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Abstract. We give a characterization of Inoue surfaces in terms of automorphic pluriharmonic
functions on a cyclic covering. Together with results of Chiose and Toma, this completes the
classification of compact complex surfaces of Kähler rank one.

Mathematics Subject Classification (2010). Primary 32J15, 32S65; Secondary 31C10.

Keywords. Inoue surfaces, singular foliations, pluriharmonic functions.

In this paper we shall solve a problem proposed in [C-T]:

Theorem 1. Let S be a compact connected complex surface of algebraic dimension

0. Suppose that there exists an infinite cyclic covering zS �! S (with covering trans-
formations generated by ' 2 Aut. zS/) and a nonconstant positive pluriharmonic
function F on zS such that

F B ' D � � F

for some positive real �. Then S is a (possibly blown up) Inoue surface.

The class of Inoue surfaces was discovered by Inoue (and independently Bombieri)
around 1972 [Ino], [Nak]. They are special (and explicit) compact quotients of H�C,
and they enjoy the following properties:

– the first Betti number is 1, the second Betti number is 0;

– they admit holomorphic foliations;

– they do not contain compact complex curves.

Conversely, Inoue proved in [Ino] that any compact connected complex surface with
the above properties is an Inoue surface.

Our proof of Theorem 1 will be ultimately a reduction to Inoue’s theorem. The
pluriharmonic function F naturally induces a holomorphic (and possibly singular)
foliation F on S . By a “topological” study of such a foliation we will be able to un-
derstand some topological structure of S , and in particular to show that c2.Smin/ D 0

or c2
1.Smin/ D 0 (where Smin denotes the minimal model of S ). From this vanishing
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of Chern numbers, and results of Kodaira and Inoue, the conclusion will be imme-
diate. Remark that, conversely and by construction, every Inoue surface satisfies the
hypotheses of Theorem 1, which therefore gives a precise characterization of Inoue
surfaces.

Together with the results of [C-T], Theorem 1 allows to complete the classification
of compact surfaces of Kähler rank one. Recall [H-L], [C-T] that a compact connected
complex surface S has Kähler rank one if it is not Kählerian but it admits a closed
semipositive .1; 1/-form, not identically vanishing (this is not the original definition
of [H-L], but it is equivalent to it by the results of [C-T], see also [Lam] and [Tom]).

Corollary 2 ([C-T] and Theorem 1). The only compact connected complex surfaces
of Kähler rank one are

(1) non-Kählerian elliptic fibrations;

(2) certain Hopf surfaces, and their blow-ups;

(3) Inoue surfaces, and their blow-ups.

In the case of an Inoue surface, a closed semipositive .1; 1/-form is given by
.dF=F / ^ .d cF=F /, with F as in Theorem 1. The closedness of that .1; 1/-form is
a consequence of the pluriharmonicity of F , dd cF � 0.

1. Geometric preliminaries

Let S be a surface as in Theorem 1. Without loss of generality, we may assume
that S is minimal, since the hypotheses are clearly bimeromorphically invariant. The
assumption a.S/ D 0 implies, by Enriques–Kodaira classification [BPV], p. 188,
that S is either a torus or a K3 surface or a surface of class VIIB, that is b1.S/ D 1

and kod.S/ D �1. However, the existence of a positive nonconstant pluriharmonic
function on some covering of S , and therefore on its universal covering, excludes
the case of tori, by Liouville theorem, and the case of K3 surfaces, which are simply
connected. Thus S is of class VIIB. For the same reason (Liouville theorem), S

cannot be a Hopf surface, whose universal covering is C2 n .0; 0/.
We claim that, in order to prove Theorem 1, it is sufficient to prove that

c2.S/ D 0

or

c2
1.S/ D 0:

Indeed, we firstly observe that these two conditions are equivalent, by Noether formula
and �.OS / D 0 (which follows from S 2 VIIB). Then, c2.S/ D 0 and b1.S/ D 1

imply b2.S/ D 0. By a classical result of Kodaira ([Nak], Theorem 2.4) S contains
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no compact complex curve, otherwise it would be a Hopf surface. Since S also admits
a holomorphic foliation (see below), all the hypotheses of Inoue’s theorem [Ino] are
satisfied and we get that S is an Inoue surface.

