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1. Introduction

Let v be a complex vector space of dimension m and let E WD v ˝ v� D End v.
Consider det 2 Q WD Sm.E�/, where det is the function taking determinant of any
X 2 End v. Fix a basis fe1; : : : ; emg of v and a positive integer n < m and consider
the function p 2 Q, defined by p.X/ D xm�n

1;1 perm.Xo/, Xo being the component
of X in the right down n� n corner, where any element of End v is represented by a
m�m-matrixX D .xi;j /1�i;j;�m in the basis feig and perm denotes the permanent.
The group G D GL.E/ canonically acts on Q. Let Xdet (resp. Xp) be the G-orbit
closure of det (resp. p) inside Q. Then, Xdet and Xp are closed (affine) subvarieties
of Q which are stable under the standard homothety action of C� on Q. Thus, their
affine coordinate rings CŒXdet� and CŒXp� are nonnegatively gradedG-algebras over
the complex numbers C. Clearly, EndE � det � Xdet, where EndE acts on Q via
.g � q/.X/ D q.gt �X/ for g 2 EndE, q 2 Q and X 2 E.

For any positive integer n, let Nm D Nm.n/ be the smallest positive integer such
that the permanent of any n � n matrix can be realized as a linear projection of the
determinant of a Nm � Nm matrix. This is equivalent to saying that p 2 EndE � det for
the pair . Nm; n/. Then, Valiant conjectured that the function Nm.n/ grows faster than
any polynomial in n (cf. [V]).

Similarly, let m D m.n/ be the smallest integer such that p 2 Xdet (for the pair
.m; n/). Clearly, m.n/ � Nm.n/. Now, Mulmuley–Sohoni strengthened Valiant’s
conjecture. They conjectured that, in fact, the function m.n/ grows faster than any
polynomial in n (cf. [MS1], [MS2] and the references therein). They further con-
jectured that if p … Xdet, then there exists an irreducible G-module which occurs
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in CŒXp� but does not occur in CŒXdet�. (Of course, if p 2 Xdet, then CŒXp� is a
G-module quotient of CŒXdet�.) This Geometric Complexity Theory programme ini-
tiated by Mulmuley–Sohoni provides a significant mathematical approach to solving
theValiant’s conjecture (in fact, strengthened version ofValiant’s conjecture proposed
by them). In a recent paper, Landsberg–Manivel–Ressayre [LMR] have shown that
m.n/ � n2=2.

It may be remarked that Valiant’s above conjecture is equivalent to

.permn/n�1 … VPws:

This is an algebraic version of Cook’s celebrated P ¤ NP conjecture. The conjecture
of Mulmuley–Sohoni is equivalent to .permn/n�1 … VPws. For a survey of these
problems, we refer to the article [BL] by Bürgisser–Landsberg–Manivel–Weyman.

From the experience in representation theory (e.g., the Demazure character for-
mula or the study of functions on the nilpotent cone), one important property of
varieties which allows one to study the ring of regular functions on them is their
normality. But, unfortunately, as we show in the paper, both of the varieties Xdet (for
anym � 3) and Xp (for anym � nC 1 and n � 3) are not normal (cf. Theorems 3.8
and 8.4). These are the principal results of the paper.

To prove the nonnormality of Xdet, we study the defining equations of the boundary
@Xdet WD Xdet n Xo

det and show that there exists a G0-invariant fo in CŒXdet� (where
G0 WD SL.E/ and Xo

det ´ G � det), which defines @Xdet set theoretically (but not
scheme theoretically), cf. Corollaries 3.6 and 3.9. In particular, each irreducible
component of @Xdet is of codimension one in Xdet (cf. Corollary 3.6). To show that
Xdet is not normal, we show that, in fact, the GIT quotient X0

det WD Xdet==G
0 is not

normal by analyzing the G0-invariants in CŒXdet�.
Let fe�

1 ; : : : ; e
�
mg be the dual basis of v�. Then, of course, fei;j WD ei ˝ e�

j I 1 �
i; j � mg is a basis ofE. Let S1 be the subspace ofE spanned by fei;j Im�nC1 �
i; j � mg, S the subspace of E spanned by S1 and e1;1, and S? the complementary
subspace spanned by the set fei;j g1�i;j;�m n fe1;1; ei;j gm�nC1�i;j �m. Let P be the
maximal parabolic subgroup of G D GL.E/ which keeps the subspace S? of E
stable and let LP be the Levi subgroup of P defined by LP D GL.S?/ � GL.S/.
Let R be the parabolic subgroup of GL.S/ which fixes the line spanned by e1;1.

The proof of the nonnormality of Xp is more involved. We first show that the
G-module decomposition of CŒXp� is equivalent to the GL.S/-module decompo-
sition of the ring of the regular functions on the GL.S/-orbit closure C of p (cf.
Theorem 5.2). Next, we analyze C in Section 6. In particular, we give its partial
desingularization of the form D WD GL.S/ �R ..S

� � Xperm/==C�/ (cf. Proposi-
tion 6.3 and Lemma 6.2), where Xperm is the GL.S1/-orbit closure of the permanent
function perm inside Sn.E�/, C� acts on S� � Xperm via the equation (21) and the
action ofR on .S� �Xperm/==C� is given in Section 6 immediately after Lemma 6.2.
We determine the ring of regular functions on D (as a GL.S/-module) completely
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(and explicitly) in terms of the ring of regular functions on Xperm as a GL.S1/-
module (cf. Theorem 7.5). Via the Zariski’s main theorem, this allows one to give
the G-module decomposition of the normalization of Xp completely in terms of the
GL.S1/-module decomposition of the ring of regular functions on the normalization
of the GL.S1/-variety Xperm (use Theorem 5.2, Corollary 5.4, Lemma 6.2, Propo-
sition 6.3 and Theorem 7.5). It may be remarked that we are not able to give an
explicit G-module decomposition of CŒXp� itself from that of the GL.S1/-module
CŒXperm�. By comparing the explicit GL.S/-module decomposition of the ring of
regular functions CŒD � mentioned above with the ring of regular functions on the
GL.S/-orbit closure of p, we conclude that Xp is not normal for anym � nC 1 and
n � 3 (cf. Theorem 8.4). A similar idea allows us to conclude that the orbit closures
of p under the groups R and GL.S/ are not normal (cf. Corollaries 8.2 and 8.3).

Notation. We have often abused the notation and denoted the homogeneous vector
bundle on the homogeneous space G=P associated to the P -moduleM byM itself.
Hopefully, the distinction will be clear from the context. We denote Cnf0g by C�
and the dual of a vector space V by V �. (We hope it will not cause any confusion.)

Acknowledgements. I thank J. Landsberg for bringing my attention to the works of
Mulmuley–Sohoni and his comments to an earlier version of the paper and to K. Mul-
muley for explaining to me some of his works. I thank the referee for some helpful
comments. This work was partially supported by the NSF grant DMS 0901239.

2. Coordinate ring of the orbit closure of det

Take a vector space v of dimension m > 0 and let E D v ˝ v� D End v. Consider
G D GL.E/ acting canonically on Q D Sm.E�/, and consider det 2 Q, where det
is the function taking determinant of any A 2 End v.

Recall the following result due to Frobenius [Fr] (cf., e.g., [GM] for a survey).

2.1 Proposition. The isotropy Gdet � G consists of the transformations of the form
� W Y 7! AY �B , where Y � D Y or Y t and A;B 2 SL.v/. (Here Y t denotes the
transpose of Y with respect to a fixed basis of v.)

2.2 Lemma. Any � of the form �.Y / D AYB as above can be written as

End v D v ˝ v� ! v ˝ v�; v ˝ f 7! Av ˝ B�f; (1)

whereB� is the dual map induced fromB . In particular, such a � has determinant 1.
If � is of the form �.Y / D AY tB as in the above proposition, then

det � D .�1/m.m�1/
2 : (2)
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Proof. Take a basis feig of v and let fe�
i g be the dual basis of v�. Let A D .ai;j / be

the matrix of A in the basis feig of v and similarly B D .bi;j /. Then,

.B�e�
j / ep D e�

j .Bep/ D
X

`

e�
j

�
b`;p e`

� D bj;p:

Thus, B�e�
j D P

p bj;p e
�
p . Hence, denoting the map (1) by O� , we have

ei;j WD ei ˝ e�
j

O�7�! Aei ˝ B�.e�
j / D

X
k;p

ak;iek ˝ bj;pe
�
p D

X
k;p

ak;ibj;p ek ˝ e�
p :

Thus, � O�.ei;j /
�

k;p
D ak;ibj;p D .Aei;jB/k;p;

where
� O�.ei;j /

�
k;p

denotes the .k; p/-th component of O�.ei;j / in the basis fek;pg.
This proves � D O� .

