osc�
X 0.xi /

�˚ � m0L
j D1

Osc��1
X 0 .xmCj /

�
:

Let
pS W X 0 Ü L D Osc�

X 0.x1/ D P x�.r;2;�/�1

be the restriction to X 0 of the linear projection from S onto L and let X 0
S D pS .X

0/.
Let †x2;:::;xn�1

be the family consisting of curves in the covering family † passing
through x2; : : : ; xn�1. The family †x2;:::;xn�1

is 2-covering and a general C 2
†x2;:::;xn�1

has contact of order at least .m � 1/.� C 1/ C m0� with S and is not
contracted by pS . Thus the irreducible curve CS D pS .C / has degree �0 � ı �
.m � 1/.� C 1/ �m0� D �. The projections of the curves in †x2;:::;xn�1

produce a
2-covering family of irreducible curves of degree �0 on the non-degenerate irreducible
varietyX 0

S � P x�.r;2;�/�1. Then (1.6) implies thatX 0
S D xX.rC1; 2; �/ is projectively

equivalent to ��.P rC1/ so that CS � X 0
S is a rational normal curve of degree � by

Theorem 2.2. Moreover, C is a rational normal curve of degree ı by part (2) of
Lemma 2.3 since the restriction of pS to C is given by a linear system of degree �
and pS .C / D CS is a rational normal curve of degree �.

The dominant rational map pS is birational and through n � 2 points of X 0 there
passes a unique rational normal curve of degree ı by Lemma 2.1. Thus (1) is proved
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for every n � 2. Applying once again Lemma 2.1 to � W X Ü X 0 we immediately
deduce also for n > 2 that the map � is birational and that through n > 2 points of
X there passes a unique smooth rational curve xC such that .D � xC/ D ı, proving (a)
and (b) of (iii).

To prove (2), let ' D p�1
S W P rC1 Ü X 0 D xX.r C 1; n; ı/. The birational

map ' sends a general line l � P rC1 onto a general element C 2 †x2;:::;xn�1
. The

composition of ' with the natural inclusion X 0 D xX.r C 1; n; ı/ � P x�.r;n;ı/�1 is
given by a sublinear system of jOPrC1.ı/j of dimension x�.r; n; ı/� 1, showing that
X 0 D xX.r C 1; n; ı/ is a birational linear projection of �ı.P

rC1/ from a linear space
of dimension x�.r; 2; ı/ � x�.r; n; ı/ � 1. �

The preceding statement concerns varieties X that are n-covered by irreducible
curves of degree ı with respect to an arbitrary given Cartier divisor, hence it is more
general than the corresponding result in [52] considering embedded X D xX.r C
1; n; ı/ � P x�.r;n;ı/�1. Note however that the main tool used to prove Theorem 2.4,
namely the reduction to the well understood case n D 2 via an osculating projection,
is the same as in [52].

3. Bound for the top self intersection of a nef divisor

In this section, as a consequence of part (i) of Theorem 2.4, we prove a bound for
the top self intersection of a nef divisor D on a proper variety X such that through
n � 2 general points there passes an irreducible curve C with .D � C/ D ı � n� 1.
In particular we obtain a bound for the degree of varieties X.r C 1; n; ı/ � PN . The
bound (3.1) below generalizes a result usually attributed to Fano, who proved it for
n D 2. The reader can consult the modern reference [35], Proposition V.2.9, for the
case n D 2 of Fano’s result and also the several applications given in loc. cit., e.g. to
the boundedness of the number of components of families of smooth Fano varieties
of a fixed dimension, see [35], ChapterV.

Theorem 3.1. Let X be a proper irreducible variety of dimension r C 1, letD be a
nef Cartier divisor onX and suppose that through n � 2 general points there passes
an irreducible curve C such that .D � C/ D ı � n � 1. Then

DrC1 � ırC1

.n � 1/r : (3.1)

In particular, if X D X.r C 1; n; ı/ � PN , then

deg.X/ � ırC1

.n � 1/r : (3.2)
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Proof. By the Asymptotic Riemann–Roch Theorem, see for example [35], Theo-
rem VI.2.15, we know that

h0.OX .`D// D DrC1 `rC1

.r C 1/Š
CO.`r/

so that

DrC1 D lim
`!C1

.r C 1/Šh0.OX .`D//

`rC1
: (3.3)

SinceX is n-covered by a family of irreducible curves having intersection withD
equal to ı, X is also n-covered by a family of irreducible curves having intersection
ı` with `D for any ` > 0. Theorem 2.4 yields

h0.OX .`D// � x�.r; n; ı`/
for every positive integer `. From (3.3) we deduce

DrC1 � lim inf
`!C1

.r C 1/Š x�.r; n; ı`/
`rC1

: (3.4)

Let �` D b ı`
n�1

c for ` > 0. The definition of x�.r; n; ı`/ in (1.3) implies that

DrC1 � lim inf
`!C1

.n � 1/ �r C 1C �`

�
Š

`rC1�`Š
:

Using Stirling’s formula, for ` ! C1, we have

.n � 1/ �r C 1C �`

�
Š

`rC1�`Š
	 .n � 1/p

r C 1C �`

�
rC1C�`

e

�rC1C�`

`rC1
p
�`

�
�`

e

��`

	 .n � 1/ �r C 1C �`

�rC1

`rC1erC1

�
1C r C 1

�`

��`

:

Since �` ! C1 if ` ! C1 and recalling that limx!C1
�
1C rC1

x

�x D erC1, we
obtain

.n � 1/ �r C 1C �`

�
Š

`rC1�`Š
	 .n � 1/ �rC1

`

`rC1
:

But �` 	 ı`
n�1

if ` ! C1 hence we finally get

DrC1 � lim inf
`!C1

.n � 1/ � ı`
n�1

�rC1

`rC1
D ırC1

.n � 1/r : �
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Remark 3.2. The bound (3.2) is sharp forn D 2 since ırC1 is the degree of vı.P
rC1/.

More generally, it is sharp for every n � 2 as soon as ı D �.n� 1/ for some integer
� since in this case ırC1=.n � 1/r D �rC1.n � 1/ is the degree of v�.Y / for any
non-degenerate variety Y rC1 � PnCr�1 of minimal degree n � 1.

We apply the previous bound on the degree to classify the xX.rC1; n; n�1Ck/’s
for n sufficiently large, when r and k are fixed.

Suppose k D 0. Since x�.r; n; n�1/ D nCr ,X D xX.rC1; n; n�1/ � PnCr�1

is a variety of minimal degree equal to codim.X/ C 1 D n � 1 by (3.2), as it is
well known. These varieties were classified in ancient times by classical algebraic
geometers, see [21] and also Section 4.

Now we consider the case k > 0. Whenn is sufficiently large, we havem D kC1;
m0 D n�k�2 and � D 1, yielding x�.r; n; n�1Ck/ D .kC1/.rC2/Cn�k�2.
So (3.2) implies that X D xX.r C 1; n; n � 1C k/ is a variety of minimal degree as
soon as the quantity

	 D .n � 1C k/rC1 � .n � 1/r�nC k.r C 1/ � 2� (3.5)

is strictly positive. But 	 D nr CO.nr�1/ as a simple and direct expansion shows.
Therefore for n sufficiently large 	 > 0 and X D xX.r C 1; n; n� 1C k/ is a variety
of minimal degree. Assuming moreover that n > 5, as we shall do from now on,
one deduces that X is a rational normal scroll Sa0;:::;ar

with 0 � a0 � � � � � ar andPr
iD0 ai D n C k.r C 1/ � 1. We want to prove that X is projectively equivalent

to S˛0Ck;:::;˛r Ck with ˛0; : : : ; ˛r verifying 0 � ˛0 � � � � � ˛r and
Pr

iD0 ˛i D
n � 1. With the terminology introduced in Section 4 this will mean exactly that
X D xX.r C 1; n; n � 1C k/ is of Castelnuovo type for n sufficiently large.

Assume that x1; : : : ; xkC1 and y1; : : : ; yn�k�2 are general points of X and let
� D x�.r; n; n � 1C k/. According to (1.6),

P��1 D hXi D � kC1L
iD1

Osc1
X .xi /

�˚ ˝
y1; : : : ; yn�k�2

˛
:

Let us introduce some notation. Let 0 � a0 � a1 � � � � � ar with ar >

0 be integers and set P.a0; : : : ; ar/ WD P
�Lr

iD0 OP1.ai /
�
. Let H be a divi-

sor in jOP.a0;:::;ar /.1/j and consider the morphism � D �jH j W P.a1; : : : ; an/ !
Pa0C���Car Cr whose image is denoted Sa0;:::;ar

and called a rational normal scroll of
type .a0; : : : ; ar/. The morphism � is birational onto its image so that Sa0;:::;ar

has
dimension r C 1 and its degree is a0 C � � � C ar . The scroll Sa0;:::;ar

is smooth if and
only if a0 > 0 and � is an embedding in this case. If 0 D ai < aiC1, then Sa0;:::;ar

is a cone over SaiC1;:::;ar
with vertex a P i .