The automorphic function F on zS induces a real analytic map

f D log F W S �! S1 D R
ı

ŒZ � log.�/�:

The regular fibers of f are smooth (possibly disconnected) Levi-flat hypersurfaces
in S , because F is pluriharmonic. However, f could have also some singular fibers,
corresponding to critical points of F . In fact, our aim is precisely to show that these
singular fibers do not exist at all, since this is clearly equivalent to the vanishing of
the Euler characteristic c2.S/.

The holomorphic 1-form ! D @F 2 �1. zS/ descends to S to a holomorphic
section (still denoted by !) of �1.S/˝L, where L is a flat line bundle (the one defined
by the cocycle � 2 RC � C� D H 1.S; C�/). This twisted closed holomorphic 1-
form induces a holomorphic foliation F on S , which is tangent to the fibers of f .

In the following it will be important to distinguish between the singularities of
F , Sing.F /, and the zeroes of !, Z.!/. The former are only isolated points, since
(as customary) we like to deal with “saturated” foliations. The latter, on the contrary,
may contain some compact complex curves. Remark also that Z.!/ coincides with
the set of critical points of f , Crit.f /.

The foliation F has a normal bundle NF and a tangent bundle TF [Br1], which
are related to the canonical bundle KS of S by the adjunction type relation

NF ˝ TF D K�1
S :

Because F is generated by ! 2 �1.S/ ˝ L, we have [Br1]

NF D L ˝ O
� � P

mj Cj

�
where fCj g are the curves contained in Z.!/ (if any) and fmj g are the respective
vanishing orders.

We shall prove below that Z.!/ is at most composed by isolated points, giving
by the previous formula the flatness of NF D L. Then we shall prove that either
c2.S/ D 0 or TF is also flat. But in this second case we therefore get that KS is flat
too, hence c2

1.S/ D 0.

2. The structure of the smooth fibers

For every # 2 S1, let M# D f �1.#/ be the fiber of f over # , and denote by M#;j ,
j D 1; : : : ; `, its connected components (with ` possibly depending on #). In this
section we consider the smooth components, that is the components around which f

has no critical point, and we prove that they have the expected structure.
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Proposition 2.1. Let M#;j be a smooth connected component of a fiber M# . Then the
leaves of F jM#;j

are either all isomorphic to C, or all isomorphic to C�. In the first
case, M#;j is diffeomorphic to T 3, and F jM#;j

is a linear totally irrational foliation.
In the second case, M#;j is a S1-bundle over T 2, and F jM#;j

is the pull-back of a
linear irrational foliation on T 2.

The first case will lead to Inoue surface of type SM , and the second case to those
of type S

.C/
N;p;q;rIt or S

.�/
N;p;q;r [Ino].

Proof. The foliation H D F jM#;j
is defined by the closed and nonsingular 1-form

ˇ D d cF jM#;j
(which is well defined on a neighbourhood of any fiber, up to a

multiplicative constant). We may use some classical results of Tischler [God], I.4,
concerning the structure of (real) codimension one foliations defined by closed 1-
forms. According to those results, the foliation can be smoothly perturbed to a fiber
bundle over the circle with fiber †g , the (real) oriented compact surface of genus
g � 1. Note that, since a.S/ D 0, the leaves of H cannot be all compact, and so they
are all dense in M#;j [God], I.4.3. Moreover, by using the flow of a smooth vector
field v on M#;j such that ˇ.v/ � 1, and the closedness of ˇ, we see that the leaves
are all diffeomorphic to the same abelian covering of †g [God], I.4.2 and I.4.6.

The above flow of v sends leaves to leaves, but of course it does not need to preserve
the complex structure of the leaves, that is it does not need to realize a conformal
diffeomorphism between the leaves. However, the compactness of M#;j implies, at
least, that such a diffeomorphism is quasi-conformal [Ahl]. More precisely, if �t

is the flow of v at time t , then there exists a constant kt < 1 such that, for every
p 2 M#;j , the complex dilatation of d�t acting from TpH to T�t .p/H is bounded
by kt (the complex dilatation is the quotient between the antiholomorphic and the
holomorphic part of d�t , and it is at each point less than 1 because �t is orientation
preserving between the leaves; the compactness of M#;j gives a uniform bound).
Thus, �t realizes a kt -quasi-conformal diffeomorphism between any leaf L and its
image leaf �t .L/, and therefore a kt -quasi-conformal diffeomorphism between their
respective universal coverings.

In particular, since C and D are not quasi-conformal, we obtain that all the leaves
of H have the same (conformal) universal covering: either they are all parabolic,
uniformised by C, or all hyperbolic, uniformised by D.