Let f�1; : : : ; �mg be the eigenvalues of A and f�1; : : : ; �mg the eigenvalues of
B . Then,

det O� D
mY

i;j D1

�i�j D
Y

i

�
�m

i detB
� D .detA/m .detB/m D 1;

since detA D detB D 1.
To prove (2), in view of the above, we can assume that �.Y / D Y t . The proof in

this case is easy. �

As a consequence of Proposition 2.1 and Lemma 2.2, we get the following.

2.3 Corollary. We have a group isomorphism:

� W SL.v/ � SL.v/=‚m ' Go
det; �ŒA;B�.v ˝ f / D Av ˝ .B�1/�f;

where ‚m is the group of the m-th roots of unity acting on SL.v/ � SL.v/ via
z.A;B/ D .zA; zB/, ŒA; B� denotes the ‚m-orbit of .A;B/ and Go

det denotes the
identity component of Gdet.

In particular, dim.G0 � det/ D .m2 � 1/2, where G0 WD SL.E/. Moreover,
Go

det � G0
det.

If .m
2 / is even, then Gdet � G0.

Since the isotropy G0
det is not contained in any proper parabolic subgroup of G0

(as can be easily seen by observing that no proper subspace of E is stable under
Go

det), Kempf’s theorem [Ke], Corollary 5.1, gives the following result observed in
Theorem 4.6 of [MS1]:
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2.4 Proposition. The orbit G0 � det is closed inQ.

Let Xo
det WD G � det, Xdet WD Xo

det, where the closure is taken inside Q, and let
X0

det WD G0 �det. More generally, let V be an irreducible representation of GL.k/ (for
some k � 1) such that the center of GL.k/ acts nontrivially on V and let vo 2 V be
such that SL.k/-orbit of vo is closed. Denote X D GL.k/ � vo and X 0 D SL.k/ � vo.
The following simple lemma is taken from [MS2].

2.5 Lemma. For any d � 0, the restriction map

�d W Cd ŒX� ! CŒX 0�

is injective, where Cd ŒX� is the homogeneous degree d -part of CŒX� (i.e., Cd ŒX� is
a quotient of Sd .V �/).

In particular, for any d � 0, the restriction map

�d W Cd ŒXdet� ! CŒX0
det�

is injective.

Proof. Take f 2 Cd ŒX� such that �d .f / D 0, i.e., f .x/ D 0 for all x 2 X 0. Then,
for any z 2 C and x 2 X 0; f .zx/ D zdf .x/ D 0, i.e., f .C � X 0/ � 0 and hence
f .C � X 0/ � 0. But, C � X 0 D X and hence f .X/ � 0. This proves the lemma.

�

As a consequence of Proposition 2.4, Lemma 2.5 and the Frobenius reciprocity,
one has the following result from [MS2].

2.6 Corollary. An irreducibleG0-moduleM occurs in CŒG0=G0
det� D CŒX0

det� if and
only if M occurs in CŒXdet�. In particular, an irreducible G0-module M occurs in
CŒXdet� if and only ifMG0

det ¤ 0.

2.7 Example. Let m D 2. Then, G � det is dense in Q D S2.E�/ (since they
have the same dimensions by Corollary 2.3). Moreover, Q has 5 orbits under G of
dimensions: 10, 9, 7, 4, 0.

To show this, observe that there are exactly 5 quadratic forms in 4 variables (up
to the change of a basis): x2

1 C x2
2 C x2

3 C x2
4 I x2

1 C x2
2 C x2

3 I x2
1 C x2

2 I x2
1 I 0. Their

isotropies under the G-action have dimensions: 6, 7, 9, 12, 16 respectively.

3. Non-normality of the orbit closure of det

We first recall the following two elementary lemmas from commutative algebra.
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3.1 Lemma. Let R be a ZC-graded algebra over the complex numbers C with the
degree 0-component R0 D C and let M be a ZC-graded R-module. Let m be the
augmentation ideal

L
d>0 R

d and assume that M=.m �M/ is a finite dimensional
vector space over R=m ' C: Then,M is a finitely generated R-module.

Proof. Choose a set of homogeneous generators f Nx1; : : : ; Nxng � M=.m � M/ over
R=m and let xi 2 M be a homogeneous lift of Nxi . Let N � M be the graded
R-submodule: Rx1 C � � � CRxn. It is easy to see that

m � .M=N/ D M=N: (3)

If M=N ¤ 0, let do � 0 be the smallest degree such that .M=N/do ¤ 0. Clearly,
(3) contradicts this. Hence N D M . �

3.2 Lemma. Let R and S be two non-negatively graded finitely generated domains
over C such that R0 D S0 D C and let f W R ! S be a graded algebra injec-
tive homomorphism. Assume that the induced map Of W SpecS ! SpecR satisfies
. Of /�1.mR/ D fmSg, where mS is the augmentation ideal of S and SpecS denotes
the space of maximal ideals of S . Then, S is a finitely generated R-module; in
particular, it is integral over R.

Proof. Let m0
R be the ideal in S generated by f .mR/. Then, by assumption, mS is

the only maximal ideal of S containing m0
R. Hence, the radical ideal

p
m0

R D mS .
Thus, m0

R 	 md
S for some d > 0 (cf. [AM], Corollary 7.16). In particular, S=m0

R is
a finite dimensional vector space over C and hence by the above lemma, S is a finitely
generatedR-module. This proves thatS is integral overR (cf. [AM], Proposition 5.1).

�

Let @Xdet WD Xdet n Xo
det be its boundary, equipped with the closed (reduced)

subvariety structure coming from Q. Let � � CŒXdet� denote the ideal of @Xdet.
More generally, as in Lemma 2.5, let V be an irreducible representation of GL.k/ (for
some k � 1) such that the center of GL.k/ acts nontrivially on V and let 0 ¤ vo 2 V
be such that SL.k/-orbit of vo is closed. Denote Xo D GL.k/ � vo, X D GL.k/ � vo

and@X D XnXo, all equipped with the locally-closed (reduced) subvariety structures
coming from that of V . Let I � CŒX� denote the ideal of @X . With this notation,
we have the following Lemma 3.3, Proposition 3.5 and Corollary 3.6.

3.3 Lemma. For any nonzero GL.k/-submoduleM � I , the zero set

Z.M/ WD fy 2 X W f .y/ D 0 for all f 2 M g
equals @X .
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Proof. Of course, Z.M/ 	 @X . Moreover, Z.M/ is a GL.k/-stable subset of X . If
Z.M/ properly contains @X , then Z.M/ D X , which is a contradiction since M is
nonzero. �

3.4 Remark. The above lemma is clearly true even without the assumption that
SL.k/ � vo is closed.

3.5 Proposition. The ideal I � CŒX� contains a nonzero SL.k/-invariant. In par-
ticular, the ideal � � CŒXdet� contains a nonzero G0-invariant.

Proof. Let mo be the unique integer such that .zIk/ � vo D z�movo for all z 2 C�,
where Ik is the identity matrix in GL.k/. Consider the action of C� on V via
z � v D .z�.mo/Ik/ � v, where

�.mo/ D �1 if mo > 0;

D 1 if mo < 0:

This gives rise to an action of C� on X . Let Z WD X==SL.k/. Then, Z is an
irreducible affine variety with C�-action coming from the action of C� on X . Con-
sider the C�-equivariant map � W C ! X , w 7! w��.mo/movo, where C� acts on
C via z � w D zw. Consider the composite map N� D 	 B � W C ! Z, where
	 W X ! X==SL.k/ is the canonical projection. By the assumption that SL.k/ � vo

is closed in V , . N�/�1f0g D f0g. Moreover, clearly N� is a dominant morphism since
GL.k/ � vo is dense in X . Thus, by Lemma 3.2, N� is a finite (in particular, surjective)
morphism. Moreover, no SL.k/-orbit Y in @X n f0g is closed in X . In fact, for any
such Y , 0 2 NY :

Let Y 0 be a closed SL.k/-orbit in NY . If Y 0 is nonzero, Y 0 D SL.k/ � �.z/, for
some z 2 C�, since N� is surjective. But, SL.k/ � �.z/ � Xo, whereas Y 0 � @X .
This is a contradiction. Hence, 0 2 NY .

Take any nonzero homogeneous polynomial fo 2 CŒZ� D CŒX�SL.k/ of positive
degree. Then, fo restricted to @X==SL.k/ is identically zero, since @X==SL.k/ '
f0g. Hence, fo 2 I . This proves the proposition. �

3.6 Corollary. For any nonzero homogeneous fo 2 CŒX�SL.k/ of positive degree,
the zero set Z.fo/ D @X . In particular,

phfoi D I;

where hfoi is the ideal of CŒX� generated by fo.
Moreover, each irreducible component of @X is of codimension one in X . In

particular, each irreducible component of @Xdet is of codimension one in Xdet.