Lemma 3.3 ([16], p. 13). Let b0; : : : ; br be natural integers such that 0 D b0 D
� � � D bi < biC1 � biC2 � � � � � br , let fd 0

1; : : : ; d
0
r�ig D fbiC1 � 1; : : : ; br � 2g



Vol. 88 (2013) Varieties n-covered by curves of degree ı 729

and let fd1; : : : ; dr�ig be a rearrangement of fd 0
1; : : : ; d

0
r�ig such that 0 � d1 �

d2 � � � � � dr�i : Then the general tangential projection of Sb0;:::;br
is Sd1;:::;dr�i

.

Thus if a0 < k, there would exist ` < k C 1 such that the image X 0 of X via
the linear projection pS from S D Osc1

X .x1/˚ � � � ˚Osc1
X .x`/ would be a rational

normal scroll of dimension r 0 � r . This would imply dim.h xX.rC1; n; n�1Ck/i/ <
x�.r; n; n�1Ck/�1, leading to a contradiction. In conclusion we proved the following
consequence of (3.2).

Corollary 3.4. If n is sufficiently large, a variety xX.r C 1; n; n � 1C k/ is projec-
tively equivalent to a rational normal scroll S˛0Ck;:::;˛r Ck with ˛0; : : : ; ˛r such thatPr

iD0 ˛i D n � 1.

Remark 3.5. The value of n in the previous result can be made effective: xX.r C
1; n; n� 1C k/ is a scroll as in the previous corollary as soon as n � max.6; k � 2/
and 	 > 0, where 	 is the quantity defined in (3.5).

4. Some examples of varieties xX.r C 1; n; ı/

In this section we describe in detail three classes of xX.rC1; n; ı/. The simplest ones
are the so-called varieties of minimal degree. Next, using the theory of Castelnuovo
varieties, we will construct examples of xX.rC1; n; ı/ for arbitrary n, r and ı � n�1.
These latter examples have already been presented in [52]. Finally, we will show
that twisted cubic curves associated to Jordan algebras of rank 3 are examples of
xX.r C 1; 3; 3/.

4.1. Varieties ofminimal degree and their associatedmodels [21], [30]. It is well-
known (see [28], p. 173) that the degree of an irreducible non-degenerate projective
variety Y � PnCr�1 of dimension r C 1 satisfies deg.Y / � codim.Y /C 1 D n� 1.
By definition, Y � PnCr�1 is a variety of minimal degree if its degree is n � 1.
Such varieties exist and are well known. Their classification goes back to Bertini and
Enriques and can be summarized as follows (the notation being as in [30]):

Theorem 4.1. The following is an exhaustive non redundant list of the .r C 1/-
dimensional varieties Y � PnCr�1 of minimal degree n � 1:

(1) the rational normal scrolls Sa0;:::;ar
for some integers a0; : : : ; ar verifying 0 �

a0 � a1 � � � � � ar � n � 1 and a0 C � � � C ar D n � 1;

(2) the ambient space P rC1 itself (n D 2);

(3) the quadric hypersurfaces of rank % � 5 (n D 3);

(4) the cones over a Veronese surface in P5 (n D 5).
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Recall that a scroll Sa0;:::;ar
is singular if and only if a0 D 0. In this case, it is a

cone over the scroll Saj ;:::;ar
where j stands for the smallest integer such that aj ¤ 0.

Let Y � PnCr�1 be a variety of minimal degree. The space spanned by n generic
distinct points y1; : : : ; yn on Y is an .n � 1/-dimensional subspace in PnCr�1. The
latter being generic, it intersects Y along an irreducible non-degenerate curve of
degree n� 1, which by Lemma 2.3 is a rational normal curve in hy1; : : : ; yni passing
through yi for any i D 1; : : : ; n. This shows that Y � PnCr�1 is n-covered by
rational normal curves of degree n� 1. Since x�.r; n; n� 1/ D nC r , it follows that
varieties of minimal degree are examples of xX.r C 1; n; n� 1/, which will be called
models of minimal degree. Note that also the converse is true because according to
Theorem 3.1, every xX.r C 1; n; n � 1/ � PnCr�1 is a variety of minimal degree
n � 1.

4.2. Castelnuovo’s varieties and their associated models [30], [14], [52]. Let
V � PnCr�1 be an irreducible non-degenerate variety of dimension r and degree
d > 1. There is an explicit bound on the geometric genus g.V / of V in terms of an
explicit constant depending on d; n and r . The geometric genus g.V / is defined as
the dimension h0.K zV / for one (hence for all) resolution of the singularities zV ! V

of V .

Theorem 4.2 (Castelnuovo–Harris bound [30]). The following bound

g.V / � �.r; n; d/ (4.1)

holds for the geometric genus of V � PnCr�1. In particular g.V / D 0 if d <

r.n � 1/C 2.

An irreducible varietyV � PnCr�1 as above and such thatg.V / D �.r; n; d/ > 0

is called a Castelnuovo variety. Note that in this case necessarily d � r.n� 1/C 2.

Remark 4.3. The bound (4.1) can be generalized to more general objects than pro-
jective varieties. Indeed, a basic result of web geometry says that the bound rk.W / �
�.r; n; d/ holds for the rank rk.W / of an r-codimensional d -web W D Wd .n; r/

defined on a manifold of dimension nr . This result, due to Chern and Griffiths [13],
can be proved by quite elementary methods (see [51] and [49]). Combined with
Abel’s addition theorem, this implies the inequality h0.V; !V / � �.r; n; d/ – here
!V denotes the sheaf of abelian differential r-forms on V , see [37], [43], [3], [31] –
as soon as V is such that its generic 0-dimensional linear section is in general position
in its span, which is stronger than (4.1).

The classification of projective curves of maximal genus has been obtained by
Castelnuovo in 1889. More recently, in [30], Harris proved the following result.
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Proposition 4.4. Let V � PnCr�1 be a Castelnuovo variety of dimension r � 1

and codimension at least 2. The linear system j�V .2/j cuts out a variety of minimal
degree Y � PnCr�1 of dimension r C 1.

Thus a Castelnuovo variety V � PnCr�1 of dimension r is a divisor in the variety
of minimal degree Y � PnCr�1 cut out by j�V .2/j. This property was used by Harris
to describe Castelnuovo varieties (see also the refinements by Ciliberto in [14]): if
p W zY ! Y denotes a desingularization (obtained for instance by blowing-up the
vertex of the cone Y when it is singular), Harris determines the class Œ zV 
 of zV (the
strict transform of V in zY via p) in the Picard group of zY . Assuming (to simplify)
that zV is smooth, let LV D K zY C zV . By adjunction theory, there is a short exact
sequence of sheaves

0 ! K zY ! K zY . zV / ! K zV ! 0:

Since h0. zY ;K zY / D h1. zY ;K zY / D 0 (because zY is smooth and rational), the map

H 0. zY ;LV / ! H 0. zV ;K zV / (4.2)

is an isomorphism. Thus it induces rational maps�V D �jKV j andˆV D ˆjLV jBp�1

such that the following diagram of rational maps is commutative:

V� �

��

�V ������� P�.r;n;d/�1

Y
ˆV ������� P�.r;n;d/�1 .

(4.3)

Let XV be (the closure of) the image of ˆV . It is an irreducible non-degenerate
subvariety in P�.r;n;d/�1 and dim.XV / D dim.Y / D r C 1. Moreover, one proves
that the image by ˆV of a generic 1-dimensional linear section of Y , that is of a
rational normal curve of degree n � 1 passing through n general points of Y , is a
rational normal curve of degree ı D d � r.n � 1/ � 2 contained in XV . Thus
XV � P�.r;n;d/�1 D P x�.r;n;ı/�1 is an example of xX.r C 1; n; ı/. These examples
will be called models associated to the Castelnuovo variety V � PnCr�1 and also
models of Castelnuovo type. They are described in detail in [52] where the authors
also prove the following result.

Theorem 4.5. Let X 2 xX.r C 1; n; ı/. If ı ¤ 2n� 3 then X is of Castelnuovo type.

It follows that varieties xX.r C 1; n; ı/ not of Castelnuovo type can exists only
for ı D 2n � 3. In the sequel, we shall focus on the case n D 3 and present some
examples of varieties xX.r C 1; 3; 3/ not of Castelnuovo constructed from Jordan
algebras.
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4.3. Models of Jordan type associated to cubic Jordan algebras. Recall that a
(complex) Jordan algebra is a C-vector space J with a C-bilinear product J �J ! J
verifying

x2 .y x/ D .x2 y/ x for all x; y 2 J:

We will restrict here to the case of commutative Jordan algebras of finite dimension
admitting a unit, denoted by e. A classical result in this theory ensures that a Jordan
algebra is power-associative: for every x 2 J and any k 2 N, the kth-power xk of
x is well-defined. This allows us to define the rank of J , denoted by rk.J/: it is the
dimension (as a complex vector space) of the subalgebra CŒx
 D SpanChxk j k 2 Ni
generated by a general element x 2 J . Let m D rk.J/ and let `x be the restriction
of the multiplication by x to CŒx
 and let Mx be its associated minimal polynomial.
Then the relation Mx.`x/e D 0 expands to

xm � �1.x/ x
m�1 C � � � C .�1/m �m.x/ e D 0; (4.4)

where x 7! �i .x/ is a homogeneous polynomial map of degree i on J (for every
i D 1; : : : ; m). By definition, (4.4) is the generic minimum polynomial of the Jordan
algebra J (cf. [24], Proposition II.2.1). Its generic trace is the linear map T W x 7!
T .x/ D �1.x/ and the homogeneous polynomial map N W x 7! N.x/ D �m.x/ of
degreem is its generic norm. The latter is multiplicative in the following sense: for all
y 2 J , we haveN.x x0/ D N.x/N.x0/ for every x; x0 2 CŒy
 (see Proposition II.2.2
of [24]).

