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A Floer–Gysin exact sequence for Lagrangian submanifolds

Paul Biran and Michael Khanevsky�

Abstract. We establish a Floer-theoretical analog of the classical Gysin long exact sequence
from algebraic topology for circle bundles. We study algebraic and functorial properties of this
sequence and derive applications to computations of Lagrangian Floer homologies as well as to
questions on the topology of Lagrangian submanifolds.

Mathematics Subject Classification (2010). Primary 53D12; Secondary 53D35, 53D40.

Keywords. Symplectic geometry, symplectic topology, Lagrangian submanifold, Floer homol-
ogy, quantum homology.

1. Introduction and main results

This paper is concerned with a Floer-theoretic analogue of the well known Gysin-
sequence from algebraic topology. In this paper we focus on the case of circle bundles
only. Recall that given a circle bundle � W �nC1 ! Ln over a closed manifold L

there is a long exact sequence in cohomology:

� � � �� H k.L/
[ e �� H kC2.L/

��
�� H kC2.�/

�� �� H kC1.L/ �� � � �

where e 2 H 2.L/ is the Euler class of the circle bundle and �� W H �C1.�/ ! H �.L/

is the map that can be identified under Poincaré duality with the map induced by the
projection Hn��.�/ ! Hn��.L/ (sometimes the map �� is also called “integration
along the fibres”).

In this paper we will develop a Floer analogue of this sequence associated to a
Lagrangian submanifold L and certain circle bundle over it that appears naturally in
certain geometric circumstances.

Let .†; !†/ be a closed symplectic manifold with an integral symplectic structure,
i.e., Œ!†� 2 H 2.†I R/ admits a lift to H 2.†I Z/. Let L � † be a Lagrangian
submanifold. One of the motives of this paper is to study the Floer cohomology of
L and derive from it possible applications, e.g. to questions concerning the topology
of L.

�Both authors were partially supported by the ISRAEL SCIENCE FOUNDATION (grant No. 1227/06 *).
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Our starting point is that one can associate to L in a natural way a flat circle bundle
�L ! L whose total space �L can be realized as a Lagrangian submanifold in a new
symplectic manifold which is a bundle over †. The construction is simple. Fix a lift
a 2 H 2.†I Z/ of Œ!†� and let N ! † be the complex line bundle with cN

1 D a.
One can endow N with a hermitian metric and a connection so that the curvature
of N is i

2�
!†. The total space of N can be endowed with a canonical symplectic

structure !can which restricts to !† on †. Fix r0 > 0 and let Pr0
� N be the circle

bundle of radius r0 and denote by � W Pr0
! † the projection. Then �L D ��1.L/

becomes a Lagrangian submanifold of .N ; !can/. Note that �L in fact lies in N n †.

Ideally one would like to relate the symplectic topology of L � † to that of
�L � N or that of �L � N n †, hoping that the latter would shed some new
light on L. The problem is that both N and N n † have a symplectically concave
end (at infinity) which apriori makes them inaccessible to the current techniques of
symplectic topology, in particular Floer theory. Nevertheless, we will see that one can
still define a version of Floer cohomology for �L � N n †. Moreover, we will see
that the Floer cohomology of L and that of �L are related by a long exact sequence
which is analogous to the Gysin sequence relating the singular cohomologies of L

and �L.

Although we can define the Floer cohomology for �L � N n † this notion is
apriori not very useful unless we can establish some geometric properties of this
cohomology, such as invariance under Hamiltonian isotopies, a vanishing criterion
when �L is displaceable etc. This is not so clear in general since the manifold N n †

has a concave end. However, there is one situation in which one can go through these
difficulties: when the contact manifold Pr0

is Weinstein fillable. This means that
N n † (which is just the negative symplectization of Pr0

) can be compactified at the
negative (or concave) end into a Weinstein manifold W . As we will see later the Floer
cohomology of �L in N n † coincides with that of �L in W . The latter is already
a completely standard object in symplectic topology and enjoys the usual geometric
properties expected from the theory. The fundamental example of fillable Pr0

is when
† appears as a symplectic hyperplane section in closed symplectic manifold M (of
one complex dimension higher). Then W D M n † is Weinstein and if one removes
from it the isotropic skeleton � � W we have W n � � N n †. In view of this we
will from now on work in this geometric framework. Here is the setup.

Let .M; !/ be a symplectic manifold with an integral symplectic structure, i.e.,
Œ!� 2 H 2.M I Z/. Let † � M be a symplectic hyperplane section of degree k,
so that PDŒ†� D kŒ!� (see [Don]). In this setup, the Lagrangian circle bundle
construction [Bir2], [BC2] associates to every Lagrangian submanifold L � † a new
Lagrangian submanifold �L � M n † which topologically is a circle bundle over L.
The construction of �L is roughly the following (see §2 and more specifically §2.4
for the precise details). Take a tubular neighborhood U of † in M which looks like a
disk bundle over †, say U ! †. Its boundary P D @U is a circle bundle � W P ! †
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over †. Define
�L D ��1.L/ � M n †:

For an appropriate choice of the neighborhood U the resulting �L will be a Lagrangian
submanifold of M n †. This procedure, which was introduced in [Bir2], [BC2],
proved to be useful for studying Lagrangians in manifolds † that appear as hyperplane
sections (in some manifold M ). The point is that the symplectic topology of M n †

is sometimes easier to study than that of † itself.
As �L ! L is a circle bundle the singular cohomologies of the manifolds �L

and L are related by the Gysin long exact sequence. As we will see soon, there is an
analogous long exact sequence relating their Floer cohomologies too.

Before we state our main theorem we need to introduce some notation and elab-
orate more about the setting. Given a symplectic hyperplane section † � M , put
W D M n †. We will assume from now on that W is a Weinstein manifold. (This
is often assumed as part of the definition of “symplectic hyperplane section”.) The
basic familiar example is when M is Kähler and † is a complex hyperplane section
(then W is in fact affine). As for the Lagrangian L � † we will henceforth assume
that it is monotone with minimal Maslov number NL � 2 (see e.g. [BC6] for the
definition). In what follows we will mostly work with Z2 as the ground field both for
Floer cohomology as well as for singular cohomology. In particular when we refer
to the Euler class e of the circle bundle �L ! L we actually mean the Z2-reduction
of the integral Euler class, so that e 2 H 2.LI Z2/.

We denote by HF �.L/ the Floer cohomology of the pair .L; L/. Since L is
monotone the coefficient ring will be taken to be the ring of Laurent polynomials ƒ D
Z2Œt�1; t � where deg t D NL (see e.g. [BC6]). Similarly we denote by HF �.�L/ the
Floer cohomology of the pair .�L; �L/. Note that �L can be viewed as a Lagrangian
submanifold of both W and M . Here, by HF �.�L/ we mean the Floer cohomology
in W (not in M !). By the results of [Bir2] when dimR † � 4 the monotonicity of L

implies that �L � W is monotone too and that N�L
D NL. The same continues to

hold if dimR † D 2 provided that W is subcritical.
Our main result is the following.

Theorem 1.1. Let M , † and L � † be as above and assume that either dimR † � 4

or W is subcritical. Then there exist canonical maps

i W HF �.L/ ! HF �.�L/; p W HF �.�L/ ! HF ��1.L/

and a class eF 2 HF 2.L/ which all fit together into the following long exact se-
quence:

� � � �� HF k.L/
�eF �� HF kC2.L/

i �� HF kC2.�L/
p �� HF kC1.L/ �� � � �

where �eF stands for the Floer quantum product with the class eF . Moreover,
the maps i and p satisfy the following multiplicative properties with respect to the
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quantum products on HF.L/ and HF.�L/:

i.˛ � ˇ/ D i.˛/ � i.ˇ/; p.z̨ � i.ˇ// D p.z̨/ � ˇ; p.i.˛/ � Q̌/ D ˛ � p. Q̌/; (1)

for every ˛; ˇ 2 HF �.L/ and z̨; Q̌ 2 HF �.�L/.

A similar theorem (in a somewhat different setting) has been independently ob-
tained by Perutz [Per] by completely different methods, based on the theory of quilted
Floer homology developed by Wehrheim–Woodward [WW1], [WW2]. In fact, the
result of Perutz holds also for sphere bundles (not only circle bundles).

The exact sequence of Theorem 1.1 can be regarded as a Floer-homological ana-
logue of the classical Gysin sequence associated to the circle bundle �L ! L. Indeed,
if we replace the Floer cohomologies by singular cohomologies in the above sequence
and the class eF 2 HF 2.L/ by the Euler class e 2 H 2.LI Z2/ of �L ! L we get
precisely the Gysin sequence. For this reason we call this sequence the Floer–Gysin
sequence and the class eF the Floer–Euler class. Moreover, we will see below that
the maps i and p are in fact Floer-homological analogues of the pull back map �� of
� W �L ! L and of the integration along the fiber, respectively.

Note that since † � M represents the Poincaré dual to a multiple of Œ!� and
L � † is Lagrangian the bundle �L ! L is flat and so the Z-Euler class is torsion in
H 2.LI Z/. This might look like a restrictive situation for the choice of bundles �L,
however the main object of study here is L rather than �L. In fact �L can be viewed
as an auxiliary object for studying L.

In what follows we will actually establish a more general theorem than 1.1 which
allows to take L to be a monotone Lagrangian submanifold of † � Q for any closed
symplectic manifold Q. In contrast to the case Q D pt, in this case the circle bundle
�L ! L is not necessarily flat anymore. This generalization is described in §14. As
an application we will prove in §15 the following:

Theorem 1.2. Let .†; !†/ be a spherically monotone symplectic manifold with min-
imal Chern number C† (see §15 for the definition). Suppose that .†; !†/ can be
embedded as a symplectic hyperplane section in a symplectic manifold M so that
M n † is subcritical. Then C† < 1 and H �.mod2C†/.†I Z2/ is 2-periodic, i.e., for
every k 2 Z we have:M

i2Z

H kC2iC†.†I Z2/ Š
M
i2Z

H kC2C2iC†.†I Z2/:

The simplest example when this happens is † D CP n (with M D CP nC1).
Then we have C† D n C 1 and the 2-periodicity is easy to verify. More examples of
† � M with subcritical complement can be found in [BJ], as well as related theorems
in an algebraic geometric framework.
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1.1. Applications. Here is an immediate corollary of Theorem 1.1.

Corollary 1.3. Suppose that † appears as a symplectic hyperplane section in a
symplectic manifold M such that W D M n † is subcritical. Let L � † be a
monotone Lagrangian submanifold with NL � 2. Then, either HF.L/ D 0, or the
Floer–Euler class eF 2 HF 2.L/ is invertible with respect to the quantum product.
In particular HF �.L/ is 2-periodic, i.e., for every i 2 Z there exists an isomorphism
HF i .L/ Š HF iC2.L/.

See §15.1 for the proof. The simplest example satisfying this corollary is M D
CP nC1 and † D CP n, since we have W D CP nC1 n CP n � Int B2nC2.1/.

Here is another corollary related to subcriticality.

Corollary 1.4. Let L � † be as in Corollary 1.3 but assume now that NL � 3.
Denote by N ! † the normal bundle of † in M . If HF.L/ ¤ 0 then the classical
Euler class e 2 H 2.LI Z2/ of the restriction N jL is non-trivial. In particular the
circle bundle �L ! L is non-trivial and H 2.LI Z/ has torsion.

The proof is given in §15.1. An example of a Lagrangian satisfying this corollary
is L D RP n � CP n, n � 2.

Let † � CP nC1 be a smooth quadric hypersurface, endowed with the symplectic
structure induced from CP nC1. As all such quadrics are symplectomorphic we
choose a specific model: † D fz2

0 C � � � C zn D z2
nC1g � CP nC1. Put

L0 D fŒz0 W � � � W znC1� 2 † j zi 2 R for all ig:
It is easy to see that L0 is a smooth Lagrangian sphere.

Corollary 1.5. Let L � † be a monotone Lagrangian submanifold with NL � 2

and dim L � 2. If HF.L/ ¤ 0 then L \ L0 ¤ ;.

We will prove in §15.1 a slightly stronger result. Note that the quadric † has many
Lagrangians L satisfying the conditions appearing in the corollary (see Section 1.3
in [Bir2] for such examples). We have recently been informed by M. Entov that
Corollary 1.5 should also follow from the theory of heavy and superheavy subsets [EP]
together with some computations from [BC6].

Since quite a few of the corollaries above make use of the assumption that
HF.L/ ¤ 0 it is worthwhile to list some topological conditions on L that ensure this
assumption.

Proposition 1.6 (See [BC6]). Let L � † be a monotone Lagrangian submanifold
with minimal Maslov number NL. Assume that L satisfies one of the following
conditions:
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(1) NL � 3 and the cohomology ring of L, H �.LI Z2/ is generated by H 1.LI Z2/

with respect to the cup product.

(2) More generally, assume that H �.LI Z2/ is generated by H <NL�1.LI Z2/.

(3) Hi .LI Z2/ D 0 for every i 2 Z with i � 	1 mod .NL/. (This happens for
example if L � Sn with NL 6 j n C 1.)

Then HF.L/ ¤ 0. In fact, we have HF.L/ Š H.LI Z2/ ˝ ƒ.

Applying these conditions in each of Corollaries 1.3, 1.4, 1.5 one can obtain
topological restrictions on Lagrangians appearing in the corresponding †’s.

1.2. Examples

1.2.1. Lagrangians L � CPn with 2H1.LI Z/ D 0. Take † D CP n, M D
CP nC1 and let L � CP n be a Lagrangian submanifold with 2H1.LI Z/ D 0. For
example, one could take here L D RP n. It is easy to see that L is monotone. By the
results of [BC6], [BC5] we have NL D .n C 1/ and moreover:

(1) H �.LI Z2/ Š H �.RP nI Z2/, i.e., H i .LI Z2/ D Z2 for every 0 
 i 
 n.

(2) There exists a canonical isomorphism of ƒ-modules

HF �.L/ Š .H.LI Z2/ ˝ ƒ/�:

Note however, that the ring structures on these modules are different.

We will see later in §15.2 that the Floer–Euler class coincides with the classical Euler
class, eF D e, which is the generator of H 2.LI Z2/ D Z2. Note that eF D e is
invertible with respect to the quantum product � on HF.L/, but of course not with
respect to the classical cup product Y on H �.LI Z2/.

1.2.2. The Clifford torus. Let † D CP n, M D CP nC1 and L D Tclif � CP n

the Clifford torus given by

L D fŒz0 W � � � W zn� 2 CP n j jzi j D 1 for all ig:
This is a monotone Lagrangian torus with minimal Maslov number NL D 2. It is well
known that there exists an isomorphism HF.L/ Š H.LI Z2/ ˝ ƒ (See [Cho], see
also [BC6]). Note that this isomorphism is not canonical (see [BC6] for the details),
however there exists a canonical injection H 0.LI Z2/ ˝ ƒ ,! HF �.L/ sending the
unit of H �.LI Z2/ to the unit of HF �.L/.

A simple computation shows that �L � CP nC1 n CP n � Int B2nC2.1/ is in
this case the split monotone torus. As we will see later on, the Floer–Euler class in
this case is eF D t 2 HF 2.L/. Note that the classical Euler class e 2 H 2.LI Z2/
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of �L ! L vanishes since this bundle is trivial. Thus the classical Gysin sequence
splits into many short exact sequences:

0 	! H i .LI Z2/ 	! H i .�LI Z2/ 	! H i�1.LI Z2/ 	! 0:

On the other hand, since M n† D CP nC1nCP n is subcritical we have HF.�L/ D 0.
It follows that the Floer–Gysin sequence splits into many isomorphisms:

0 �� HF i .L/
�t �� HF iC2.L/ �� 0:

We will work out this example and related ones in more detail in §15.2.

1.3. Main ideas in the proof of Theorem 1.1. Our approach to proving Theo-
rem 1.1 goes via the pearl complex and Lagrangian quantum cohomology. Recall
from [BC5], [BC6], [BC4] that the self Floer cohomology HF.L/ is canonically
isomorphic to the Lagrangian quantum cohomology QH.L/. The latter is the ho-
mology of a cochain complex which is a deformation of the Morse complex of L.
The underlying vector space of this complex is the same as that of the Morse complex,
however the differential on the pearl complex is different. It counts combinations of
gradient trajectories with holomorphic disks attached to them (we call such config-
urations “pearly trajectories”). The resulting cohomology has also a ring structure
coming from a quantum product. We briefly recall the construction of this cohomol-
ogy theory in §3. The quantum cohomology QH.L/ together with its ring structure
is canonically isomorphic to HF.L/ via an isomorphism called the PSS. The same
holds for QH.�L/ and HF.�L/, hence we can replace everywhere in Theorem 1.1
HF � by QH �.

