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Introduction

The free Burnside group of rank r and exponentn, denoted by Br.n/, is the quotient of
the free group Fr by the subgroup Fn

r generated by the n-th powers of all its elements.
In 1902, W. Burnside asked whether Br.n/ had to be finite of not (see [9]). For a
long time, one only knew that for some small exponents Br.n/ was finite (for n D 2

see [9], n D 3 [9] and [22], n D 4 [31] and n D 6 [21]). In 1968, P. S. Novikov
and S. I. Adian achieved a breakthrough (see [25], [26] and [27]). Using the small
cancellation theory developed by V. A. Tartakovskiı̆ [33] and M. Greendlinger [17],
[18], [19], they proved that for large odd exponents, Br.n/ is infinite. Thanks to
a diagrammatic formulation of small cancellation, A. Y. Ol’shanskiı̆ simplified the
proof of P. S. Novikov and S. I. Adian [28]. Recently, T. Delzant and M. Gromov
gave a more geometrical proof of the same theorem [15]. These results not only
provide examples of infinite Burnside groups, they also help to study many of their
properties (solution for the word-problem, description of finite subgroups,...). Other
information about the history of the Burnside problems can be found in [20].

The next step to understand Burnside groups is to study their automorphisms. In
this paper, we are interested in the following questions. What kind of outer automor-
phisms of Br.n/ have infinite order? Does Out .Br.n// contain relevant subgroups
like free groups or free abelian groups? To that end, we focus on the canonical map
Out .Fr/ ! Out .Br.n//.

Using the work of P. S. Novikov and S. I. Adian, E. A. Cherepanov proved that
the automorphism ' of F2 D F.a; b/, defined by '.a/ D ab and '.b/ D a, induces
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an outer automorphism of infinite order of Br.n/ (see [10] and Proposition 1.1). Our
first theorem provides a large class of automorphisms of the free group having the
same property.

Theorem 1 (see Theorem 1.3). Let ' be an automorphism of Fr . Assume that ' is
hyperbolic, i.e. the semi-direct product Fr Ì' Z defined by ' is a hyperbolic group.
There exists an integer n0 such that for all odd integers n larger than n0, ' induces
an outer automorphism of infinite order of Br.n/.

All proofs dealing with free Burnside groups have the same weakness: they involve
a presentation of Br.n/ which is not stable under automorphisms. Our work tries to
regain a little symmetry: we build a sequence of groups .Hk/ such that ' induces
an automorphism of Hk for all k and lim�! Hk D Br.n/. To that end, we start with

H0 D Fr and, at each step, we construct HkC1 as a small cancellation quotient
of Hk . Some difficulties appear during this process. Assume that � is one of the
relations defining the first quotient Fr D H0 � H1. Since we want ' to induce
an automorphism of H1, the elements 'm.�/ for all m 2 N have to belong to the
set of relations. However the small cancellation theory only deals with relations
having more or less the same length. In our case, the relations 'm.�/ may have
very different lengths. To avoid this problem, we encode the information concerning
the automorphism in a larger group: Fr Ì' Z. Thus the elements 'm.�/ become
conjugates of � and do not need to be added to the set of relations. We shall now
use the fact that the group Fr Ì Z is hyperbolic. In 1991, A.Y. Ol’shanskiı̆ provided
a generalisation of the Novikov–Adian theorem (see [29]). Given a torsion-free,
hyperbolic group G, he proved that for large odd exponent n the quotient G=Gn is
infinite. This result was recovered by T. Delzant and M. Gromov in [15]. We would
like to apply the same techniques to G D Fr Ì Z. However we must take care not
to kill all n-th powers of G. Indeed, if we did so, the automorphism obtained at the
end of the construction would have finite order dividing n. That is why we propose
an extension of the Delzant–Gromov construction where the relations are chosen in
a normal subgroup of Fr Ì Z. This construction works in a more general situation.
It leads to our main theorem:

Main theorem. Let 1 ! H ! G ! F ! 1 be a short exact sequence of groups.
Assume that H is non-trivial, finitely generated, G is hyperbolic, non-elementary,
torsion-free and F is torsion-free. There exists an integer n0 such that for all odd
integers n larger than n0, the canonical map F ! Out .H/ induces an injective
homomorphism F ,! Out .H=Hn/.

Theorem 1 is obtained by applying the main theorem to the short exact sequence
1 ! Fr ! Fr Ì Z ! Z ! 1. The work of M. Bestvina, M. Feighn and M. Handel
(see [5]) provides examples of hyperbolic extensions of free groups by free groups.
Using this result, we obtain our second theorem.
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Theorem 2 (see Theorem 1.8). Let r > 3. There exists an integer n0 such that for
all odd integers n larger than n0, the group Out .Br.n// contains a subgroup which
is isomorphic to F2.

The strategy to embed abelian subgroups in Out .Br.n// is a little different. We do
not apply the main theorem to an appropriate hyperbolic extension of the free group.
We construct a family of automorphisms of Fr which already commute in Aut .Fr/

and check “by hand” that they do not satisfy any other relation in Out .Br.n//. This
yields the following result.

Theorem 3 (see Theorem 1.10). Let r > 1. There exists an integer n0 such that
for all odd integers n larger than n0, the groups Out .B2r.n// and Out .B2rC1.n//

contain a subgroup which is isomorphic to Zr .

Hyperbolic automorphisms induce automorphisms of infinite order of free Burn-
side groups of large exponent. But they are not the only ones. For instance, the
automorphism ', studied by E. A. Cherepanov and characterized by '.a/ D ab and
'.b/ D a is not hyperbolic. Indeed, '2 fixes the commutator Œa�1; b�1�. The semi-
direct product Fr Ì' Z contains therefore a subgroup which is isomorphic to Z2. We
wonder if there exists a criterion to decide whether an automorphism of Fr induces
an outer automorphism of infinite order of Br.n/ for some large exponent or not.
In particular, is there a link between this property and the growth of the automor-
phism? Section 1.2 gives a partial answer. We prove that a polynomially growing
automorphism always induces an automorphism of finite order of Br.n/.

Outline of the paper. In Section 1 we explain the consequences of the main theo-
rem. In particular, we provide examples of automorphisms of infinite order of Br.n/.
We also construct free and free abelian subgroups of Out .Br.n//. Section 2 deals
with the proof of the main theorem. To begin with, we recall the geometrical point of
view on the small cancellation theory developed by T. Delzant and M. Gromov. We
also improve some results of [15] which are necessary to control the small cancella-
tion parameters in our situation. Then, we prove an induction lemma (Lemma 2.16)
which is the fundamental step of the induction process used in Section 3 to prove the
main theorem.

Acknowledgement. I am grateful to Thomas Delzant for his invaluable help and
advice during this work. I would like to thank Gilbert Levitt for related discussions,
in particular, concerning the growth of automorphisms. Many thanks also go to
Étienne Ghys who points out many questions to me, like the embedding of free abelian
subgroups. I thank also the referee for many useful comments and corrections.
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1. Automorphisms of Burnside groups

Remark. In this paper, we are interested in outer automorphisms of free Burnside
groups. One question still unanswered is the following: given an automorphism of
the free group Fr , does it induce an automorphism of infinite order of Br.n/? Note
that every element of Br.n/ has finite order. In particular, every inner automorphism
of Br.n/ has finite order. It follows that an element of Aut .Br.n// has finite order if
and only if so has its image in Out .Br.n//.