Proof. By the last paragraph of the proof of the above proposition, foj@X � 0. Thus,
the first part of the corollary is a particular case of Lemma 3.3.
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For the second part, observe that fo does not vanish anywhere on Xo since fo is
SL.k/-invariant and homogeneous. Moreover, fo B N� W C ! C is surjective (being
nonzero) and hence so is fo W X ! C. Now use [S], Theorem 7 on page 76. �

3.7 Remark. The assertion in the above corollary, that each irreducible component
of @X is of codimension one inX , can also be proved by using Lemma 5.7. (Observe
that GL.k/ � vo is affine by using Matsushima’s theorem.)

3.8 Theorem. For any m � 3, Xdet D G � det is not normal.

Proof. Assume that Xdet is normal, then so would be Z D Xdet==G
0. By Mat-

sushima’s theorem, since the isotropy of det is reductive (cf. Corollary 2.3), Xo
det is

an affine variety. By the Frobenius reciprocity,

CŒXo
det�

G0 ' L
a2Z

V.aD/˝ ŒV .aD/��Gdet ; (4)

where V.aD/ is the irreducible G-module of dimension one with highest weight
corresponding to the partition .a � � � � � a/ (m2 factors). Thus, V.aD/ is the
one dimensional representation corresponding to the character g 7! .det g/a. By
Lemma 2.2, if m.m � 1/=2 is even, ŒV .aD/��Gdet is one dimensional, for all a 2 Z.
If m.m � 1/=2 is odd,

dimŒV .aD/��Gdet D 1 if a is even, (5)

D 0 if a is odd: (6)

For d 2 ZC, let Cd ŒXo
det� denote the subspace of CŒXo

det� such that, for any z 2 C�,
the matrix zI acts via zmd . Let Ofo 2 CpmmŒXo

det�
G0

be a nonzero element, where
pm D 1 if m.m � 1/=2 is even and pm D 2 if m.m � 1/=2 is odd. Then, clearly,

C�0ŒXo
det�

G0 ' L
a2ZC

C Of a
o :

Now, CŒXdet�
G0 � CŒXo

det�
G0

is a homogeneous subalgebra. Let do > 0 be the
smallest integer such that fo D Of do

o 2 CŒXdet�
G0

. (Such a do exists by Proposi-
tion 3.5.) Since, by assumption, CŒXdet�

G0

is a normal ring, Ofo 2 CpmmŒXdet�
G0

. In
particular, from the surjectivity CŒQ� � CŒXdet�, we would get CpmmŒQ�G

0 ¤ 0,
hence Spmm.Q�/G0 ¤ 0. This contradicts [Ho], Proposition 4.3 (a), if pmm < m2,
i.e. if m � 3. Thus, Z (and hence Xdet) is not normal. �

3.9 Corollary. For any m � 3, and any nonzero homogeneous fo 2 CŒXdet�
G0

of
positive degree, hfoi is not a radical ideal of CŒXdet�.
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Proof. Let C.Xdet/ D C.Xo
det/ be the function field of Xdet (or Xo

det). As in the
proof of the above theorem, Xo

det is affine and, of course, normal (in fact, smooth).
Take a function h 2 C.Xdet/ which is integral over CŒXdet�. Since Xo

det is normal,
h 2 CŒXo

det�. If h … CŒXdet�, we can write h D h1=f
do

o for some do > 0 and
h1 2 CŒXdet� n hfoi (cf. Corollary 3.6 and [S], page 50). From this (and since h
is integral over CŒXdet�) we see that hd

1 2 hfoi for some d > 0. If hfoi were a
radical ideal, we would have h1 2 hfoi. This contradicts the choice of h1. Hence
h 2 CŒXdet�. Thus, Xdet is normal, contradicting Theorem 3.8. This proves the
corollary. �

3.10 Remark. The saturation property fails for CŒXdet� for m D 2.
By [GW], page 296, as modules for GL.d/ (for any d � 1),

S.S2.Cd // ' L
�22

Pd
iD1 ZC!i

V.�/;

where !i WD �1 C � � � C �i is the i -th fundamental weight of GL.d/. Observe that,
form D 2, since Xdet D Q (cf. Example 2.7), we have CŒXdet� D S.S2.E//. Thus,
V.2!2/ appears in S2.S2.E//, but V.!2/ does not appear in S1.S2.E//.

4. Isotropy of permanent

Consider the space v of dimension m as in Section 1. Fix a positive integer n < m.
Choose a basis fe1; : : : ; emg of v and consider the subspace v1 of dimensionn spanned
by fem�nC1; : : : ; emg. We identify End v1 with the space of n � n-matrices (under
the basis fem�nC1; : : : ; emg). Then, the permanent of an n � n-matrix gives rise to
the function perm 2 Sn..End v1/

�/. Consider the standard action of GL.End v1/ on
Sn..End v1/

�/. In particular, GL.End v1/ acts on perm.
Recall the following from [MM] (cf. also [B]).

4.1 Proposition. For n � 3, the isotropy of perm under the action of the group
GL.End v1/ consists of the transformations

� W X 7! �X��;

where X� is X or X t and �, � belong to the subgroup OD of GL.v1/ generated by
the permutation matrices together with the diagonal matrices of determinant 1.

Lemma 2.2 and its proof give the following.

4.2 Lemma. The determinant of the above map � W X 7! �X�� is given by

det � D .�1/n.n�1/
2 .det �/n .det�/n if X� D X t ;

D .det �/n .det�/n if X� D X:
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If particular, if n D 2k for an odd integer k, then

det � D �1 if X� D X t ;

D 1 if X� D X:

4.3 Corollary. Let n � 3. Consider the homomorphism


 W OD � OD �! .GL.End v1//perm; 
.�; �/.v ˝ f / D �v ˝ .��1/�f;

for v ˝ f 2 v1 ˝ v�
1 D End v1, where .��1/� denotes the map induced by ��1 on

the dual space v�
1 . Then, 
 induces an embedding of groups

N
 W . OD � OD/=‚n ,! .GL.End v1//perm;

where ‚n acts on OD � OD via z � .�; �/ D .z�; z�/, for z 2 ‚n.
Moreover, Im N
 contains the identity component of .GL.End v1//perm.
Further, if n D 2k for an odd integer k, then N
 is an isomorphism onto

.SL.End v1//perm.

Since the isotropy SL.End v1/perm is not contained in any proper parabolic sub-
group of SL.End v1/, Kempf’s theorem [Ke], Corollary 5.1, gives the following result
observed in [MS1], Theorem 4.7:

4.4 Proposition. For n � 3, SL.End v1/-orbit of perm inside Sn..End v1/
�/ is

closed.
Thus, an irreducible SL.End v1/-module M occurs in CŒGL.End v1/ � perm� if

and only ifM .SL.End v1//perm ¤ 0 (cf. the proof of Corollary 2.6).

By exactly the same proof as that of Theorem 3.8, we get the following:

4.5 Theorem. For n � 3, the subvariety GL.End v1/ � perm � Sn..End v1/
�/ is not

normal.

We prove the following lemma for its application in the next section.

4.6 Lemma. Let C D .ci;j / 2 End v1 be such that

perm.X C C/ D perm.X/ for allX 2 End v1:

Then, C D 0.

Proof. Take X D .xi;j / with x1;2 D � � � D x1;n D 0. Then,

perm.X/ D perm

0
BBB@

x1;1 0 � � � 0

x2;1 x2;2 � � � x2;n

:::
:::

:::

xn;1 xn;2 � � � xn;n

1
CCCA D x1;1 permX .1;1/; (7)
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where

X .1;1/ D

0
B@
x2;2 � � � x2;n

:::
:::

xn;2 � � � xn;n

1
CA :

By assumption, for any X D .xi;j / as above,

perm.X/ D perm.X C C/

D .x1;1 C c1;1/ perm
�
X .1;1/ C C .1;1/

� C c1;2 perm
�
X .1;2/ C C .1;2/

�
C � � � C c1;n perm

�
X .1;n/ C C .1;n/

�
: (8)

Now, x1;1 divides the left side by (7), hence it must also divide the right side of the
above equation. Thus,

nX
j D1

c1;j perm
�
X .1;j / C C .1;j /

� D 0 (9)

and (by equations (7)–(9))

perm
�
X .1;1/ C C .1;1/

� D perm
�
X .1;1/

�
:

By induction, this gives
C .1;1/ � 0:

By a similar argument,
C .1;j / D 0 for all j:

Substituting this in (9), we get

nX
j D1

c1;j permX .1;j / D 0;

which gives c1;j D 0 for all j . Hence,

C D 0: �

4.7 Remark. As pointed out by the referee, a similar proof shows that the above
lemma is true for any P 2 Sd ..CN /�/ such that its zero set in P N �1 is not a cone.