One defines the adjoint x# of an element x 2 J by setting

x# D
m�1X
iD0

�i .x/.�x/m�1�i

where �0 D 1. It follows from (4.4) that x x# D x#x D N.x/ e so that N.x/ ¤ 0

implies that x is invertible (for the Jordan product) with inverse x�1 D N.x/�1x#.

The map i W x 7! x�1 is a birational involution on J . Let Str.J/ be the set of
g 2 GL.J/ such that g B i 
 i B h (as birational maps on J) for a certain h 2 GL.J/.
When it exists, such a h is unique: by definition, it is the adjoint of g and is denoted by
g#. One proves (see [61]) that Str.J/ is a closed algebraic subgroup ofGL.J/, called
the structural group of the Jordan algebra J . Moreover, g 7! g# is an automorphism
of Str.J/ and there exists a character � W Str.J/ ! C� such thatN.g.x// D �g N.x/

for all x 2 J (cf. [61], Proposition 1.5).

The complex vector space Z2.J/ of Zorn’s matrices is defined by

Z2.J/ D
²�

s x

y t

� ˇ̌
s; t 2 C; x; y 2 J

³
:

Assuming from now on that J is of rank 3, one defines the twisted cubic associated
to J (noted byX3

J ) as the (Zariski)-closure in P Z2.J/ of the image of the polynomial
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affine embedding

�3 W J �! P Z2.J/;

x 7�!
	
1 x

x# N.x/



:

Then the Zariski-closure of �3.C e/ in P Z2.J/ is a rational normal curve of degree
3 included in X3

J that we denote by CJ :

CJ D
²	

1 te

t2e t3


 ˇ̌̌
t 2 C

³ S ²	
0 0

0 1


³
:

It contains the following three points:

0J D �3.0/ D
	
1 0

0 0



; 1J D �3.e/ D

	
1 e

e 1



and 1J D

	
0 0

0 1



:

Recall that i stands for the inverse map x 7! x�1. From now on we shall suppose
g 2 Str.J/. For a fixed ! 2 J , let t! W J ! J be the translation x 7! x C ! and
denote by # the bilinear map associated to x#: one has x#y D .x C y/# � x# � y#

for x; y 2 J .
For ! 2 J and g 2 Str.J/, one sets for every M D �

s x
y t

� 2 P Z2.J/:

I
�
M/ D

	
t y

x s



;

Gg.M/ D
	

s g.x/

�gg
#.y/ �g t



and

T!.M/ D
	

s x C s !

y C !#x C s !# t C T .y !/C T .x !#/C s N.!/



:

These maps are projective automorphisms of P Z2.J/.

The proof of the following lemma is straightforward and left to the reader.

Lemma 4.6. For every ! 2 J and for every g 2 Str.J/, we have

�3 B i D I B �3 ; �3 B g D Gg B �3 and �3 B t! D T! B �3: (4.5)

Consequently, the maps I , G and T! are projective automorphisms of the cubic X3
J .

Let Conf.J/ be the conformal group of J , that is the subgroup of PGL.Z2.J//
generated by I and the maps Gg and T! for all ! 2 J and all g 2 Str.J/. From
Lemma 4.6, it follows that Conf.J/ is a subgroup of the group of projective automor-
phisms of X3

J .
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Proposition 4.7. The group of projective automorphisms of X3
J acts transitively on

3-uple’s of general points of X3
J . In fact, if x1; x2; x3 2 J are sufficiently gen-

eral, there exists � 2 Conf.J/ such that �.�3.x1// D 0J , �.�3.x2// D 1J and
�.�3.x3// D 1J .

Proof. First let G D Str.J/ � e be the orbit in J of the unit e under the linear action
of the structural group. By Theorem 6.5 of [61], one knows that G is a Zariski-open
subset of J .

Assume that x; y; z 2 J are such that (1) y1 D y�x and z1 D z�x are invertible;
(2) z2 D z�1

1 � y�1
1 2 G, i.e z2 D g.e/ for a certain g 2 Str.J/. Then set

� D .Gg/
�1 B T�.y1/�1 B I B T�x 2 Conf.J/:

We leave to the reader to verify that�.�3.x// D 1J ,�.�3.y// D 0J and�.�3.z// D
1J . Since �3.J/ is dense in X3

J , the conclusion follows. �

Let x1; x2; x3 2 J and let � 2 Conf.J/ be as in the statement of Proposition 4.7.
Since � 2 PGL.Z2.J//, the curve ��1.CJ/ is a rational normal curve of degree 3
passing through the points �3.xi / for i D 1; 2; 3. Since � is a projective automor-
phism ofX3

J (by Lemma 4.6 above), this twisted cubic curve is also contained inX3
J .

Thus we have proved the following result.

Corollary 4.8. The twisted cubic X3
J associated to a rank 3 Jordan algebra J is

3-covered by rational normal curves of degree 3.

Let k be the dimension of a rank 3 Jordan algebra J . ThenX3
J is a non-degenerate

algebraic subvariety of the projective space PZ2.J/, whose dimension is 2k C 1.
Since �.k; 3; 3/ D 2k C 2, one obtains that X3

J � PZ2.J/ D P2kC1 is an example
of xX.k; 3; 3/. Thus the cubics X3

J associated to rank 3 Jordan algebras are exam-
ples of varieties of type xX.k; 3; 3/, which will be called models of Jordan type. A
consequence of Theorem 5.2 is that a X3

J is never of Castelnuovo type.
In fact, using Theorem 5.2, one can easily prove the following criterion which

characterizes the varieties xX.rC1; n; 2n�3/ of Castelnuovo type for arbitrary n � 3.

Proposition 4.9. A variety X D xX.r C 1; n; 2n � 3/ is of Castelnuovo type if and
only if for any n � 2 general point x2; : : : ; xn�1 2 X , the intersection of the spaceLn�1

iD2 Osc1
X .xi / with X contains a hypersurface.

In fact, it can be verified that the X D xX.r C 1; n; 2n � 3/ of Castelnuovo type
are exactly the two scrolls Sn�2;:::;n�2;n and Sn�2;:::;n�2;n�1;n�1 in P .n�1/.rC2/�1.
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4.3.1. Examples. We shall describe some explicit examples of models of Jordan
type.

A Jordan algebra J is simple if it does not admit proper non-trivial ideals. It is
semi-simple if it is a direct product of simple Jordan algebras (or equivalently, if the
bilinear symmetric form .x; y/ 7! T .xy/ is non-degenerate, see Theorem 5, p. 240,
in [34]).

Exemple 4.10. LetB be a symmetric bilinear form onW D Cr�1. Then J 0 D C˚W
with the product defined by

.
; y/ ˘ .
0; y0/ D �


0 � B.y; y0/; 
 y0 C 
0 y

�
(4.6)

is a Jordan algebra of rank 2. Moreover, x2 � 2
 x C .
2 C B.y; y// e D 0 for
any x D .
; y/ 2 J 0 (where e D .1; 0/). The generic norm and the generic trace
are N.
; y/ D 
2 C B.y; y/ and T .
; y/ D 2
, respectively, hence the adjoint is
given by x# D .
;�y/. One verifies that C ˚ W is semi-simple if and only if B
is non-degenerate and C ˚ W is simple if B is non-degenerate and r > 2. When
r D 2, J 0 D C ˚ W with the product (4.6) is isomorphic to the direct product (of
Jordan algebras) C � C.

One can define the conic associated to a Jordan algebraJ 0 of rank 2. By definition,
it is the (Zariski)-closure, denoted by X2

J0 , of the image of the affine map J 0 3 x 7!
Œ1 W x W N.x/
 2 P.C ˚ J 0 ˚ C/. Since N is homogeneous of degree 2, X2

J0 is a
non-degenerate quadric hypersurface in P rC1 (where r D dimC J 0). It is smooth if
and only if J 0 is simple. In any case, X2

J0 is an example of xX.r; 3; 2/ (of minimal
type).

Lemma 4.11. If J D C � J 0 is the direct product of C with a Jordan algebra J 0 of
rank 2 and dimension r , then J is of rank 3 and X3

J ' P1 �X2
J0 Segre embedded in

P2rC3.

This result ensures the existence of examples of models of Jordan type of any
dimension. For J D C � J 0 with J 0 of rank 2, note that X3

J is smooth if and only if
J is semi-simple.