1.1. Examples of automorphismsof infinite order. Using the work of P. S. Novikov
and S. I. Adian (see [25], [26] and [27]), we exhibit a first example of outer automor-
phism of infinite order of Br.n/. This example was already studied by E. A. Chere-
panov in [10].

Proposition 1.1 (see [10], Theorem 1). Let fa; bg be a generating set of the free
group F2. Let ' be the automorphism of F2 defined by '.a/ D ab and '.b/ D a.
There exists an integer n0 such that for all odd integers n larger than n0, ' induces
an automorphism of infinite order of B2.n/.

Proof. We consider the sequence of iterated images of a by '.

'0.a/ D a; '4.a/ D abaababa;

'1.a/ D ab; '5.a/ D abaababaabaab;

'2.a/ D aba; '6.a/ D abaababaabaababaababa;

'3.a/ D abaab; : : : :

This sequence converges to a right infinite positive word

'1.a/ D abaababaabaababaababa : : :

which has the following property. For every word u in fa; bg, u4 is not a subword of
'1.a/ (see [24]). Let n be an odd integer larger than 10 000. In order to prove that
the free Burnside group of large exponent is infinite, P. S. Novikov and S .I. Adian use
the following fact: ifm is a non-trivial reduced word in fa; bg which does not contain
a subword that equals a fourth power, then m defines a non-trivial element of B2.n/

(see [1], IV. 2.16, or Statement 1 in [2]). In particular, .'p.a// induces a sequence
of pairwise distinct elements of B2.n/. It follows that ' induces an automorphism of
infinite order of B2.n/. �

We now wish to investigate a large class of automorphisms of free groups: the
hyperbolic ones. We prove that they induce automorphisms of infinite order of free
Burnside groups.
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Definition 1.2. LetG be a hyperbolic group. An automorphism ' ofG is hyperbolic
if the semi-direct product G Ì' Z defined by ' is hyperbolic.

Example. Let † be the fundamental group of a compact surface S of genus larger
than 2. Thanks to Thurston’s hyperbolisation Theorem, every pseudo-Anosov home-
omorphism of S induces a hyperbolic automorphism of † (see [30]).

There exist many characterizations of hyperbolic automorphisms. Let us endow
G with the word metric j : j relative to a generating set. M. Bestvina and M. Feighn
proved in [3] that an automorphism ' of G is hyperbolic if and only if there exist
� > 1 and m 2 N such that for all g 2 G

� jgj 6 max fj'm.g/j ; j'�m.g/jg :
On the other hand, an automorphism of a free group is hyperbolic, if and only if
it has no non-trivial periodic conjugacy classes (see [5] and [8]). Note that the
automorphism' studied in Proposition 1.1 is not hyperbolic: '2 fixes the commutator
Œa�1I b�1�. More generally, Aut .F2/ does not contain hyperbolic elements. Every
automorphism ' of F2 is indeed induced by a homeomorphism of the punctured torus.
Therefore '2 has to fix the conjugacy class of F2 corresponding to the boundary of
the torus.

Theorem 1.3. Let r > 3. Let ' be a hyperbolic automorphism of Fr . There exists
an integer n0 such that for all odd integers n larger than n0, ' induces an outer
automorphism of infinite order of Br.n/.

Proof. By definition, the group Fr Ì' Z is hyperbolic. It follows that the short
exact sequence 1 ! Fr ! Fr Ì' Z ! Z ! 1 satisfies the assumptions of the
main theorem (see page 790). Thus there exists an integer n0 such that for all odd
integers n larger than n0, the map Z ! Out .Fr/ induces an injective homomorphism
Z ,! Out .Br.n//. However, the morphism Z ! Out .Fr/ is by construction the
one that mapsm to the outer automorphism induced by 'm. Consequently, ' induces
an outer automorphism of infinite order of Br.n/. �

1.2. Polynomially growing automorphisms of free groups. We provide now ex-
amples of automorphisms of infinite order of Fr which induce automorphisms of
finite order of Br.n/. Given a conjugacy class x of Fr , we denote by Œx� the length
of any cyclically reduced word representing x. Let ˆ be an outer automorphism of
Fr . We look at the action of ˆ on the conjugacy classes of Fr .

Definition 1.4. The automorphism ˆ grows polynomially if for every conjugacy
class x of Fr , the sequence .Œˆp.x/�/ grows polynomially.
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Proposition 1.5 (see [23]). Letˆ be a polynomially growing outer automorphism of
Fr . Up to replacement of ˆ with a power of ˆ, one of the following assertion holds.

(i) There exist ' 2 Aut .Fr/ representing ˆ and a non-trivial free decomposition
F1 � F2 of Fr which is invariant under '.

(ii) There exist ' 2 Aut .Fr/ representing ˆ, a non-trivial free decomposition
F1 � hti of Fr and an element f of F1 such that F1 is invariant under '
and '.t/ D tf .

Theorem 1.6. Let r > 1. Let ˆ be a polynomially growing outer automorphism of
Fr . For all positive integers n, ˆ induces an outer automorphism of finite order of
Br.n/.

Proof. The proof is by induction on the rank r of the free group. The outer automor-
phism group of Z is reduced to fid;� idg. Hence the theorem holds for rank one.
Let r > 1. Assume that the theorem holds for any rank smaller or equal to r . Let
ˆ be a polynomially growing outer automorphism of FrC1 and n a positive integer.
Following Proposition 1.5, we distinguish two cases.

First case. There exist an automorphism ' 2 Aut .FrC1/ representing a power of ˆ
and a non-trivial free decomposition F1 � F2 of FrC1 invariant under '. We denote
by 'i the restriction of ' to Fi . By induction, there exists an integer pi such that
'

pi

i induces the identity of Fi=F
n
i . It follows that 'p1p2 is trivial in Aut .BrC1.n//.

Therefore ˆ induces an outer automorphism of finite order of BrC1.n/.

Second case. There exist an automorphism ' 2 Aut .FrC1/ representing a power of
ˆ, a free decomposition F1 � hti of FrC1 and an element f of F1 such that F1 is
invariant under ' and '.t/ D tf . We denote by '1 the restriction of ' to F1. By
induction, there exists an integer p1 such that 'p1

1 induces the identity of F1=F
n
1 .