5. Functions on the orbit closure of p

We take in this and the subsequent sections 3 � n < m.
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Recall the definition of the subspace v1 � v from Section 4. Let v?
1 be the

complementary subspace of v with basis fe1; : : : ; em�ng. Consider the padded per-
manent function p 2 Q D Sm.E�/, defined by p.X/ D xm�n

1;1 perm.Xo/, Xo being

the component of X in the right down n � n corner

0
B@

x1;1 �
:::

� Xo„ƒ‚…
n

1
CA, where any

element of E D End v is represented by a m �m-matrix X D .xi;j /1�i;j;�m in the
basis feig.

Let S be the subspace of E spanned by e1;1 and ei;j , m � n C 1 � i; j �
m, and let S? be the complementary subspace spanned by the set fei;j g1�i;j;�m n
fe1;1; ei;j gm�nC1�i;j �m (where, as in Section 1, ei;j WD ei ˝ e�

j ). Let P be the

maximal parabolic subgroup of G D GL.E/ which keeps the subspace S? of E
stable. Let UP be the unipotent radical of P and let LP be the Levi subgroup of P
defined by LP D GL.S?/ � GL.S/.

The following lemma is easy to verify.

5.1 Lemma. The subgroups GL.S?/ and UP act trivially on p. Hence, P � p D
GL.S/ � p.

Since G=P is a projective variety,

Xp WD G � .P � p/ D G � p � Q:

Thus, we have a proper surjective morphism

� W G �P

�
P � p

� D G �P

�
GL.S/ � p

�
� Xp; Œg; x� 7! g � x;

for g 2 G and x 2 P � p. Consider the decomposition into irreducible components
(for any d � 0)

Cd
�
GL.S/ � p

� D
M

�2D.GL.S//

n�.d/ VGL.S/.�/
� .for somen�.d/ 2 ZC/; (10)

where Cd ŒGL.S/ � p� denotes the space of homogeneous degree d -functions with
respect to the embedding GL.S/ � p � Q, D.GL.S// denotes the set of dominant
characters for the group GL.S/ (with respect to its standard diagonal subgroup)
consisting of � D .�1 � � � � � �n2C1/ with �i 2 Z, and VGL.S/.�/ is the irreducible
GL.S/-module with highest weight �.

For a certain generalization of the following theorem, see Proposition 6.3.2 of
[BL].

5.2 Theorem. For any � 2 D.GL.S// and d � 0 such that n�.d/ > 0, we have
�1 � 0.
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Moreover, as G-modules,

Cd ŒXp� D
M

�2D.GL.S//

n�.d/ VG. O�/�;

where O� WD .0 � � � � � 0 � �1 � � � � � �n2C1/ 2 D.G/ (with initial m2 � n2 � 1

zeroes).
Further, the G-equivariant morphism � induces an isomorphism of G-modules:

�� W CŒXp� ! CŒG �P

�
P � p

�
�:

Proof. Observe that, by Lemma 5.1, Cd
�
GL.S/ � p

�
is a P -module quotient of

Cd ŒG � p� with UP and GL.S?/ acting trivially on Cd
�
GL.S/ � p

�
. Thus, as P -

modules,

Cd
�
GL.S/ � p

�� '
M

�2D.GL.S//

n�.d/ VGL.S/.�/ ,! Cd ŒXp�
�:

Take a nonzero BGL.S/-eigenvector of weight � in Cd
�
GL.S/ � p

��
, where BGL.S/ is

the standard Borel subgroup of GL.S/ consisting of upper triangular matrices. Then,
its image in Cd ŒXp�

� is a B-eigenvector of weight O�, where B is the standard Borel
subgroup ofG. In particular, for any � 2 D.GL.S// such that n�.d/ > 0; O� 2 D.G/
(since Cd ŒXp�

� is a G-module). Hence, �1 � 0 and
L

�2D.GL.S// n�.d/ VG. O�/ �
Cd ŒXp�

�. Dualizing, we get the G-module surjection:

Cd ŒXp� �
M

�2D.GL.S//

n�.d/ VG. O�/�: (11)

From the surjection �, we obtain the G-module injective map:

�� W Cd ŒXp� ,! H 0
�
G=P;Cd

�
GL.S/ � p

��

D
M

�2D.GL.S//

n�.d/H
0.G=P; VGL.S/.�/

�/;

where UP and GL.S?/ act trivially on VGL.S/.�/
�

'
M

�2D.GL.S//

n�.d/ VG. O�/�;

where the last isomorphism follows from [Ku1], Lemma 8. Combining the injection
�� with (11), we get that �� is an isomorphism, proving the theorem. �

5.3 Proposition. The isotropy of p under the group P is the same as that under the
group G.
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Proof. First of all G=P D W 0
PU

�
P P=P , where U�

P is the opposite of the unipotent
radical UP of P andW 0

P is the set of all the smallest coset representatives ofW=WP ,
W (resp. WP ) being the Weyl group of G (resp. P ). (This follows since the right
side is an open subset of G=P which is T -stable and contains all the T -fixed points
of G=P .)

Take w 2 W 0
P , u 2 U�

P , r 2 GL.S/ such that wur � p D p. Then,

p.r�1u�1w�1X/ D p.X/ for any X D X1 CX2 2 E D S? ˚ S: (12)

In particular, for X D wX2, we get

p.r�1u�1X2/ D p.wX2/: (13)

We have u�1X2 D X2, thus

p.r�1u�1X2/ D p.r�1X2/: (14)

Now, well-order a basis of S as v1; v2; : : : ; vd (d D n2 C 1) and also a basis
vdC1; : : : ; vm2 of S?. Then, w can be represented as the permutation i 7! ni with

n1 < � � � < nd ; ndC1 < � � � < nm2 :

For X2 D Pd
iD1 zivi 2 S ,

p.wX2/ D p
� dX

iD1

zivni

�
D p

�X
i�io

zivni

�
; (15)

where 1 � io � d is the maximum integer such that nio � d . In particular, p.wX2/

only depends upon the variables z1; : : : ; zio . Thus, by the identities (13)–(15),

p
�
r�1

dX
iD1

zivi

�
D p

�X
i�io

zivni

�
for any zi 2 C;

which gives

p
�
r�1

dX
iD1

zivi

�
D p

�
r�1

� dX
iD1

zivi C
X

d�j >io

bj vj

��
for any bj 2 C:

Thus,

p
� dX

iD1

zivi

�
D p

� dX
iD1

zivi C r�1
X

d�j >io

bj vj

�
:

Applying Lemma 4.6, it is easy to see that
P

d�j >io
bj vj D 0 (for any bj 2 C).

Thus, io D d , i.e., w D 1.
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Taking X D X2 2 S in (12), we get (since w D 1) p.r�1X2/ D p.X2/, which
is equivalent to p.r�1X/ D p.X/ for all X 2 E. Thus, r is in the isotropy of p and
hence u is in the isotropy of p, i.e., p.u�1X/ D p.X/ for all X D X1 C X2 2 E.
This gives p.X1 CX2 CY2/ D p.X1 CX2/, where Y2 WD u�1X1 �X1 2 S . Hence,
p.X2 C Y2/ D p.X2/ for all X2 2 S and any Y2 of the form u�1X1 �X1, for some
X1 2 S?. Applying Lemma 4.6 again, we see that Y2 D 0, hence uj

S?
D Id. Thus,

u D 1. This proves the proposition since UP and GL.S?/ stabilize p. �

5.4 Corollary. The restriction �o of the map � to G �P .P � p/ is a biregular iso-
morphism onto G � p.

Moreover, ��1.G � p/ D G �P .P � p/.

Proof. Of course, �o is surjective. We next claim that �o is injective. Take �oŒg; p� D
�oŒg1; p�, i.e., g � p D g1 � p, which is equivalent to

�
g�1

1 g
� � p D p, i.e., g�1

1 g 2
Gp D Pp, by Proposition 5.3. Thus, g�1

1 g D Qr for some Qr 2 Pp � P . Hence,
Œg; p� D Œg1; p�, proving that �o is bijective. Since G �P .P � p/ and G � p are both
smooth, �o is an isomorphism (cf. [Ku2], Theorem A.11).