4.3.2. Examples of xX.r C 1; 3; 3/’s associated to simple Jordan algebras of
rank 3. Let us now consider models of Jordan type associated to simple Jordan
algebras of rank 3, which can be completely classified. We recall the well-known
Hurwitz Theorem that there are exactly four composition algebras over the field of
real numbers: R itself, the field C of complex numbers and the algebras H and
O of quaternions and octonions respectively (the reader can consult [2] for a nice
introduction to these objects).
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If A denotes one of these algebras, let AC D A ˝ C be its complexification
(over R). Any such AC is a complex composition algebra: for xi D ai ˝ ri 2 AC,
with ai 2 A and ri 2 C for i D 1; 2, we define x1 �x2 D a1a2 ˝ r1r2, Sx1 D Sa1 ˝ r1
and kx1k2 D x1 � Sx1 2 C. Of course, except for OC, there are classical isomorphisms
(of complex algebras)

RC ' C; CC ' C ˚ C and HC ' M2.C/:

Let H3.AC/ be the space of Hermitian matrices of order three with coefficients
in AC:

H3.AC/ D
´ 

r1 Sx3 Sx2

x3 r2 Sx1

x2 x1 r3

! ˇ̌̌
x1; x2; x3 2 AC; r1; r2; r3 2 C

μ
:

The multiplication

.M;N / 7! 1

2
.MN CNM/ (4.7)

induces on H3.AC/ a structure of complex (unital commutative) Jordan algebra. For
A D R;C or H, it is a direct consequence of the fact that A and hence the rings of
3�3matrices,M3.AC/, are associative algebras. ForM3.OC/ a particular argument
is needed and we refer to [24], Chapters V and VIII, for this case. One proves (see
again [24]) that any Jordan algebra H3.AC/ is simple and of rank 3.

We are now able to describe all simple Jordan algebras of rank three. Their
classification is classical (cf. [34], p. 233, or [24] for instance) and is given in Table 1
below with a description of the corresponding cubic curves, see also [46], [39], [18].
The table also shows classical isomorphisms of H3.AC/ with some matrix algebras
having (4.7) as Jordan product (in the case A D R;C or H).

Table 1. Simple (unital and finite-dimensional) Jordan algebras of rank 3 and their associated
cubic curves.

Jordan algebra J Twisted cubic curve X3
J over J

H3.RC/ ' Sym3.C/
6-dimensional Lagrangian
grassmannian LG3.C6/ � P13

H3.CC/ ' M3.C/
9-dimensional Grassmannian
manifold G3.C6/ � P19

H3.HC/ ' Alt6.C/
15-dimensional orthogonal
Grassmannian OG6.C12/ � P31

H3.OC/ 27-dimensional E7-variety in P55
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It follows from [39], [18] that the cubic curves X3
J associated to one of the simple

Jordan algebras presented in Table 1 are homogeneous varieties, yielding non-singular
examples of xX.k; 3; 3/ of Jordan type, for k D 6; 9; 15 and 27.

The four varieties of the last column in Table 1 have been studied by several
authors from many points of view. The interested reader can consult for example
[46], [38], [39], [41], [18].

4.3.3. A Jordan cubic curve associated to the sextonions. The algebra of (com-
plex) sextonions SC is an alternative algebra over C such that HC � SC � OC. It
is of (complex) dimension 6 and has been constructed in [40], [67].

The product (4.7) realizes H3.SC/ as a 21-dimensional sub-Jordan algebra of
H3.OC/. Then H3.SC/ is of rank 3 but is not semi-simple (cf. [40], Section 8.2).
The cubic curve over H3.SC/ is denoted byG!.S3;S6/ in [40] where it is explained
why it can be considered as a kind of Lagrangian Grassmannian. It is a xX.21; 3; 3/
in P43 that is quasi-homogeneous and singular along a quadric of dimension 10
(cf. [40], Corollary 8.14).

4.4. Some cubic curves associated to associative algebras. LetA be an associative
algebra (of finite dimension) not necessarily commutative but with a unit e. Let AC
denote the algebra A endowed with the product x � y D 1

2
.xy C yx/. If A is

commutative, then A D AC. It is immediate to see that in general AC is a Jordan
algebra with e as unit. We will say that a Jordan algebra is special if it is isomorphic
to a subalgebra of a Jordan algebra of the form AC with A associative. For instance,
the simple Jordan algebras H3.AC/ in Table 1 are special except when A D O.

Being associative, A is also power-associative so that one can define its rank as
introduced at the beginning of Section 4.3. Of course, the rank of the associative
algebra A and the rank of the associated Jordan algebra AC coincide.

Complex associative algebras have been classified in low dimensions – e.g. in
dimension 3, 4 and 5 – in classical or more recent papers and looking at these lists
one immediately computes the rank of these algebras. Then, considering the AC’s
associated to rank three associativeA’s, one obtains examples of special cubic Jordan
algebras in dimension 3, 4 and 5. The computations needed to obtain the examples
appearing in the following subsections are elementary but tedious and quite long so
that they will not be reproduced here.

4.4.1. The xX.3; 3; 3/’s associated to special Jordan algebras of dimension three.
The classification of 3-dimensional complex associative algebras is classical, see [62],
[57]. We refer to [23], [26] for more recent references.

Theorem 4.12. A 3-dimensional complex associative (unital) algebra of rank 3 is
isomorphic to one of the following ones:

A1 D C � C � C; A2 D C � CŒX


.X2/
; A3 D CŒX


.X3/
:
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The above algebras are commutative so that AC
i D Ai (for i D 1; 2; 3) are

examples of special 3-dimensional cubic Jordan algebras. LetXAi
be the cubic curve

associated to AC
i . Clearly, the cubic curve XA1

is nothing but Segre’s threefold P1 �
P1 � P1 � P7, which is a particular case of the general construction of Lemma 4.11.
Similarly, one verifies that XA2

is isomorphic to the Segre embedding of P1 � S02

in P7.

On the other hand the cubic curve associated to A3 yields a new example. One
takes x D 1; y D X and z D X2 as a C-basis of A3. Since this algebra is com-
mutative, the Jordan product coincides with the associative one of A3 and may be
expressed as follows:

.x; y; z/ � .x0; y0; z0/ D .xx0; xy0 C x0y; xz0 C x0z C yy0/ :

Then the generic norm and the adjoint of .x; y; z/ 2 A3 are given by the following
formulae:

N.x; y; z/ D x3 and .x; y; z/# D .x2;�xy; y2 � xz/:

So the cubic curve XA3
is the closure of the image of the rational map

Œx W y W z W t 
 7�! �
t3 W xt2 W yt2 W zt2 W x2t W �xyt W .y2 � xz/t W x3

�
: (4.8)

The variety XA3
� P7 can also be described as the image of P3 by the rational

map associated to the linear system of cubic surfaces passing through three infinitely
near double points (two of them generate the line x D t D 0 contained in the base
locus scheme of the linear system) so that it has degree 6.

4.4.2. Some xX.4; 3; 3/ associated to Jordan algebras of dimension four. The
classification of 4-dimensional complex associative algebras is also classical, see
[62], [58], and was also reconsidered more recently in [26], see also the references
in these papers. As explained above, we are essentially interested in those of rank
3, whose classification is contained in the next result where we use the labels and
notation of [26], p. 151–152.

Proposition 4.13. Let A be a 4-dimensional associative algebra of rank three. Then
if A is commutative, it is isomorphic to one of the following algebras

A6 D C � CŒX; Y 


.X; Y /2
; A7 D CŒX; Y 


.X2; Y 2/
; A8 D CŒX; Y 


.X3; XY; Y 2/

If A is not commutative, then one of the following holds:
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� A is isomorphic to one of the following three triangular matrix algebras

A13 D C �
�

C C
0 C

�
I A14 D

´ 
a 0 0
c a 0
d 0 b

! ˇ̌̌
a; b; c; d 2 C

μ
I

A15 D .A14/
opp I

� there exists 
 2 C n f1g such that A is isomorphic to

A18.�/ D ChX; Y i
.X2; Y 2; YX � 
XY / I

� A is isomorphic to

A19 D ChX; Y i
.Y 2; X2 C YX;XY C YX/

:

(Here ChX; Y i stands for the free associative algebra generated by 1, X and Y ).

Since A15 D .A14/
opp one has AC

14 D AC
15. Moreover, one verifies easily (via

elementary computations) that the Jordan algebras AC
18.�/

and AC
19 are associative so

that they are isomorphic to one of the three commutative associative algebras A6, A7

orA8 (in fact one hasAC
18.�/

' A7 andAC
19 ' A8). Thus we get the following result.

Corollary 4.14. Let J be a rank 3 Jordan algebra of dimension 4 of the form AC
with A associative and of rank three. Then J is isomorphic to one of the following
algebras:

A6; A7; A8; AC
13 or AC

14: (4.9)

The reader has to be aware that not every 4-dimensional cubic Jordan algebra is
of the form AC with A associative. For instance (as explained above), if J 0 stands
for the simple Jordan algebra of rank 2 on C3 then the direct product C � J 0 is a
non-associative Jordan cubic algebra not isomorphic to any of the Jordan algebras in
(4.9). In this case, the associated cubic curve XC�J0 is P1 �Q � P9 where Q is a
smooth hyperquadric in P4.

Another example is given by the Jordan algebra denoted by J�, the Jordan product
of which is explicitly given by

x � y D � � x1y1 ; x2y2 ; x4y4 � x1y3 � x3y1 ;
1

2
.x2y4 C x4y2 � x1y4 � x4y1/

�
for x D .xi /

4
iD1 and y D .yi /

4
iD1 in C4 D J�. One verifies that J� is indeed of

rank 3.
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After some easy computations, one obtains explicit affine parametrizations of the
form x 7! Œ1 W x W x# W N.x/
 of the cubic curves associated to the cubic Jordan
algebras mentioned above in this subsection. We collect them in the following table
for further reference.