On the other hand, for all integers q, 'q.t/ equals tf '1.f /'
2
1.f / : : : '

q�1
1 .f /. It

follows that the equality below holds in BrC1.n/:

'np1.t/ D t
�
f '1.f /'

2
1.f / : : : '

p1�1
1 .f /

�n D t:

Hence 'np1 is trivial in Aut .BrC1.n//. Thereforeˆ induces an outer automorphism
of finite order of BrC1.n/. �

1.3. Subgroups of Out .Br.n//. We are now interested in relevant subgroups that
can be embedded in Out .Br.n//. We start with free subgroups. The following result
is due to M. Bestvina, M. Feighn and M. Handel

Theorem 1.7 (see [5], Theorem 5.2). Let r > 3. Let '1 and '2 two automorphisms of
Fr . We assume that the outer automorphisms induced by '1 and '2 are irreducible,
do not have common powers and neither have a nontrivial periodic conjugacy class.
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There exists an integerm such that 'm
1 and 'm

2 generate a free group. Moreover, the
semi-direct product Fr Ì F2 defined by 'm

1 and 'm
2 is hyperbolic.

Theorem 1.8. Let r > 3. There exists an integer n0 such that for all odd integers n
larger than n0, Out .Br.n// contains a subgroup which is isomorphic to F2.

Proof. Theorem 1.7 provides a hyperbolic extension of Fr by F2. In other words,
1 ! Fr ! Fr Ì F2 ! F2 ! 1 is a short exact sequence such that Fr Ì F2 is
hyperbolic. The result follows from the main theorem. �

We are now looking for free abelian subgroups of Out .Br.n//. Let G1 and G2

be two torsion-free groups. We denote byG the free productG1 �G2. SinceG1 and
G2 are torsion-free, so is G (see [32]). Moreover, for all integers n, Gn \G1 D Gn

1 .

Lemma 1.9. Let n be an integer. Let ' be an automorphism ofG which stabilizes the
factorG1. We assume that ' induces an automorphism of finite order ofG=Gn. Then,
the restriction of ' to G1 induces also an automorphism of finite order of G1=G

n
1 .

Proof. Since' induces an automorphism of finite order ofG=Gn, there existsk 2 N�
such that for all g 2 G, 'k.g/g�1 2 Gn. HoweverG1 is invariant under '. Thus for
all g 2 G1, 'k.g/g�1 2 Gn \ G1 D Gn

1 . It follows that the restriction of ' to G1

induces an automorphism of finite order of G1=G
n
1 . �

Theorem 1.10. Let r > 2. There exists an integer n0 such that for all odd integers
n larger than n0, Out .B2r.n// and Out .B2rC1.n// contain a subgroup which is
isomorphic to Zr .

Proof. We denote by ' the automorphism of F2 studied in Proposition 1.1. There
exists an integer n0 such that for all odd integers n larger than n0, ' induces an
automorphism of infinite order of B2.n/. Let n be an odd integer larger than n0. We
consider F2r as a free product F1 � � � � �Fr of r copies of F2. For all i 2 f1; : : : ; rg,
we define an automorphism 'i of F2r as follows.

(i) The restriction of 'i to Fi is '.

(ii) The restriction of 'i to any other factor is the identity.

By construction, the'i ’s generate an abelian subgroup of Aut .F2r/ and all the more of
Out .B2r.n//. We now study the relations between the'i ’s in Out .B2r.n//. Consider
r integers k1; : : : ; kr such that  D '

k1

1 : : : '
kr
r induces an inner automorphism

of B2r.n/. By Lemma 1.9, 'ki , which is the restriction of  to Fi , induces an
automorphism of finite order of Fi=F

n
i D B2.n/. This forces ki to equal zero.

Hence the 'i ’s generate a subgroup of Out .B2r.n// which is isomorphic to Zr . For
Out .B2rC1.n// we apply the same argument with the following free factorization:
F2rC1 D F1 � � � � � Fr � Z. �
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2. Small cancellation theory

In this section we will be concerned with the small cancellation theory. We expose
the geometrical point of view developed by T. Delzant and M. Gromov in [15] and
used in Section 3 to prove the main theorem.

2.1. Hyperbolic spaces. Let X be a proper and geodesic space. The distance be-
tween two points x and x0 ofX is denoted by jx�x0jX (or simply jx�x0j). Although
it may not be unique, we denote by Œx; x0� a geodesic joining x and x0. We assume
that X is ı-hyperbolic (in the sense of Gromov) i.e. for all x; y; z; t 2 X ,

jx � yj C jz � t j 6 max fjx � zj C jy � t j; jx � t j C jy � zjg C 2ı:

The boundary at infinity ofX will be denoted by @X (see Chapter 2 of [11]). A subset
Y of X is ˛-quasi-convex if every geodesic of X joining two points of Y lies in the
˛-neighbourhood of Y , denoted by Y C˛ .

Lemma 2.1 (see [15], Lemma 2.1.5, or [12], Corollary 1.2.2). Let x, x0, y and y0
be four points of X . Let u be a point of Œx; x0� such that ju� xj > jx � yj C 8ı and
ju � x0j > jx0 � y0j C 8ı. Then u belongs to the 8ı-neighbourhood of Œy; y0�.

Proposition 2.2 (see [15], Lemma 2.2.2, or [12], Proposition 1.2.4). Let Y andZ be
two ˛-quasi-convex subsets of X . For all A > 0

diam
�
Y CA \ZCA

�
6 diam

�
Y C˛C10ı \ZC˛C10ı

� C 2AC 20ı:

Let g be an isometry of X . In order to measure its action on X , we define two
translation lengths. By the translation length Œg�X (or simply Œg�) we mean

Œg� D inf
x2X

jgx � xj:

The asymptotic translation length Œg�1X (or simply Œg�1) is

Œg�1 D lim
n!C1

1

n
jgnx � xj:

These two lengths satisfy the following inequality (see [11], Chapter 10, Proposi-
tion 6.4):

Œg�1 6 Œg� 6 Œg�1 C 32ı for all g 2 G.

The axis Ag of g, defined as follows, is a 40ı-quasi-convex subset of X (see [15],
Proposition 2.3.3):

Ag D fx 2 X=jgx � xj 6 max fŒg�; 40ıgg :
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The isometry g is hyperbolic if its asymptotic translation length is positive. In
this case, g fixes exactly two points of @X denoted by g� and gC. The cylinder of˚
g�; gC�

, denoted by Yg , is defined to be the set of points of X which are 10ı-close
to some geodesic joining g� and gC. It is a g-invariant, 8ı-quasi-convex subset ofX .

Proposition 2.3. Let g be a hyperbolic isometry of X . We denote by � a geodesic
joining g� and gC, the points of @X fixed by g. Let Y be a ˛-quasi-convex subset of
X . If Y is g-invariant, then � is contained in the .˛ C 8ı/-neighbourhood of Y . In
particular, � is contained in the 48ı-neighbourhood of Ag .