To prove that ��1.G � p/ D G �P .P � p/, take Œg; y� 2 G �P .P � p/ such that
�Œg; y� 2 G � p, i.e., g � y D h � p for some h 2 G. This gives y 2 G � p \ P � p.
But, P � p is closed in G � p by the first part of the corollary and hence y 2 P � p,
establishing the claim. �

Let S1 be the subspace of S spanned by ei;j ,m�nC1 � i; j � m. Consider the
maximal parabolic subgroup R of GL.S/ D Aut S , consisting of those g 2 Aut S
which stabilize the line Ce1;1. Then,LR WD Aut.Ce1;1/�Aut S1 is a Levi subgroup
of R. Let UR be the unipotent radical of R and U�

R the opposite unipotent radical.

5.5 Proposition. The isotropy of p under the group GL.S/ is the same as the isotropy
of the Levi subgroup LR.

Proof. In the proof, we let i; j run overm�nC1 � i; j � m. Any element u 2 UR

is given by ue1;1 D e1;1, u ei;j D ei;j C ai;j e1;1, for some ai;j 2 C. Similarly, U�
R

consists of u� such that u�ei;j D ei;j and u�e1;1 D e1;1 C P
ci;j ei;j . Any element

of GL.S/ can be written as wu�ug (for some g 2 LR; u 2 UR; u
� 2 U�

R and w
either the identity element or a 2-cycle ..1; 1/; .i; j //). Take any X D x1;1e1;1 CP
xi;j ei;j 2 S . By XS1

we mean
P
xi;j ei;j and by .X/1;1 we mean x1;1.

..wu�ug/�1 � p/.X/ D p.wu�ug X/
D �

.wu�ug X/1;1

�m�n
perm

�
.wu�ug X/S1

�
:

So, if .wu�ug/�1 2 .GL.S//p, then
�
.wu�ug/�1 � p

�
.X/ D p.X/ D xm�n

1;1 perm.XS1
/ for all X 2 S:
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Since no linear form divides perm, we get

˛x1;1 D .wu�ugX/1;1 for some constant ˛ ¤ 0 2 C; (16)

and

ˇ perm.XS1
/ D perm

�
.wu�ug X/S1

�
for some constantˇ ¤ 0 2 C

D perm
�
.wu�ug.XS1

/C x1;1wu
�ug e1;1/S1

�
: (17)

Since the left hand side of (17) is independent of x1;1, we get

perm
�
.wu�ug X/S1

� D perm
�
.wu�ug X/S1

C .˛1;1wu
�ug e1;1/S1

�
;

for all X 2 S and ˛1;1 2 C.
Since wu�ug 2 Aut S , as X varies over S , .wu�ug X/S1

varies over all of S1.
Thus, by Lemma 4.6,

.wu�ug e1;1/S1
D 0: (18)

Now,

u�uge1;1 D u�.� e1;1/ for some � ¤ 0

D �
�
e1;1 C

X
ci;j ei;j

�
: (19)

Thus, if w is the 2-cycle ..1; 1/; .io; jo// for some m � nC 1 � io; jo � m, then

wu�ug e1;1 D �
�
eio;jo

C
X

.i;j /¤.io;jo/

ci;j ei;j C cio;jo
e1;1

�
:

In particular, .wu�ug e1;1/S1
¤ 0, a contradiction to the identity (18). Thus,w D 1.

By the equations (18)– (19), we get

ci;j D 0 for all i; j:

Thus, u� D 1.
By equation (16), we get

˛ x1;1 D .wu�ug X/1;1 D .ug X/1;1 D �
ug.XS1

C x1;1 e1;1/
�

1;1
:

In particular, .ug XS1
/1;1 D 0. Since g maps S1 onto S1, we get

.u ei;j /1;1 D 0 for all m � nC 1 � i; j � m:

Hence, ai;j D 0. Thus, u D 1 as well. This proves the proposition. �

5.6 Corollary. Let 3 � n < m. Then, each irreducible component of

GL.S/ � p n.GL.S/ � p/

is of codimension 1 in GL.S/ � p.
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Proof. By the last proposition, the isotropy of p inside GL.S/ is the same as that
of the isotropy of p inside LR. For any � 2 C�, take �� 2 Aut.Ce1;1/ defined by
e1;1 7! � e1;1. Then, for any g 2 Aut S1 and X D x1;1e1;1 CX1 with X1 2 S1, we
have

�
.��; g/ � p

�
.X/ D p

�
��1x1;1e1;1 C g�1X1

�
D .��1x1;1/

m�n perm.g�1X1/: (20)

Thus, .��; g/ 2 .LR/p if and only if .�
1
n /m�ng 2 .Aut S1/perm for some n-th root

�
1
n of �. Considering the projection to the first factor .LR/p ! Aut.Ce1;1/ D C�

and using Corollary 4.3, it is easy to see that .LR/p D .GL.S//p is reductive. Thus,
GL.S/ � p is an affine variety. Of course, GL.S/ � p is an affine variety. Moreover,
0 2 .GL.S/ �p/n.GL.S/ �p/ by (20). Thus, .GL.S/ �p/n.GL.S/ �p/ is nonempty and
each of its irreducible components is of codimension 1 in GL.S/ � p by the following
lemma. �

We recall the following well-known result from algebraic geometry. For the lack
of reference, we include a proof.

5.7Lemma. LetX be an irreducible affine variety and letXo � X be an open normal
affine subvariety. Then, each irreducible component of X n Xo is of codimension 1
in X .

Proof. Let 	 W zX ! X be the normalization ofX . Then, Xo being normal and open
subvariety ofX , 	 W 	�1.Xo/ ! Xo is an isomorphism. We identify 	�1.Xo/ with
Xo under 	 . Decompose zX n Xo D C1 [ C2, where C1 (resp. C2) is the union of
codimension 1 (resp. � 2) irreducible components of zX n Xo. Then, by Hartog’s
theorem, the inclusion i W Xo � zX n C1 induces an isomorphism i� W CŒ zX n C1� '
CŒXo� of the rings of regular functions. Let f be the inverse of i�. Then, Xo being
affine, there exists a morphism j W zX nC1 ! Xo such that the induced map j � D f

and jjXo D Id (cf. [H], Proposition 3.5, Chapter I). Since the composite morphism
i B j W zX n C1 ! zX n C1 restricts to the identity map on Xo and Xo is dense in
zX n C1, i B j D Id. In particular, i is surjective, i.e., Xo D zX n C1. Thus,

X nXo D 	. zX nXo/ D 	.C1/:

But, since 	 is a finite morphism, 	.C1/ is closed in X and, moreover, all the
irreducible components of 	.C1/ are of codimension 1 in X . �

As another corollary of Proposition 5.5 (together with Corollary 4.3, Lemma 5.1,
Proposition 5.3 and identity (20)), we get the following well-known result.

5.8 Corollary. For 3 � n < m, dim Xp D m2.n2 C 1/ � 2nC 1.
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6. A partial desingularization of GL.S / � p

By virtue of the results in the last section (specifically Theorem 5.2), study of the
G-module CŒXp� reduces to that of the GL.S/-module CŒGL.S/ � p�.

6.1 Definition. Define the morphism

ˇ W GL.S/ �R .R � p/ ! GL.S/ � p; Œg; f � 7! g � f;
for g 2 GL.S/; f 2 R � p, where the closure R � p is taken inside Sm.E�/.

Since GL.S/=R is a projective variety, ˇ is a proper and surjective morphism.

6.2 Lemma. The restriction ˇo of ˇ to GL.S/�R .R � p/ is a biregular isomorphism
onto GL.S/ �p. Moreover, the inverse imageˇ�1.GL.S/ �p/ equals GL.S/�R .R �p/.
Proof. By Proposition 5.5, the isotropy of p inside GL.S/ is the same as that in
R. From this the injectivity of ˇo follows easily. Since ˇo is a bijective morphism
between smooth varieties, it is a biregular isomorphism.

Take Œg; f � 2 ˇ�1.GL.S/ � p/. Then, f 2 .GL.S/ � p/ \ R � p. But, since ˇo is
an isomorphism, R � p is closed in GL.S/ � p. Thus, .GL.S/ � p/\R � p D R � p. This
proves the second part of the lemma. �

As in Section 4, consider perm 2 Sn.S�
1 /, where S1 is viewed as End v1 and v1

is equipped with the basis fem�nC1; : : : ; emg. Moreover, the decomposition E D
S? ˚ Ce1;1 ˚ S1 gives rise to the projection E ! S1 and, in turn, an embedding
Sn.S�

1 / ,! Sn.E�/. Thus, we can think of perm 2 Sn.E�/. Let

Xo
perm WD .Aut S1/ � perm � Sn.E�/;

where Aut S1 is to be thought of as the subgroup ofG by extending any automorphism
of S1 to that of E by defining it to be the identity map on S? ˚ Ce1;1. Let Xperm be
the closure of Xo

perm in Sn.E�/.
Consider the standard (dual) action of GL.S/ D Aut S on S�. In particular, we

get an action ofR on S�. Also, it is easy to see thatUR and Aut.Ce11/ act trivially on
Xo

perm (and hence on Xperm) under the standard action ofG on Sn.E�/. In particular,
Xperm is a R-stable closed subset of Sn.E�/ (under the standard action of R).