The long exact sequence in Theorem 1.1 comes in fact from a short exact sequence
of pearl complexes

0 �� C�.L/
i �� C�.�L/

p �� C��1.L/ �� 0

which is described in detail in §4. Exactness of this sequence is easy to verify, and
the non-trivial part lies in showing that i and p are cochain maps. This is done
by comparing the pearly trajectories on �L with those on L. The exactness of the
sequence follows from a correspondence between the 0 and 1-dimensional moduli
spaces of pearly trajectories on L and on �L.

The correspondence between pearly trajectories on L and on �L is done in two
main steps. First note that if one removes the Lagrangian/isotropic skeleton � from
W then we have a well defined projection W n � ! †. Fix an almost complex
structure J† on † and Morse data on L. Given a pearly trajectory on �L we would
like to project it to † and obtain a pearly trajectory on L. For this to work we have to
use Morse data on �L which is adapted to the Morse data on L. Moreover, in order
for the holomorphic disks in the pearly trajectories to project to holomorphic disks
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in L we need to work with almost complex structures J on W that are adapted to J†

in the sense that the projection is .J; J†/-holomorphic. It is easy to find such J ’s
on W n � however in general they will not extend to �. Thus we have to allow our
J ’s to be adapted to J† away from some small neighborhood U of �. We then show
that for small enough U , the relevant pearly trajectories on �L cannot intersect U ,
hence they all lie in the region of W on which the projection is holomorphic and so
they can be safely projected to pearly trajectories on L. An essential ingredient in
the proof of this fact comes from symplectic field theory (SFT), in particular we use
a neck stretching procedure for this purpose. This is all done in §5.

The second step is to show that pearly trajectories on L can be lifted to pearly
trajectories on �L. The lifting of the gradient lines in a pearly trajectory can be done
via standard arguments from Morse theory. The lifting of the holomorphic disks is
done by an elementary argument from classical analysis which allows us to lift disks
with boundary on L to disks in W with boundary on �L. The basic construction
here amounts to solving the classical Dirichlet problem for harmonic functions on
the 2-dimensional disk. This is done in §7.

Apart from the above, one has to deal also with transversality issues for holomor-
phic disks in W . The point is that the set of admissible almost complex structure
J on W is not arbitrary since we need J to be adapted to J† and moreover have
a long enough “neck”). Thus we cannot choose J to be generic in the usual sense.
Nevertheless we show that by choosing J† in a generic way the set of admissible J ’s
on W is large enough to obtain transversality. This is done in §6.

1.4. Organization of the paper. The rest of the paper is organized as follows.
In §2 we recall the precise construction of the Lagrangian circle bundle �L ! L and
recall also some relevant facts about symplectic hyperplane sections and Weinstein
manifolds. As mentioned above we will use the Lagrangian quantum cohomology
model for Floer homology. The basic setting of this theory is recalled in §3. Then in §4
we describe a short exact sequence of pearl complexes that gives rise to the long exact
sequence in cohomology that appears in Theorem 1.1. In §5 we explain the stretching
of the neck procedure and show how to use it in order to assure that the relevant pearly
trajectories on �L can be indeed safely projected to L. The transversality issues are
dealt with in §6. §7 is dedicated to lifting pearly trajectories from L to �L. Then
in §8 we prove that the cohomological exact sequence is canonical, namely that it
does not depend on various choices made in the construction (such as Morse data
and almost complex structures). In §9 we prove the multiplicative properties of the
exact sequence mentioned in Theorem 1.1. In §10 we define the Floer–Euler class.
In §11 we show that the exact sequence continues to hold also for the positive version
of quantum cohomology. In §12 we give more information on the Floer–Euler class
and its relation to the classical Euler class. In §13 we present a variant of the exact
sequence that holds when one considers �L as a Lagrangian submanifold of M (rather
than W ) and discuss its relation the sequence from Theorem 1.1. Finally, in §14 we
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present some generalizations of the exact sequence that appear in other geometric
settings and discuss further potential applications.

Acknowledgments. We would like to thank Octav Cornea for several useful sugges-
tions concerning the algebraic structures in the paper as well as the idea to use almost
gradient vector fields which simplified some of our constructions. Special thanks
to Misha Sodin for his help with Lemma 7.1. We would also like to thank Dietmar
Salamon and Michael Entov for useful comments.

2. The Lagrangian circle bundle construction

Here we recall a construction from [Bir2], [BC2] which associates to a Lagrangian
submanifold L � † a new Lagrangian �L � W . Before doing that we briefly go
over a few necessary notions such as Weinstein manifolds and symplectic hyperplane
sections that will be used in the sequel.

2.1. Weinstein manifolds. A vector field X on a manifold W is called gradient-like
for a smooth function ' W W ! R if there exists a positive function � W W ! R and a
Riemannian metric on W such that d'.X/ � �kd'k2 everywhere in W (see [Gir1]).
An open symplectic manifold .W; !/ is called Weinstein if there exists a primitive
� of ! such that the dual vector field X , defined by iX! D �, is gradient-like with
respect to a Lyapunov Morse function ' W W ! R. Moreover, ' is assumed to be
proper, bounded below and have finitely many critical points. Similarly we have the
notion of a Weinstein domain. By this we mean a compact symplectic manifold with
boundary .W; !/ such that there exist � and ' as before only that now we assume
that ' W W ! Œa; b�, where 	1 < a < b < 1 and that @W D '�1.b/ is a regular
level set of '.

Weinstein manifolds have special topology. They have the homotopy type of a
CW-complex of dimension 
 1

2
dimR W . In fact, the function ' has the following

property: for every x 2 Crit.'/ we have indx' 
 1
2

dimR W (see [EG], [Eli]). A
Weinstein manifold is called subcritical if there exists � and ' such that for every
x 2 Crit.'/ we have a strict inequality indx' < 1

2
dimR W .

The basic example of a Weinstein manifold is a Stein manifold of finite type,
namely a complex manifold W which admits a proper and bounded below smooth
plurisubharmonic function ' W W ! R without critical points outside some compact
subset. Clearly we can perturb ' with compact support to make it Morse and still
plurisubharmonic. Take � D 	d C'. Since ' is plurisubharmonic, ! D d� is
a symplectic form. Each level set of ' is pseudo-convex (away from the critical
points) hence the complex tangency distribution � is contact and clearly we have
� D ker � on the level sets of '. A simple computation shows that the contact
form that � induces on each level set of ' is positive. The simplest example of a
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subcritical (Wein-)Stein manifold is W D Cn, � D i
2

Pn
kD1.zkd Nzk 	 Nzkdzk/ and

'.z1; : : : ; zn/ D Pn
kD1 jzkj2.

2.2. Standard symplectic disk bundles. Let .†; 	/ be an integral symplectic man-
ifold, i.e., the de Rham cohomology class Œ	 � has an integral lift in H 2.†I Z/. Fix
a complex line bundle � W N ! † such that c1.N / is a lift of 	 . (We denote here
the symplectic structure on † by 	 , rather than !†, since sometimes we might want
to take 	 to be a multiple of !†.) Pick any hermitian metric j � j on N and denote
by P1 ! † the associated unit circle bundle. Choose a hermitian connection r on
N with curvature Rr D i

2�
	 . Denote H r the horizontal distribution and by ˛r the

global angular 1-form on N n 0 associated to r, i.e.,

˛r jH r D 0; ˛r
.u/.u/ D 0; ˛r

.u/.iu/ D 1

2�
for all u 2 N n 0:

With these conventions we have d˛r D 	��	 . Denote by r the radial coordinate
on the fibres of N defined by j � j. Define a symplectic form !can on the total space
of N by

!can D 	d.e�r2

˛r/ D e�r2

��	 C 2re�r2

dr ^ ˛r : (2)

The form !can extends smoothly to the 0-section of N and is symplectic. The fibres
of N are symplectic and they all have area 1 with respect to !can. Next, note that
˛r is a contact form on each of the circle bundles Pr D fu 2 N j juj D rg, r > 0.
Moreover, if we put ˛ D ˛r jP1

then .N n0; !can/ can be naturally identified with the
negative symplectization of .P1; ˛/. Finally we remark that the symplectic structure
!can is independent, up to symplectomorphism, of the hermitian metric and the choice
of the connection. We will refer to !can as the canonical symplectic structure on N

induced by .†; 	/.
Denote by

Er D fu 2 N j juj 
 rg
the (closed) disk bundle of radius r and by Int Er D fu 2 N j juj < rg its interior.
We will call .Er ; !can/ a standard symplectic disk bundle over .†; 	/. (Note that the
area of the fibres of Er is 1 	 e�r2

.)

2.3. Symplectic hyperplane sections. Let .M 2nC2; !/ be an integral symplectic
manifold, i.e., Œ!� 2 H 2.M I R/ admits an integral lift a 2 H 2.M I Z/. Fix such a
lift a. A symplectic hyperplane section is a codimension-2 symplectic submanifold
†2n � M 2nC2 such that:

(1) Œ†� 2 H2n.M I Z/ is Poincaré dual to ka 2 H 2.M I Z/ for some k 2 N.

(2) There exists a tubular neighborhood U of † in M whose closure is symplecto-
morphic to a standard symplectic disk bundle .Eı ; 1

k
!can/ over .†; k!j†/.

(3) .M n Int Eı ; !/ is a Weinstein domain.



Vol. 88 (2013) A Floer–Gysin exact sequence for Lagrangian submanifolds 909

We will refer to k as the degree of †. From now one we will denote !† D !j†.
The basic examples of symplectic hyperplane sections come from algebraic ge-

ometry. Let M be a projective algebraic manifold and let † � M be a smooth
ample divisor. Let ! be a Kähler form on M representing c1 of the bundle OM .†/.
By the results of [Bir1], † � M is a symplectic hyperplane section. There are also
non-algebraic examples. By a theorem of Donaldson [Don], combined with results of
Giroux [Gir2] every integral symplectic manifold has symplectic hyperplane sections
of any large enough degree k.

The following proposition summarizes some relevant facts from [Bir1].

Proposition 2.1. Let .M; !/ be an integral symplectic manifold and † � M a
symplectic hyperplane section of degree k. Denote by N the normal bundle of † in
M and let !can be the canonical symplectic form on N induced by .†; 	 D k!†/.
Then there exists a symplectic embedding F W .N ; 1

k
!can/ ! M with the following

properties:

(1) F.x; 0/ D x for every x 2 †. Here .x; 0/ 2 N stands for the point in the zero
section of N corresponding to x 2 †.

(2) � D M nF.N / has the structure of an isotropic CW-complex with respect to !.

(3) For every r > 0, .M n F.Int Er/; !/ is a Weinstein domain.

(4) If the Weinstein manifold .M n †; !/ is subcritical then � does not contain any
Lagrangian cells, hence dim � < 1

2
dimR M .

Note that in [Bir1] these statements were proved under the additional assumption
that .M; !/ is Kähler, however they easily extend to the non-Kähler case due to
the definition of the notion “symplectic hyperplane section” we gave in §2.3 above.
The point is that our definition of “symplectic hyperplane section” assumes that the
complement of tubular neighborhood of † is Weinstein. It is a rather non-trivial
theorem (which we will not use) that for large enough k the symplectic submanifolds
provided by Donaldson’s theorem [Don] are indeed hyperplane sections (in the sense
that their complements are Weinstein). See [Gir2] for more on that.

2.4. Lagrangian circle bundles. Let .M 2nC2; !/ be an integral symplectic mani-
fold and † � M a hyperplane section of degree k. Let Ln � †2n be a Lagrangian
submanifold. Let � W N ! † be the normal bundle of † in M and !can the canon-
ical symplectic structure induced by .†; 	 D k!†/. Pick an arbitrary radius r0 and
let Pr0

� N be the associated circle bundle of radius r0 and �r0
W Pr0

! † the
projection. Define

�L D ��1
r0

.L/

to be the restriction of this bundle to L. A simple computation shows that �nC1
L is

a Lagrangian submanifold of .N ; !can/. Using the embedding F W .N ; 1
k

!can/ !
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.M; !/ coming from Proposition 2.1 we obtain a Lagrangian submanifold F.�L/ �
M n † which in fact lies on the boundary of the Weinstein domain M n F.Int Er0

/.
Because of that we will identify from now on �L with F.�L/ and view �L as a
Lagrangian submanifold of W D M n †. We call �L the Lagrangian circle bundle
over L.

Remark 2.2. Clearly �L depends on the choice of r0. Although different choices
lead to Lagrangian isotopic �L’s, they are not Hamiltonianly isotopic. Nevertheless
the �L’s corresponding to different r0’s are conformally symplectic equivalent in W .
In particular, if �L is monotone for some r0 it will continue to be so for every choice
of r0 and the minimal Maslov number is not affected by this choice. Moreover, the
Floer homology, HF.�L/, of �L in W (whenever it is well defined) does not depend
on the choice of r0. For this reason we will ignore the dependence on r0, keeping in
mind that everything we prove for �L � W holds for any choice of r0. This however
has one exception: later on in §13 we will also view �L as a Lagrangian submanifold
of .M; !/. We will see that in that case, when L is monotone, there is precisely one
choice of r0 which will make �L � M monotone too.

Using the embedding F from Proposition 2.1 we will often make the identification
F W N n † ! W n �. Translating the projection N ! † via this identification we
obtain a projection

� W .W n �; �L/ ! .†; L/:

Since .Pr0
; �L/ ! .†; L/ is a fibration it is easy to see that

�� W �2.W n �; �L/ ! .†; L/ is an isomorphism: (3)

Denote by 
 W W n � ! W the inclusion. The following proposition relates the
monotonicity of L to that of �L. For a Lagrangian submanifold K of a symplectic
manifold .V; !/ we denote by �K W �2.V; K/ ! Z the Maslov index and by NK the
minimal Maslov number (see [BC6]).

Proposition 2.3 (See [Bir2]). Assume that either dimR † � 4, or that dimR † D 2

and W D M n † is subcritical. Then:

(1) Thehomomorphism 
� W �2.W n�; �L/ ! �2.W; �L/, induced by the inclusion,
is surjective. When dimR † � 6, 
� is an isomorphism. The same statement
holds also for homology, i.e., if one replaces �2 by H2.

(2) For every B 2 �2.W n �; �L/ we have:

��L
.B/ D �L.��.B//:

In particular, if L � † is monotone then �L � W is monotone too, and N�L
D NL.
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Proof. The first statement follows easily from the fact that dim � 
 1
2

dimR M . The
second statement is proved in [Bir2] (see Proposition 4.1.A there). �

Clearly given B 2 �2.W; �L/, any class B 0 2 �2.W n �; �L/ with 
�.B 0/ D B

will have the same Maslov index as B . Therefore even when 
� is not an isomorphism,
we can always reduce the calculation of the Maslov index in .W; �L/ to .W n�; �L/.
This in turn can be reduced to computing the Maslov index in .†; L/. In fact, as we
will see later, the holomorphic disks that will be relevant for computing the quantum
cohomology of �L � W all lie in W n �.

2.5. A small simplification of the setting. Recall that † � M is assumed to be
a symplectic hyperplane section in M , hence PDŒ†� D kŒ!� for some k 2 N.
Rescaling the symplectic structure ! by k we may assume from now on that PDŒ†� D
Œ!�. By doing so we can assume without loss of generality that k D 1 and can
get rid of the k and 1

k
factors that appear in many formulas earlier in this section

(e.g. in Proposition 2.1). Clearly, this will not change anything related to the Floer
cohomologies of neither L nor �L.

3. Lagrangian quantum cohomology versus Floer cohomology

In what follows we will use the pearl complex described in [BC4], [BC6], [BC5].
We refer the reader to these papers for the precise construction of the theory. Below
we briefly recall the main definitions and setup the notation.

Let .V; !/ be a tamed symplectic manifold, K � V a monotone Lagrangian with
minimal Maslov class NK � 2. Since Maslov indices come in multiples of NK we
will often use the following normalized version of the Maslov index:

N�K D 1
NK

�K W �2.V; K/ 	! Z:

We will sometimes omit the subscript K from �K and N�K when the Lagrangian
K in question is obvious. Also, we will sometime prefer to work with homology,
namely H2.V; K/ instead of �2.V; K/. This will not pose any difficulties since
the Maslov index �K can be defined in a compatible way also as a homomorphism
H2.V; K/ ! Z.

Put ƒ D Z2Œt�1; t � which is graded by jt j D NK . Let D D .f; .�; �/; J / denote a
choice of auxiliary data, where f W K ! R is a Morse function, .�; �/ is a Riemannian
metric on L and J an almost complex structure tamed by !. The pearl complex
associated to D is

C.D/ D Z2hCritf i ˝ ƒ;

where the critical points are graded by Morse index and the total grading comes from
both factors. The complex is endowed with the differential

d W C�.D/ ! C�C1.D/
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whose definition we briefly recall now. Denote by ˆt W K ! K the negative gradient
flow of f . Let x; y 2 Critf and denote by W u

x and W s
y the unstable and stable

submanifolds of the critical points x and y respectively, with respect to negative
gradient flow of f . Let A D .A1; : : : ; Al/ be a vector of non-zero homology classes
Ai 2 H2.V; K/.