Table 2

Algebra J Adjoint x# Norm N.x/ XJ � P9

AC
6 D A6

�
x2

2 ; x1x2 ;�x1x3 ;�x1x4

�
x1 x2

2 P1 � S002

AC
7 D A7

�
x1

2 ;�x1x2 ;�x1x3 ; 2x2x3 � x1x4

�
x1

3

AC
8 D A8

�
x1

2 ;�x1x2 ;�x1x3 ; x2
2 � x1x4

�
x1

3

AC
13 .x2 x4 ; x1x4 ;�x1x3 ; x1x2/ x1 x2 x4 P1 � S011

AC
14 .x1x2; x1

2;�x2x3;�x1x4/ x1
2 x2

C � J 0 .x2
2 C x2

3 C x2
4 ; x1x2 ; �x1x3 ; �x1x4/ x1.x

2
2 C x2

3 C x2
4/ P1 �Q

J� .x1x2 ; x1
2 ; x4

2 � x2x3 ; x1x4/ x1
2 x2

4.5. Some other examples of xX.r C 1; n; 2n � 3/ when n > 3. According to the
main result of [52], a variety xX.r C 1; n; ı/ is of Castelnuovo type except maybe
when n > 2, r > 1 and ı D 2n � 3. The cubic curves associated to Jordan algebras
of rank three provide examples of xX.r C 1; 3; 3/ that are not of Castelnuovo type. It
is natural to try to produce some examples of xX.rC 1; n; 2n� 3/ not of Castelnuovo
type for n > 3.

We are aware essentially only of examples which are closely related to varieties
3-covered by twisted cubics.

The Veronese manifold v3.P3/ � P19 is of course a xX.3; 2; 3/ but is also a
xX.3; 6; 9/. Indeed, since P3 is 6-covered by twisted cubics, it follows that v3.P3/

is 6-covered by rational normal curves of degree 9. Of course, v3.P3/ is not of
Castelnuovo type (since deg.v3.P3// D 27 whereas the degree of a Castelnuovo
model X D xX.3; 6; 9/ is 17). Now let x1; x2; x3 be three generic points on v3.P3/.
For I � f1; 2; 3g of cardinality i � 3, letXI be the image of v3.P3/ by the osculating
projection of center SI defined as the span of the 1-osculating spaces of v3.P3/ at
the points xi with i 2 I . ThenXI is non-degenerate in P19�4i , is .6� i/-covered by
rational normal curves of degree 9 � 2i hence is an example of xX.3; 6 � i; 9 � 2i/.
When i D 3, one has XI D P1 � P1 � P1 hence this example is not new. But
for i D 1 and i D 2, one obtains respectively two new examples of xX.3; 5; 7/ and
xX.3; 4; 5/ that are not of Castelnuovo type.
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5. Classification of projective varieties 3-covered by twisted cubics

By definition x�.r; 3; 3/ D 2r C 4 for every r � 1. In this Section we shall classify
varieties X D xX.r C 1; 3; 3/ � P2rC3 for r small and/or under suitable hypothesis.

Let us recall some facts, which were proved in the previous sections or which are
easy consequences of them.

Lemma 5.1. Let X D xX.r C 1; 3; 3/ � P2rC3. Then:

(1) The tangential projection�T W X Ü P rC1 from the tangent spaceT D TxX D
Osc1

X .x/ at a general point x 2 X is birational. In particular X is a rational
variety, SX D P2rC3 and X is not a cone.

(2) The variety X � P2rC3 is not the birational projection from an external point
of a variety X 0 � P2rC4.

Proof. The family of twisted cubics passing through x is 2-covering and a general
twisted cubic in this family projects from T onto a general line in P rC1 so that the
birationality of �T follows from Lemma 2.1 and the first part is proved.

Suppose that X D �p.X
0/ with p 2 P2rC4 n X 0. Let xi 2 X , i D 1; 2; 3,

be general points and let x0
i 2 X 0 such that �p.x

0
i / D xi for every i D 1; 2; 3. If

C � X is the unique twisted cubic passing through x1, x2, x3 and if C 0 � X 0
is its strict transform on X 0, then C 0 is a rational curve passing through x0

1, x0
2,

x0
3 such that �p.C

0/ D C , yielding deg.C 0/ D deg.C / D 3. This would imply
X 0 D X.r C 1; 3; 3/ � P2rC4, and we would obtain 2r C 5 � x�.r; 3; 3/ D 2r C 4:

This contradiction concludes the proof. �

By definition, there exists an irreducible family of twisted cubics, let us say †,
contained in X D xX.r C 1; 3; 3/ � P2rC3. Moreover, † has dimension 3r , is 3-
covering and through three general points of X there passes a unique twisted cubic
belonging to †. The family of twisted cubics in † passing through a general point
x 2 X contains an irreducible component of dimension 2r which is 2-covering for
X . These twisted cubics are mapped by �T onto the lines in P rC1 and a general line
in P rC1 is the image via �T of a twisted cubic passing through x. The birational map

� D ��1
T W P rC1 Ü X � P2rC3

is thus given by a linear system of cubic hypersurfaces mapping a general line of P rC1

birationally onto a twisted cubic passing through x. The general cubic hypersurface
in this linear system is mapped by � birationally onto a general hyperplane section
of X .

Let x�x W xX D Blx.X/ ! X be the blow-up of X at x and let E D P r be the
exceptional divisor of x�x . Let x�T D x�x B �T W xX Ü P rC1. The restriction of x�T

to E is defined by a linear system jIIX;xj of quadric hypersurfaces in E D P r , the
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so-called second fundamental form of X at x. We shall denote by Bx � E D P r the
base locus scheme of jIIX;xj.

Since X � P2rC3 is non-degenerate, the birational map x�T is defined at the
general point ofE. We claim thatE 0 D x�T jE .E/ D P r � P rC1 is a hyperplane and
that the restriction of x�T to E is birational onto its image. Indeed, if dim.E 0/ < r ,
then a general line in P rC1 would not cut E 0 and its image by � would not pass
through x. If deg.E 0/ � 2, then a general line l � P rC1 would cut E 0 at deg.E 0/
distinct points where � is defined. From �.E 0/ D x we would deduce that �.l/ is
singular at x, in contrast with the fact that �.l/ is a twisted cubic. From this picture
it also immediately follows the birationality of the restriction of x�T to E.

Therefore dim.jIIX;xj/ D r and x�T jE W E Ü E 0 is a Cremona transformation
not defined alongBx , the base locus scheme of jIIX;xj. Moreover, since �.E 0/ D x,
the restriction of the linear system of cubic hypersurfaces defining � toE 0 is constant
and given by a cubic hypersurface C0

x � E 0 D P r . One can assume that E 0 � P rC1

is cut out by x0 D 0. Let x D .x1; : : : ; xrC1/ 2 CrC1 and let f .x/ be a cubic
equation for C0

x � E 0. Let us choose homogeneous coordinates .y0 W � � � W y2rC3/ on
P2rC3 such that x D .0 W � � � W 0 W 1/ and TxX D V.y0; : : : ; yrC1/.

The map � W P rC1 Ü X � P2rC3 is given by 2r C 4 cubic polynomials
g0; : : : ; g2rC3. We can suppose that x0 does not divide g2rC3 and that x0 divides gj

for every j D 0; : : : ; 2r C 2. Moreover x2
0 divides g0; : : : grC1 since the hyperplane

sections of the form 
0g0 C � � � C 
rC1grC1 D 0 correspond to hyperplane sections
ofX containing TxX and hence having at least a double point at x. Modulo a change
of coordinates on P rC1 we can thus suppose gi D x2

0xi for every i D 0; : : : ; r C 1

and that g2rC3 D x0g C f , with g D g.x/ quadratic polynomial. The hyper-
plane sections of X passing through x and not containing TxX are smooth at x from
which it follows that we can also suppose grC2Cj D x0fj with j D 0; : : : ; r and
fj D fj .x/ quadratic polynomials. By Lemma 5.1 we can also suppose g D 0,
or equivalently g 2 hf0; : : : ; fri. Otherwise X � P2rC3 would be the birational
projection on the hyperplane V.y2rC4/ D P2rC3 � P2rC4 from the external point
.0 W � � � W 0 W 1 W �1/ 2 P2rC4 of the variety X 0 � P2rC4 having the parametrization
Q� W P rC1 Ü X 0 � P2rC4 given by the following homogenous cubic polynomials:
Qgi D gi for i D 0; : : : ; 2r C 2; Qg2rC3 D x0g and Qg2rC4 D f .

By blowing-up the point x on P2rC3 it immediately follows that the restriction
of x��1

T to E 0 is given by .f0 W � � � W fr/. Hence  x WD x�T jE W E Ü E 0 is either
a projective transformation or a Cremona transformation of type .2; 2/, i.e. given by
quadratic forms without a common factor and such that the inverse is also given by
quadratic forms without a common factor. In conclusion we can suppose that the
rational map � is given by the 2r C 4 cubic polynomials

x3
0 ; x

2
0x1; : : : ; x

2
0xrC1; x0f0; : : : ; x0fr ; f (5.1)

and that the base locus of  �1
x , B 0

x � P r D E 0, is V.f0; : : : ; fr/ � P r , where
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in this case the polynomials fi .x/ are considered as polynomials in the variables
x1; : : : ; xrC1.