For our purposes, it is sufficient to prove that the leaves are parabolic: since they
are abelian coverings of †g , this implies that g D 1, i.e. M#;j is a torus bundle over
the circle. The rest of the statement is a standard fact, see I.4, IV.2.23 and IV.2.24 in
[God].

We can associate to H a closed positive current ˆ 2 A1;1.S/0, by integration
along the leaves against the transverse measure defined by ˇ [Ghy]: if � 2 A2.S/,
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we define

ˆ.�/ D
Z

M#;j

ˇ ^ �:

Remark that this is indeed a .1; 1/-current: if � is of bidegree .2; 0/ or .0; 2/ then
� identically vanishes when restricted to the leaves, hence the 3-form ˇ ^ � on
M#;j is identically zero. The hypersurface M#;j is cooriented, and hence oriented,
by its defining function F , and this gives also the positivity of ˆ: if � � 0 then
dF ^ d cF ^ � � 0 too, and so the integral of d cF ^ � on a level set of F is
nonnegative. Finally, ˆ is closed because ˇ is closed.

Obviously this current does not charge compact complex curves, since there are
no such curves at all in M#;j , hence by a result of Lamari [Lam], [Tom], Remark 8,
it is an exact positive current. Actually, in our case the proof of such a fact is very
simple. The current ˆ, supported on M#;j , can be approximated by a current ˆ0
supported on a nearby fiber component M# 0;j , and the disjointness of supports gives
Œˆ� � Œˆ0� D 0, i.e. Œˆ�2 D 0 (here Œ�� denotes the De Rham cohomology class). Now,
on a class VIIB surface the intersection form is negative definite [BPV], p. 120, and
the vanishing of the selfintersection implies the vanishing of the cohomology class.

As a consequence of this, the De Rham cohomology class Œˆ� (which is zero!)
has vanishing product with the Chern class of TF :

c1.TF / � Œˆ� D 0:

Let us show that this implies the parabolicity of the leaves. This is a particularly
simple instance of the foliated Gauss-Bonnet theorem, see [Ghy]. In the opposite
case, we may put on the leaves of H their Poincaré metric g, which can be seen
as a hermitian metric on TF jM#;j

. It is a continuous metric [Ghy], §5.2, and it
can be regularized by a smooth hermitian metric on TF jM#;j

whose curvature along
the leaves is still strictly negative. For instance, this can be done with the help of
the flow of the above vector field v. Indeed, the leafwise riemannian metric ��

t .g/

induces, by symmetrization, a leafwise hermitian metric ��
t .g/h, and, for t small,

the leafwise curvature of ��
t .g/h is strictly negative; a convolution of these leafwise

metrics produces the desired result. We then extend this smooth hermitian metric
on TF jM#;j

to the full TF , on the full S , in any smooth way. The curvature form
‚ 2 A1;1.S/ is negative on the leaves of H , and therefore

ˆ.‚/ D
Z

M#;j

ˇ ^ ‚ < 0:

This is in contradiction with the vanishing of c1.TF / � Œˆ�. �

Remark 2.2. Let us stress a subtle detail of the previous proof. The current ˆ can be
also considered as a current on the real threefold M#;j , or more precisely as the direct
image of a current ˆ0 on M#;j under the inclusion map M#;j ! S . This current ˆ0,
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however, is not exact in M#;j (i.e., any current ‰ on S with d‰ D ˆ cannot have
support contained in M#;j ) . Thus, in order to get the vanishing of c1.TF / � Œˆ�, we
used also the fact that the tangent bundle TH extends to the full S , or more precisely
that its Chern class in H 2.M#;j ; R/ extends to S , which is obvious in our case since
we have a global foliation on S . Now, one can imagine a more general situation,
in which we have a Levi-flat hypersurface M in a class VIIB surface, such that the
Levi foliation is given by a closed 1-form (or, more generally, admits a transverse
measure invariant by holonomy). Is it still true that the leaves of this Levi foliation
are parabolic?

3. The structure of the singularities

In order to study Sing.F / and Z.!/, we need a general lemma on critical points.
Let zU be a smooth complex surface and let D � zU be a compact connected

curve (with possibly several irreducible components). Suppose that the intersection
form on D is negative definite, so that D is contractible to one point [BPV], p. 72.
After contraction, we get a normal surface U and a point q 2 U , image of D; we do
not exclude that q is a smooth point. Let now zH be a holomorphic function on zU ,
vanishing on D, such that

Crit. zH/ D D:

After contraction, we thus get a holomorphic function H on U with (at most) an
isolated critical point at q. If B is a small ball centered at q, then H0 D H �1.0/ \ B

is a collection of k discs H 1
0 ; : : : ; H k

0 passing through q, whereas H" D H �1."/\B

(" small and not zero) is a connected curve with k boundary components. The
topological type of H" does not depend on " (small and not zero), it is the so-called
Milnor fiber of H at q.