Define P .x; y; AI D/ to be the space of tuples .u1; t1; : : : ; ul�1; tl�1; ul/ where
ti 2 .0; 1/, ui W .D; @D/ ! .V; K/ are J -holomorphic disks in the class Ai and we
have the following incidence relations:8̂<

:̂
ˆti .ui .1// D uiC1.	1/ for 1 
 i 
 l 	 1;

u1.	1/ 2 W u
x ;

ul.1/ 2 W s
y :

(4)

Moreover, in this definition each of the holomorphic disks ui is taken modulo the
reparametrization subgroup of Aut.D/ consisting of those elements that fix the points
f1; 	1g. Finally, we allow A to consist of the zero class and define in this case
P .x; y; 0I D/ D �

W s
y \ W u

x

�
=R. We call elements of P .x; y; AI D/ pearly trajec-

tories.
The space of pearly trajectories P .x; y; AI D/ has virtual dimension

ı.x; y; A/ D jxj 	 jyj C �.A/ 	 1 (5)

where �.A/ D P
i �.Ai /. We will also say that trajectories � 2 P .x; y; AI D/ have

index ı.�/ WD ı.x; y; A/. By the results of [BC4], for generic choices of D the space
of pearly trajectories has the following properties. When ı D ı.x; y; A/ 
 1, the
space P .x; y; AI D/ is a smooth manifold of dimension ı. Moreover, when ı D 0,
this manifold is compact, hence consists of finitely many points. Further regularity
properties of these spaces are described in [BC4], [BC6], [BC5].

We define
dy D

X
x;A

#P .x; y; AI D/ � x t N�.A/; (6)

where the sum is taken over all pairs x 2 Critf and vectors A (including A D 0)
such that ı.x; y; A/ D 0. The count #P .x; y; AI D/ is done in Z2.

It is proved in [BC4] that d 2 D 0 and that the cohomology of this complex
H �.C.D/; d/ is independent of the choices of the generic triple D (see [BC4],
[BC6], [BC5] for more details). This cohomology is called the quantum cohomology
of K and denoted by QH.K/. (Sometime we will also call it the “pearl cohomology
of K”.) Note that QH.K/ has additional structures such as a product � which turns
it into an associative unital ring (see §9).

3.1. Negative almost gradient vectorfields. In what follows we will sometimes use
also the following slight variation on the pearl complex construction. Let f W K ! R
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be a Morse function and Y a vector field on K. We call the pair .f; Y / negative almost
gradient if

(1) .	f / is a Lyapunov function for Y , i.e., df .Y / < 0 away from the critical
points of f ,

(2) for every critical point x 2 Critf there exists a neighborhood U � K of x and
a Riemannian metric � on U such that in U, Y D 	grad�f .

Sometimes, instead of working with triples D D .f; .�; �/; J / we will work with
D D .f; Y; J / and replace the negative gradient flow ˆt in the definition of P by the
flow of the vector field Y , which we continue to denote ˆt . The theory of Lagrangian
quantum cohomology remains unchanged in this setting in the sense that the resulting
cohomology is canonically isomorphic to QH.K/.

3.2. Relation to Floer homology. The quantum cohomology QH.K/ of a mono-
tone Lagrangian K has the following important property: it is canonically isomorphic
to the self Floer cohomology HF.K/ WD HF.K; K/ via a well-known isomorphism
commonly called PSS (see [BC4], [BC6]). Moreover, this isomorphism identifies the
quantum product on QH.K/ with the corresponding product on HF.K; K/ defined
by counting holomorphic triangles. In view of this, from now on we will replace
the Floer cohomologies that appear in Theorem 1.1 by the quantum cohomologies
QH.L/ and QH.�L/.

4. A short exact sequence of pearly chain complexes

In this section we construct a short exact sequence of Floer cochain complexes that
gives rise the long exact sequence of Theorem 1.1.

4.1. Setting. Let † � M be a symplectic hyperplane section and L � † a mono-
tone Lagrangian submanifold with minimal Maslov number NL � 2. Fix once and
for all r0 > 0 and put

P D Pr0
D fu 2 N j juj D r0g:

Using the symplectic embedding of Proposition 2.1 we can view P also as a subset
of W D M n †. Let �L � P be the Lagrangian circle bundle associated to L � †.
We denote by � W N ! †, �P D �jP W P ! †, ��L

D �j�L
W �L ! L the

projections. Choose a connection r as in §2.2 and denote by H r
P � T .P / the

horizontal distribution corresponding to it in P .
Let f W L ! R be a Morse function and .�; �/ a Riemannian metric on L. Put

X D 	gradf . Let Xhor be the horizontal lift of X to �L using H r
P . We will now

modify Xhor into a “negative almost gradient” vector field on �L with respect to some
Morse function.
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Denote by x1; : : : ; xm the critical points of f . Choose a small chart Ui around
each xi and a trivialization 	i W Ui � S1 ! �LjUi

. Next, choose for every i a Morse
function hi W S1 ! R with exactly two critical points p0

i and p00
i of indices 0 and 1

respectively. Let Yi D 	grad hi with respect to the standard metric on S1. Extend
Yi to a vector field on Ui � S1 in a vertical way, i.e., by setting its component in the
Ui direction to be 0. The resulting field will be still denoted by Yi .

Finally, for every i choose a smooth cutoff function ˛i W L ! Œ0; 1� with the
following properties: there exist two neighborhoods Vi � Wi � Ui of xi with
xVi � Wi , and SWi � Ui such that ˛i � 1 on Vi and ˛i � 0 outside Wi . Fix a small
constant " > 0. We define a vector field X" on �L by:

X" D Xhor C "

mX
iD1

.˛i B ��L
/d	i .Yi /: (7)

It is easy to see that for " > 0 small enough this vector field is “negative almost
gradient” for the following Lyapunov function on �L:

f" D f B ��L
C "

mX
iD1

.˛i B ��L
/hi B 	�1

i :

Note that outside of the neighborhoods Ui we have f" D ��
�L

f and therefore all
critical points of f" are contained in

S
Ui . Using the trivializations 	i one can see that

all of them lie in fibers of critical points of f . Moreover, to any xi 2 Critf there are
exactly two critical points x0

i , x00
i with 	�1

i .x0
i / D .xi ; p0

i / and 	�1
i .x00

i / D .xi ; p00
i /.

The indices of these critical points are given by jx0
i j D jxi j and jx00

i j D jxi j C 1.
We now turn to the almost complex structures that will be used in the pearl

complexes of L and �L. We first choose a generic tame almost complex structure J†

on †. Then, once J† is fixed, we restrict to a class of almost complex structures J on
M which we call admissible. The precise definition is given in §5. Here is a rough
description: identify the complement of the skeleton � with N via proposition 2.1.
We require that the projection � W N ! † is .J; J†/-holomorphic outside a small
neighborhood U of �. In addition, .N ; !; J / is assumed to have a long enough
“neck” in the sense of “stretching of the neck” procedure. The precise definitions are
given in §5.

Put D D .f; .�; �/; J†/ and zD" D .f"; X"; J /. We now define maps

i W C�.LI D/ ! C�.�LI zD"/; p W C�.�LI zD"/ ! C��1.LI D/

as follows. Let 0 
 k 
 n, and denote by Critk.f / the set of critical points of f of
index k. Define i by:

i.x/ D x0 for all x 2 Critk.f /:
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To define p note that Critk.f"/ D .Critk.f //0 [ .Critk�1.f //00. Define:

p.x0/ D 0 for all x 2 Critk.f /; and p.y00/ D y for all 2 Critk�1.f /:

We extend i and p linearly over ƒ to the whole of C�.LI D/ and C�.�LI zD"/.
The main statement of Theorem 1.1 can be reformulated as follows: let M , †, L

be as described above.

Theorem 4.1. Assume that either dimR † � 4 or W is subcritical. For a generic
choice of auxiliary data D described above and for an admissible J the pearl com-
plexes C�.LI D/ and C�.�LI zD"/ are well defined and their cohomologies compute
the quantum cohomologies QH.L/ and QH.�L/ respectively. The maps i and p are
cochain maps and they form a short exact sequence:

0 �� C�.LI D/
i �� C�.�LI zD"/

p �� C��1.LI D/ �� 0

of cochain complexes. In particular, we have a long exact sequence in cohomology:

� � � �� QH k.L/
ı �� QH kC2.L/

i �� QH kC2.�L/
p �� QH kC1.L/

ı �� � � �

The cohomological long exact sequence is canonical in the sense that it does not
depend on the auxiliary data. The connecting homomorphism ı W QH �.L/ !
QH �C2.L/ is given by quantum multiplication with a class eF 2 QH 2.L/. More-
over, the maps induced by i and p in cohomology (which we continue to denote by i

and p) are compatible with the quantum products in the following sense:

i.˛ � ˇ/ D i.˛/ � i.ˇ/; p.z̨ � i.ˇ// D p.z̨/ � ˇ; p.i.˛/ � Q̌/ D ˛ � p. Q̌/; (8)

for every ˛; ˇ 2 QH �.L/ and z̨; Q̌ 2 QH �.�L/.

The exactness property of the short sequence above is obvious. The nontrivial
statements are:

� i and p are chain maps. This property will follow from the results presented
in §5 and §7. The argument is concluded in §7.3.

� the resulting sequence in homology is canonical. The details are provided in §8.

� the connecting homomorphism is given by quantum multiplication by a class
eF 2 QH 2.L/. This will be proved in §10.

� the maps i and p satisfy the multiplicative identities (8). This will be proved
in §9.

§5 will be devoted to precise definitions of the class of almost complex structures
used, and §6 for establishing the transversality results.
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5. Stretching the neck and admissible almost complex structures

In all constructions which follow in this paper we will restrict ourselves to a specific
class of almost complex structures which is described as follows. Fix a regular almost
complex structure J† on † which is tamed by !†. Given r > 0, denote by

Er D fu 2 N j juj 
 rg
the closed disk bundle of radius r in N (we use here the Hermitian metric j � j chosen
in §2.2).

Fix a small  > 0. Below we will use the embedding N
F! M from Propo-

sition 2.1 in order to identify N as well as Er � N with their images in M . The
complement in M of the .r0 C /-disk bundle Er0C� gives us a neighbourhood of
the skeleton �. We denote this neighbourhood by U .

We choose a connection r as in Section 2.2 and, using the corresponding hori-
zontal distribution H r , we define an almost complex structure JN on N as follows.
For v 2 H r put

JN .v/ D �
d�

ˇ̌
H r

��1
J† B d�.v/: (9)

We extend JN in the vertical direction by multiplication by i in the fibers. We define
an almost complex structure JM on M by setting it to be F�.JN / on M n U (i.e., the
pushforward of JN by the embedding F W N ! M ). We then extend JM to the rest
of M in a generic way.

Denote by M C, M � the connected components of M n P , where M � is the
component containing the skeleton �. For any R � 0 set

M R D M � [ .Œ	R; R� � P / [ M C;

with the obvious gluing along the boundaries, namely f	Rg � P is identified with
@M � and fRg � P with @M C. See Figure 1. We define an almost complex structure
JR on M R by first setting it to be equal to JM on M C, M �. We then extend this
almost complex structure to Œ	R; R� � P in invariant way under translations along
Œ	R; R�. The resulting almost complex structure is only continuous near @M ˙ but
can be deformed near the boundary @.Œ	R; R� � P / to a smooth almost complex
structure on M R which we denote by JR. (For this smoothing we choose a uniform
deformation which depends only on the .t; �/ coordinates on Œ	R; R� � P and is
independent of the projection to †).

Having defined JR on M R we will push it back to M in the following way. Let
�R W Œ	R; R C � ! Œr0; r0 C � be a diffeomorphism such that d

dt
�R D 	1 near the

boundary of Œ	R; R C �. Then �R induces a diffeomorphism

�R W M R ! M; (10)

defined by identity on U and M C. Note also that �R preserves both the projection to
† and the angular coordinate in a neighbourhood of Œ	R; R� � P , and deforms the
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first coordinate on Œ	R; R� � P (as well as the radial coordinate in a neighbourhood
of Œ	R; R� � P ) according to �R. The pushforward of JR by �R defines an almost
complex structure on M which we will denote by the same JR by abuse of notation.
A simple computation, based on the description (2) of !, shows that JR on M tames
!. Moreover JR has the following property: the projection from the .r0 C /-disk
bundle of N to †

� W .Er0C� ; JR/ ! .†; J†/

is holomorphic.

M

P

Δ

MR

P

[−R,R]× P

W+∞

P

W−∞

Δ

Figure 1. Splitting M along P .

For the rest of this section we will restrict our attention only to W D M n †. We
denote by JW the restriction of the almost complex structure JM to W . Put

W � D M �; W C D M C n †; W R D M R n †:

We endow these manifolds with the restrictions of the almost complex structures we
have just defined on M �, M C, M R, i.e., JW and JR. The reason for defining all these
structures beforehand on M is that later on in §13 we will use these structures to obtain
an analogous Floer–Gysin sequence for �L viewed as a Lagrangian submanifold
of M .

The construction above implies that replacing the almost complex structure J on
M (resp. W ) by JR (with a large R) is holomorphically equivalent to stretching the
manifold M (resp. W ) along P in the sense of SFT [BEH+], [EGH]. We denote by

J D J.J†; U; R0/ D fJR j R > R0 g
the space of the stretched complex structures.

For J 2 J denote by

P0.J / D
[

ı.x;y;A/D0

P .x; y; AI zD"/

the union of moduli spaces of pearl trajectories with zero virtual dimension (for any
critical points x; y) for �L � W .
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Given r > 0, denote by
E�

r D Er n † � N

the punctured disk bundle or radius r over †. For 0 < r1 < r2 denote by

Er1;r2
D Er2

n Int Er1

the (closed) annulus bundle over † of inner radius r1 and outer radius r2. We call it
the .r1; r2/-annulus bundle of N over †.

The purpose of working with almost complex structures in J is the following:

Proposition 5.1. There exists R0 > 0 such that for every JR as described above with
R > R0 the following holds: every pearly trajectory � 2 P0.JR/ is contained in the
image F.Er0;r0C�/ of the .r0; r0 C /-annulus bundle of N under F .

Before proving this proposition we derive an important corollary. From now on
we will fix the constant R0 which is large enough (so that the conclusions of Propo-
sition 5.1 hold) and will work with JR where R > R0. We call J D J.J†; U; R0/

the space of admissible almost complex structures. The following corollary is an
immediate consequence of Proposition 5.1.

Corollary 5.2. Let D D .f; .�; �/; J†/ be auxiliary data with generic J†, and zD" D
.f"; X"; J / as in §4 where the almost complex structure J is admissible. Then any
� 2 P0.J / projects via � to a genuine pearly trajectory on †.

Note that the index of the projection �.�/ might sometimes be 1 rather than 0.

Remark 5.3. As we will see in the proof of Proposition 5.1 below, the conclusions
of Proposition 5.1 and Corollary 5.2 continue to hold also for pearly trajectories
� 2 P .x; y; AI zD"/ with ı.x; y; A/ D 1 provided that the minimal Chern number
C† of † is at least 2. Here by the minimal Chern number of † we mean the following
number: C† D minfc†

1 .S/ j S 2 �2.†/; c†
1 .S/ > 0g.

Proof of Proposition 5.1. First of all note that by the maximum principle every non-
constant J -holomorphic disk (for J 2 J) u W .D; @D/ ! .W; �L/ must satisfy
u.Int D/ � W n Er0

. The main part of the proof is to show that for R0 � 0 the
following holds: for every R � R0 all JR-holomorphic disks u that participate in
index 0 pearly trajectories (for .W; �L/) have their images lying inside Er0C� .

Below we will refer to the results of [BEH+]. We remark that the statements of that
paper hold also for holomorphic curves with boundary on Lagrangian submanifolds.

Put W C1 D .	1; 0� � P [@ W C and W �1 D W � [@ Œ0; 1/ � P each glued
along the boundary. The almost complex structure JW on W C and W � is extended
to the cylindrical ends by invariance under translation in t coordinate. (One smoothes
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the resulting almost complex structures near the boundary in the fiber direction in a
standard way). Set .W 1; J 1/ to be equal to the disjoint union W C1 [ W �1, each
endowed with the preceding almost complex structures. This way, the split manifold
.W 1; J 1/ can be considered as a limit of .W R; JR/ when R ! 1, in the sense
of [BEH+], [EGH]. See Figure 1.