Proof. Let x be a point of � . We write d for the distance between x and Y . Let y be a
point of Y such that jx�yj 6 dCı. Since g is hyperbolic, there is an integerm such
that jgmx � g�mxj > 2d C 48ı (see [11], Chapter 10, Lemme 6.5). We denote by
pC (respectively p�) a projection of gmx (respectively g�mx) on � , i.e. a point of
� such that jgmx �pCj D d .gmx; �/ (respectively jg�mx �p�j D d .g�mx; �/).
The geodesics � and gm� have the same extremities. It follows that they are 8ı-close
(see [11], Chapter 2, Proposition 2.2). In particular, jgmx � pCj 6 8ı. In the same
way, we have jg�mx �p�j 6 8ı. Note that x lies on the subgeodesic of � delimited
by p� and pC. Indeed, if it was not the case we should have

jg�mx � gmxj 6 jp� � pCj C 16ı 6 jjx � p�j � jx � pCjj C 16ı

6 jjx � g�mxj � jx � gmxjj C 32ı

6 32ı:

Contradiction. On the other hand, we have

jx � pCj > jx � gmxj � 8ı > 1

2
jg�mx � gmxj � 8ı > d C 16ı:

Hence

jx � pCj > jgmy � gmxj C jgmx � pCj C 8ı > jgmy � pCj C 8ı:

In the same way, we have jx � p�j > jg�my � p�j C 8ı. By Lemma 2.1, the
point x is 8ı-close to Œg�my; gmy�. However g�my and gmy belong to Y which
is ˛-quasi-convex. Therefore the distance between x and Y is smaller than ˛ C 8ı.

�

Definition 2.4. Let P be a set of isometries of X . The injectivity radius denoted by
rinj .P;X/ and the maximal overlap denoted by�.P;X/ are the following quantities

rinj .P;X/ D inf
˚
Œg�1=g 2 P ��

;

�.P;X/ D sup
˚

diam
�
Y C20ı

g \ Y C20ı
g0

�
=g; g0 2 P �; g ¤ g0�;

where P � denotes the set of hyperbolic elements of P .
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LetG be a group acting properly, co-compactly, by isometries onX . An element
g of G is either elliptic (in particular, it has finite order) or hyperbolic (see [11],
Chapter 9). A subgroup of G is called elementary if it is virtually cyclic. Since G is
a hyperbolic group, every non-elementary subgroup of G contains a copy of F2, the
free group of rank 2 (see [16], Chapter 8, Theorem 37). Given a hyperbolic element g
of G, the normalizer of hgi is elementary (see [11], Chapter 10, Corollary 7.2). The
group G satisfies the small centralizers hypothesis if G is non-elementary and every
elementary subgroup of G is cyclic. The next lemma will be needed in Section 2.5.

Lemma 2.5. We assume that G satisfies the small centralizers hypothesis. Let R be
a subset of G stable by conjugation and inverse, whose elements are hyperbolic and
not proper powers. There exists a subset R0 of R, stable by conjugation satisfying
the followings:

(i) for all h 2 R one and only one element of fh; h�1g belongs to R0,

(ii) any two distinct elements of R0 generate a non-elementary subgroup.

Proof. To prove (i) it is sufficient to show that an element h ofR cannot be conjugate
to its inverse. Suppose, contrary to our claim, that there exist h 2 R and g 2 G such
that ghg�1 D h�1. Thus, g belongs to the normalizer of h, which is elementary
(see [11], Chapter 10, Proposition 1). In particular, g and h generate an elementary
subgroup ofG. SinceG satisfies the small centralizers hypothesis, g and h commute.
It follows that h D h�1. Hence h is not hyperbolic, a contradiction.

Let us now prove (ii). Let h1; h2 2 R0. Assume that they generate an elementary
subgroup. G satisfying the small centralizers hypothesis, h1 and h2 commute. Since
h1 and h2 are not proper powers, they are either equal or inverse. However R0 does
not contain an element and its inverse. Hence h1 D h2. �

Definition 2.6. Let G be a group acting properly co-compactly by isometries on a
proper, geodesic, ı-hyperbolic space X . The invariant A.G;X/ is the upper bound
of diam.AC50ı

g \ AC50ı
g0 /, where g and g0 are two elements of G which generate a

non-elementary subgroup and whose translation lengths are smaller than 100ı.

Remark. If there is no such g and g0 we adopt the convention thatA.G;X/ D C1.
However in our study, G will be non-elementary and the translation lengths of its
generators small in comparison to ı. Therefore A.G;X/ will always be finite.

This invariantA.G;X/was used by T. Delzant and M. Gromov to study hyperbolic
groups satisfying the small centralizers hypothesis (see §2.4 in [15]).

Remark. The objects defined previously depend implicitly on the hyperbolicity con-
stant ı (e.g. Yg , Ag , and A.G;X/). Although the notation does not make this depen-
dency explicit, we should keep in mind that it plays an important role. For instance,
we have the following lemma:
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Lemma 2.7. Let X be proper, geodesic, ı-hyperbolic space and G a group acting
properly, co-compactly by isometries on X . Let � be a positive number. Then
A.G; �X/ D �A.G;X/, where �X is the �ı-hyperbolic space X endowed with the
rescaled metric � j : jX .

Proof. Let g be an element of G. Its translation lengths satisfy Œg��X D �Œg�X
and Œg�1

�X
D �Œg�1X . Since �X is a �ı-hyperbolic space, the axis of g in �X is

exactly the image in �X of the axis Ag of g in X . We will denote it by �Ag . Let
g and g0 be two elements of G that do not generate an elementary group and whose
asymptotic translation lengths in �X are smaller than 100�ı. In particular, we have
Œg�1X , Œg0�1X 6 100ı. By definition of A.G;X/, we have

diam
�
�AC50�ı

g \ �AC50�ı
g0

� D � diam
�
AC50ı

g \ AC50ı
g0

�
6 �A.G;X/:

After taking the upper bound for all g and g0, we obtain A.G; �X/ 6 �A.G;X/. In
the same way, A.G; �X/ > �A.G;X/. This establishes the desired equality. �

2.2. Small cancellation theorem. In the remainder of Section 2 we require X to
be a proper, geodesic, simply-connected, ı-hyperbolic space and G a group acting
properly, co-compactly, by isometries on X .

Let P be a set of hyperbolic elements of G. We assume that P is stable by
conjugation and contains only a finite number of conjugacy classes. We denote by
N the (normal) subgroup of G generated by P . Our goal is to study the quotient
xG D G=N . The small cancellation parameters �.P;X/ and rinj .P;X/, defined
in the previous section, respectively play the role of the length of the largest piece
and the length of the smallest relation in the usual small cancellation theory. We
are interested in situations where the ratios ı

rinj.P;X/
and �.P;X/

rinj.P;X/
are very small (see

Theorem 2.8 below). To that end, we build a space xX with an action of xG. We only
recall the main steps of this construction. For more details we refer the reader to [12]
and [13].

Fix r0 > 0. Its value will be made precise in the small cancellation theorem (see
Theorem 2.8). Let � 2 P . We endow Y� with the length metric j : j� induced by the
restriction of j : jX to Y�. The cone over Y� denoted by C�.r0/ (or simply C�) is the
topological quotient of Y� � Œ0 ; r0� by the equivalence relation which identifies the
points .y; 0/ for all y 2 Y�. Given two points x D .y; r/ and x0 D .y0; r 0/ of C� the
following formula defines a distance on C� (see [7], Chapter I.5, Proposition 5.9 (1)):

cosh.jx; x0j/ D cosh r cosh r 0 � sinh r sinh r 0 cos

�
min

²
�;

jy � y0j�
sinh r0

³�
:

The cone-off overX relatively toP , denoted by PXP .r0/ (or simply PX/, is obtained
by attaching for all � 2 P the cone C� to X along Y�. The distances j : jX and j : jC�
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induce a metric on PX (see [12], Proposition 3.1.7). We extend by homogeneity the
action of G on X in an action of G on PX . Let x D .y; r/ 2 C� and g 2 G. We
define gx to be the point of Cg�g�1 D gC� given by gx D .gy; r/. The group G

acts by isometries on PX (see [12], Lemma 4.3.1). The space xXP .r0/ (or simply xX )
is the quotient of PX by N .