Lemma 3.1. Under the previous notation, suppose that the genus of the Milnor fiber
of H at q is zero. Then:

(1) q is a smooth point of U ;

(2) H has a Morse type critical point at q.

Proof. The hypothesis means that the Milnor fiber is a sphere with k holes. By a
standard construction (see the figure below), we may glue to W D [j"j<rH" (r > 0

small) a collection of k bidiscs in such a way that we obtain a normal complex surface
V and a proper holomorphic map

G W V �! D.r/

such that:
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(i) W � V and GjW D H ;

(ii) G" D G�1."/ is a smooth rational curve for every nonzero " 2 D.r/;

(iii) G0 D G�1.0/ is a collection of k rational curves G1
0 ; : : : ; Gk

0 passing through
q, with G

j
0 \ W D H

j
0 for every j .

gluing

gluing

B

H0

H� G0

G�

V

Remark that all the components G
j
0 of G0 have multiplicity 1, i.e. G vanishes

along G
j
0 nfqg at first order only. On the other hand, we may blow-up q to the original

D, and we get a smooth complex surface zV and a map

zG W zV �! D.r/

whose fiber over 0 is yG1
0 [ : : : [ yGk

0 [ D, with yGj
0 the strict transform of G

j
0 in zV .

By construction, we have
mult. yGj

0 / D 1

for every j and
mult.C / � 2

for every irreducible component C of D, since Crit. zH/ D D.
Recall now [BPV], p. 142, that such a zV can be also blow-down to the trivial

fibration D.r/ � CP 1, in such a way that the singular fiber of zG is sent to the
regular fiber f0g � CP 1. In other words, that singular fiber is obtained from a
regular fiber by a sequence of monoidal transformations. It is then easy to see that
D necessarily contains a .�1/-curve: the reason is that a monoidal transformation
at a point belonging to an irreducible component of multiplicity m creates a new
irreducible component whose multiplicity will be not less than m. By iterating this
principle, we see that D contracts to a regular point, whence the first part of the
lemma.
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Moreover, after this contraction the singular fiber becomes a curve (the fiber G0

in the now smooth surface V ) still dominating a regular fiber, hence in particular it
has only normal crossings. Since all the components of G0 pass through q, we get
k D 1 (G0 is a single smooth rational curve of selfintersection 0) or k D 2 (G0 is
a pair of two smooth rational curves of selfintersection �1). In this second case, H

has at q a Morse type critical point. The first case cannot occur: H would be regular
at q, but then at least one of the components of D (which contracts to q) would be of
multiplicity 1, i.e. would be not contained in Crit. zH/. �

Remark 3.2. If H W U ! C, U � C2, has an isolated critical point whose Milnor
fiber has genus zero, then the critical point is of Morse type: it is a particular case
of the previous lemma, but it is also a consequence of classical formulae estimating
the genus of the Milnor fiber. However, some care is needed when C2 is replaced
by a singular surface. For instance, take the function zw on C2 and quotient by
the involution .z; w/ 7! .�z; �w/. We get a normal surface U and a holomorphic
function H on U with an isolated critical point whose Milnor fiber has genus zero.
This kind of examples (and more complicated ones) do not appear in Lemma 3.1
because, when we take the resolution zU ! U , the critical set of zH is not the full
exceptional divisor D.

We can now return to our compact complex surface S .

Proposition 3.3. The zero set Z.!/ is composed only by isolated points, all of Morse
type. In particular, the normal bundle NF coincides with the flat line bundle L.

Proof. Let D be a connected component of Z.!/. If it is a curve, then it is a tree of
rational curves with negative definite intersection form: this follows from results of
Nakamura on the possible configurations of curves on VIIB surfaces [Nak], and the
absence of elliptic curves and cycles of rational curves [Tom], [C-T]. In particular, D

is simply connected, and so the (twisted) closed 1-form ! is exact on a neighbourhood
zU of D: ! D d zH and Crit. zH/ D D. We therefore are in the setting of Lemma 3.1,
and we have just to verify the genus zero hypothesis.