Assume by contradiction, that for a generic almost complex structure J† on † the
statement of the proposition is not true, that is, for any R > 0 there exists a pearly
trajectory � 2 P0.JR/ which leaves the image of the.r0 C /-disk bundle. Let Rn

be a sequence of stretching parameters with Rn ! 1 and let �n 2 P0.JRn
/ be a

sequence of pearly trajectories with zero index which leave the .r0 C /-disk bundle.
Under the holomorphic identification between .W; JR/ and .W R; JR/, we have a
sequence of manifolds W Rn together with a sequence of pearly trajectories in W Rn .
We will use the same notation �n for these trajectories.

For simplicity of notation, we assume that each �n contains a single holomorphic
disk un W .D; @D/ ! .W Rn ; �L/. (The general case is similar.) Restricting ourselves
to a subsequence if needed, we may assume that all un have the same Maslov index.
We denote by u0

n W .D; @D/ ! .W; �L/ the disks corresponding to un via �R, i.e.,
u0

n D �r B un.
Using the notation of [BEH+], the !-energy of a J -holomorphic curve u in W R

translates in our notation to the following:

E!.u/ D
Z

u�1.W C[W �/

u�! C
Z

u�1.Œ�R;R��P /

u���
†!†:

In view of monotonicity of �L, the area of the disks u0
n W D ! W satisfies

R
D

u0�
n! D

C , where the constant C is independent of n. A simple computation (based on (2))
shows that: Z

u�1.Œ�R;R��P /

u���
†!† 


Z
u�1.Œ�R;R��P /

u���
R!:

It follows that E!.un/ 
 C for every n. Lemma 9.2 of [BEH+] implies then a uniform
bound on the full energy E.un/ (see [BEH+] for the definition of this energy).

Theorem 10.3 of [BEH+] describes the compactification of the space of J -
holomorphic curves fu W D ! .W R; JR/ j E.u/ 
 C g. According to this result,
there is a subsequence unk

of un which converges to a so-called holomorphic build-
ing Nu in W 1. This Nu is a disconnected J1-holomorphic curve which consists of the
following connected components:

� a J -holomorphic map u1 W .S1; @S1/ ! .W C1 ; �L/, where S1 is a disk with
one or more punctures. Near these punctures u1 is asymptotically cylindrical
and converges to a periodic orbit of the Reeb vector field of .P; ˛/. (Here ˛

is the connection 1-form as chosen in §2.2.) Note that due to our choice of ˛

the periodic orbits of the Reeb vector field are precisely the fibres of the circle
bundle P ! †.
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� a number of J -holomorphic maps, each of them looks like u2 W S2 ! W �1 where
S2 is a sphere with one or more punctures. u2 is asymptotically cylindrical near
each puncture in a similar way to u1. For simplicity we will assume that there
exists one such map. In the case there are many, the argument is the same.

� in addition, Nu may contain a number of J -holomorphic maps ui W Si ! R � P

where each Si is a sphere with one or more punctures each. ui are asymptotically
cylindrical near each puncture as well.

Moreover, the components of Nu fit over the punctures, so they admit gluing to a
topological disk.

Coming back to our situation, there is a subsequence of f�ng that converges
to a pearly-like trajectory N� which has instead of a usual holomorphic disk a J1-
holomorphic building Nu attached. We claim that this implies that the virtual dimen-
sion of the corresponding moduli space of trajectories is positive. This will give
a contradiction to our initial assumption that �n 2 P0.JRn

/. Note that apriori, in
addition to the above limit, one may have all possible limits of pearly trajectories as
described in [BC4], [BC6], e.g. breaking of gradient trajectories, bubbling of disks
or spheres etc. For simplicity of notation, we assume that the holomorphic building
Nu consists only of two components: a punctured disk u1 W .S1; @S1/ ! W C1 and a
punctured sphere (i.e., a finite energy plane) u2 W S2 ! W �1, where each component
has a single puncture. The general case can be treated in a similar way to what is
done below.

By the definition of J1 on W C1 , the projection �1 W W C1 ! † is .J1; J†/-
holomorphic, hence �1 sends u1 to a punctured disk �1 B u1 W .S1; @S1/ ! .†; L/.
The periodic orbits at infinity project via �1 to single points in † since they are exactly
the fibres of the circle bundle P ! †. Due to the asymptotic behavior of u1 near the
puncture z we obtain that �1 B u1 extends continuously at the puncture. Therefore z

is a removable singularity and �1 B u1 becomes a genuine J†-holomorphic disk.
We would like now to project u2 W S2 ! W �1 to †. However, this cannot be done

directly. Recall that on W �1 we have a projection defined only away from the skeleton,
�2 W W �1 n � ! †, and moreover this projection is not holomorphic on U n �.
We deal with this difficulty as follows. As codim � > 2, we can always perturb
u2 near � (in a non-holomorphic way) and obtain a new surface Qu2 W S2 ! W �1
with Qu2.S2/ \ � D ;. Then �2 B Qu2 gives a (not necessarily holomorphic) sphere
v W S2 ! †. (Again, the puncture goes to a point at which we have a removable
singularity.) We claim that v has a positive Chern number. To see this recall that †

is monotone, hence c†
1 D �Œ!†� on �2.†/ for some � > 0. Therefore we have:

c†
1 .Œv�/ D �!†.Œv�/ D �

Z
S2

Qu2
���

2 !†

D �

Z
Qu2

�1.W �/

Qu2
���

2 !† C �

Z
Qu2

�1.W �
1nW �/

Qu2
���

2 !†:

(11)
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The 2’nd term is non-negative since �2 is holomorphic on W �1 n W �. As for the first
term we have:Z

Qu2
�1.W �/

Qu2
���

2 !† D e.r0C�/2

Z
Qu2

�1.W �/

Qu2
�! D e.r0C�/2

Z
u�1

2
.W �/

u�
2! > 0;

where the equalities follow from Stokes theorem (recall that the perturbation Qu2 took
place away from the boundary u2.@S2/). The last inequality holds because u2 is
holomorphic. This proves that c†

1 .Œv�/ > 0.
Next, replace in the “pearly” trajectories N� the holomorphic curve u2 by its per-

turbation Qu2. We continue to denote this trajectory by N� . Consider now its projection
� B N� to †. The projected trajectory is a pearly trajectory on † whose disk �1 B u1

has a non-holomorphic sphere v attached, and moreover c†
1 .Œv�/ > 0. (v cannot

be constant because in this case u2 would have zero !-energy.) Denote by �† the
trajectory obtained from � B N� after removing the sphere v. Note that �† is a genuine
pearly trajectory.

Denote by A 2 H2.W n �; �L/ the total homology class in N� and by B 2
H2.†; L/ the total homology class in �† after the sphere Œv� is removed, i.e., B D
��.A/ 	 Œv�. Let Qx; Qy be the starting and the ending critical points for N� . Thus �†

connects x† D �. Qx/ with y† D �. Qy/. As �† is a genuine pearly trajectory and J† is
regular, the virtual dimension of the corresponding moduli space P .x†; y†; BI J†/

is non-negative:
jx†j 	 jy†j C �L.B/ 	 1 � 0

Note that j Qyj � jy†j and j Qxj 
 jx†j C 1. Therefore

jy†j 	 jx†j 
 j Qyj 	 j Qxj C 1:

We also have:

��L
.Œ Nu�/ D ��L

.A/ D �L.��A/ D �L.B/ C 2c†
1 .Œv�/ � �L.B/ C 2: (12)

All together this gives us

j Qyj 	 j Qxj C ��L
.Œ Nu�/ 	 1 � jy†j 	 jx†j 	 1 C �L.B/ C 2 	 1

D .jy†j 	 jx†j C �L.B/ 	 1/ C 1 > 0;

which contradicts the assumption that we are in a moduli space of index 0.
The other configurations that might appear in the limit of �n can be dealt with by

a combination of the argument above and the compactification of spaces of pearly
trajectories as described in [BC4], [BC6]. �

Remark5.4. Note that in the proof of Proposition 5.1 we have used only transversality
for spaces of pearly trajectories on .†; L/, not for .W; �L/.
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6. Transversality

The aim of this section is to establish the needed transversality results for the spaces of
pearly trajectories involved in the quantum cohomologies of L and �L that appear in
our long exact sequence. While the general theory of pearl homology [BC4], [BC6]
assures this transversality for generic choice of auxiliary data, this is apriori not the
case in our setting. For example, the almost complex structures J that we use on W

are not arbitrary as they depend strongly on J†, in particular they cannot be assumed
to be generic in the strict sense of the word. Still we will see below that transversality
can be still achieved by taking J† to be generic.

6.1. Regularity of JR . Holomorphic disks u W .D; @D/ ! .W; �L/ fall into two
types. Those who go out from Er0C� and those who remain entirely inside Er0C� .
Transversality for the first type is easy to achieve: recall that in our set of admissible
J ’s there was no restriction on J outside of Er0C� . Thus we can take J to be generic
on M n Er0C� , and the general theory [MS] assures that such J ’s will be regular for
this type of disks.

We now turn to those disks that are entirely contained in Er0C� . In fact, as we saw
in §5, these are the most relevant disks, as all pearly trajectories of index 0 involve
only disks inside Er0C� .

We want to show that for a choice of a regular J† on † any admissible JR

(as it is constructed in §5) satisfies regularity conditions on the disk bundle Er0C� .
This would imply that the moduli space M�.AI JR/ of simple JR-holomorphic disks
u W .D; @D/ ! .Er0C� ; �L/ with u�.ŒD�/ D A is a smooth finite dimensional mani-
fold.

To prove the statement, we replace .Er0C� ; JR/ by a disk bundle EA.R/ �
.N ; JN / using the identifications defined in §5, where A.R/ depends on R. Below we
will use the same notation �L for the image of �L in ER. Recall from [MS] (see §3.1
there) that regularity of an almost complex structure means the surjectivity of the lin-
earization of the N@-operator Du at each J -holomorphic disk u W .D; @D/ ! .ER; �L/.

Let u W .D; @D/ ! .ER; �L/ be a holomorphic disk. Note, that the projection
� B u W .D; @D/ ! .†; L/ is J†-holomorphic. Pick a holomorphic trivialization
g W .� B u/�N ! D � C. Using this trivialization, we associate to u a pair of
holomorphic maps .u†; uN / where u† D � B u and uN W D ! C is the projection
of g B u to the second component. Accordingly, we have an associated pair of
linearizations of the N@-operator .Du†

; DuN
/. For the surjectivity of Du it is sufficient

to show that both Du†
and DuN

are surjective. This property holds for Du†
from

the regularity of J†. The same is true for DuN
since the almost complex structure

in the fiber C (multiplication by i ) is regular.

6.2. Transversality for pearly trajectories of index 0. Let D D .f; .�; �/; J†/ be
a choice of Morse function, metric on L and almost complex structure on †. Recall
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from §4.1 that in order to construct zD" we need the following additional auxiliary
objects: .r; ˛; h; JR/, where r is a connection as chosen in §2.2, ˛ represents
a choice of cutoff functions near Crit.f / and h stands for a collection of Morse
functions S1 ! R, as was described in §4.1. Here JR is an admissible almost
complex structure on M which is induced from J† and satisfies Proposition 5.1. We
will use the same notation JR for the induced almost complex structure on Er0C� .

Denote by Qf the image of the embedding:

.L n Crit.f // � R>0 ,	! L � L; .x; t/ 7	! .x; ˆ
f
t .x//;

where ˆ
f
t is the negative gradient flow of f . Similarly, define Q zX"

� �L � �L to
be the image of the embedding:

.�L n Crit.f"// � R>0 ,	! �L � �L; .x; t/ 7	! .x; ˆX
t .x//;

where ˆX
t is the flow of zX". Let M.A; J / be the moduli space of holomorphic

disks in the homology class A 2 H2.W; �L/. For a sequence A D .A1; : : : ; Al/ of
non-zero classes Ai 2 H2.W; �L/ put

M.A; J / D M.A1; J / � : : : � M.Al ; J /:

The space M.A; J / comes with an evaluation map:

evA W M.A; J / 	! ��2l
L ;

evA.u1; : : : ; ul/ D .u1.	1/; u1.1/; : : : ; ul.	1/; ul.1// :

Similarly we have the spaces M�.Ai ; J / � M.Ai ; J / of simple disks and

M�.A; J / D M�.A1; J / � : : : � M�.Al ; J / � M.A; J /:

Note that in general M.A; J / might not be a smooth manifold (even for generic
J ’s). On the other hand, by what we have just seen in §6.1 for generic admissible
J the spaces M�.A; J / are smooth manifolds. (See [BC4] for more details on this
issue.) Denote by H � Aut.D/ Š PSL.2; R/ the subgroup of all biholomorphisms
� W D ! D which fix the two points 	1; 1 2 D, �.˙1/ D ˙1. The group H acts
on M�.Ai ; J / by parametrization, i.e., � � u D u B ��1. Applying this to each factor
of M�.Ai ; J / we obtain an action of H �l on M�.A; J /.

Let Qx; Qy 2 Crit . zX"/. Put

zR D W s
Qx � .Q zX"

/�.l�1/ � W u
Qy :

With this notation we have:

P . Qx; Qy; AI zD"/ D ev�1
A . zR/=H �l :
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Proposition 6.1. Let D D .f; .�; �/; J†/ be generic data on .†; L/. Let JR be an
admissible almost complex structure as in Proposition 5.1, and let h be a generic
collection of functions. Let Qx; Qy 2 Crit . zX"/, A with ı D ı. Qx; Qy; A/ 
 0. Then:

(1) Every tuple of holomorphic disks u 2 M.A; JR/ that participates in
P . Qx; Qy; AI zD"/ consists of simple and absolutely distinct disks (see Defini-
tion 3.1.1 in [BC4] for the definition).

(2) The restriction of evA to M�.A; JR/ is transverse to zR.

In particular the spaces of pearly trajectories P . Qx; Qy; AI zD"/ are smooth manifolds
of dimension ı. (In particular when ı < 0 they are void.) Moreover, when ı D 0

these manifolds are compact, hence consist of a finite number of elements.

Recall that by the results of [BC4], for a generic choice of data D , the same result
as in Proposition 6.1 holds for .†; L/ whenever the virtual dimension ı.x; y; ��.A//

is 
 1. The main point in Proposition 6.1 is that this continues to hold for also for
.W; �L/ even if one uses the (apriori non-generic) data zD" which depends on D . We
remark however that in contrast to .†; L/, for .W; �L/ we have to restrict only to
pearly trajectories of index 0. The reason is that the proof goes by comparing the
transversality of evA (for .W; �L/ with that of ev��.A/ (for .†; L/). If � is a pearly
trajectory on .W; �L/ of index ı.�/ then the index ı.�.�// of its projection satisfies:
ı.�.�// 
 ı.�/ C 1, where equality might occur. Thus if ı.�/ D 1 we might have
ı.�.�// D 2 and transversality for index 2 trajectory is not known. Therefore, we
restrict on .W; �L/ to spaces of virtual dimension 0 only. However, as we will see
in §6.3 this is enough for our purposes.

Proof of Proposition 6.1. In view of Proposition 5.1 we may assume that all disks
involved in pearly trajectories corresponding to Image .evA/ \ zR lie inside Er0C� .
Therefore we can project all pearly trajectories from P . Qx; Qy; AI zD"/ and obtain pearly
trajectories on .†; L/. We will also view each of the classes Ai in A as elements of
H2.Er0C� ; �L/. An important point that will be used a few times in the proof below
is that if � 2 P .�LI Qx; Qy; AI zD"/ has index 0 then its projection �.�/ to † has index

 1. Therefore, if D is generic then �.�/ consists only of simple and absolutely
distinct disks and moreover we have transversality for ev��.A/.

Denote by ev�
A

the restriction of evA to M�.A; JR/. Write

M�;d .A; JR/ � M�.A; JR/

for the open subset of those tuples u D .u1; : : : ; ul/ which consist of absolutely
distinct disks in the sense of [BC4] (see Definition 3.1.1 there). (Absolutely distinct
means roughly speaking that no disk ui has its image entirely covered by the union
of the rest of the disks, i.e., that ui .D/ 6� [j ¤iuj .D/ for every i .) Denote by ev�;d

A

the restriction of evA to the latter subspace. Note that by the discussion in §6.1 both
M�.A; JR/ and M�;d .A; JR/ are smooth manifolds for a generic admissible JR.
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The first step of the proof is to show that ev�;d
A

is transverse to zR.

Let q D .q1; : : : ; q2l/ 2 ��2l
L belong to the intersection of Image.ev�;d

A
/ and zR.

Pick a sequence of disks Qu D . Qu1; : : : ; Qul/ 2 M�;d .A; JR/ such that ev�;d
A

. Qu/ D q.
We denote the projections �. Qu/; �. Qx/; �. Qy/ to † by u D .u1; : : : ; ul/; x and y,
respectively.