Let txX denote the affine tangent space toX at x. The first principal result in this
section is the following.

Theorem 5.2. Let X D xX.r C 1; 3; 3/ � P2rC3 and let notation be as above. Let
x 2 X be general and let x W P r Ü P r be the associated Cremona transformation.
Then the following conditions are equivalent:

(a)  x is equivalent to a projective transformation as a birational map;

(b) X is projectively equivalent either to S1:::122 or to S1:::113;

(c) the affine parametrization deduced from (5.1) is, respectively, either�
1 W x1 W � � � W xrC1 W x2

1 W x1x2 W � � � W x1xrC1 W x2
1x2

�
or �

1 W x1 W � � � W xrC1 W x2
1 ; x1x2 W � � � W x1xrC1 W x3

1

�I
(d) the projection from T D TxX of a general twisted cubic included in X is a

conic.

If X D xX.r C 1; 3; 3/ � P2rC3 is not a rational normal scroll as above, then:

(1) the associated Cremona transformation  x is of type .2; 2/;

(2) the linear system defining � W P rC1 Ü X � P2rC3 consists of the cubic
hypersurfaces in P rC1 having double points along B 0

x � E 0 � P rC1;

(3) the scheme Bx � P r is equal (as scheme) to Lx � P r , the Hilbert scheme
of lines contained in X and passing through x in its natural embedding into
E D P..txX/�/. Moreover, B 0

x � E 0 D P r and Bx D Lx � E D P r

are projectively equivalent so that  x and its inverse have the same base loci,
modulo this identification.

(4) if X is also smooth, then Bx D Lx and B 0
x are smooth schemes.

Proof. The birational map  x is equivalent to a projective transformation as a bira-
tional map if and only if the linear system jIIX;xj has a fixed component, which is
necessarily a hyperplane. It is well known, see also [29], (3.21), that this happens
if and only if X � P2rC3 is a scroll in the classical sense. From Lemma 5.1 we
deduce that this happens if and only ifX � P2rC3 is a smooth rational normal scroll,
yielding the equivalence of (a) and (b). If X � P2rC3 is a rational normal scroll
as before, a general twisted cubic xC � X cuts P r

x D TxX \ X in a point so that
�T . xC/ D zC � P rC1 is a conic cutting E 0 in two points, possibly coincident. These
two points are contained in the base locus of  and one of this point is double for
the general cubic hypersurface in the linear system defining  since  . zC/ D xC is a
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twisted cubic. From this we deduce that C0
x consists of a double hyperplane… � E 0,

which is exactly B 0
x , and of another hyperplane, possibly infinitely near to …. By

reversing the construction we see that if �T . xC/ D zC is a conic, then C0
x is as before

and the general cubic hypersurface defining � has a double point along a hyperplane
… � E 0, which is easily seen to be equal to B 0

x , yielding that X � P2rC3 is a
scroll. Therefore also the equivalence of (b) and (d) is proved. If we suppose that
B 0

x D P r�1 � E 0 is given by x0 D x1 D 0 and if we take into account the previous
description we immediately deduce the equivalence between (c) and (d).

Suppose from now on that X D xX.r C 1; 3; 3/ � P2rC3 is not a rational normal
scroll so that by the previous part the associated Cremona map  x is of type .2; 2/,
proving (1).

By the discussion above on P rC1 nE 0 the map � has an affine expression

�.x/ D �
1 W x1 W � � � W xrC1 W f0.x/ W � � � W fr.x/ W f .x/�:

Let .y0 W � � � W y2rC3/ be a system of homogeneous coordinates on P2rC3 as above.
Then the equations definingX � P2rC3 in the affine space A2rC3 D P2rC3 nV.y0/

are yi D xi , i D 1; : : : ; r C 1; yrC2Cj D fj .x/, j D 0; : : : ; r and y2rC3 D f .x/,
that is, letting y D .y1; : : : ; yrC1/, we get the equations yrC2Cj D fj .y/ for
j D 0; : : : ; r and y2rC3 D f .y/.

Let p D �.1 W p/ D .1 W p W f0.p/ W � � � W fr.p/ W f .p// be a general point
of X , with p D .p1; : : : ; prC1/ 2 CrC1. In particular .0 W p/ is a general point on
E 0. A tangent direction at p 2 X corresponds to the image via d�q of the tangent
direction to some line passing through q D .1 W p/ 2 P rC1. We shall parametrize
lines through q via points .0 W y/ 2 E 0 so that such a line, denoted by Ly , admits
t 7! p C ty as an affine parametrization. Then for i D 0; : : : ; r , one has

fi .p C ty/ D fi .p/C 2tf 1
i .p;y/C t2fi .y/; (5.2)

where f 1
i stands for the bilinear form associated to the quadratic form fi . Moreover

f .p C ty/ D f .p/C tf .p;y/C t2f .y;p/C t3f .y/; (5.3)

where f .p;y/ D dfp.y/ is quadratic in p and linear in y .
Clearly, the base locus of the second fundamental form at p D �.1 W p/ is the

scheme

Bp D V
�
f0.y/; : : : ; fr.y/; f .y;p/

� D V
�
f0.y/; : : : ; fr.y/

� � P
�
.tpX/

��;
where the second equality of schemes follows from the equality dim.hf0; : : : ; fri/ D
r C 1 combined with the fact that dim.jIIX;pj/ D dim.jIIX;xj/ by the generality of
p 2 X . In particular we deduce that for z 2 Bp we have f .z;p/ D 0. Because
.0 W p/ is general in E 0, this implies dfz D 0 (since f .z;p/ D dfz.p/ for every p)
on one hand, and gives f .z/ D 0 on the other hand (since 0 D f .z; z/ D 3f .z/ after
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specializing p D z). The previous facts show that the cubic C0
x D V.f .x// � P rC1

has double points along B 0
x and part (2) is proved. From these facts it immediately

follows also that the closure of the image of the line Lz (for z 2 Bp) via the map �
is a line included in X and passing through p, proving (3). Put more intrinsically,
the equation of Lp , the Hilbert scheme of lines contained in X and passing through
p in its natural embedding into P..tpX/�/, is the scheme defined by the equations
fj .x/; f .x;p/; f .x/ and we proved that the ideal generated by these polynomials
coincides with the ideal generated by the fj ’s which defines Bp as a scheme.

To prove (4) we recall that for a smooth variety X � PN the scheme Lx �
P..txX/�/, when non-empty, is a smooth scheme for x 2 X general, see for example
Proposition 2.2 of [53]. �

Let
' D .'0; : : : ; 'r/ W P r Ü P r

be a Cremona transformation of bidegree .2; 2/. Let B , respectively B 0, be the base
locus of ', respectively of '�1. The classification of such maps is known for r D 2,
r D 3 (see [47]) and for r D 4 in the generic case (see [60]). From this classification
one deduces that in low dimension the base lociB andB 0 are projectively equivalent so
that, modulo a projective transformation, every Cremona transformation of bidegree
.2; 2/ in P r , r � 4, is an involution. As a consequence of Theorem 5.2 we deduce
below that this holds for arbitrary r � 2 a priori and not as a consequence of the
classification. As far we know, this question has not been addressed in the literature.

Corollary 5.3. Let ' D .'0; : : : ; 'r/ W P r Ü P r be a Cremona transformation of
bidegree .2; 2/with r � 2. LetB , respectivelyB 0, be the base locus of ', respectively
of '�1. Then B and B 0 are projectively equivalent.

Proof. Consider
�1 W BlB.P

r/ ! P r ;

the blow-up of P r along B , and

�2 W BlB0.P r/ ! P r ;

the blow-up of P r along B 0. We deduce the following diagram of birational maps:

BlB.P r/ D BlB0.P r/ � P r � P r

�1

�������������������
�2

�������������������

P r
'

���������������������� P r

(5.4)

where �i are naturally identified with the restriction of the projections on each factor.
The equality BlB.P r/ D BlB0.P r/, from now on indicated with zP r , follows from the
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fact that these reduced and irreducible schemes are the closure of the graph of the
maps ' and '�1 inside P r � P r .

Let E1 D ��1
1 .B/ and E2 D ��1

2 .B 0/ be the �i -exceptional Cartier divisors,
i D 1; 2, defined by the invertible sheaves ��1

1 �B � OzPr , respectively ��1
2 �B0 � OzPr .

Let Hi 2 j��
i .O.1//j for i D 1; 2. We have

H2 	 2H1 �E1 and H1 	 2H2 �E2 (5.5)

from which we deduce

E1 	 3H2 � 2E2 and E2 	 3H1 � 2E1: (5.6)

Let x D .x1 W � � � W xrC1/ be homogeneous coordinates in P r , which we shall
consider as the hyperplane V.x0/ on P rC1 with homogeneous coordinates .x0 W x1 W
� � � W xrC1/. Let C1 D �1.E2/ D V.n.x// � P r and let C2 D �2.E1/ D V. Qn.x//.
By the above description C1 � P r is a cubic hypersurface singular along B , that
is the partial derivatives of n.x/ also belong to the homogeneous saturated ideal
IB � CŒx1; : : : ; xrC1
. One also immediately proves that C1 is the so-called secant
scheme ofB , that is the scheme defined by the image of the universal family of lines in
P2rC3 over the lines generated by length 2 subschemes of B . From this one deduces
another proof that C1 is singular along B .