Now, D is contained in a singular fiber M#0
, which can be approximated by regular

ones, on which we already know that the foliation has leaves C or C�. It follows
obviously that the Milnor fiber has genus zero, and so by Lemma 3.1 the contraction
of D produces a smooth point. But we are also assuming since the beginning that S

is minimal, hence such a contraction cannot exist and so Z.!/ is composed only by
isolated points.

By a similar argument, and again Lemma 3.1 (or its particular case explained in
Remark 3.2), all these points are of Morse type. �
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4. The structure of the singular fibers

The fact that f has only isolated critical points, all of Morse type, allows to describe
the structure of the foliation also on the singular components of the fibers of f .
Basically, everything in this section is already contained in [Mil].

Let us firstly observe that, since f is the logarithm of a pluriharmonic function F ,
all its critical points have index 2 [Mil], p. 39. Around such a point p we may choose
holomorphic coordinates .z; w/ such that F.z; w/ D Re.zw/ C c, c D F.p/. It
follows that each connected component of any fiber M# is a real analytic subvariety of
S of dimension 3, with isolated singularities, each one being topologically a cone over
T 2. Moreover, when we cross a critical value the number of connected components
of the fiber does not change (even locally, around a critical point). It follows that

there exists a finite cyclic covering S 0 q! S such that f 0 D f B q W S 0 ! S1 has
connected fibers.

Since the class of Inoue surfaces is invariant by finite coverings (by Inoue’s results),
this means that, without loss of generality, we may suppose in the following that the
fibers of f are connected.

Let Cv.f / � S1 be the set of critical values of f , and let J � S1 be a connected
component of S1 n Cv.f /. Set F# D F jM#

, and recall that, for every # 2 J ,
.M# ; F#/ is described by Proposition 2.1.

Lemma 4.1. The differentiable type of .M# ; F#/ does not depend on # 2 J .

Proof. On f �1.J / we have a real codimension one foliation G given by the integrable
nonsingular 1-form d cF=F (or, locally, by the closed 1-form d cF ). The foliation G

is transverse to the fibers M# , # 2 J , and its trace on M# is precisely the foliation
F# . Thus, the foliations F# are integrably homotopic, and it is a standard fact [God],
I.3.8, to check that they are isotopically conjugate. Let us anyway recall the argument,
since it will be useful later in a slightly more general context. We can easily construct
a smooth vector field v on f �1.J / such that: (i) v is tangent to the leaves of G ;
(ii) df .v/ � 1. Then the flow of v sends fibers of f to fibers of f , by (ii), and it
conjugates the corresponding foliations, by (i). �

Take now a singular fiber M# , and set

M B
# D M# n Sing.M#/; F B

# D F jM B

#
:

Call J1 and J2 the intervals of S1 n Cv.f / adjacent to # (with J1 D J2 if f has
only one critical value) and take #1 2 J1, #2 2 J2. Set n equal to the cardinality of
Sing.M#/.

Proposition 4.2. For every k D 1; 2, there exists n disjoint smooth closed curves

�k
1 ; : : : ; �k

n � M#k
;
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all tangent to the foliation F#k
, such that:

(1) if each �k
j , j D 1; : : : ; n, is collapsed to one point, we get a topological space

homeomorphic to M# , with a foliation homeomorphic to F# ;

(2) .M B
#

; F B
#

/ is diffeomorphic to .M#k
; F#k

/ with the circles �k
1 ; : : : ; �k

n removed.

Proof. The idea is the same as in Lemma 4.1, but of course the singularities give
troubles.

On a neighbourhood of M# we still have a real codimension one foliation G , given
by the Kernel of d cF , but now it is singular at Sing.M#/ (and only there). Outside
those singularities, G is transverse to the fibers of f . Around a singular point, we
may choose local holomorphic coordinates .z; w/ such that

F.z; w/ D Re.zw/ C c;

so that G is given by the level sets of

G.z; w/ D Im.zw/;

since d cF D dG. Write z D x C iy, w D s C it , so that F D xs � yt C c and
G D xt C ys. Let v0 be the (euclidean) gradient of F :

v0 D s
@

@x
C x

@

@s
� t

@

@y
� y

@

@t

and note that dG.v0/ � 0, that is v0 is tangent to G .
This vector field has an hyperbolic behaviour: there is a stable manifold W s D

fs D �x; t D yg, corresponding to the eigenspace of v0 of eigenvalue �1, and an
unstable manifold W u D fs D x; t D �yg, corresponding to the eigenspace of
eigenvalue C1. The trajectories of v0 on W s (resp. on W u) converge to the origin
0 when the time tends to C1 (resp. to �1); all the other trajectories stay far from
0. Remark that F jW s has a maximum point at 0, whereas F jW u has a minimum
point. If " > 0 (small), then F �1.c C "/ is disjoint from W s and intersects W u on a
closed curve �u