The proof goes by comparison of ev�;d
A

and zR with their counterparts in .†; L/

namely ev�;d
��A and R D W s

x � .Q�rf /�.l�1/ � W u
y , which are assumed to be

transverse (due to a generic choice of D). Note that our choice of auxiliary data
implies that R D �. zR/. Similarly, the lifting Lemma 7.1 (see §7 below) together
with the projection property of JR ensure that ev�;d

��A D �.ev�;d
A /.

At each qi we choose a splitting Tqi
�L ' H r

qi
˚ R where H r denotes the

horizontal distribution of the connection r and R is the tangent space of the fiber.
Then Tq��2l

L ' L
H r

qi
˚R�2l and the restriction D� W L

H r
qi

�f0g ! T�.q/L
�2l

is an isomorphism. Using the splitting Tq��2l
L ' L

H r
qi

˚ R�2l we introduce

coordinates .v; r1; : : : ; r2l/ on Tq��2l
L where v 2 L

H r
qi

and rk 2 R.
By Lemma 7.1 J†-holomorphic disks u W .D2; @D2/ ! .†; L/ correspond to

one-parametric families of disks Qu W .D2; @D2/ ! .Er0C� ; �L/ which are para-
metrized by S1. More exactly, if Qu is one such lift, then the others are given by
rotations fei� � Qug in the fibers of Er0C� . Therefore, M�.A; JR/ admits an .S1/�l

action G which corresponds to independent rotation of the lifts of each disk uk . This
implies that ev�;d

A
.G Qu/ � Image.ev�;d

A
/. Consequently, V1 D Tqev�;d

A
.G Qu/ �

TqImage.ev�;d
A

/. Note, that V1 D f0g � f.r1; r1; r2; r2; : : : ; rl ; rl/gri 2R in the co-
ordinates described above. On the other hand , each Q zX"

also admits a simi-

lar S1-action. This gives rise to an .S1/�.l�1/-action on zR which implies that
V2 D f0g � f.0; r1; k1r1; : : : ; rl�1; kl�1rl�1; 0/gri 2R � Tq

zR (The constants ki are
equal to 1 in the case when the corresponding gradient trajectory segment does not
pass through any neighbourhood U of a critical point. In the case when it does, we
still have ki ¤ 0.)

Now we analyze the possible configurations of the critical points Qx; Qy. Below we
will use the following observation: let � W U1 ! U2 be a surjective linear map. Let
V be a linear subspace of U1. Assume that ker.�/ � V . Then V D U1 if and only
if �.V / D U2.

� Qx D x0. In this case Tq1
W s

Qx contains the subspace f0g � R, therefore V3 D
f0g � f.r; 0; : : : ; 0/gr2R � Tq

zR. We now have

V1 C V2 C V3 D f0g � R�2l � TqImage.ev�;d
A

/ C Tq
zR:

That is, the right-hand sum contains the complementary subspace f0g � R�2l

which is the kernel of the projection � W Tq�2l
L ! T�.q/L

2l . The observation
above implies that in this case the intersection is transverse if and only if the
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same is true for the respective projections Image.ev�;d
��A

/ and R. The latter are
assumed to be transverse by a generic choice of the data D on .†; L/.

� Qy D y00. In this case Tq1
W u

Qy contains the subspace f0g � R, therefore V3 D
f0g � f.0; : : : ; 0; r/gr2R � Tq

zR. Once again, V1 C V2 C V3 D f0g � R�2l .
Using the same argument as before, we conclude that ev�;d

A
and zR are transverse

whenever their projections on † are.
� The only case left to consider is Qx D x00 and Qy D y0.

We denote zRB D fei� �W s
Qx g�2Œ0;2���.Q zX"

/�.l�1/�W u
Qy . Using argument similar

to that in the previous cases, one can show that zRB intersects Image.ev�;d
A

/ in

transverse way. Therefore K D zRB \ Image.ev�;d
A

/ is a finite-dimensional
manifold. It follows from a version of Sard’s theorem, that for almost all values
of �0, zR�0 D fei�0 � W s

Qx g � .Q zX"
/�.l�1/ � W u

Qy has transverse intersection with

Image.ev�;d
A

/. Thus we can avoid non-transversality by a small perturbation of
x00 in its fiber. Such perturbation corresponds to a perturbation of the appropriate
Morse function hi as defined in §4. For generic choice of functions fhig this
non-transversality phenomenon will not occur.

This concludes the proof that ev�;d
A

is transverse to zR.

Next we claim that evA
�1. zR/ D ev�;d

A

�1
. zR/, that is to say that all tuples u D

.u1; : : : ; ul/ that participate in P . Qx; Qy; AI zD"/ consist of simple absolutely distinct
disks. This can be done either by repeating the arguments from Section 3 of [BC4]
or alternatively by looking at the projection �.�/ of � to .†; L/. Indeed, if the disks
in � are either non-simple or not absolutely distinct then the same would hold for
the disks in �.�/ too. However, this is not the case for �.�/ since for a generic D
all disks in pearly trajectories of index 
 1 on .†; L/ must be simple and absolutely
distinct (see Proposition 3.1.3 in [BC4]).

Finally, the fact that P . Qx; Qy; AI zD"/ is compact when ı. Qx; Qy; A/ D 0 can be
proved in a similar way as in Section 3 of [BC4]. One analyzes all possible apriori
limits of sequence of pearly trajectories from P . Qx; Qy; AI zD"/ and deduces that those
configurations that do not appear in P . Qx; Qy; AI zD"/ belong to moduli spaces of virtual
dimension < 0. But such spaces must be void due to the transversality result we have
just proved. �

6.3. Well-definedness of the pearl complex C .�LI zD"/. Having established trans-
versality for the moduli spaces P .�LI Qx; Qy; AI zD"/ whenever ı. Qx; Qy; A/ D 0 we are
ready to prove that C.�LI zD"/ is well defined and its cohomology is isomorphic to
QH.�L/. This is done as follows.

First note that due to Proposition 6.1 the pearly differential Qd on C.�LI zD"/ is well
defined as an operator. (Note however that as we have not established transversality
for 1-dimensional moduli spaces we apriori do not yet that Qd B Qd D 0.)
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Let zD 0
" D .f 0

" ; X 0
"; J 0/ be a small and generic perturbation of the data zD" where

f 0
" D f", .f"; X 0

"/ is negative almost gradient and J 0 is not necessarily admissible
(hence can be taken to be really generic). Denote by Qd 0 the pearly differential of
C.�LI zD 0

"/. By the general theory [BC4], [BC6], Qd 0 is indeed a differential and

H �.C.�LI zD 0
"/;

Qd 0/ Š QH �.�L/:

Clearly C�.�LI zD 0
"/ D C�.�LI zD"/ as graded vector spaces. Finally, the transver-

sality result of Proposition 6.1 together with standard arguments imply that Qd D Qd 0
which proves our claim.

7. Lifting pearly trajectories

Denote by N ! † the normal bundle of † in M , viewed as a complex line bundle
as in §2.2. We identify † with the zero section of N . We use the connection r on
N to define an almost complex structure JN on the total space of N , as was done at
the beginning of §5 (see (9) there, where the almost complex structure was denoted
by JM ).

In this section we show that any pearly trajectory on .†; L/ (with respect to
D D .f; .�; �/; J†/ admits a lift to .N n †; �L/ with respect to the corresponding
data zD" D .f"; X"; JN /. Due to compactness properties such lifts are contained in a
certain disk bundle of N , hence using the identification .EA.R/; JN / ! .Er0C� ; JR/

induced by �R, one obtains the same result for .W; �LI JR/ (under assumption that
the stretching parameter R is large enough).

Moreover, the set of lifts of any non-constant trajectory is parametrized by S1.
Having specified appropriate boundary conditions, one obtains a unique lift, hence
in the view of the projection property established in Corollary 5.2 in §5 there is one-
to-one correspondence between index 0 pearly trajectories in .†; L/ and those on
.W; �L/. More precisely, we will see that for any x; y 2 Crit.f / and A 2 �2.†; L/

such that jyj 	 jxj C �.A/ 	 1 D 0, we have:

#P .x; y; AI D/ D #P .x0; y0; ��1� .A/I zD"/ D #P .x00; y00; ��1� .A/I zD"/:

Here by �� we mean the homomorphism �� W �2.W n �; �L/ ! �2.†; L/ which is
an isomorphism (see (3) before Proposition 2.3), hence it makes sense to write ��1� .

7.1. Lifting of disks

Lemma 7.1. Letu W .D2; @D2/ ! .†; L/be aJ†-holomorphic disk. Given � 2 @D2

and Qp 2 �L \ ��1.u.�// there is a unique lift Qu W .D2; @D2I i/ ! .N n †; �LI JN /

of u such that Qu.�/ D Qp.



928 P. Biran and M. Khanevsky CMH

Proof. The pull back bundle .u�N ; u�JN / ! D admits a holomorphic trivialization
as .D2 � C; J0/ where J0 acts by multiplication by i in both coordinates. Under this
trivialization u��L

ˇ̌
u.@D2/

corresponds to a circle bundle

�u D ˚
.�; q/ 2 @D2 � C

ˇ̌ jqj D h.�/
�

where h W @D2 ! R>0 is a smooth function measuring the radius of the unit circle
in N (in the original hermitian metric on N ) with respect to the trivialization.

In the trivialization above any lift of u is given by Qu D .u; ‰/ with holomorphic
‰ W D2 ! C which satisfies the following conditions:

� ‰.z/ ¤ 0 for all z 2 D2

� j‰.�/j D h.�/ for any � 2 @D2

� ‰.�/ D p where .�; p/ is the image of Qp in our trivialization

In order to show existence of Qu, we take g W D2 ! R to be the harmonic function
which solves Dirichlet problem with boundary conditions g.�/ D log.h.�//. Denote
by f its harmonic conjugate. Then ‰0 D egCif is a holomorphic function which
satisfies the first two conditions. Its rotation ‰ D p

‰0.	/
‰0 is a function which fulfills

all the three conditions.
For uniqueness we argue that if Qu1 D .u; ‰1/, Qu2 D .u; ‰2/ are two lifts, then

' D ‰1

‰2
is a holomorphic function D2 ! C without zeros which satisfies j'.�/j D 1

for all � 2 @D2. A simple application of the maximum principle shows that it must
be constant. We note that '.�/ D 1, therefore ' � 1. �

7.2. Lifting of pearly trajectories. Let � 2 P .x; y; AI D/ be a pearly trajectory.
Again, to simplify the notation we assume without loss of generality that � consists
of a single disk u and two gradient trajectories .�0; �1/. Pick an arbitrary point
p 2 Image �0. We claim that for any Qp 2 ��1.p/ \ �L there is a unique lift
Q� 2 P . Qx; Qy; ��1� .A/I zD"/ of � , which consists of a disk Qu and . Q�0; Q�1/ such that
Qp 2 Image Q�0. (Here Qx; Qy are critical points lying in the fibers of x; y, and we cannot

control in advance if they will be of type .�/0 or .�/00.)
To prove this statement we note that there exists a unique lift Q�0 of �0 to a trajectory

along the flow of zX" which satisfies Qp 2 Image Q�0. Denote by Q� the endpoint of Q�0.
Using Lemma 7.1 we obtain a unique lift Qu of u with Qu.	1/ D Q� . Finally, there is a
unique lift of �1 to a gradient trajectory Q�1 which starts from Qu.1/.

Thus all lifts of � are parametrized by the circle ��1.p/ \ �L. It is easy to see
that exactly one such lift � 00 starts from x00 and exactly one (we denote it by � 0) ends
at y0. Assume that � has index 0. Then by dimension argument � 00 must end at y00.
A similar argument shows that � 0 must connect x0 to y0.

Other configurations of pearly trajectories are dealt in a similar way: we pick
a point p on one of the gradient trajectory segments. Then all lifts Q� of � are
parametrized by the lift Qp of p. In the case when � consists of a single disk u passing



Vol. 88 (2013) A Floer–Gysin exact sequence for Lagrangian submanifolds 929

through critical points x; y, the lifts Q� consist of the lift Qu of u together with two
gradient trajectories lying in the fibers above x; y. It is easy to see that in this case
too there is unique lift which connects x0 to y0, and one which connects x00 to y00.

Putting this together with Corollary 5.2 we obtain:

#P .x; y; AI D/ D #P .x0; y0; ��1� .A/I zD"/ D #P .x00; y00; ��1� .A/I zD"/: (13)

From dimension argument we get:

P .x00; y0; ��1� .A/I zD"/ D ;: (14)

7.3. Chain property for i and p. We are now finally ready to show that the maps
i and p are chain maps. We will denote by d the differential on the pearl complex
C.D/ for .†; L/ and by Qd the differential of the pearl complex C. zD"/ for .W; �L/

with the data zD" as constructed in the previous sections.
Recall that d W C�.D/ ! C�C1.D/ is defined by:

dy D
X
x;A

#P .x; y; AI D/x t N�.A/:

Accordingly, for Qd W C�. zD"/ ! C�C1. zD"/:

Qd Qy D
X
Qx;B

#P . Qx; Qy; BI zD"/ Qx t N�.B/:

Recall also that we have an isomorphism �2.W n �; �L/ ! �2.†; L/ induced by
the projection � W W n � ! †. Recall also that ��L

.B/ D �L.��.B// for every
B 2 �2.W n �; �L/ (see Proposition 2.3). To simplify the notation, we will write
below � for both ��L

and �L.
From (13) and (14) we get:

Qdy0 D
X
x0;A

#P .x0; y0; ��1� .A/I zD"/x
0 t N�.A/ C

X
x00;A

#P .x00; y0; ��1� .A/I zD"/x
00 t N�.A/

D
X
x;A

#P .x; y; AI D/x0 t N�.A/ C
X
x;A

0 � x00 t N�.A/;

Qdy00 D
X
x0;A

#P .x0; y00; ��1� .A/I zD"/x
0 t N�.A/ C

X
x00;A

#P .x00; y00; ��1� .A/I zD"/x
00 t N�.A/

D
X
x;A

#P .x0; y00; ��1� .A/I zD"/x
0 t N�.A/ C

X
x;A

#P .x; y; AI D/x00 t N�.A/:

(15)
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These identities immediately imply that i and p are chain maps. Indeed:

Qd i.y/ D Qdy0 D
X
x;A

#P .x; y; AI D/x0 t N�.A/

D i
� X

x;A

#P .x; y; AI D/x t N�.A/
�

D i.dy/;

p. Qdy0/ D p
� X

x;A

#P .x; y; AI D/x0 t N�.A/
�

D 0 D d.0/ D d p.y0/;

p. Qdy00/ D p
� X

x;A

#P .x0; y00; ��1� .A/I zD"/x
0 t N�.A/

�

C p
� X

x;A

#P .x; y; AI D/x00 t N�.A/
�

D 0 C
X
x;A

#P .x; y; AI D/x t N�.A/ D dy D d p.y00/:

(16)

�

8. Independence of auxiliary data

Let D0 D .f0; .�; �/0; J 0
†/ and D1 D .f1; .�; �/1; J 1

†/ be two choices of auxiliary data

for the pearl complex of L � †. Denote by zD0
" and zD1

" corresponding choices of
data for .W; �L/ as constructed in §4. Recall from [BC4], [BC4] that there exists a
comparison map

ˆc
D0;D1 W C�.D1/ 	! C�.D0/

which is a chain map with respect to pearly differentials and induces an isomorphism
in cohomology ˆh

D0;D1 W H �.C.D1// ! H �.C.D0//. We use here the following

convention. Maps with superscript c (e.g. ˆc) denote chain maps, while superscript h

indicates the induced map in cohomology (e.g. ˆh is the induced map in cohomology
for ˆc).

Note that while the maps ˆc
D0;D1 are not unique they are uniquely defined up to

cochain homotopy, hence the maps ˆh
D0;D1 are canonical. An analogous comparison

map ˆc
zD0

" ; zD1
"

exists for the corresponding pearl complexes of �L.

The comparison maps are natural in the following sense: for any three choices of
data D0; D1; D2 we have in cohomology:

ˆh
D0;D1 B ˆh

D1;D2 D ˆh
D0;D2 ; ˆh

D0;D0 D Id:

In this section we show that the chain maps i and p are compatible with these
comparison maps, hence after passage to cohomology they can be viewed as canonical
maps between the corresponding Lagrangian quantum cohomologies.
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8.1. Construction of ˆc

D0;D1
. We recall here the construction from [BC4].