The map � W P rC1 Ü P2rC3 given by

�.x0;x/ D �
x3

0 W x2
0x1 W � � � W x2

0xrC1 W x0'0.x/ W � � � W x0'r.x/ W n.x/�
is birational onto the closure of its image X � P2rC3. We claim that X D xX.r C
1; 3; 3/ so that the conclusion will follow from part (3) of Theorem 5.2. Indeed
let p1; p2; p3 2 P rC1 be three general points, let … D hp1; p2; p3i be the plane
they span and let L D V.x0/ \ …. Then L � V.x0/ D P r is a general line so
that '.L/ D C is a conic in P r cutting B 0 in a length 3 scheme R0 spanning a
plane …0. Then '�1.…0/ D … is a plane containing L and cutting B in a length 3
scheme R spanning…. Then hp1; p2; p3; Ri D P3 and through the length 6 scheme
p1 [p2 [p3 [R there passes a unique twisted cubic zC . Then �. zC/ is a twisted cubic
since the linear system defining� consists of cubic hypersurfaces having double points
along B and it passes through the three general points �.p1/; �.p2/; �.p3/ 2 X .

�

Let the notation be as above. Then, modulo composition to the left by a linear
map, one can assume that B D B 0. This implies in particular that there exist ` 2
End.CrC1/ invertible such that '�1 D ` B '. Thus there exists a cubic form n.x/

such that
` B ' B '.x/ D n.x/x (5.7)

for every x D .x1; : : : ; xrC1/ 2 CrC1.
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In substance, Theorem 5.2 and the construction in Corollary 5.3 say that every
xX.r C 1; 3; 3/ not of Castelnuovo type determines (and is determined by) a quadro-

quadric Cremona transformation of P r . We point out that the previous remark has
the following interesting geometric consequence.

Corollary 5.4. Let X D xX.r C 1; 3; 3/ � P2rC3. Then X is a variety with one
apparent double point, that is there passes a unique secant line to X through a
general point q 2 P2rC3.

Proof. Let notation be as above and let q D .1 W q W q0 W z/ 2 P2rC3 be a fixed
general point, where q; q0 2 CrC1 and z 2 C� by generality of q. Moreover, we can
also suppose that all the pairs of distinct points p1; p2 2 X such that q 2 hp1; p2i
are of the form pi D .1 W xi W x0

i W n.xi // with xi 2 CrC1 for i D 1; 2. We
shall essentially argue as in Proposition 8.4 of [18] (see also [40], Proposition 8.16).
Modulo a translation in CrC1 we can suppose without loss of generality that q D 0,
that n.q0/ ¤ 0 and that pi D .1 W xi W '.xi / W n.xi // 2 X , i D 1; 2, are two distinct
points such that q 2 hp1; p2i. We have to show that the equation

q D 
p1 C �p2

has uniquely determined solutions. The above equation splits into the following four:


C � D 1; x2 D �

�

x1; '.x1/ D �



q0 and n.x1/ D �2


.� � 
/z: (5.8)

Thus relation (5.7) implies

n.x1/x1 D .` B '/.'.x1// D �2


2
.` B '/.q0/

so that

x1 D � � 


z

.` B '/.q0/ and x2 D 
 � �
�z

.` B '/.q0/:

We deduce that p1; p2 2 X are uniquely determined by q as soon as we show
that .
; �/ are uniquely determined by this point. Since 
C � D 1, we shall prove
that 
� is uniquely determined.

From relation (5.7), it follows that there exists a cubic form m such that ' B ` B
'.y/ D m.y/y for every y 2 CrC1. This yields m.'.x// D n.x/2 for every x.

Applying m to '.x1/ D 	
�

q0 we deduce n.x1/
2 D 	3

�3m.q
0/. Combining this with

the last relation in (5.8) and remarking that .�� 
/2 D 1� 4
� (since 
C� D 1),
we finally get


� D m.q0/
z2 C 4m.q0/

;

concluding the proof. �
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Remark 5.5. Following a classical approach of Bronowski, see [8], it was proved in
[15] that an irreducible variety X � P2rC3 with one apparent double point (OADP
variety) projects birationally onto P rC1 from a general tangent space T D TxX , see
also [16] for generalizations. Letting notation be as in the discussion before Theo-
rem 5.2, then �T .E/ D E 0 � P rC1 is hypersurface of degree d D deg.E 0/ � 1,
which is a birational projection of the quadratic Veronese embedding of P r . In par-
ticular 1 � d � 2r . In Theorem 5.3 of [17] it is proved that for normal OADP
varieties having d D deg.E 0/ D 1, not scrolls over a curve, the birational map
��1

T W P rC1 Ü X � P2rC3 is given by a linear system of cubics hypersurfaces hav-
ing double points along the base locus of the quadro-quadric Cremona transformation
��1

T jE W E 0 Ü E. In particular this class of normal OADP varieties is contained in

the class ofX D xX.rC1; 3; 3/ � P2rC3 so that the subsequent classification results
of xX.r C 1; 3; 3/’s of different kind or dimension can be reformulated for the above
class of normal varieties, see [17]. Conjecturally every xX.r C 1; 3; 3/ should be
projectively equivalent to a XJ � P2rC3, see discussion in Remark 5.13 below. The
known examples of twisted cubics over cubic complex Jordan algebras are normal
varieties even if we are not aware of a general proof of this fact and neither of the fact
that a xX.r C 1; 3; 3/ is a priori normal. If these were true, one would deduce a one
to one correspondence between normal OADP varieties with d D deg.E 0/ D 1 and
xX.r C 1; 3; 3/ and also probably with twisted cubic over Jordan algebras.

Cremona transformations have been studied since a long time and several clas-
sification results have been obtained, especially for quadro-quadric transformations.
These classifications can be used to describe all the xX.r C 1; 3; 3/ in low dimension
or under suitable hypothesis. We shall begin by recalling some easy results on Cre-
mona transformations of type .2; 2/ having smooth base loci, see also [20] and [53],
Section 4, for the study of related objects.

Proposition 5.6. Let ' W P r Ü P r be a Cremona transformation of type .2; 2/
whose base locus B � P r is smooth. Then one of the following holds:

(1) r � 2, B D Qr�2 q p with Qr�2 a smooth quadric hypersurface and p 62
hQr�2i;

(2) r D 5 and B is projectively equivalent to the Veronese surface �2.P2/;

(3) r D 8 and B is projectively equivalent to the Segre variety P2 � P2;

(4) r D 14 and B is projectively equivalent to the Grassmann variety G2.C6/;

(5) r D 26 and B is projectively equivalent to the 16-dimensional E6 variety.

Proof. Let notation be as in the proof of Corollary 5.3. Let B1; : : : ; Bs be the irre-
ducible components of B and let B 0

1; : : : ; B
0
t be the irreducible components of B 0.

It is easy to see that the general quadric hypersurface defining ' is smooth at every
point of B .
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The smoothness of B ensures that Bj \ Bl D ; for every j ¤ l so that zP r is
smooth and naturally isomorphic to the successive blow-up of theBi ’s in some order.
In particular s D t (see also Corollary 5.3).

Let Ei D ��1
1 .Bi / and let E 0

i D ��1
2 .B 0

i /. Let Hj D ��
j .H/ with j D 1; 2

and with H � P r a hyperplane. We have the following linear equivalence relation
of divisors on zP r , see proof of Corollary 5.3:

E1 C � � � CEs 	 3H2 � 2.E 0
1 C � � � CE 0

s/

and
E 0

1 C � � � CE 0
s 	 3H1 � 2.E1 C � � � CEs/:

Thus the scheme-theoretic images �2.E1 C � � � C Es/ and �1.E
0
1 C � � � C E 0

s/ have
degree 3, yielding s � 3.

Suppose s D 3. Then deg.�2.Ei // D deg.�1.E
0
i // D 1 for every i D 1; 2; 3

so that Bi and B 0
i are a linearly embedded P r�2 since the intersection of two dis-

tinct hyperplanes �1.E
0
i /, respectively �2.Ei /, is contained in the base locus. The

smoothness of a general quadric defining ' along each Bi D P r�2 � P r implies
r � 2 � r�1

2
, that is r � 3. Thus necessarily r D 2 since h0.�B.2// D r C 1 and

we are in case (1).
If s D 2, we can suppose deg.�1.E

0
1// D 2 and deg.�1.E

0
2// D 1. Thus

the quadric �1.E
0
1/ \ �1.E

0
2/ is an irreducible component, let us say B1, of B . The

birationality of' impliesh0.IB.2// D rC1. Sinceh0.IB.2// � h0.IB1
.2// D rC2,

we see that B2 consists of only one point and we are in case (1).
If s D 1, the above diagram (5.4) shows that for general q 2 �1.E

0
1/ n B

there exists a linear space P r�1�dim.B0/
q passing through q and cutting X along a

quadric hypersurface of dimension r � 2 � dim.B/. If '.q/ D q0, then naturally
P r�1�dim.B0/ D P..NB0=Pr /�x/. This immediately implies that�1.E

0
1/ is the variety of

secant lines toB and thatB � P r is aQEL-manifold of type ı.B/ D 1
2

dim.B/, see
[53], Proposition 4.2. Indeed, r�2�dim.B/ D ı.B/ D 2 dim.B/C1�dim.�1.E

0
1//

yields dim.B/ D 2
3
.r � 2/, see also the computations in [20]. Thus B � P r is a

QEL-manifold and also a Severi variety in the sense of Zak. The classification of
Severi varieties due to Zak, see [68] and also [53], Corollary 3.2, assures that we are
in one of the cases (3)–(6). �

The classification of arbitrary xX.r C 1; 3; 3/ � P2rC3 is difficult due to the
existence of a lot of singular examples. By Theorem 5.2 and Corollary 5.3 this
classification is closely related to that of all Cremona involutions of type .2; 2/ on P r

and also to the classification of arbitrary complex cubic Jordan algebras of dimension
rC1. On the contrary for smooth xX.rC1; 3; 3/’s a complete classification is possible
due to Proposition 5.6 and Theorem 5.2.