" . Similarly, F �1.c � "/ is disjoint from W u and intersects W s along
a closed curve � s

" . Remark also that G is identically zero on W s [ W u, so that the
curves �u

" and � s
" are tangent to F .

Consider now the normalized vector field v D v0=jjv0jj2, which is smooth outside
the origin, and note that dF.v/ � 1 and dG.v/ � 0, so that the local flow of v

sends F -fibers to F -fibers by respecting the G-foliations on them. By the previous
analysis, for " > 0 small the flow �" is well defined on F �1.c �"/n� s

" , with values in
F �1.c/nf0g, and it extends continuously to F �1.c�"/ by sending � s

" to 0. Similarly,
��" extends to a continuous map from F �1.c C "/ to F �1.c/ which collapses �u

"

to 0.
This local construction gives the desired result locally, on a neighbourhood of a

singular point. By using a partition of unity, we can find a smooth vector field v
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on f �1.J1 [ J2/ [ M B
#

, tangent to G , satisfying df .v/ � 1, and such that on a
neighbourhood of any point in Sing.M#/ it has the form described above. The flow
of this vector field gives then the global result. �

Remark 4.3. The above proof furnishes also an explicit diffeomorphism from
M#1

n f�1
1 ; : : : ; �1

ng to M#2
n f�2

1 ; : : : ; �2
ng, which conjugates the foliations. It is

not difficult to see that this corresponds to a Dehn surgery from .M#1
; �1

1 ; : : : ; �1
n / to

.M#2
; �2

1 ; : : : ; �2
n /.

5. The planar case

Let us say that a smooth fiber M# is of type C if all the leaves of F# are isomorphic
to C, and of type C� if they are all isomorphic to C�.

Proposition 5.1. If there exists a smooth fiber of type C, then all the fibers are smooth
and of type C, and S is an Inoue surface of type SM .

Proof. Suppose, by contradiction, that there exists a singular fiber M# , which can
be chosen so that M#1

(notation as in Proposition 4.2) is of type C. Hence, F# is
obtained from F#1

by collapsing some circles contained in some leaves. Since the
leaves of F#1

are simply connected, we see that at least one of these circles (call it � )
bounds on the corresponding leaf a disc D which does not contain any other circle.
When we collapse the circles, and in particular � to p 2 Sing.M#/, this disc becomes
a leaf L of F B

#
, simply connected and accumulating only to p. The union

C D L [ fpg
is then a smooth rational curve in S , invariant by F , and over which F has only one
singularity, the point p.

We can compute the selfintersection of C by using Camacho–Sad formula [Br1].
For a Morse type singular point, the Camacho–Sad residue along a separatrix is �1.
Hence we get

C � C D �1:

But this is in contradiction with the minimality of S .
Therefore, f has no critical point, and f W S ! S1 is a smooth T 3-bundle, in

particular c2.S/ D 0. It follows from [Ino] that S is an Inoue surface of type SM .
�

Remark 5.2. It is worth observing that, in this quite special context, the proof of
Inoue’s theorem can be highly simplified. Indeed, by the previous results, on the
universal covering yS of S the foliation is given by a submersion 	 W yS ! H (with
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Im.	/ coming from the pluriharmonic function F on zS ) all of whose fibers are
isomorphic to C. The key point is to prove that such a universal covering is a product:

yS D H � C:

Indeed, once we know this fact, it remains to study the action of 
 D 	1.S/ on
H � C. But we already know a lot of properties of such an action (for instance, 


is a semidirect product of Z and Z3, which acts on the H-factor in a special affine
way, etc.), and using that knowledge it is easy to conclude that S is an Inoue surface
of type SM .

In order to prove that yS is a product, it is sufficient to show that 	 is a locally
trivial fibration, i.e. that every z 2 H has a neighbourhood Uz such that 	�1.Uz/ D
Uz � C. By a classical theorem of Nishino [Nis], this is equivalent to show that
Vz D 	�1.Uz/ is Stein. By an argument of Ohsawa [Ohs], the Steinness of Vz

follows from the existence of a smooth (not holomorphic!) foliation H on Vz whose
leaves are holomorphic sections of 	 over Uz (i.e., Vz is trivialisable by a smooth
foliation with holomorphic leaves).