Theorem 2.8 (Small cancellation theorem, see [15], Theorem 5.5.2, or [12], Theo-
rem 4.2.2). There exist positive numbers ı0, ı1, �0 and r0 > 105ı1 satisfying the
following properties.

Let X be a proper, geodesic, simply-connected, ı-hyperbolic space. Let G be a
group acting properly, co-compactly, by isometries onX . LetP be a set of hyperbolic
elements of G. We assume that P is stable by conjugation and contains only a finite
number of conjugacy classes.

If ı 6 ı0, �.P;X/ 6 �0 and rinj.P;X/ > 3� sinh r0, then xXP .r0/ is proper,
geodesic, simply-connected and ı1-hyperbolic. Moreover xG acts properly, co-com-
pactly, by isometries on it .

Remark. The fact that the constants r0, ı0, ı1 and �0 do not depend on X , P or G
is very important in order to iterate the small cancellation construction.

2.3. Estimation of an injectivity radius. From now on we suppose that X , G and
P satisfy the assumptions of the small cancellation theorem. In particular, ı 6 ı0,
�.P;X/ 6 �0 and rinj .P;X/ > 3� sinh r0, where ı0, �0 and r0 are the constants
given by Theorem 2.8. We also assume now that G satisfies the small centralizers
hypothesis, i.e. G is non-elementary and all elementary subgroups of G are cyclic
(see Section 2.1). We are now interested in the properties of the action of xG on xX .
This will allow us to iterate the small cancellation process. We need in particular
an estimation of A. xG; xX/ and some injectivity radius. We already know that xX is
ı1-hyperbolic (see Theorem 2.8).

For all � 2 P , we write E� for the subgroup of G which stabilizes Y�. It is an
elementary subgroup ofG (see [11], Chapter 10, Proposition 7.1). Let � and � be the
respective maps � W PX ! xX and � W G � xG. The space xX is obtained by attaching
cones of large radius to �.X/. This provides a kind of Margulis’ decomposition. The
cones play the role of the thick part: the translation length of a hyperbolic element of
xG in a cone is very large. The following lemma illustrates this fact.

Lemma 2.9 (see [15], Lemme 5.9.3). Let Ng be an element of xG such that Œ Ng� 6 200ı1.
Assume that Ng does not belong to xE� D �.E�/ for all � 2 P . Then A Ng is contained
in �.X/C100ı1 and A Ng \ �.X/ is non-empty.

To study �.X/C100ı1 , which is an analogue of the thin part of the Margulis de-
composition, we use the fact that the map �.X/ ! xX is a local quasi-isometry:
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Lemma 2.10 (see [12], Proposition 3.1.8). Let x and x0 be two points of X . First
jx�x0j PX 6 jx�x0jX . Moreover, if jx�x0j PX 6 r0

2
then jx�x0jX 6 2� sinh r0

r0
jx�x0j PX .

Using this point of view, T. Delzant and M. Gromov proved the following result.

Proposition 2.11 (see [15], Lemme. 5.10.1). Let xC be a 50ı1-quasi-convex subset
of �.X/C100ı1 . There exists a subset C of PX such that

(i) the map � W PX ! xX induces an isometry from C onto xC ,

(ii) the projection � W G ! xG induces an isomorphism between Stab.C / and
Stab. xC/ which are respectively the stabilizers of C and xC .

Proposition 2.12. LetH be a normal subgroup of G containing P and xH its image
by the projection � W G ! xG. Then rinj. xH; xX/ > min f	l; ı1g, where 	 stands for

3r0

40� sinh r0
and l is the smallest asymptotic translation length of a hyperbolic element

ofH that does not belong to any E�.

Remark. This lemma is a refinement of Lemma 5.11.1 proved by T. Delzant and
M. Gromov in [15]. They gave indeed a lower bound for rinj

� xG; xX�
. Four our

purpose, we need a more accurate result. We provide here an estimation of the
injectivity radius of a normal subgroup of xG.

Proof. Since H is a normal subgroup containing the relations P , ��1. xH/ D H .
Suppose the assertion of the lemma is false. There exists a hyperbolic element Nh of
xH such that Œ Nh�1 < min f	l; ı1g. Fix an integerm such that 7ı1 6 mmin f	l; ı1g 6
8ı1. By [11], Chapter 10, Proposition 6.4,

Œ Nhm� 6 mŒ Nh�1 C 32ı1 < mmin f	l; ı1g C 32ı1 6 40ı1:

Since Œhm� 6 200ı1, the axis A Nhm of Nhm in xX , is a 40ı1-quasi-convex (see [15],
Proposition 2.3.3), which is contained in the 100ı1-neighbourhood of �.X/ (see
Lemma 2.9). By Proposition 2.11, there exists a subset C of X such that

(i) the map � W PX ! xX induces an isometry from C onto A Nhm ,

(ii) the map � W G ! xG induces an isomorphism from Stab.C / onto Stab.A Nhm/.

However Nh belongs to Stab.A Nhm/. We denote by h its preimage in Stab.C /. Since Nh
is hyperbolic, h is necessarily a hyperbolic element of H that does not belong to E�

for all � 2 P . By assumption, Œh�1X > l .

On the other hand by Lemma 2.9, A Nhm \ �.X/ ¤ ;. Fix Nx 2 A Nhm \ �.X/ and
denote by x its preimage in C \ X . As the map � W C ! A Nhm is an equivariant
isometry we have jhmx�xj PX D j Nhm Nx� Nxj xX : Recall that Nx belongs to A Nhm , the axis
of Nhm. It follows that

jhmx � xj PX D j Nhm Nx � Nxj xX 6 max
˚
Œ Nhm�; 40ı1

�
6 40ı1:
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By Lemma 2.10, jhmx � xjX is smaller than 2� sinh r0

r0
jhmx � xj PX . Consequently,

ml 6 mŒh�1X 6 Œhm�X 6 jhmx � xjX 6 80�ı1 sinh r0
r0

D 6ı1

	
:

In particular, 7ı1 6 mmin f	l; ı1g 6 m	l 6 6ı1, a contradiction. �

2.4. Other properties of xG and xX . In this section, we review some results obtained
by T. Delzant and M. Gromov in [15].

Proposition 2.13 (see [15], Lemme 5.9.5). The constant A. xG; xX/ satisfies the fol-
lowing inequality.

A. xG; xX/ 6 A.G;X/C 1000ı1e
350ı1 :

Proposition 2.14 (see [15], Lemme 5.10.2 and Lemme 5.10.3). Assume that every
element of P is an odd power of an element of G which is not a proper power. Then
xG satisfies the following properties.