Consider the morphism

N̨ W S� � Xperm ! Q; .�; f / 7! N�m�nf;

for � 2 S� and f 2 Xperm, where N� 2 E� is the image of � under the inclusion
S� ,! E� induced from the projection E ! S . Then, N̨ is R-equivariant under the
diagonal action of R on S� � Xperm. Define an action of C� on S� � Xperm via

z.�; f / D .z�; zn�mf /: (21)
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This action commutes with the action of R. Then, N̨ clearly factors through the
C�-orbits, and hence we get an R-equivariant morphism

˛ W .S� � Xperm/==C
� ! Q:

6.3 Proposition. The above morphism ˛ is a finite morphism with image precisely
equal to R � p.

Moreover, ˛�1.R � p/ D �
.S�nS�

1 /� Xo
perm

�
==C� and the map ˛o obtained from

the restriction of ˛ to
�
.S�nS�

1 / � Xo
perm

�
==C� is a biregular isomorphism

˛o W �
.S�nS�

1 / � Xo
perm

�
==C� ��!� R � p;

where S�
1 is thought of as a subspace of S� via the projection S D Ce1;1 ˚S1 ! S1.

In particular, ˛ is a proper and birational morphism onto R � p.

Proof. Consider the C�-equivariant closed embedding

S� � Xperm ,! E� � Sn.E�/;

where C� acts on the right side by the same formula as (21). This gives rise to the
closed embedding

� W .S� � Xperm/==C
� ,! .E� � Sn.E�//==C�:

We next claim that the morphism

 W .E� � Sn.E�//==C� ! Q D Sm.E�/;

induced from the map . N�; f / 7! N�m�nf; for N� 2 E� and f 2 Sn.E�/, is a finite
morphism. Define a new C� action on E� � Sn.E�/ by

t ˇ . N�; f / D .t N�; tf / for t 2 C�:

This C�-action commutes with the C�-action given by (21). Thus, we get a C�-
action (still denoted by ˇ) on .E� � Sn.E�//==C�. Also, define a new C�-action
on Sm.E�/ by

t ˇ f D tm�nC1f for t 2 C� and f 2 Sm.E�/:

Then,  is C�-equivariant. Moreover,  �1.0/ D .0 � Sn.E�/ [ E� � 0/==C� D
f0g. Thus, by Lemma 3.2 (applied to the map  considered as a map: .E� �
Sn.E�//==C� ! Im ),  is a finite morphism.

Since ˛ D  B �, we get that ˛ is a finite morphism.
We next calculate ˛�1.p/. Let Œ�; f � 2 ˛�1.p/, where Œ�; f � denotes the image

of .�; f / in .S� � Xperm/==C�. Then,

N�m�nf D p D N�m�n
o perm; (22)
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where �o 2 S� is defined by �o.ze1;1 CX1/ D z for any z 2 C and X1 2 S1.
Since N� does not divide perm, from (22) we get

� D a�o and f D an�m perm for some a 2 C�;

which gives

Œ�; f � D Œ�o; perm�:

Thus, ˛�1.p/ is a singleton and hence so is ˛�1.r � p/ for any r 2 R (by the R-
equivariance of ˛). In particular,

˛�1.R � p/ D R � Œ�o; perm�

D �
Aut.Ce1;1/ UR Aut.S1/

� � Œ�o; perm�

D �
Aut.Ce1;1/ UR

� � Œ�o;X
o
perm�; since Aut.S1/ � �o D �o

D �
.Aut.Ce1;1/ UR/ � �o;X

o
perm

�
; since Aut.Ce1;1/ and

UR act trivially on Xo
perm

D ŒS�nS�
1 ;X

o
perm�

D �
.S�nS�

1 / � Xo
perm

�
==C�:

Observe that all the C�-orbits in .S�nS�
1 / � Xo

perm are closed in S� � Xperm and
hence

�
.S�nS�

1 / � Xo
perm

�
==C� D �

.S�nS�
1 / � Xo

perm

�
=C� can be thought of as

an open subset of
�
S� � Xperm

�
==C�. This proves that ˛o is a bijective morphism

between smooth irreducible varieties and hence it is a biregular isomorphism (cf.
[Ku2], Theorem A.11).

Finally, since ˛ is a finite morphism (in particular, a proper morphism), Im ˛ is
closed inQ and containsR�p. Thus, Im˛ 	 R�p. But, since

�
.S�nS�

1 /�Xo
perm

�
==C�

is dense in S� � Xperm==C�, we get Im ˛ � R � p and hence Im ˛ D R � p.
This completes the proof of the proposition. �

6.4 Remark. Even though we do not need, the above map ˛ is a bijection onto its
image.

Combining Lemma 6.2 with Proposition 6.3, we get the following:

6.5 Corollary. We have

C
�
GL.S/ � p�

ˇ�

,�! C
�
GL.S/ �R .R � p/

� ' H 0
�
GL.S/=R;CŒR � p�

�
˛�

,�! H 0
�
GL.S/=R;CŒS� � Xperm�

C��
:
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7. Determination of H 0
�
GL.S /=R; CŒS � � Xperm�C�

�

We continue to follow the notation from the last section. In particular, 3 � n < m.
For any d � 0, we have the canonical inclusion:

j W H 0
�
GL.S/=R; .CŒS��˝ Cd ŒXperm�/

C��
,! H 0

�
GL.S/=R; .CŒS�nS�

1 �˝ Cd ŒXperm�/
C��

;

where Cd ŒXperm� denotes the space of degree d -homogeneous functions on Xperm �
Sn.E�/. Thus, Cd ŒXperm� is a quotient of Sd .Sn.E//. In this section, we will
determine the image of j .

For any R-module M , H 0.GL.S/=R;M/ can canonically be identified with the
space of regular maps

˚
� W GL.S/ ! M W �.`r/ D r�1 � .�.`//; for all ` 2 GL.S/; r 2 R�

:

Thus, by the Peter–Weyl theorem and the Tannaka–Kreı̌n duality (cf. Chapter III in
[BD])

H 0
�
GL.S/=R;M

�

'
M

�D.�1������
n2C1

/2D.GL.S//

VGL.S/.�/
� ˝ HomR

�
VGL.S/.�/

�;M
�
: (23)

We will apply this to the casesM D .CŒS��˝Cd ŒXperm�/
C�

andM D .CŒS�nS�
1 �˝

Cd ŒXperm�/
C�

.

7.1 Lemma. Take any � D .�1 � � � � � �n2C1/ 2 D.GL.S// and any d � 0. Then,
the canonical inclusion

HomR

�
VGL.S/.�/

�; .CŒS��˝ Cd ŒXperm�/
C��

,! HomR

�
VGL.S/.�/

�; .CŒS�nS�
1 �˝ Cd ŒXperm�/

C��

is an isomorphism if �1 � 0.
Moreover, if �1 > 0, then the left side is 0.

Proof. Take � 2 HomR

�
VGL.S/.�/

�; .CŒS�nS�
1 � ˝ Cd ŒXperm�/

C��
. Let v�

�
2

VGL.S/.�/
� be the lowest weight vector of weight ��. Then, � is completely de-

termined by its value on v�
�

. Let

�1 WD �.v�
�/ W .S�nS�

1 / � Xperm ! C

be the corresponding map. For z 2 C�, take the diagonal matrix Oz D Œz; 1; : : : ; 1� 2
GL.S/with respect to the basis fe1;1; ei;j gm�nC1�i;j �m. Then, �. Ozv�

�
/ D Oz ��.v�

�
/,
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i.e., e��. Oz/�1 D Oz � �1. This gives z��1�1 D Oz � �1, i.e.,

z��1�1

�
.z1;1; zi;j /; x

� D �1

� Oz�1
�
.z1;1; zi;j /; x

��
D �1

�
.zz1;1; zi;j /; x

�
; (24)

where fz1;1; zi;j g are the coordinates on S� with respect to the basis fe1;1; ei;j g of
S . Write

�1

�
.z1;1; zi;j /; x

� D
X
`2Z

z`
1;1 P`.zi;j ; x/

for some P`.zi;j ; x/ 2 CŒS�
1 �˝ Cd ŒXperm�. Equation (24) gives

z��1

X
`2Z

z`
1;1P`.zi;j ; x/ D

X
`2Z

z`z`
1;1P`.zi;j ; x/

for all z1;1; z 2 C�, zi;j 2 C and x 2 Xperm. For any ` 2 Z such thatP`.zi;j ; x/ ¤ 0

(for some zi;j 2 C and some x 2 Xperm), from the above equation, we get z��1 D z`.
In particular,

�1

�
.z1;1; zi;j /; x

� D z
��1

1;1 P��1
.zi;j ; x/:

Thus, if nonzero, �1 W .S�nS�
1 /�Xperm ! C extends to a morphismS��Xperm ! C

iff ��1 � 0. This proves the lemma. �

As a corollary of the above lemma and the identity (23), we get the following.