Adding a positive constant to f1, if necessary, we may assume that f1.x/ > f0.x/

for any x 2 L. Following [CR], Lemma 1.17, we pick a C 1 function v W Œ0; 1� !
Œ0; 1� which satisfies

v.0/ D 1I v.1/ D 0I v0.0/ D v0.1/ D 0I
v0.t/ < 0 .0 < t < 1/I v00.0/ < 0 < v00.1/:

and define F W L � Œ0; 1� ! R by F.x; t/ D v.t/f0.x/ C .1 	 v.t//f1.x/. We
allow a small perturbation of F away from the boundary of L � Œ0; 1� in order to
make the construction generic. The function F extends fi (viewed as functions on
the boundary components Li D L � fig of L � Œ0; 1�) and has all critical points on
the boundary. In fact,

Crit.F / D Crit.f0/ � f0g [ Crit.f1/ � f1g:
The indices of these critical points satisfy:

j.x; 0/j D jxj C 1; j.y; 1/j D jyj:
Pick a Riemannian metric .�; �/ on L � Œ0; 1� which restricts to .�; �/i on each Li . As
the space of almost complex structures on † is connected, we can pick a generic path
J t

†, 0 
 t 
 1 which connects J 0
† to J 1

†.
The chain map ˆc

D0;D1 W C�.D1/ ! C�.D0/ is defined as follows. Let x 2
Crit.f0/ and y 2 Crit.f1/ and A 2 H2.†; L/. Now consider the critical points
.x; 0/; .y; 1/ 2 Crit.F /. Denote by �P.x; y; A/ the moduli space of pearly-like
trajectories which consist of the following objects: an increasing sequence 0 
 t1 <

� � � < tl 
 1, a collection of disks ui W .D2; @D2/ ! .†�ftig; L�ftig/, i D 1; : : : ; l ,
which are J

ti
† holomorphic (ti is fixed for each ui ) and a sequence of negative gradient

trajectories �i � L � Œ0; 1� of F connecting consecutive disks in a similar way we
had for usual pearly trajectories.The first trajectory should start at .x; 0/ and the last
ends at .y; 1/. Moreover

P
Œui � D A. (As was the case with usual pearly trajectories

we allow A D 0, in which case we do not have disks at all (i.e., l D 0) and the whole
pearly trajectory consists of a negative gradient trajectory of F .) We refer the reader
to [BC4] for the precise details of this construction.

For a generic choice of the data involved, each �P.x; y; A/ is a smooth manifold
of dimension Oı.x; y; A/ D j.x; 0/j 	 j.y; 1/j 	 1 	 �.A/ D jyj 	 jxj C �.A/.
Moreover, when Oı D 0 the space �P.x; y; A/ is compact, hence consists of finite
number of trajectories. Define

ˆc
D0;D1.y/ D

X
Oı.x;y;A/D0

# �P.x; y; A/xt N�.A/;
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where the sum is taken over all x 2 Crit.f0/ and A with Oı.x; y; A/ D 0. The same
construction works well if one replaces Morse functions and their negative gradient
flow by a negative almost gradient vector field as in §3.1.

We will now exhibit ˆc
zD0

" ; zD1
"

as a “lift” of ˆc
D0;D1 . We extend zX i

"i
to �L � Œ0; 1� in

the following way: pick a connection on N � Œ0; 1� as in §2.2 which extends r0, r1

on the boundaries of N � Œ0; 1�. The cutoff functions ˛q are extended into a tubular
neighborhood of a boundary in L � Œ0; 1� by ˛q.x/ˇiq .t/ where ˇiq W Œ0; 1� ! Œ0; 1�

(iq 2 f0; 1g) is a smooth cutoff function which is equal to 1 near iq and vanishes
outside a 1=3 neighborhood of iq . Now we use the same construction as in §4: lift
the negative gradient flow of F to Xhor using the horizontal distribution of r and put

zX D Xhor C "
X

.˛qˇiq B ��L
/ B D	q.Yq/

where q indexes all critical points of F , 	q are local trivializations of �L � Œ0; 1�

and Yq are vertical vector fields near the critical point of fi as in §4. We obtain a
negative almost gradient vector field which restricts to zX i

" (i D 0; 1) on the boundary
and whose projection coincides with the negative gradient field of F on L � Œ0; 1�.
The lift of J t

† is constructed in the similar manner as in §5. As the pearl complex

C�.�LI zD i
"/ does not change as one increases the stretching parameter R for the

almost complex structure JR, we may assume that this R is the same as the one
used for the pearl complexes zD i

" . Moreover, we require that the parameter R is large
enough so that all the disks which participate in 0-index trajectories in �P.x; y; A/

(there is a finite number of them) are located in the appropriate disk bundle which
corresponds to the stretching of a lift of J

ti
† . Transverality is obtained in analogous

way as in §6. By the results of [BC4], [BC6] ˆc
zD1

" ; zD0
"

are chain homotopic to the

comparison maps C�.�LI zD1
" / ! C�.�LI zD0

" / constructed by the general theory.
We now exploit the special relation between the pearly trajectories on �L � Œ0; 1�

and those on L � Œ0; 1�. We have a lift Jt of J t
† for which all the relevant pearly

moduli spaces �P. Qx; Qy; A/ project to pearly moduli spaces on †. A lifting procedure,
completely analogous to the one in §7, shows that when Oı.x; y; A/ D 0 we have:

# �P.�LI x0; y0; ��1� .A// D # �P.�LI x00; y00; ��1� .A// D # �P.LI x; y; A/;

while �P.�LI x00; y0; ��1� .A// D ;. These identities show that the following diagram
is commutative on the chain level:

0 �� C�.LI D1/
i1 ��

ˆc

D0;D1

��

C�.�LI zD1
" /

p1 ��

ˆc

zD0
" ; zD1

"

��

C��1.LI D1/ ��

ˆc

D0;D1

��

0

0 �� C�.LI D0/
i0

�� C�.�LI zD0
" / p0

�� C��1.LI D0/ �� 0.
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It follows that the maps induced in cohomology by i and p do not depend on the
choices of the auxiliary data in the sense that they are compatible with the comparison
maps. In other words, these maps are canonical.

9. Product structure

9.1. Multiplicative structure.. Recall from [BC4], [BC6], [BC5] that QH.L/ has a
quantum product � which turns it into an associative (but not necessarily commutative)
unital ring.

The quantum product is defined in following way. Pick a Riemannian metric .�; �/
on L, an almost complex structure J† on † and three Morse functions f1; f2; f3

on L. Put Di D .fi ; .�; �/; J†/, i D 1; 2; 3. Let x 2 Crit.f1/ and q 2 L a point
(which is not necessarily a critical point of f1). Fix also A1 2 H2.†; L/. Denote
by P.q; x; A1I D1/ the space of pearly trajectories going from q, converging to x

and with total homology class A1. We have similar spaces for D2 and D3. Now let
x 2 Crit.f1/, y 2 Crit.f2/, g 2 Crit.f3/, and A 2 H2.†; L/. Consider the space of
tuples .�1; �2; �3; u/ which consist of a J -holomorphic disk u W .D; @D/ ! .†; L/

(which is allowed to be constant) and a triple of pearly trajectories

.�1; �2; �3/ 2 P
�
u.e2�i=3/; x; A1I D1

� � P
�
u.e�2�i=3/; y; A2I D2

�
� P

�
z; u.1/; A3I D3

�
;

where A D Œu� C A1 C A2 C A3 2 H2.†; L/. We denote the space of such tuples
.�1; �2; �3; u/ by Pprod.z; x; y; A/.

The virtual dimension ofPprod.z; x; y; A/ is given by ı D jzj	jxj	jyjC�.A/. If
ı 
 1 then for a generic choice of data .f1; f2; f3; .�; �/; J†/, the space P.z; x; y; A/

is a smooth manifold of dimension ı. Moreover, when ı D 0 the moduli space consists
of a finite number of elements (see [BC4], [BC6]). Define now a chain level operation

C.D1/ ˝ C.D2/ 	! C.D3/; x ˝ y 7	! x � y;

by
x � y D

X
#Pprod.z; x; y; A/zt N�.A/;

where the summation goes over z; A with ı.z; x; y; A/ D 0. This operation descends
to an associative unital product on QH �.L/.

The same construction works of course for �L � W too. We will now implement
it on �L using auxiliary data induced from that of L so that it is adapted to our
situation. We would like to lift the pearly configurations from Pprod.z; x; y; A/ to
.W; �L/ in a similar way to what we have done for the ‘usual’ pearly trajectories.

Consider three lifts of 	gradfi , i D 1; 2; 3, to negative almost gradient vector
fields zX ‘"1; zX"

2 ; zX"
3 on �L as described at the end of §3. Consider also an admissible
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almost complex structure JR on M induced by J† as in §5 with stretching parameter
R large enough.

For a generic choice of parameters the spaces Pprod. Qz; Qx; Qy; AI �L/ enjoy similar
transversality properties as in §6 and one may use them to define a chain level product
which descends to the quantum product on QH �.�L/.

The projection property for Pprod. Qz; Qx; Qy; AI �L/ follows from the construction
by similar arguments as in §5. Moreover, arguing in a similar manner as in §7
we establish the following identities. For every critical points x; y; z of f1; f2; f3

respectively and A 2 �2.†; L/ with jzj 	 jxj 	 jyj C �.A/ D 0:

#Pprod.z; x; y; AI L/ D #Pprod.z0; x0; y0; ��1� .A/I �L/

#Pprod.z; x; y; AI L/ D #Pprod.z00; x00; y0; ��1� .A/I �L/

D #Pprod.z00; x0; y00; ��1� .A/I �L/:

Moreover, Pprod.z00; x0; y0; ��1� .A/I �L/ does not have any zero-dimensional com-
ponents. All together this implies that for every x 2 Crit.f1/, y 2 Crit.f2/ and
Qx 2 Crit. zX"

1/, Qy 2 Crit. zX"
2/ we have:

i.x �y/ D i.x/� i.y/; p. Qx � i.y// D p. Qx/�y; p.i.x/� Qy/ D x �p. Qy/: (17)

Note that these identities hold on the chain level.

10. The Floer–Euler class

Denote by ı W QH k.L/ ! QH kC2.L/ the connecting homomorphism in the long
exact sequence of Theorem 4.1. Denote by 1 2 QH 0.L/ the unity. Define:

eF D ı.1/ 2 QH 2.L/: (18)

We call this class the Floer–Euler class of �L ! L.

Proposition 10.1. For every ˛ 2 QH �.L/ we have:

ı.˛/ D ˛ � eF D eF � ˛:

Proof. The proof follows easily by noting the multiplicative properties of the mor-
phisms i and p (see (8) in Theorem 4.1) together with the fact that the pearly differ-
entials on C.L/ and on C.�L/ satisfy the Leibniz rule with respect to the quantum
chain level operation. �
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11. The positive pearl complex

Recall from [BC5], [BC6] that the quantum cohomology of a monotone Lagrangian
K admits also a positive version, QCH �.K/. The construction goes as follows.
Let ƒC D Z2Œt � be the ring of polynomials in t , graded so that jt j D NK . Let
D D .f; .�; �/; J / be a pearly data and put CC.KI D/ D Z2hCrit.f /i ˝ ƒC. We
grade CC in the same way as C , i.e., by Morse indices on the left factor and using the
grading of ƒC on the right factor. We endow CC.KI D/ with the same differential d

which was defined for C.KI D/ in §3. The fact that this d maps CC into CC follows
from the monotonicity of K since the Maslov index of non-constant holomorphic
disks is always strictly positive.

The cohomology of .CC.KI D/; d/ is denoted by QCH �.K/ and is called the
positive quantum cohomology of K. By the results of [BC6] it does not depend on D .

Note that in contrast to QH �.K/, QCH �.K/ is quite different from HF �.K/

and there is no isomorphism between the two. Note also that QCH.K/ can never
vanish (unlike HF.K/). See [BC6], [BC5] for more on that.

Note also that there is an obvious inclusion of cochain complexes CC.KI D/ !
C.KI D/. The resulting morphism in cohomology �K W QCH.K/ ! QH.K/ is
canonical. However, in general it is not injective.

Going back to our Lagrangians L and �L we have:

Theorem 11.1. Theorem 4.1 continues to hold if one replaces everywhere C� by C�C
and QH � by QCH �. The corresponding class eC

F belongs to QCH 2.L/. Moreover
the morphisms �L W QCH.L/ ! QH.L/ and ��L

W QCH.�L/ ! QH.�L/ give
rise to a long commutative diagram that maps the long exact sequence for QH to
the corresponding long exact sequence for QCH . Moreover we have �L.eC

F / D eF .
(Therefore, from now on we will denote both classes by eF ).

Proof. The proof is done precisely the same as for Theorem 4.1 by noting that, due
to monotonicity, all differentials, cochain maps and connecting homomorphisms in
the proof of Theorem 4.1 always involve only non-negative powers of t . �

11.1. Comparison with the sequence in singular homology. Let D D .f; .�; �/; J /

be auxiliary pearl datum for the Lagrangian K. Denote by D 0 D .f; .�; �// the
corresponding Morse datum, and by CM.KI D 0/ the corresponding Morse complex.

Denote by
Q� W C�C.KI D/ 	! CM �.KI D 0/ (19)

the morphism induced by sending t 2 ƒC to 0, i.e., Q�.x/ D x for every x 2 Crit.f /

and Q�.xt i / D 0 for every i > 0. It is easy to see that Q� is a cochain map (see [BC5]
Section 4.3). We denote the resulting map in cohomology

� W QCH �.K/ 	! H �.KI Z2/: (20)
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This map is canonical in the sense that it does not depend on D .
Going back to the Floer–Gysin sequence we obtain the following commutative

diagram:

0 �� C�C.LI D/
i ��

Q

��

C�C.�LI D"/

Q

��

p �� C��1C .LI D/

Q

��

�� 0

0 �� CM �.LI D 0/ i 0
�� CM �.�LI D 0

"/
p0

�� CM ��1.LI D 0/ �� 0

where the maps i 0 and p0 are defined exactly in the same way as i and p. Note
that the long exact sequence in cohomology induced by the bottom short sequence is
precisely the Gysin sequence of the circle bundle �L ! L for singular (or Morse)
cohomology. We now obtain a map between the two long exact sequences (induced
by the Q� ’s):

� � � �� QCH k.L/




��

�eF �� QCH kC2.L/




��

i �� QCH kC2.�L/




��

p �� QCH kC1.L/ �� � � �

� � � �� H k.LI Z2/
[e �� H kC2.LI Z2/

i 0
�� H kC2.�LI Z2/

p0

�� H kC1.LI Z2/ �� � � �
From this it is easy to see that �.eF / D e. In this sense, the Floer–Euler class can be
viewed as a deformation of the classical Euler class.

Remark 11.2. The chain map in (19) fits into the following exact sequence of cochain
complexes:

0 �� t C
��NLC .LI D/ �� C�C.LI D/

Q
 �� CM �.LI D 0/ �� 0 (21)

where the first map is the inclusion. Since C
k�NLC .LI D/ D 0 for every 0 


k < NL it follows, after passing to the long exact sequence in cohomology, that
� W QCH k.L/ ! H k.LI Z2/ is injective for every 0 
 k < NL. In particular if
NL � 3 and if eF ¤ 0 then e ¤ 0 2 H 2.LI Z2/.

12. More on the Floer–Euler class

Recall from [BC6] that a Lagrangian L is called wide if there exists an isomorphism
of ƒ-modules:

QH �.L/ Š .H.LI Z2/ ˝ ƒ/�: (22)

Note that in this case we also have:

QCH �.L/ Š .H.LI Z2/ ˝ ƒC/�: (23)
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It is important to note however, that for a wide Lagrangian L there is in general no
canonical isomorphism in (22) or (23) (at least not for all degrees �). Therefore it is
in general impossible to make a canonical identification

QCH 2.L/ D .H.LI Z2/ ˝ ƒC/2:

Nevertheless, if L is wide and NL � 3 the identification is possible for degree � D 2

and we have a canonical identification:

QCH 2.L/ D H 2.LI Z2/: (24)

See [BC6], Section 4.5 for more on that. When NL D 2 we still have short exact
sequence:

0 	! H 0.LI Z2/t
j	! QCH 2.L/


	! H 2.LI Z2/ 	! 0; (25)

where the morphism � is the one defined in (20).
Summarizing the above with the discussion in §11.1 we have:

Proposition 12.1. Let L � † be a monotone wide Lagrangian. Let e 2 H 2.LI Z2/

be the Euler class of the circle bundle �L ! L and eF 2 QCH 2.L/ the Floer–Euler
class. Then �.eF / D e. Moreover, if NL � 3 then via the identification (24) we have
eF D e.