(i) Every elementary subgroup of xG is cyclic.

(ii) Let xF be a finite subgroup of xG. Either xF is the image of a finite subgroup of
G, or there exists � 2 P such that xF is a subgroup of xE� D �.E�/.

Proposition 2.15 (see [15], Theorem 5.7.1). The Euler characteristic of xG satisfies

. xG;Q/ D 
.G;Q/CjP=Gj, where jP=Gjdenotes the number of conjugacy classes
of P .

2.5. An induction lemma. One should think of the next lemma as a step of the
iterative procedure involved in the proof of the main theorem. We recall that the
invariant A.G;X/ stands for the maximal overlap between the axes of two small
hyperbolic elements of G (see Definition 2.6). The injectivity radius rinj .H;X/

denotes the smallest asymptotic translation length of a hyperbolic element ofH (see
Definition 2.4).

Lemma 2.16 (Induction lemma). There exist positive numbers ı1, �1, l1, l2, l3 and
an integer n0 satisfying the following properties. Let n be an odd integer larger than
n0. Let X be a proper, geodesic, simply-connected, ı1-hyperbolic space. Let G be a
group acting properly, co-compactly, by isometries on X andH a normal subgroup
ofG. LetR be the set of hyperbolic elements ofH , which are not proper powers inG
and whose asymptotic translation lengths are smaller than l1. Let N be the normal
subgroup of G generated by fhn=h 2 Rg, xG the quotient G=N and xH the image of
H by the canonical map � W G ! xG. We assume that

(i) G satisfies the small centralizers hypothesis; moreover the order of every finite
subgroup of G divides n,
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(ii) A.G;X/ 6 �1 and rinj.H;X/ > l2p
n
,

(iii) 
 .G;Q/C 1
2

jR=Gj > 0, where 
 .G;Q/ is the Euler characteristic of G and
jR=Gj the number of conjugacy classes in R.

Then, there exists a proper, geodesic, simply-connected, ı1-hyperbolic space xX
on which xG acts properly, co-compactly, by isometries. Moreover, xG, xH and xX
satisfy the points (i) and (ii), 


� xG;Q�
> 0 and

Œ�.g/�1xX �.g/ 6 l3p
n
Œg�1X for all g 2 G:

Remark. IfG,H ,X and n satisfy the hypothesis of the previous lemma – including
hypotheses (i), (ii) and (iii) – we will say that .G;H;X/ satisfies the induction
assumptions for exponent n. The induction lemma says in particular that if .G;H;X/
satisfies the induction assumptions for exponent n, so does . xG; xH; xX/.

The remainder of this section will be devoted to the proof of the induction lemma.

Proof. The positive numbers r0, ı0, ı1, and �0 are given by the small cancellation
theorem (see Theorem 2.8). The constant 	 D 3r0

40� sinh r0
is the one that appears in

Proposition 2.12. We define a rescaling parameter Ln D
q

n�ı1

� sinh r0
. The sequence

.Ln/ is increasing and tends to infinity. Up to chose n0 large enough, we may assume
that for all n > n0

ı1

Ln

6 ı0; (1)

2000ı1e
350ı1 C 176ı1

Ln

6 min
˚
�0; 1000ı1e

350ı1
�
; (2)

3	ı1

Ln

6 ı1: (3)

Note that n0 only depends on ı0, ı1, �0 and r0. We now define the following
constants:

�1 D 2000ı1e
350ı1 ; l1 D 3ı1; l2 D 3

p
	ı1� sinh r0 and l3 D

s
� sinh r0
	ı1

:

Let n be an odd integer larger than n0. We assume that .G;H;X/ satisfies
the induction assumptions for exponent n. In particular, R is the set of hyperbolic
elements ofH , which are not a proper powers inG and whose asymptotic translation
lengths are smaller than l1. For the remainder of the proof of Lemma 2.16 we consider
the action of G on the rescaled space 1

Ln
X . By (1), this space is ı-hyperbolic with
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ı D ı1

Ln
6 ı0. As explained in the remark on page 798, we should keep in mind that

the hyperbolicity constant we are now always working with is ı.

By Lemma 2.5, there exists a subsetR0 ofR, stable by conjugation satisfying the
followings:

(i) for all h 2 R one and only one element of fh; h�1g belongs to R0,

(ii) any two distinct elements of R0 generate a non-elementary subgroup.

Let us denote by P the set of relations P D fhn; h 2 R0g.

Lemma 2.17. The set P satisfies the following assumptions:

�

�
P;

1

Ln

X

�
6 �0 and rinj

�
P;

1

Ln

X

�
> 3� sinh r0:

Proof. Let h1 and h2 be two elements of R0 such that hn
1 ¤ hn

2 . By Proposition 2.3,
Yhn

j
is contained in AC58ı

hj
. Thus Proposition 2.2 gives

diam
�
Y C20ı

hn
1

\ Y C20ı
hn

2

�
6 diam

�
AC78ı

h1
\ AC78ı

h2

�
6 diam

�
AC50ı

h1
\ AC50ı

h2

� C 176ı:

If h1 and h2 generated an elementary subgroup, by Lemma 2.5 we should have
hn

1 D hn
2 . Hence h1 and h2 generate a non-elementary subgroup. On the other hand,

Œh1�
1 and Œh2�

1 are smaller than l1

Ln
D 3ı1

Ln
D 3ı. By definition of A.G;X/,

diam
�
Y C20ı

hn
1

\ Y C20ı
hn

2

�
6 A

�
G;

1

Ln

X

�
C 176 ı

6 1

Ln

A .G;X/C 176 ı

6 �1 C 176ı1

Ln

D 2000ı1e
350ı1 C 176ı1

Ln

:

By (2), �
�
P; 1

Ln
X

�
is smaller than �0.

The injectivity radius of H on 1
Ln
X is larger than

1

Ln

rinj .H;X/ > 1

Ln

l2p
n

D
s
� sinh r0
n	ı1

3
p
	ı1� sinh r0p

n
D 3� sinh r0

n
:

In particular, Œhn�1 > 3� sinh r0 for all h 2 R0. Therefore, rinj
�
P; 1

Ln
X

�
>

3� sinh r0. �
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On account of the previous lemma, we can now apply the small cancellation
theorem (Theorem 2.8) to the rescaled space 1

Ln
X , G and P . We obtain a proper,

geodesic, simply-connected, ı1-hyperbolic space xX on which xG D G= � P � acts
properly, co-compactly, by isometries.

Lemma 2.18. Every elementary subgroup of xG is cyclic, either infinite or finite with
order dividing n.

Proof. All elements of P are odd powers of elements of G which are not proper
powers. By Proposition 2.14, all elementary subgroups of xG are cyclic. Assume now
that xF is a finite subgroup of xG. According to the same proposition, we distinguish
two cases.

(i) xF is the image of a finite subgroup of G. However, the order of every finite
subgroup of G divides n. Thus the order of xF divides n.