7.2 Proposition. For any d � 0, let

H 0
�
GL.S/=R; .CŒS�nS�

1 �˝ Cd ŒXperm�/
C��

D
M

�D.�1������
n2C1

/2D.GL.S//

m�.d/ VGL.S/.�/
�:

Then,

H 0
�
GL.S/=R; .CŒS��˝ Cd ŒXperm�/

C��

D
M

�D.�1������
n2C1

/2D.GL.S//W�1�0

m�.d/ VGL.S/.�/
�:

Define a new action of R on Xperm by

r ˇ x D �.r/n�mr � x; (25)

where � W R ! C� is the character defined by �.r/ D .re1;1/1;1, where .X/1;1 is
defined in the proof of Proposition 5.5.



Vol. 88 (2013) Geometry of orbits of permanents and determinants 781

7.3 Lemma. For any d � 0, there is a canonical isomorphism of GL.S/-modules:

H 0
�
GL.S/=R; .CŒS�nS�

1 �˝ Cd ŒXperm�/
C�� ' H 0

�
GL.S/=LR;C

d ŒXperm�
�
�
;

where Cd ŒXperm�
� is the same space as Cd ŒXperm� but the LR-module structure on

Cd ŒXperm�
� is induced from the action ˇ of R (in particular, LR) on Xperm.

Proof. From the fibration R=LR ! GL.S/=LR ! GL.S/=R, we get

H 0
�
GL.S/=LR;C

d ŒXperm�
�
� ' H 0

�
GL.S/=R;CŒR=LR�˝ .Cd ŒXperm�

�/
�
:

So, it suffices to define an R-module isomorphism


 W .CŒS�nS�
1 �˝ Cd ŒXperm�/

C� ! CŒR=LR�˝ .Cd ŒXperm�
�/:

First, define a morphism 
1 W R=LR ! S�nS�
1 by .
1.rLR//.X/ D �.r/.r�1X/1;1,

for r 2 R and X 2 S . Then, 
1 satisfies:


1.r
0rLR/ D �.r 0/r 0 � 
1.rLR/ for any r; r 0 2 R: (26)

Now, define the morphism

N
1 W R=LR � .Xperm;ˇ/ ! ..S�nS�
1 / � Xperm/==C

�; .rLR; x/ 7! Œ
1.rLR/; x�;

where .Xperm;ˇ/ denotes the variety Xperm together with the action ˇ of R. From
(26), it is easy to see that N
1 is anR-equivariant morphism. Moreover, it is a biregular
isomorphism. (Observe that all the C�-orbits in .S�nS�

1 / � Xperm are closed and
hence ..S�nS�

1 /�Xperm/==C� is the same as the orbit space ..S�nS�
1 /�Xperm/=C�.)

Now, 
 is nothing but the induced map from N
1. �

Now, we determine H 0
�
GL.S/=LR;Cd ŒXperm�

�
�
.

7.4 Lemma. For any d � 0,

H 0
�
GL.S/=LR;C

d ŒXperm�
�
�

'
M

�D.�1������
n2C1

/2D.GL.S//

VGL.S/.�/˝ HomLR
.VGL.S/.�/;C

d ŒXperm�
�/:

(27)

Thus, for any � D .�1 � �2 � � � � � �n2C1/ 2 D.GL.S//, VGL.S/.�/ appears in
H 0

�
GL.S/=LR;Cd ŒXperm�

�
�
if and only if the following two conditions are satisfied:

(1) j�j D dm, where j�j WD P
�i , and

(2) there exists � D .�1 � � � � � �n2/ such that � interlaces �, i.e.,

�1 � �1 � �2 � �2 � � � � � �n2 � �n2 � �n2C1;

and the GL.S1/-irreducible module VGL.S1/.�/ appears in Cd ŒXperm�.
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Proof. The isomorphism (27) of course follows from the Peter–Weyl theorem and
the Tannaka–Kreı̌n duality.

For z 2 C�, let Nz be the diagonal matrix Œ1; z; : : : ; z� 2 Aut S1 � Aut S and Oz
the diagonal matrix Œz; 1; : : : ; 1� 2 Aut.Ce1;1/ � Aut S . Then, Nz Oz acts on Xperm via

. Nz Oz/ˇ x D zn�m. Nz � x/ D z�mx: (28)

By the branching law for the pair (GL.S/;GL.S1/) (cf. [GW], Theorem 8.1.1), we
get, for any � 2 D.GL.S//,

VGL.S/.�/ ' L
�2D.GL.S1//W

� interlaces �

VGL.S1/.�/; as GL.S1/-modules: (29)

Now, since GL.S1/ and Nz Oz generate the group LR, combining the equations (27)–
(29), we get the second part of the lemma. (Observe that the two actions � and ˇ of
GL.S1/ on Xperm coincide.) �

Combining Proposition 7.2 with the Lemmas 7.3–7.4 and the identities (28)–(29),
we get the following:

7.5 Theorem. For any d � 0, decompose

Cd ŒXperm� ' ˚�2D.GL.S1// q�.d/VGL.S1/.�/

as GL.S1/-modules. Then, as GL.S/-modules,

H 0
�

GL.S/=R; .CŒS��˝ Cd ŒXperm�/
C��

' L
� D .�1 � � � � � �n2C1 � 0/

j�j D dm

�P
� D .�1 � � � � � �n2 � 0/

� interlaces �

q�.d/
�
VGL.S/.�/: (30)

In particular, VGL.S/.�/ occurs in H 0
�
GL.S/=R; .CŒS�� ˝ Cd ŒXperm�/

C��
if and

only if the following two conditions are satisfied:

(1) � D .�1 � � � � � �n2C1 � 0/ and j�j D dm, and

(2) there exists a � D .�1 � � � � � �n2 � 0/ which interlaces � and such that the
irreducible GL.S1/-module VGL.S1/.�/ occurs in Cd ŒXperm�.

(Observe that if VGL.S1/.�/ occurs in Cd ŒXperm�, then automatically j�j D dn

and �n2 � 0, since Cd ŒXperm� is a GL.S1/-module quotient of Sd .Sn.E//.)

7.6 Remark. Since

.CŒS��˝ Cd ŒXperm�/
C� ' S .m�n/d .S/˝ Cd ŒXperm�;
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and S is a GL.S/-module, we also get (using [Ku1], Lemma 8)

H 0
�
GL.S/=R; .CŒS��˝ Cd ŒXperm�/

C��
' S .m�n/d .S/˝H 0.GL.S/=R;Cd ŒXperm�/

' L
�D.�1������

n2 /W�
n2 �0

q�.d/S
.m�n/d .S/˝ VGL.S/. O�/;

where O� WD .�1 � � � � � �n2 � 0/ 2 D.GL.S//.

8. Nonnormality of the orbit closures of p

It is easy to see that the morphism ˛ of Section 6 induces an injective map (for any
d � 0)

˛� W Cd ŒR � p� ,! .CŒS��˝ Cd ŒXperm�/
C� D Sd.m�n/.S/˝ Cd ŒXperm�:

8.1 Proposition. For any m � 2n, the inclusion

H 0
�
GL.S/=R;Cd ŒR � p�

�
,! H 0

�
GL.S/=R; .CŒS��˝ Cd ŒXperm�/

C��
;

induced from the inclusion ˛�, is not an isomorphism for d D 1.

Proof. Of course, C1ŒR �p� is aR-module quotient ofSm.E/; in fact, it is aR-module
quotient of Sm.S/. Let K be the kernel

0 ! K ! Sm.S/ ! C1ŒR � p� ! 0: (31)

We first determine the linear span hR � pi of the image of R � p inside Sm.S�/.
For u 2 UR; z 2 C� and g 2 GL.S1/ (where �z 2 Aut.Ce1;1/ is defined by
�z.e1;1/ D ze1;1),

�
.gu�z/

�1 � p
�
.x1;1e1;1 C

X
m�nC1�i;j �m

xi;j ei;j /

D p
�
.zx1;1 C

X
xi;jai;j /e1;1 C g

X
xi;j ei;j

�
.where uei;j D ei;j C ai;j e1;1/

D .zx1;1 C
X

xi;jai;j /
m�n.g�1 � perm/.