Proof. The fact that �.eF / D e has already been proved in §11.1. The statement
concerning NL � 3 follows immediately from the fact that via the identification (24)
we have � jQCH 2.L/ D id. �

We now examine closer the case NL D 2. Denote by cN
1 2 H 2.†I Z/ the first

Chern class of the normal bundle of † in M (so that if PDŒ†� D ka 2 H 2.M I Z/,
with a being an integral lift of Œ!� 2 H 2.M I R/, then cN

1 D kaj† 2 H 2.†I Z/).
Note that in our notation the Euler class e 2 H 2.LI Z2/ is the restriction to L of the
modulo-2 reduction of cN

1 .
Assume that L is wide and that e D 0 2 H 2.LI Z2/. From Proposition 12.1

and (25) it follows that eF D r t for some r 2 Z2. We would now like to identify
this coefficient r .

Let A 2 H2.†; L/ with �.A/ D 2. Denote by M.A; J†/ the space of J†-
holomorphic disks u W .D; @D/ ! .†; L/ with u�ŒD� D A. Denote by G D
Aut.D/ Š PSL.2; R/ the group of biholomorphisms of D. The group G acts on
.M.A; J†/ � @D/ by � � .u; z/ D .u B ��1; �.z//. We now have an evaluation map

ev W .M.A; J†/ � @D/=G 	! L; ev.u; z/ D u.z/:
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As ev is a smooth map between two closed manifolds of the same dimension it has
a well defined degree modulo 2 which we denote �.A/ 2 Z2. Define now a class
DL 2 H2.†; L/ by

DL D
X

A2H2.†;L/; �.A/D2

�.A/A:

By Proposition 4.2.1 of [BC6] wideness of L implies that @.DL/ D 0, where
@ W H2.†; LI Z2/ ! H1.LI Z2/ is the connecting homomorphism. Denoting by
i W H2.LI Z2/ ! H2.†I Z2/ and by j W H2.†I Z2/ ! H2.†; LI Z2/ the homomor-
phisms induced by inclusion, it follows that there exists an element SL 2 H2.†I Z2/

so that j.SL/ D DL, and moreover that SL is unique up to a summand com-
ing from i.H2.LI Z2//. Denote by c 2 H 2.†I Z2/ the modulo-2 reduction of
cN

1 2 H 2.†I Z/. As cjL D e D 0 2 H 2.LI Z2/, the value of hc; SLi 2 Z2 depends
only on DL.

Proposition 12.2. Let L � † be a wide Lagrangian with NL D 2 and with e D 0.
Then

eF D hc; SLit:
The proof is rather straightforward and follows from the definition of the Floer–

Euler class eF as the image of 1 2 QH 0.L/ under the connecting homomorphism:
eF D ı.1/. We therefore omit the details.

Next we would like to establish a relation between the first Chern class of the
normal bundle N ! † of † in M and the Floer–Euler class eF 2 QH 2.L/.
Recall from [BC4], [BC6], [BC5] that QH.L/ has a structure of a module over
the quantum cohomology QH.†I ƒ/ D H.†/ ˝ ƒ of the ambient manifold †,
where the latter is endowed with the quantum product ring structure. For reasons of
compatibility with QH.L/ we use here ƒ as the coefficients for QH.†I ƒ/, which
is an obvious extension of the usual ring of coefficients commonly used for QH.†/.
(See Section 2.5 of [BC5] or Section 2.1.2 of [BC6] for more details on this.) This
module structure is given by a degree preserving morphism:

QH.†I ƒ/ ˝ƒ QH.L/ 	! QH.L/; a ˝ ˛ 7	! a � ˛:

(Since this module structure is compatible with the quantum multiplications of both
QH.†/ and QH.L/ we have denoted it by abuse of notation by � too.) A similar
construction works with ƒ replaced by ƒC everywhere.

Consider now the map

rL W QH �.†I ƒ/ 	! QH �.L/; a 7	! a � 1:

We view this map as a quantum analogue of the classical restriction map H �.†/ !
H �.L/, a 7! ajL. Note that the image of cN

1 under the classical restriction is the
classical Euler class e 2 H 2.L/. The following proposition is a quantum version of
this:



Vol. 88 (2013) A Floer–Gysin exact sequence for Lagrangian submanifolds 939

Proposition 12.3. Let L � † be a monotone Lagrangian. Denote by c 2 H 2.†I Z2/

the modulo-2 reduction of cN
1 2 H 2.†I Z/. Then

eF D rL.c/:

The proof is again straightforward and is based on a Morse theoretic interpretation
of the class cN

1 2 H 2.†/ using the classical Gysin sequence for the circle bundle
P ! †. We omit the details.

13. An analogous exact sequence in .M; !/

In this section we discuss the analogous sequence which arises when one replaces
the ambient manifold W D M n † with M . Recall from [BC6] (Section 6.4) that for
a suitable choice of the parameter r0 in the construction of �L in §2.4 �L becomes
monotone also when viewed as a Lagrangian submanifold of M . (In contrast with
�L � W , here there is a unique r0 which makes �L monotone in M ).

Assume that the minimal Maslov number NL of L is even and � 2. As in
Proposition 2.3 the homomorphism �2.M n �; �L/ ! �2.M; �L/ induced by the
inclusion is surjective. We also have:

�2.M n �; �L/ Š �2.N ; �L/ D ZF ˚ �2.N n †; �L/; (26)

where F is the class represented by the vertical disks in the fibres of the disk bundle
Er0

! †, i.e., by fv 2 Np j jvj 
 r0g. (Here p is a point in L and Np is the fibre
over p.) Moreover the Maslov class of �L in M behaves as follows (compare to 2.3):

��L
.F / D 2; ��L

.A/ D �L.��.A// for all A 2 �2.N n †; �L/:

It follows that N�L
D 2.

Since the minimal Maslov numbers of �L and L are now different we will use
the following extension of the coefficient ring for the pearl complex of L. Put A D
Z2Œq�1; q�, with jqj D 2 and let ƒ D Z2Œt�1; t � with jt j D NL as before. We define

on A a structure of an ƒ-algebra via the ring homomorphism ƒ 3 t 7! q
NL

2 2 A.
Given auxiliary data D , we define the pearl complex on L using coefficients in A:

C.LI D I A/ D C.LI D/ ˝ƒ A;

with the obvious extension of the pearly differential by linearity over A. We de-
note the corresponding cohomology by QH.LI A/. As for �L we define the data
zD" D .f"; X"; J / as in §4. Here J is an admissible almost complex structure in-

duced from J† as described in §5 but now J is defined on the whole of M . Note
that by the construction in §5 such J ’s coincide with J† on †, hence † is a J -
holomorphic submanifold. The pearl complex of �L � M is defined as usual, but
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we denote the coefficients by A (rather than ƒ which is already used for L). In order
to distinguish the pearl complex of �L � M from that of �L � W we denote the
former by .CM .�LI zD"/; QdM / and the latter by .CW .�LI zD"/; QdW /. We denote their
cohomologies by QHM .�L/ and QHW .�L/ respectively.

In this new setup a similar version of Proposition 5.1 holds, namely:

Proposition 13.1. For generic D , there exists R0 > 0 such that for every JR as
described above with R > R0 the following holds: every pearly trajectory � 2
P0.JR/ is contained in the image F.Er0C�/ of the .r0C/-disk bundle of N under F .

Proof. The proof is almost identical to that of Proposition 5.1 except of the fol-
lowing points. First, by the maximum principle, if u W .D; @D/ ! .M; �L/ is a
JR-holomorphic disk then either u.D/ is contained in M n Int Er0

or u.D/ intersects
†. For those disks that lie entirely in M n Int Er0

the proof of Proposition 5.1 holds
without any change.

Now suppose that we have a sequence of pearly trajectories �n which contain JRn
-

holomorphic disks uRn
such that uRn

.D/ intersect † (as well as the complement of
Er0C� , as was assumed in the proof of Proposition 5.1). Arguing exactly as in the
proof of Proposition 5.1 we obtain a holomorphic building in M 1 part of which,
say Nu0 is in M �1 and another part Nu00 in M C1 (which also intersects †). There may
appear additional part Nu000 whose components lie in the cylinder R�P . The first part,
Nu0, can be analyzed and dealt with as in the proof of Proposition 5.1. In particular
we assume that one of its components u2, after being perturbed to lie away from �,
projects into a sphere v in † with positive Chern number. The second part, Nu00 might
contain components of the following kinds:

(1) holomorphic spheres u00
s (appearing as bubbles) in M C1,

(2) disks u00
d

in the class F (or its multiples),

(3) holomorphic curves u00� similar to u1 from the proof of Proposition 5.1 defined on
a punctured disk or sphere and at the punctured asymptotically go to a periodic
orbit at 	1 in M C1,

(4) some other genuine holomorphic disks u00
o in .M 1; �L/ (lying in a compact part

of M C1).

Note that the projection of the disks u00
d

via � must be constant (since ��.F / D 0),
hence these disks are vertical. Next, the projection of the curves of the type u00�
gives us in † a holomorphic curve with a removable singularities at the punctures,
precisely as was done with �1 B u1 in the proof of Proposition 5.1. The disks of the
type u00

o project to genuine holomorphic disks in .†; L/. Components of Nu000 (if any)
project to holomorphic spheres. Consider now the pearly trajectory N� obtained from
the limit of the �n. We remove from N� the component u2, Nu000, the vertical disks u00

d

(if there are any) and the holomorphic spheres u00
s (if there are any), and then project
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the rest to † via � . We thus obtain a genuine pearly trajectory �† for .†; L/. Denote
by A 2 H2.M; �L/ the total homology class of the holomorphic curves (including
u2) in N� . Since the vertical disks (if there are any) have constant projection the total
homology class B 2 H2.†; L/ of the holomorphic curves involved in �† is:

B D ��.A/ 	 Œv� 	 ��Œu00
s � 	 ��Œ Nu000�:

(In case there are no spheres u00
s , we have Œu00

s � D 0).
Now for every C 2 H2.N ; �L/ we have (see (26)):

��L
.C / D �L.��.C // C 2C � Œ†�;

where C � † stands for the intersection number between C and †. We thus obtain:

��L
.Œ Nu�/ D ��L

.A/ D �L.B/C2c†
1 .Œv�/C2c†

1 .��Œu00
s �/C2c†

1 .��Œ Nu000�/C2A�Œ†�:

(27)
We now claim that A � Œ†� � 0. Indeed the class A is represented by JRn

-holomorphic
disks (those that appear in each of the �n’s) and † is JRn

-holomorphic. The claim
follows from positivity of intersections.

Next, by monotonicity we have c†
1 .Œu00

s �/ � 0. By the same argument as in the

proof of Proposition 5.1 we also have c†
1 Œv� � 1 (in contrast to u00

s , we explicitly
assumed that v does occur). Going back to (27) we obtain the inequality

��L
.Œ Nu�/ � �L.B/ C 2;

which is the same as (12) in the proof of Proposition 5.1.
The rest of the proof continues exactly as for Proposition 5.1. �

Having established Proposition 13.1 we can prove transversality for moduli spaces
involved in CM .�LI zD"/ in the same way done in §6.

We now define the maps i W C�.LI D I A/ ! C�
M .�LI zD"/ and p W C�

M .�LI zD"/ !
C��1.LI D I A/ exactly as in §4.

It remains to show that these remain chain maps also with respect to the pearly
differential QdM of �L in M . The proof of this goes along the same lines as that for
W : we compare pearly trajectories in .M; �L/ with those on .†; L/. In particular we
project pearly trajectories from .M; �L/ to .†; L/ as we did for .W; �L/. The discus-
sion for the lifting property which is presented in §7 applies here with the following
modifications. Lemma 7.1 shows that any holomorphic disk u W .D2; @D2/ ! .†; L/

admits a unique holomorphic lift to a disk in .M n†; �L/ having specified appropriate
boundary conditions. In addition, there is a family of lifts of u to holomorphic disks
which intersect †. For any such lift Qu of u, we have ��L

. Qu/ D �L.u/ C 2Œu� � Œ†�

(here Œu� � Œ†� stands for the intersection product in homology). A simple index com-
putation shows that the virtual dimension of any lifted trajectory which contains disks
intersecting † is greater than zero, so these do not contribute to the differential. In
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addition there may appear trajectories in .M; �L/ whose projections to .†; L/ are
degenerate. Analyzing possible configurations of degenerated trajectories, one shows
that the only index 0 trajectories which appear this way are trajectories consisting of
a single vertical disk in the fiber of � W Er0

! †. For every critical point x on L

there is unique such trajectory which connects x00 to x0 (its projection to † consists
of a single point x).

The above discussion yields the following identities for every x 2 Crit.f /:

QdM .x0/ D QdW .x0/;
QdM .x00/ D QdW .x00/ 	 x0q

(28)

We have identified here C�
M .�LI zD"/ with C�

W .�LI zD"/˝ƒA as graded vector spaces.
The additional summand x0 ˝ q in QdM .x00/ comes from the vertical disks described
above.

A straightforward computation now shows that i and p are chain maps. We now
have the following version of Theorem 4.1:

Theorem 13.2. The maps i and p form a short exact sequence

0 �� C�.LI D I A/
i �� C�

M .�LI zD"/
p �� C��1.LI D I A/ �� 0

of cochain complexes. For a generic choice of data D and an admissible correspond-
ing data zD" the maps i and p are chain maps. In particular, we have a long exact
sequence

� � � �� QH k.LI A/
ı �� QH kC2.LI A/

i �� QH kC2
M .�L/

p �� QH kC1.LI A/
ı �� � � �

Moreover, this exact sequence in homology is canonical in the sense that it does not
depend on the auxiliary data. The connecting homomorphism ı is given by quantum
multiplication by a class e0

F 2 QH 2.LI A/ (which does not depend on the auxiliary
data), i.e., ı.˛/ D ˛ � e0

F for every ˛ 2 QH �.LI A/. The relation between e0
F and

the Floer–Euler class from Theorem 4.1 is given by e0
F D eF 	 q, where we view

here eF as a class in QH 2.LI A/.

The independence of the choice of auxiliary data issues are treated in a similar
way to those in for W . Finally, (28) implies that the connecting homomorphisms
ı W QH k.L/ ! QH kC2.L/ in the sequences for .M; �L/ and that for .W; �L/ are
related as follows:

ıM D ıW 	 q: (29)

(Here q stands for multiplication by q.) The fact that e0
F D eF 	 q follows now from

similar arguments as in §10.
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14. Further results and generalizations

Here we present a generalization of Theorem 1.1 that allows to replace † by a product
† � Q with a symplectic manifold Q. Here is the precise setting.

Let .Q; !Q/ be a closed symplectic manifold. Let L � .† � Q; !† ˚ !Q/ be a
Lagrangian submanifold. Define the circle bundles Pr ! † as in §2.2. Denote by
� 0

r0
W Pr0

� Q ! † � Q the projection and define

�L D .F � 1/.� 0
r0

�1
.L// � W � Q;

where F is the embedding from Proposition 2.1. A simple computation shows that �L

is a Lagrangian submanifold of W �Q if we endow this manifold with the symplectic
structure

!r0
D ! ˚ e�r2

0 !Q:

We now fix r0 once and for all and consider �L as Lagrangian submanifold of
.W � Q; !r0

/. We have the following version of Proposition 2.3 which is proved
in [Bir2]:

Proposition 14.1. Assume that either dimR † � 4, or that dimR † D 2 and W D
M n † is subcritical. Let .Q; !Q/ be as above and L � † � Q be a Lagrangian
submanifold. Let �L � W �Q be the Lagrangian circle bundle over L as constructed
above. Then:

(1) The homomorphism 
� W �2.W � Q n � � Q; �L/ ! �2.W � Q; �L/, induced
by the inclusion, is surjective. When dimR † � 6, 
� is an isomorphism. The
same statement holds also for homology, i.e., if one replaces �2 by H2.

(2) For every B 2 �2.W � Q n � � Q; �L/ we have:

��L
.B/ D �L.� 0�.B//;

where � 0 W .W � �/ � Q ! † � Q is the projection induced by W n � ! †.

In particular, if L � † � Q is monotone then �L � W � Q is monotone too, and
N�L

D NL.

Note that if L � † � Q is monotone then in particular .Q; !Q/ is a spherically
monotone manifold, i.e., there exists � > 0 so that !Q.S/ D �c

Q
1 .S/ for every

S 2 �2.†/.
We now have the following generalization:

Theorem 14.2. Theorems 4.1, 11.1, the discussion in §11.1 as well as Proposi-
tions 12.2, 12.3 continue to hold for monotone L � † � Q and �L � W � Q.
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The proof is very similar to the proofs of the analogous statements for the case
Q D pt, i.e., L � † and �L � W . Still, there are a few points where some
adjustments are needed. We indicate them below.