(ii) There exists h 2 R0 such that xF is a subgroup of xEhn D � .Ehn/ D h�.h/i,
whose order divides n. �

Lemma 2.19. The constantA. xG; xX/ is bounded above by�1. The injectivity radius
rinj. xH; xX/ is bounded below by l2p

n
.

Proof. By Proposition 2.13, A. xG; xX/ 6 A
�
G; 1

Ln
X

� C 1000ı1e
350ı1 . However,

using inequality (2), we obtain

A

�
G;

1

Ln

X

�
6 1

Ln

A.G;X/ 6 �1

Ln

D 2000ı1e
350ı1

Ln

6 1000ı1e
350ı1 :

Hence A. xG; xX/ 6 2000ı1e
350ı1 D �1.

Let g be a hyperbolic element of H , which does not belong to Ehn D hhi for
all h 2 R0. Its asymptotic translation length in 1

Ln
X is larger than l1

Ln
D 3ı1

Ln
. By

Proposition 2.12 and inequality (3),

rinj
� xH; xX�

> min
²
3	ı1

Ln

; ı1

³
D 3	ı1

Ln

D 3
p
	ı1� sinh r0p

n
D l2p

n
: �

Lemma 2.20. The Euler characteristic of xG satisfies


. xG;Q/ D 
.G;Q/C 1

2
jR=Gj > 0;

where jR=Gj is the number of conjugacy classes of R. In particular, xG is non-ele-
mentary.
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Proof. Consider now h1; h2 2 R0 and u 2 G such that hn
1 D uhn

2u
�1. Since R0

is stable by conjugation, h1 and uh2u
�1 are two elements of R0 which generate an

elementary subgroup. By Lemma 2.5, h1 D uh2u
�1. In other words, there are as

many conjugacy classes in P as in R0. By construction, there are twice as many
conjugacy classes in R as in R0. Thus jP=Gj D jR0=Gj D 1

2
jR=Gj. The result

follows from Proposition 2.15. �

Lemma 2.21. For all g 2 G, we have Œ�.g/� xX �1 6 l3p
n
Œg�1X .

Proof. By Lemma 2.10, the map 1
Ln
X ! xX contracts the distances. Thus for all

g 2 G,

Œ�.g/�1xX 6 1

Ln

Œg�1X D
s
� sinh r0
n	ı1

Œg�1X D l3p
n
Œg�1X : �

The previous lemma completes the proof of the induction lemma. �

3. Proof of the main theorem

Recall the statement of the main theorem.

Main theorem. Let 1 ! H ! G ! F ! 1 be a short exact sequence of groups.
Assume that H is non-trivial, finitely generated, G is hyperbolic, non-elementary,
torsion-free and F is torsion-free. There exists an integer n0 such that for all odd
integers n larger than n0, the canonical map F ! Out .H/ induces an injective
homomorphism F ,! Out .H=Hn/.

Proof. The constants ı1, �1, l1, l2, l3 and n0 are given by the induction lemma
(see Lemma 2.16). Up to increase n0, we may also assume that l3p

n0
< 1. Let

1 ! H ! G ! F ! 1 be a short exact sequence of groups, which satisfies the
hypotheses of the theorem. The strategy is to build by induction a family of short
exact sequences 1 ! Hk ! Gk ! F ! 1 with an action of Gk on a hyperbolic
space Xk , such that the direct limit lim�! Hk is the Burnside group H=Hn.

Initialization. Put H0 D H and G0 D G. Let X0 be a proper, geodesic, simply-
connected, hyperbolic space on which G acts properly, co-compactly, by isometries.
Take for instance the Rips polyhedron of G (see Chapter 5 in [11]). We can assume,
by rescaling X0 if necessary, that

� X0 is ı1-hyperbolic,

� A .G0; X0/ 6 �1 (see Lemma 2.7),
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� fh 2 H=Œh�1 6 l1; h is not a proper power in Gg contains a number of conju-
gacy classes in G bounded below by �2
 .G;Q/.

The group G is hyperbolic and torsion free. Since H is a non-trivial subgroup of
G, it contains a hyperbolic element. In particular, the injectivity radius of H is
positive (see [14]). Thus, up to increase one more time n0, we may assume that
rinj .H0; X0/ > l2p

n0
. Hence .G0;H0; X0/ satisfies the induction assumptions for

exponent n0.
Let n be an odd integer larger than n0. .G0;H0; X0/ satisfies a fortiori the

induction assumptions for exponent n.

Induction. Let .Gk;Hk; Xk/ satisfying the induction assumptions for exponent n.
We denote by Rk the set of hyperbolic elements of Hk which are not proper powers
in Gk and whose asymptotic translation lengths are smaller than l1. Let Nk be the
normal subgroup of Gk generated by fhn=h 2 Rkg, GkC1 the quotient Gk=Nk and
HkC1 the image of Hk by the canonical map �k W Gk ! GkC1. By the induction
lemma, there exists a metric spaceXkC1 such that .GkC1;HkC1; XkC1/ satisfies the
induction assumptions for the exponent n. In this way, we obtain two sequences of
groups .Hk/ and .Gk/ whose properties we want to study now.

Properties of Hk and Gk

Lemma 3.1. For every integer k, there exists a mapGk ! F such that the following
diagram is commutative. Moreover its rows are short exact sequences.

1 �� H ��

��

G ��

��

F �� 1

1 �� Hk
�� Gk

�� F �� 1

Proof. Following the construction ofHk andGk , the proof is by induction on k. The
result is obvious for k D 0. Assume the lemma holds for k. The group Nk being
generated by elements of Hk , Nk � Hk . Consequently, the short exact sequence
1 ! Hk ! Gk ! F ! 1 induces maps such that the following diagram commutes
and its rows are short exact sequences.

1 �� Hk
��

��

Gk
��

�k

��

F �� 1

1 �� HkC1
�� GkC1

�� F �� 1

Thus the lemma holds for k C 1. �
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Our next goal is to compare the groupsH=Hn and lim�! Hk . To shorten notations,

we let h stand for an element of H as well as its images in Hk , lim�! Hk or H=Hn.

Lemma 3.2. The kernel of the canonical map H ! lim�! Hk is exactly Hn, the

subgroup ofH generated by all n-th powers.

Proof. Let h be an element of H n f1g. By the induction lemma,

Œh�1Xk
6

�
l3p
n

�k

Œh�1X0
6

�
l3p
n0

�k

Œh�1X0

for all integers k. However, we chose n0 in such a way that l3p
n0
< 1. It follows that

there is an integer k such that Œh�1Xk
< l2p

n
. By construction, the injectivity radius of

Hk on Xk is larger than l2p
n

(point (ii) of Lemma 2.16). Therefore h is an elliptic

isometry. In particular, h has finite order dividing n inHk (point (i) of Lemma 2.16).
Hence Hn is contained in the kernel of H ! lim�! Hk .

On the other hand, at each step of the construction, the kernel of the map Hk !
HkC1 is generated by n-th powers of elements of Hk . It follows that the kernel of
the morphism H ! lim�! Hk is contained in Hn. �

Lemma 3.3. The groupsH=Hn and lim�! Hk are isomorphic.