X
xi;j ei;j /:

For any vector space V , the span of fvm�n; v 2 V g inside Sm�n.V / coincides with
Sm�n.V /. Furthermore, since Sn.S�

1 / is an irreducible GL.S1/-module, the span of
fg�1 �permgg2GL.S1/ is equal toSn.S�

1 /. Here we have identifiedSn.S�
1 / ,! Sn.S�/

via the projection S ! S1; e1;1 7! 0.
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Thus,

hR � pi D Sn.S�
1 / � Sm�n.S�/

D �m�n
o Sn.S�

1 /˚ �m�n�1
o SnC1.S�

1 /

˚ � � � ˚ �0
o S

m.S�
1 /;

where �o 2 S� is defined in the proof of Proposition 6.3. Thus,

K ' em�nC1
1;1 Sn�1.S1/˚ � � � ˚ em

1;1S
0.S1/:

None of the weights of K are GL.S/-antidominant with respect to the basis
fe1;1; ei;j gm�nC1�i;j �m of S if

m � nC 1 > n � 1; i.e., if m > 2n � 2:
Hence,

H 0.GL.S/=R;K/ D 0 if m > 2n � 2: (32)

Also,
H 1.GL.S/=R;K/ D 0 if m > 2n � 1: (33)

To prove this, it suffices to show that, for any weight� ofK and any simple reflection
si for GL.S/, si .�� C 
/ � 
 is not dominant, i.e., si� C ˛i is not antidominant.
Writing � D .�1; : : : ; �n2C1/, we have

�1 > �j C 1 for all j � 2 (since m > 2n � 1):

Thus, if i > 1,
.si�C ˛i /1 D �1 > .si�C ˛i /2:

Hence, si�C ˛i is not antidominant for i > 1. For i D 1, we get

.s1�C ˛1/2 D �1 � 1 > .s1�C ˛1/3 D �3:

Combining (32)–(33), we get

H 0.GL.S/=R;K/ D H 1.GL.S/=R;K/ D 0 for allm � 2n: (34)

Considering the long exact cohomology sequence, corresponding to the coefficient
sequence (31), we get for all m � 2n (by using (34)),

H 0.GL.S/=R;C1ŒR � p�/ ' H 0.GL.S/=R; Sm.S// D Sm.S/: (35)

In particular, H 0.GL.S/=R;C1ŒR � p�/ is an irreducible GL.S/-module.
Next, we determineM ´ H 0.GL.S/=R; .CŒS��˝C1ŒXperm�/

C�

/. (In fact, for
the following determination of M , we only require m > n � 3.) By Theorem 7.5,
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the irreducible GL.S/-module VGL.S/.�/ appears in M if and only if the following
three conditions are satisfied:

1) �n2C1 � 0, j�j D m,

2) there exists � D .�1 � � � � � �n2 � 0/ which interlaces �, and

3) the irreducible GL.S1/-module VGL.S1/.�/ occurs in C1ŒXperm�.

But, C1ŒXperm� is the irreducible GL.S1/-module Sn.S1/, since Xperm is a closed
GL.S1/-subvariety of Sn.S�

1 /. Thus, � D .n � 0 � 0 � � � � � 0/. Hence,
VGL.S/.�/ occurs in M if and only if

� D .�1 � �2 � 0 � � � � 0/ with �1 � n � �2 and �1 C �2 D m:

In particular, M is not irreducible. This proves the proposition. �

8.2 Corollary. Let m � 2n. Then, R � p is not normal.

Proof. If R � p were normal, by the original form of the Zariski’s main theorem (cf.
[M], Chapter III, �9) and Proposition 6.3 (following its notation),

˛� W CŒR � p� ! CŒ.S� � Xperm/==C
��

would be an isomorphism. In particular, we would get the R-module isomorphism

˛� W C1ŒR � p� ��!� .CŒS��˝ C1ŒXperm�/
C�

:

But this contradicts Proposition 8.1. �

The following corollary follows similarly.

8.3 Corollary. Let m � 2n. Then, GL.S/ � p is not normal.

Proof. By Definition 6.1 and Lemma 6.2, we have the proper, surjective, birational
morphism

ˇ W GL.S/ �R .R � p/ ! GL.S/ � p:

If GL.S/ � p were normal, both the maps ˇ and the composite map ˇ B.Id�˛/ (which
are both proper and birational morphisms)

GL.S/ �R

�
.S� � Xperm/==C

�� Id�˛����! GL.S/ �R .R � p/
ˇ

� GL.S/ � p

would induce isomorphisms (via the Zariski’s main theorem [H], Chapter III, Corol-
lary 11.4 and its proof)

ˇ� W C
�
GL.S/ � p

� ��!� H 0
�
GL.S/=R;CŒR � p�

�
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and
�
ˇ B .Id � ˛/�� W C

�
GL.S/ � p

� ��!� H 0
�
GL.S/=R;C

�
S� � Xperm

�C��
:

In particular, the canonical map

.Id � ˛/� W H 0.GL.S/=R;C
�
R � p

�
/ ��!� H 0

�
GL.S/=R;C

�
S� � Xperm

�C��

would be an isomorphism. This contradicts Proposition 8.1. Hence GL.S/ � p is not
normal. �

8.4 Theorem. Let m > n � 3. Then, G � p is not normal.

Proof. Recall from Section 5 the proper and surjective morphism � W G�P .P �p/ �
G � p. It is birational by Corollary 5.4. Consider the projection 	 W P ! GL.S/,
obtained by identifying GL.S/ ' P=.UP � GL.S?// and let PR be the parabolic
subgroup of P defined as 	�1.R/. Now, define the variety

Y D P �PR

�
.S� � Xperm/==C

��
;

wherePR acts on .S��Xperm/==C� via its projection ontoR. Consider the morphism

˛P W Y ! P � p D GL.S/ � p; Œp; x� 7! p � ˛.x/;
for p 2 P and x 2 .S� � Xperm/==C�. Observe that, under the canonical identifica-
tion (induced from the map 	) GL.S/�R

�
.S� � Xperm/==C�� ' Y , the map ˛P is

nothing but the composite map ˇ B .Id � ˛/ (cf., the proof of Corollary 8.3). Hence,
˛P is a proper, birational morphism. The P -morphism ˛P of course gives rise to a
proper, birational G-morphism

N̨P W G �P Y ! G �P .P � p/:

Finally, define the proper, birational, surjective G-morphism as the composite

ǪP WD � B N̨P W G �P Y ! G � p:

If G � p were normal, we would get an isomorphism

ǪP
� W CŒG � p� ! CŒG �P Y � ' H 0

�
G=P;H 0.GL.S/=R;CŒS� � Xperm�

C�

/
�
;

where P acts onH 0.GL.S/=R;CŒS� � Xperm�
C�

/ via its projection 	 . It is easy to
see that this, in particular, would induce an isomorphism

C1ŒG � p� ' H 0.G=P;H 0.GL.S/=R;
�
CŒS��˝ C1ŒXperm�

�C�

//: (36)



Vol. 88 (2013) Geometry of orbits of permanents and determinants 787

Now, by the proof of Proposition 8.1 (this part being valid under the only assumption
m > n � 3), there exist k� > 0 such that

H 0.G=P;H 0.GL.S/=R;
�
CŒS��˝ C1ŒXperm�

�C�

//

' L
�D.�1��2�0�����0/2D.GL.S//W�1�n��2;�1C�2Dm k�H

0.G=P; VGL.S/.�//

' L
O�D.�1��2�0�����0/2D.G/W�1�n��2;�1C�2Dm

k�VG. O�/; by [Ku1], Lemma 8;

where O� is obtained from � by addingm2 �n2 �1 zeroes in the end to �. In particular,

H 0.G=P;H 0.GL.S/=R;
�
CŒS��˝C1ŒXperm�

�C�

// is not an irreducibleG-module.
Finally, C1ŒG � p� is, by definition, a G-module quotient of the irreducible G-

module Q� ' Sm.E/. Clearly, C1ŒG � p� is nonzero and hence

C1ŒG � p� ' Sm.E/:

This contradicts (36) and hence the theorem is proved. �

8.5 Remark. (a) As pointed out by N. Bushek, it is easy to see (by using that �� is
an isomorphism as in Theorem 5.2, and considering the normalization ofG �p) that if
GL.S/ � p is normal, then so isG � p. Thus, using Theorem 8.4, we get that GL.S/ � p
is not normal for any m > n � 3 (thereby improving Corollary 8.3).

(b) I thank Bushek for pointing out that the hypothesis m � 2n in Theorem 8.4
in an earlier draft of the paper was unnecessary (with no change in the proof).

(c) Corollary 8.2 holds for any m > n � 3. To prove it for 3 � n < m < 2n, it
is easy to see, from the proof of Proposition 8.1, that dim C1ŒR � p� < dim.CŒS��˝
C1ŒXperm�/

C�

:
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