Now, in our case such a foliation H is easy to construct. On any fiber M# we can
take a real analytic foliation by real curves transverse to F jM#

. By complexifying,
we get, on a neighbourhood of M# , a real analytic foliation by complex curves,
transverse to F . Using the special form of F , it is easy to see that this foliation,
lifted to yS , as the required property (here Uz is an horizontal strip in H).

6. The cylindrical case

We will now suppose that all the smooth fibers of f are of type C�.

Lemma 6.1. Let M# be a singular fiber. Then every leaf of F B
#

is isomorphic to C�.

Proof. By the same argument of Proposition 5.1, we see that F# is obtained from
F#1

by collapsing circles in leaves which are not homotopic to zero. Since the leaves
of F#1

are all isomorphic to C�, we deduce that every leaf of F B
#

is, topologically,
a cylinder. More precisely, and using also the density of the leaves of F#1

, we get
three possibilities for any leaf L of F B

#
:

(i) L is a cylinder with both ends converging to singular points p1; p2;

(ii) L is a cylinder with one end converging to a singular point p and the other end
dense in M# ;

(iii) L is a cylinder with both ends dense in M# .

In the first case, we obviously have L ' C�. More precisely, the union C D
L [ fp1; p2g is a smooth rational curve, and by using Camacho–Sad formula we get
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C � C D �2. Remark that this case occurs only when two (or more) collapsed circles
belong to the same leaf.

In the second case, the end of L converging to p is obviously of parabolic type,
and we need to prove the same property also for the dense end. Take a relatively
compact annulus A � L, not homotopic to zero. Since L has no holonomy, A can
be smoothly deformed in nearby leaves of F B

#
, where it remains not homotopic to

zero (this is an immediate consequence of the analogous property of F#1
). Even if

this deformation is perhaps not conformal, it is at least quasi-conformal (compare
with the proof of Proposition 2.1). In particular, and since L accumulates to itself,
we get infinitely many disjoint annuli An � L, n 2 Z, all nonhomotopic to zero,
necessarily diverging toward the dense end of L. Moreover, these annuli are all k-
quasi-conformally equivalent, for some k < 1 independent on n. Equivalently, the
moduli �n 2 .0; 1/ of An ' fz 2 C j �n < jzj < 1g stay in some compact subset
of .0; 1/. It follows from these properties that the dense end of L is of parabolic type
[Ahl], and hence L ' C�.

The third case is completely analogous. �

Example6.2. Before continuing the proof, it may be useful to see an example showing
that singular fibers of type C� cannot be excluded by some “local” argument, as it
was done in the planar case (local = working in a neighbourhood of a singular fiber).

Set B D fz 2 C j 1 < jzj < 3g, and let g W W ! B be the fibration obtained by
pulling back the fibration zw W xD2 ! xD under an embedding i W B ! D which sends
2 to 0. Thus, every fiber g�1.z/, z 6D 2, is a closed annulus, and the fiber g�1.2/ is a
pair of closed discs intersecting at a Morse critical point. The boundary @W has two
connected components N1 and N2, both CR-isomorphic to B � S1, and the fibration
is holomorphically trivial (a product) around each component. We can glue together
N1 and N2 so that we obtain a complex surface V and an elliptic fibration Og W V ! B ,
with Og�1.2/ a rational nodal curve. The function F D r B Og W V ! .1; 3/ (r.z/ D jzj)
is pluriharmonic, F �1.t/ is smoothly foliated by elliptic curves for t 6D 2, F �1.2/ is
singularly foliated by elliptic curves plus a rational nodal curve.

Now, we can modify the (trivial) gluing of N1 and N2 by inserting a rotation
�˛ W B �S1 ! B �S1, �˛.z; s/ D .e2� i˛z; s/. The resulting surface V˛ has no more
a fibration over B , but still we have a pluriharmonic function F˛ W V˛ ! .1; 3/. If
˛ is irrational, the smooth fibers F �1

˛ .t/, t 6D 2, are foliated by dense copies of C�,
and the singular fiber F �1

˛ .2/ is foliated by dense copies of C� plus a singular point.

The previous lemma has the following important consequence.