Proof. This lemma follows from the previous one and from the fact that the map
H ! lim�! Hk is onto. �

Lemma 3.4. Let f be a non-trivial element of F . Let g be a preimage of f by the
map G ! F . The conjugation by g defines an automorphism ofH which induces a
non-trivial outer automorphism ofH=Hn.

Proof. Let S be a finite generating set of H . We denote by ' the automorphism of
H defined by '.h/ D ghg�1 for all h 2 H . Assume, contrary to our claim, that '
induces an inner automorphism ofH=Hn. There exists l 2 H such that for all h 2 H
'.h/ and lhl�1 have the same image inH=Hn. According to Lemma 3.3,H=Hn and
lim�! Hk are isomorphic. Since S is finite, there is an integer k such that for all s 2 S
'.s/ equals lsl�1 in Hk . However S is a generating set of H . Thus '.h/ D ghg�1

is equal to lhl�1 inHk for all h 2 H . Lemma 3.1 yields the following commutative
diagram.

1 �� H ��

��

G ��

��

F �� 1

1 �� Hk
�� Gk

�� F �� 1
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Hence, the image of l�1g in Gk commutes with every element of Hk . By construc-
tion, the injectivity radius ofHk onXk is positive. Therefore, it contains a hyperbolic
element h. Thus h and l�1g generate an abelian subgroup of Gk , which has to be
cyclic. There exists .p; q/ 2 Z� � Z such that

�
l�1g

�p D hq in Gk . Using the
commutative diagram, we push this identity in F and obtain f p D 1. Since F is
torsion-free, f is trivial. This contradicts our assumption. �

End of the proof of the main theorem. The mapF ! Out .H/ can be constructed
as follows. Let f be an element of F and g a preimage of f byG ! F . The image
of f by the map F ! Out .H/ is exactly the outer automorphism of H induced by
the conjugation by g in G. The previous lemma is hence an equivalent formulation
of the following fact: the map F ! Out .H/ induces an injective homomorphism
F ,! Out .H=Hn/. This remark completes the proof of the main theorem. �

References

[1] S. I. Adian, The Burnside problem and identities in groups. Translated from the Russian
by John Lennox and James Wiegold, Ergeb. Math. Grenzgeb. 95, Springer-Verlag, Berlin
1979. Zbl 0417.20001 MR 0537580

[2] S. I. Adian and I. G. Lysenok, The method of classification of periodic words and the
Burnside problem. In Proceedings of the International Conference on Algebra, Part 1
(Novosibirsk, 1989), Contemp. Math. 131, Amer. Math. Soc., Providence, RI, 1992, 13–
28. Zbl 0796.20030 MR 1175759

[3] M. Bestvina and M. Feighn, A combination theorem for negatively curved groups. J.
Differential Geom. 35 (1992), no. 1, 85–101. Zbl 0724.57029 MR 1152226

[4] M. Bestvina and M. Feighn,Addendum and correction to: “A combination theorem for neg-
atively curved groups”. J. Differential Geom. 43 (1996), no. 4, 783–788. Zbl 0862.57027
MR 1412684

[5] M. Bestvina, M. Feighn, and M. Handel, Laminations, trees, and irreducible automor-
phisms of free groups. Geom. Funct. Anal. 7 (1997), no. 2, 215–244. Zbl 0884.57002
MR 1445386

[6] M. Bestvina, M. Feighn, and M. Handel, Erratum to: “Laminations, trees, and irreducible
automorphisms of free groups”. Geom. Funct. Anal. 7 (1997), no. 6, 1143. MR 1487756

[7] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature. Grundlehren
Math. Wiss. 319, Springer-Verlag, Berlin 1999. Zbl 0988.53001 MR 1744486

[8] P. Brinkmann, Hyperbolic automorphisms of free groups. Geom. Funct. Anal. 10 (2000),
no. 5, 1071–1089. Zbl 0970.20018 MR 1800064

[9] W. Burnside, On an unsettled question in the theory of discontinuous groups. Quart. J.
Math. 33 (1902), 230–238. JFM 33.0149.01

[10] E. A. Cherepanov, Free semigroup in the group of automorphisms of the free Burnside
group. Comm. Algebra 33 (2005), no. 2, 539–547. Zbl 1121.20028 MR 2124343

http://www.emis.de/MATH-item?0417.20001
http://www.ams.org/mathscinet-getitem?mr=0537580
http://www.emis.de/MATH-item?0796.20030
http://www.ams.org/mathscinet-getitem?mr=1175759
http://www.emis.de/MATH-item?0724.57029
http://www.ams.org/mathscinet-getitem?mr=1152226
http://www.emis.de/MATH-item?0862.57027
http://www.ams.org/mathscinet-getitem?mr=1412684
http://www.emis.de/MATH-item?0884.57002
http://www.ams.org/mathscinet-getitem?mr=1445386
http://www.ams.org/mathscinet-getitem?mr=1487756
http://www.emis.de/MATH-item?0988.53001
http://www.ams.org/mathscinet-getitem?mr=1744486
http://www.emis.de/MATH-item?0970.20018
http://www.ams.org/mathscinet-getitem?mr=1800064
http://www.emis.de/MATH-item?33.0149.01
http://www.emis.de/MATH-item?1121.20028
http://www.ams.org/mathscinet-getitem?mr=2124343


810 R. Coulon CMH

[11] M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes. Les
groupes hyperboliques de Gromov, Lecture Notes in Math. 1441, Springer-Verlag, Berlin
1990. Zbl 0727.20018 MR 1075994

[12] R. Coulon, Asphericity and small cancellation theory for rotation family of groups. Groups
Geom. Dyn. 5 (2011), no. 4, 729–765. Zbl 06017877 MR 2836458

[13] R. Coulon, Automorphismes extérieurs du groupe de Burnside libre. PhD thesis, Université
de Strasbourg, June 2010.

[14] T. Delzant, Sous-groupes distingués et quotients des groupes hyperboliques. Duke Math.
J. 83 (1996), no. 3, 661–682. Zbl 0852.20032 MR 1390660

[15] T. Delzant and M. Gromov, Courbure mésoscopique et théorie de la toute petite simplifi-
cation. J. Topol. 1 (2008), no. 4, 804–836. Zbl 1197.20035 MR 2461856

[16] É. Ghys and P. de la Harpe, La propriété de Markov pour les groupes hyperboliques. In
Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988), Progr. Math. 83,
Birkhäuser, Boston, Mass., 1990, 165–187. Zbl 0731.20025 MR 1086657

[17] M. Greendlinger, Dehn’s algorithm for the word problem. Comm. Pure Appl. Math. 13
(1960), 67–83. Zbl 0104.01903 MR 0124381

[18] M. Greendlinger, On Dehn’s algorithms for the conjugacy and word problems, with appli-
cations. Comm. Pure Appl. Math. 13 (1960), 641–677. Zbl 0156.01303 MR 0125020

[19] M. Greendlinger, An analogue of a theorem of Magnus. Arch. Math. 12 (1961), 94–96.
Zbl 0103.25603 MR 0132099
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