Theorem 5.7. LetX D xX.rC1; 3; 3/ � P2rC3 be smooth. Then one of the following
holds, modulo projective equivalence:
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(i) X is either S1:::122 or S1:::113;

(ii) X is the Segre embedding P1 �Qr � P2rC3 withQr a smooth hyperquadric;

(iii) r D 5 and X is the Lagrangian Grassmannian LG3.C6/ � P13;

(iv) r D 8 and X is the Grassmannian G3.C6/ � P19;

(v) r D 14 and X is the orthogonal Grassmannian OG6.C12/ � P31;

(vi) r D 26 and X is the E7-variety in P55.

Proof. If the associated Cremona transformation is equivalent to a projective trans-
formation we are in case (i) by Theorem 5.2. Otherwise, by Theorem 5.2, the as-
sociated Cremona transformation  x is of type .2; 2/ with smooth base locus. Let
� W P rC1 Ü X � P2rC3 be the birational representation of X given by the linear
system of cubic hypersurfaces having double points along B 0

x . Then B 0
x is projec-

tively equivalent to a variety as in cases (1)–(5) of Proposition 5.6 so that X is as
in cases (ii)–(vi) by a well-known description of the corresponding varieties, see for
example [38], [39], [46]. �

Now we apply the classification of quadro-quadric Cremona transformations in
low dimension to deduce the corresponding classification for varieties 3-covered by
twisted cubics. For instance, since every birational map' W P1 Ü P1 is equivalent to
a projective transformation, one immediately deduces that a surface xX.2; 3; 3/ � P5

is necessarily of Castelnuovo type, namely it is one of the scrolls S13 or S22. Then,
by projecting from m � 3 general points, one gets the following result:

Corollary 5.8. Let X D xX.2;m;m/ � PmC2, m � 3. Then X is projectively
equivalent to a smooth rational normal scroll of degree mC 1.

The classification of birational maps of degree 2 on P2 is classical, easy and
well known. From this we shall immediately deduce the classification of arbitrary
xX.3; 3; 3/ � P7.

Corollary 5.9. Let X D xX.3; 3; 3/ � P7. Then X is projectively equivalent to

(1) a smooth rational normal scroll of degree 5, that is S113 or S122; or

(2) the variety P1 �Q2 � P7 whereQ2 � P3 is an irreducible quadric; or

(3) the normal del Pezzo 3-fold obtained as the image of P3 by the linear system
of cubic surfaces having three infinitely near double points or equivalently de-
scribed as the twisted cubic over the Jordan algebra A3 of Theorem 4.12 and
admitting the parametrization (4.8).
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Proof. If  x W P2 Ü P2 is equivalent to a projective transformation, then we are in
case (1) by Proposition 5.2. Otherwise  x W P2 Ü P2 is a Cremona transformation
of type .2; 2/. If  x is the ordinary quadratic transformation, then the cubic surfaces
defining � W P3 Ü X � P7 have three double distinct points at the indeterminacy
points of ��1

x so that this linear system coincides with the complete linear system of
cubic surfaces having these three double points. In this case X � P7 is projectively
equivalent to the Segre embedding of P1 � Q2 with Q2 a smooth quadric surface,
see also Theorem 5.7.

If  x has two infinitely near base points and another base point, reasoning as
above we have that X � P7 is projectively equivalent to the Segre embedding of
P1 � S02.

If  x has three infinitely near base points, then � is given by a linear system of
cubic surfaces having three infinitely near double points and we are in case (3). �

Using the last result, we can now classify irreducible 3-folds X D xX.3;m;m/ �
PmC4 for every m � 4. If m � 4, by projecting from m � 3 general points we get
an irreducible 3-fold Xm�3 � P7 which is 3-covered by twisted cubics. If Xm�3 is
a smooth rational normal scroll of degree 5, then X � PmC4 is a smooth rational
normal scroll of degree m C 2. If Xm�3 � P7 is a 3-fold as in Corollary 5.9, then
X � PmC4 would be a normal del Pezzo 3-fold of degree 6Cm� 3 D mC 3 � 7,
which is linearly normal. Moreover since SXm�3 D P7, we deduce dim.SX/ D 7.
The normal del Pezzo 3-folds X � PmC4 of degree mC 3, m � 4, are smooth and
with dim.SX/ D 6, see [25]. In conclusion we have proved the following result:

Corollary 5.10. Let X D xX.3;m;m/ � PmC4 with m � 4. Then X is a smooth
rational normal scroll of degree mC 2.

Also the classification of quadratic Cremona transformation on P3 is known. By
comparing Tableau 1 in [47] and Table 2 above one obtains the following result.

Theorem 5.11. Let  W P3 Ü P3 be a Cremona transformation of bidegree .2; 2/,
not equivalent to a projective transformation. Then up to composition to the right
and to the left by linear automorphisms,  can be assumed to be one of the seven
quadratic involutions x 7! x# defining the adjoint of one of the seven cubic Jordan
algebras on C4 described in Section 4.4.2 (see Table 2 for explicit formulae).

From Theorem 5.11, it follows immediately the

Corollary 5.12. LetX D xX.4; 3; 3/ � P9. ThenX is projectively equivalent to one
of the following varieties:

(1) a smooth rational normal scroll of degree 6, that is S1113 or S1122; or

(2) a cubic curve over one of the seven Jordan algebras in Table 2.
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Remark 5.13. The varieties appearing in Theorem 5.7 are also particular examples
of smooth Legendrian varieties, see [41] for definitions, some related results and
references. They are also interesting examples of smooth varieties with one apparent
double point defined before by Corollary 5.4, see also [46] and [15].

The class of Cremona transformations  W P r Ü P r of type .2; 2/ arising from
two different birational projections from one point of an irreducible quadric hypersur-
faceQr will be called elementary quadratic transformations, that is if�1 W Qr Ü P r

and if �2 W Qr Ü P r are the two projections we have  D �2 B ��1
1 . The

well-known classification of plane quadratic Cremona transformations and the re-
sults of Theorem 5.11 say that for r � 3 every Cremona transformation of type
.2; 2/ is an elementary quadratic transformation. These examples yield varieties
xX.r C 1; 3; 3/ � P2rC3, not rational normal scrolls, which are either the Segre

embedding of P1 � Qr or projective degenerations of them when some base point
becomes infinitely near.

There is an interesting approach to Jordan algebras developed by T. A. Springer
[61], Section 1.27, and based onj -structures and indirectly also on the so-calledHua’s
identities, see [44]. These results and our geometrical treatment yield the following
consequence, probably well known to the experts: two twisted cubic curves over
Jordan algebras XJi

� P2rC3, i D 1; 2, are projectively equivalent if and only if J1

and J2 are isomorphic Jordan algebras.
In particular in Theorem 5.7, Corollary 5.9 and Corollary 5.12 we obtained geo-

metrical proofs of the classification of all cubic Jordan algebras J such that the
associated twisted cubic XJ � P2rC3 is respectively smooth, of dimension 3, of
dimension 4.

Based on the results of Theorem 5.2, of the construction in the proof of Corol-
lary 5.3, of Theorem 5.7, of Corollary 5.9 and of Corollary 5.12, one could ask the
following question:

Is a xX.r C 1; 3; 3/ � P2rC3 not of Castelnuovo type projectively equiva-
lent to a twisted cubic XJ � P2rC3 for some cubic Jordan algebra J of
dimension r C 1?

We conjecture that the answer to the previous question is affirmative. In other
terms, we conjecture that the following a priori unrelated mathematical objects in fact
coincide:

� varieties xX.r C 1; 3; 3/ � P2rC3, up to projective equivalence;

� rank 3 Jordan algebras of dimension r C 1, up to isomorphism;

� quadro-quadratic Cremona transformations of P r , up to linear equivalence.

In [9], see also [60] and [66], a classification of quadro-quadric Cremona trans-
formations in P4 is obtained. This immediately yields also the classification of
xX.5; 3; 3/ � P11 and provides an affirmative answer to the above conjecture also for
r D 4. We refrain from listing this classification and we will come back in a future
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paper, [50], on the beautiful relations between the above apparently unrelated objects,
trying to develop further the classification results and the connections among these
areas.
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