Lemma 6.3. The line bundle T ˝2
F

admits a continuous section on S n Sing.F / which
is nowhere vanishing.

Proof. The complex curve C� admits a “almost canonical” holomorphic vector field:
the vector field z @

@z
, which can be almost uniquely characterized as a complete holo-
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morphic vector field whose flow is 2	 i-periodic. There is however a minor ambigu-
ity, since also the vector field �z @

@z
(conjugate to the previous one by the inversion

z 7! 1=z, which exchanges the two ends) is complete and 2	 i-periodic. This ambi-
guity can be removed when we take the square: .z @

@z
/˝2 D .�z @

@z
/˝2. This means

that, given any foliation F with leaves isomorphic to C�, we get a canonical non-
vanishing section of T ˝2

F
on S n Sing.F /, by the previous recipe. The point to be

proved is that such a section is (at least) continuous.
This is equivalent to prove the following. Let T � S be a local transversal to F ,

isomorphic to a disc, and let VT be the corresponding holonomy tube [Br2], p. 734.
Remark that, as already observed in the course of the proof of Lemma 6.1, the foliation
F has no “vanishing cycles” in the sense of [Br2]. The holonomy tube VT is then a
complex surface, homeomorphic to T �C�, equipped with a holomorphic submersion
QT W VT ! T , all of whose fibers are isomorphic to C�, and a holomorphic section
qT W T ! VT . For every t 2 T we have a unique isomorphism it from Q�1

T .t/ to
C�, sending qT .t/ to 1 (really, there is again a Z2-ambiguity, which however can
be easily removed by prescribing an homotopy class). Therefore we get a canonical
trivialising map

u W VT �! T � C�; ujQ�1
T

.t/ D .t; it /

and the continuity of the above canonical section of T ˝2
F

is clearly equivalent to the
continuity of u (for every transversal T ).

As shown in [Ghy], p. 78 (see also I.2 in [Nis]), the continuity of u readily follows
from Koebe’s Theorem. Let us recall the argument, for completeness.

Take a compact K � Q�1
T .t0/ and an exhaustion of Q�1

T .t0/ by relatively compact
open subsets f�ngn2N . By a standard argument (e.g. Royden’s Lemma), each �n can
be holomorphically deformed to the nearby fibers Q�1

T .t/, t 2 Un D a neighbourhood
of t0 in T . Thus, the maps it , t 2 Un, can be seen as all defined on the same domain
�n. By Koebe’s Theorem, the distorsion of it on K � �n is uniformly bounded by
a constant which tends to zero as n ! 1, since Q�1

T .t0/ is parabolic. We get in this
way that it jK uniformly converge to it0 jK as t ! t0, and since K was arbitrary we
get the continuity of u. �

Remark that, a posteriori, the above map u will be even holomorphic, as well as
the canonical section of T ˝2

F
.

Remark 6.4. The geometrical meaning of Lemma 6.3, or more precisely of its proof,
is the following: if we take in each leaf L ' C� its canonical fibration by circles,
then we get in S n Sing.F / a continuous fibration by circles. Due to the particular
structure of the fibers of f , provided by Propositions 2.1 and 4.2, one could try to
construct directly a fibration by circles on S n Sing.F /, tangent to F , by using only
“topological” arguments. However, due to the possibly nontrivial monodromy of
f , in order to do so one should prove a fact which is not so trivial nor so evident,
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namely: the space of fibrations by circles on M# , tangent to F# , is connected. Our
proof, which works with “canonical” objects, avoids this type of difficulty.

It is now easy to complete the proof of Theorem 1.

Proposition 6.5. If there exists a smooth fiber of type C�, then all the fibers are
smooth and of type C�, and S is an Inoue surface of type S

.C/
N;p;q;rIt or S

.�/
N;p;q;r .

Proof. By Lemma 6.3, the line bundle T ˝2
F

is topologically trivial, i.e. it is flat:
indeed, the nonvanishing section on S nSing.F / gives the topological triviality there,
and hence everywhere since Sing.F / has (real) codimension 4. From Proposition 3.3
and K�1

S D NF ˝ TF it follows that KS is flat too, and so c2
1.S/ D 0. As explained

at the beginning, this is the same as c2.S/ D 0, the foliation is nonsingular, and S is
an Inoue surface (of the claimed type). �

As in the planar case, also in the cylindrical case we do not need the full strength
of Inoue’s theorem, since we can directly prove that a covering of S is isomorphic to
H � C�.
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