First of all, the construction of the chain maps i and p is the same as before. As for
the almost complex structures, we use the following adjustments. Fix a generic !†-
tamed almost complex structure J† on † and an !Q-tamed almost complex structure
JQ on Q. Let J 0

†�Q D J† ˚ JQ be the split almost complex structure on † � Q.
We will work with almost complex structures J†�Q on † � Q that are generic small
perturbations of J 0

†�Q. This class is obviously enough in order to obtain transversality
for the pearl complex of L � † � Q. Given such a generic J†�Q we construct, as
in §5, the almost complex structures on N � Q, M � Q, W � Q etc. as well as their
stretched versions on W R �Q etc. We denote the resulting almost complex structure
by zJ†�Q (we omit here the parameter R to simplify the notation). Note that W �Q is
not symplectically convex at infinity anymore, and the maximum principle does not
apply due to the Q factor. To go about this difficulty we fix 0 < r1 < r0 and adjust
zJ†�Q on .Int Er1

/ � Q so that it coincides with JW ˚ JQ (i.e., the lift of J 0
†�Q)

on .Int Er1=2/ � Q. We denote the resulting almost complex structure by zJ 0
†�Q and

call them admissible. Such almost complex structures are enough in order to ensure
compactness for holomorphic disks in W � Q with boundary on �L. The reason
is that the projection to W is holomorphic on .Int Er1=2/ � Q and the maximum
principle applies to these projections. Thus holomorphic disks with boundary on �L

cannot escape to infinity.
The preceding construction of admissible almost complex structures creates how-

ever a new problem. The problem is that due to the perturbation in Er1
� Q these al-

most complex structures are not compatible with the projection .W nU /�Q ! †�Q

in the domain .Er1
�Q (in the sense that the projection is not holomorphic anymore).

This compatibility was crucial in the proof of Proposition 5.1. To solve this prob-
lem, fix r 0

0 such that 0 < r1 < r 0
0 < r0. We claim that for J†�Q close enough to

J 0
†�Q and admissible zJ 0

†�Q’s induced by such J†�Q’s the following holds: all zJ
holomorphic disks u W .D; @D/ ! .W � Q; �L/ lie in the domain .M n Er 0

0
/ � Q.

Indeed if the contrary would happen then there exists a sequence Jn ! J 0
†�Q on

† � Q and a sequence of corresponding admissible almost complex structures zJ 0
n

on W � Q together with zJ 0
n-holomorphic disks un whose image intersects Er 0

0
for

every n. In the limit, when n ! 1, zJ 0
n converges to a split almost complex structure

zJ0 D JW ˚ JQ and (after passing to a subsequence) the disks un converge to a
zJ0-holomorphic curve u1 (with some bubble components) with boundary on �L.

As zJ0 is a split almost complex structure the projection of u1 to W is JW holomor-
phic. The projection of its boundary lies in Pr0

and there is an interior point lying in
Er 0

0
. This contradicts the maximum principle. It now follows that all pearly trajec-

tories lie above the hypersurface Pr 0
0

� Q, where the projection to † � Q is indeed
holomorphic.
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There is yet another point in the proof of Proposition 5.1 where an additional argu-
ment is needed. One has to take care of another possible configuration of holomorphic
curves appearing in the limit while stretching the neck. Namely, holomorphic spheres
that might appear in the holomorphic building Nu as bubbles from the limit of the se-
quence unk

. These spheres might appear now since W � Q is not exact symplectic
manifold anymore, due to the Q factor. However, due to the monotonicity of Q these
spheres have positive Chern numbers hence the total Maslov index of Nu still drops
after removing them, and a similar argument to the proof of Proposition 5.1 goes
through.

The other components in the proof of Proposition 14.2, such as the lifting and
the transversality are carried out in a similar way to the case Q D pt with almost no
significant adjustments. �

15. Applications and examples

We will now prove Theorem 1.2 from §1 which we state again as Theorem 15.1 below
for convenience.

Recall that a symplectic manifold .†; !†/ is called spherically monotone if there
exists � > 0 such that !†.S/ D �c†

1 .S/ for every S 2 �2.S/. We define the
minimal Chern number of † to be:

C† D minfc†
1 .S/ j S 2 �2.S/; c†

1 .S/ > 0g:

We use the convention that min ; D 1 (e.g. in case �2.†/ D 0).

Theorem 15.1. Let .†; !†/ be a spherically monotone symplectic manifold with
minimal Chern number C†. Suppose that .†; !†/ can be embedded as a symplectic
hyperplane section in a symplectic manifold M so that M n † is subcritical. Then
C† < 1 and H �.mod2C†/.†I Z2/ is 2-periodic, i.e., for every k 2 Z we have:M

i2Z

H kC2iC†.†I Z2/ Š
M
i2Z

H kC2C2iC†.†I Z2/:

As mentioned before the most basic example here is † D CP n � M D CP nC1

(with C† D n C 1). See [BJ] for more examples coming from algebraic geometry.
A theorem similar to 15.1, with coefficients in Z, has been recently obtained

in [BJ], without any appeal to Lagrangian submanifolds. The theorem in [BJ] deals
with projectively embedded algebraic manifolds which have a so called small dual.
This class of manifolds is closely related to the subcriticality of M n † (see [BJ] for
more details).
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Proof of Theorem 15.1. We will derive our theorem from Theorem 14.2.
Put .Q; !Q/ D .†; 	!†/ so that

.† � Q; !† ˚ !Q/ D .† � †; !† ˚ 	!†/:

Let L D f.x; x/ j x 2 †g � † � Q be the diagonal embedding of †. Then L is
Lagrangian and it is easy to see that it is monotone with minimal Maslov number
NL D 2C†.

Put W D M n † and let �L � W � Q be the Lagrangian circle bundle over L as
constructed in §14. By Proposition 14.1 �L is monotone too and N�L

D NL D 2C†.
Since W is subcritical we have HF.�L/ D 0 hence QH.�L/ D 0. By Theo-

rem 14.2 the Floer–Gysin long exact sequence splits into many isomorphisms:

QH k.L/ Š QH kC2.L/: (30)

Next recall that there is a graded isomorphism of ƒ modules: QH �.L/ Š
HF �.L; L/. It is well known that for L D diagonal � .† � †; !† ˚ 	!†/

the self Floer cohomology HF �.L; L/ is isomorphic as a graded ƒ-module to
.H.LI Z2/˝ƒ/� (see e.g. [FOOO1], [FOOO2]). The latter is just .H.†I Z2/˝ƒ/�.
Finally note that for every k 2 Z we have:

.H.†I Z2/ ˝ ƒ/k D
M
i2Z

H kC2iC†.†I Z2/t�i : �

Remark 15.2. The isomorphism (30) is given by quantum multiplication by the
Floer–Euler class eF 2 QH 2.L/. It follows that eF is an invertible class with respect
to the Lagrangian quantum product. By Proposition 12.3 (see also Theorem 14.2)
the class eF can be written as the quantum restriction eF D rL.pr�c/. Here c 2
H 2.†I Z2/ is the modulo-2 reduction of the first Chern class cN

1 2 H 2.†I Z/ of the
normal bundle of † in M , N ! †, and pr W † � † ! † is the projection on the
second factor.

Next, note that the isomorphism QH �.L/ Š .H.†I Z2/ ˝ ƒ/� can be rewritten
as an isomorphism between the Lagrangian quantum cohomology of L and the sym-
plectic quantum cohomology of †: QH �.L/ Š QH �.†/. The latter isomorphism
is, at least by a folklore result, not only an isomorphism of ƒ-modules but in fact an
isomorphism of rings (where both rings are endowed with their respective quantum
products). The proof of this fact is rather straightforward, modulo transversality is-
sues that arise when working with almost complex structure J on † ˚ † for which
the involution .x; y/ ! .y; x/ becomes anti-holomorphic.

Assuming this, it follows that c 2 H 2.†I Z2/ is an invertible element in QH.†/

with respect to the quantum product. (c.f [BJ] for related algebro-geometric results
over Z.)
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15.1. Proof of the corollaries from §1.1

Proof of Corollary 1.3. Since W is subcritical any compact subset in W is Hamil-
tonianly displaceable in the Weinstein completion of W (see [BC1]). In particular,
HF.�L/ D 0. Substituting this into the Floer–Gysin long exact sequence of Theo-
rem 1.1 we obtain that multiplication by the Floer–Euler class �eF W HF i .L/ !
HF iC2.L/ is an isomorphism for every i 2 Z. This shows that HF i .L/ Š
HF iC2.L/.

Assume now that HF.L/ ¤ 0. Denote by 1 2 HF 0.L/ the unity. Then there
exists a 2 HF �2.L/ such that a � eF D 1, hence eF is invertible. �

Proof of Corollary 1.4. As in the proof of Corollary 1.3 we obtain that eF is invertible
and since HF.L/ ¤ 0 we have eF ¤ 0 (note that, at least formally a zero element in
the zero ring is invertible, so must exclude this case). By the discussion in §11.1 and
in particular Remark 11.2 we deduce that the modulo-2 reduction e 2 H 2.LI Z2/ of
the classical Euler class of the bundle �L ! L is not zero. This immediately implies
that �L ! L is not trivial.

Denote now the Z-Euler class of �L ! L by eZ 2 H 2.LI Z/ and by eR 2
H 2.LI R/ its projection into the real cohomology. Clearly eR D 0 since eR is
proportional to !† and L is Lagrangian with respect to !†. It follows that eZ is
torsion. �

We now turn to the proof of Corollary 1.5. We will actually prove the following
more general version:

Corollary 15.3. LetL � †be aLagrangian submanifold. Assume thatn D dim L �
2 and that L satisfies one of the following conditions:

(1) H1.LI Z/ D 0.

(2) n � 3, H1.LI Z/ D 0 is 2-torsion (i.e., for every ˛ 2 H1.LI Z/ we have
2˛ D 0) and either dimZ2

H 1.LI Z2/ > 1 or there exists 1 < i < n 	 1 such
that H i .LI Z2/ ¤ 0.

(3) L is monotone and QH.L/ ¤ 0.

Then L \ L0 ¤ ;.

This corollary, under assumptions (1) or (2), has been proved before in [Bir2] by
somewhat different methods (see Theorem G there).

Proof. Assume that L \ L0 D ;. We will show that none of the conditions (1)–(3)
in the statement of the corollary can be satisfied.

Put W D CP nC1 n †. By the results of [Bir2] if L \ L0 D ; then �L � W is
displaceable in the Weinstein completion of W , hence HF.�L/ D 0. It follows that
eF 2 QH 2.L/ is invertible.
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Next note that since † is a quadric in CP nC1 it normal bundle N in CP nC1

is actually N D OCP nC1.2/j†. It follows that the modulo-2 reduction of cN
1 is

0 2 H 2.†I Z2/. By Proposition 12.3 we have eF D 0. But we have just showed
that eF is invertible, hence QH.L/ D 0. This already rules out condition (3).

Assume now that (1) holds. We will show that this implies that (3) holds. Indeed,
it is easy to see that L is monotone and that the minimal Maslov number of L is
NL D 2n. As n � 2 we have NL D 2n > n C 1 and standard arguments in Floer
theory (see [Bir2]) show that QH.L/ ¤ 0. So (3) holds.

Assume now that (2) is satisfied. We may assume that H1.LI Z/ ¤ 0 (otherwise
we are in case (1)). It follows that L is monotone and its minimal Maslov number
is a multiple of n, say NL D kn. If k � 2 we arrive at contradiction in a similar
way as we did for case (1). So assume that k D 1, i.e., NL D n. As QH.L/ D 0,
standard arguments from [Bir2] (e.g. applying the spectral sequence described in
that paper) show that if n � 3 then H 1.LI Z2/ D Z2 and H i .LI Z2/ D 0 for every
1 < i < n 	 1, contrary to the assumptions in (2). �

15.2. Examples revisited. We review here in retrospect the examples from the in-
troduction after having developed the theory in the paper.

15.2.1. Lagrangians in CPn with 2-torsion H1.LI Z/. It remains to explain here
the computation of the Floer–Euler class. Recall that NL D n C 1 and that there is
a canonical isomorphism HF �.L/ Š QH �.L/ Š .H.LI Z2/ ˝ ƒ/�. In particular
QH 2.L/ Š H 2.LI Z2/ Š Z2. We claim that under these identifications the Floer–
Euler class eF equals the classical Euler class of the bundle �L ! L and moreover
that this must be the generator of H 2.LI Z2/ D Z2. To see that denote by c 2
H 2.CP nI Z2/ the generator. Clearly c is the modulo-2 reduction of the first Chern
class cN

1 of the normal bundle of † D CP n in M D CP nC1. Therefore, by
Proposition 12.3 we have eF D rL.c/, where rL is the quantum restriction map
QH �.CP n/ ! QH �.L/. But it is well known that c 2 QH 2.CP n/ is invertible,
hence eF D rL.c/ D c � 1 cannot be 0. (c � 1 stands for module operation where 1

is the unity of QH �.L/.) It follows that eF is the generator of H 2.LI Z2/.

15.2.2. The Clifford torus revisited. We first compute the Floer–Euler class. It
is clear that the classical Euler class of �L ! L is trivial since H 2.LI Z/ has no
torsion. We now use the recipe and notation from §12. By Section 6.2 of [BC6] (see
also [Cho], [CO]) we have SL D ŒCP 1� 2 H2.CP nI Z2/. As cN

1 D PDŒCP n�1�

we have hcN
1 ; SLi D 1, hence by Proposition 12.2, eF D t . Alternatively, we could

use Proposition 12.3 and the computations in [BC6], [BC4] to calculate eF .
It is interesting to examine what happens to the torus �L in M D CP nC1 (rather

than in W D CP nC1 nCP n). A simple computation shows that �L becomes now the
standard Clifford torus of CP nC1. By Theorem 13.2 the Floer–Euler class e0

F is now
e0

F D eF 	 t D 0. (We use here the variable t instead of q since NL D 2 anyway.)
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It follows from Theorem 13.2 that the long exact sequence of �L in M D CP nC1

splits as:

0 �� QH k.L/
i �� QH k

M .�L/
p �� QH k�1.L/ �� 0:

It easily follows now that �L � CP nC1 is wide, i.e., QH �
M .�L/ Š .H.�LI Z2/˝ƒ/�.

15.3. Wide and narrow Lagrangians. Recall from [BC6], [BC3] that a Lagrangian
submanifold L � † is called wide if there exists an isomorphism of ƒ-modules
QH.L/ Š H.LI Z2/ ˝ ƒ. At the other extremity we have narrow Lagrangians,
i.e., Lagrangians L with QH.L/ D 0. Of course, this notion is very sensitive to the
choice of the ground coefficients ring (in this case Z2), and given a ring K one could
talk about K-wide and K-narrow Lagrangians whenever QH.L/ can be defined over
the ground ring K (see [BC3] for more on that). Interestingly, when K is a field
all known examples of Lagrangians are either wide or narrow. This “wide-narrow”
dichotomy can actually be proved for some topological classes of Lagrangians such
as Lagrangian tori (see e.g. Theorem 1.2.2 in [BC6]). Below we will examine these
notions in view of the Floer–Gysin long exact sequence.

For simplicity assume that NL D 2. By Theorem 4.1, if L is narrow then so
is �L.

Assume now that L is wide and that the Z2-Euler class e 2 H 2.LI Z2/ of �L ! L

vanishes. By Proposition 12.2 we have e D rt for some r 2 Z2. By Theorem 4.1, if
r D 1 then �L is narrow. Similarly, if r D 0, then �L is wide. It is interesting to note
that if one considers �L as a Lagrangian submanifold of M then things get reversed.
Indeed by Theorem 13.2 if r D 0 then �L is wide in M , while if r D 1 then �L is
narrow in M . Note that examples with r D 0 are easy to construct: just take † � M

with cN
1 2 H 2.†I Z/ which is divisible by 2 (e.g. † D quadric in M D CP nC1).

It would be interesting to study the same issues when K is a general field (other
than Z2) or even K D Z, assuming that the Floer–Gysin sequence continues to hold
in these cases (of course, one should add here the assumptions that L is oriented and
endowed with a spin structure. See §16). Assume as before that K is a field, L is
K-wide and the K-Euler class e 2 H 2.LI K/ is 0. Assume further that the class DL

defined in §12 is not 0 (in particular for generic J there are holomorphic disks of
Maslov index 2 through a generic point in L). One would expect that if r ¤ 0 2 K

then �L is narrow and if r D 0 then �L is wide. Note that by Proposition 12.2 one
expects that whenever K has characteristic 0 we should have r ¤ 0. In other words,
if K is a field of characteristic 0 then �L should always be K-narrow.

The situation should become more interesting over K D Z. For example, assume
that L is wide with NL D 2 and with e D 0. In this case if r � 2 one would expect
QH.�L/ to have torsion in the sense that QH.�L/ ¤ 0 but r � a D 0 for every
a 2 QH.�L/.
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16. Discussion and further questions

Here we briefly discuss possible extensions of the theory developed in the paper and
pose some questions.

All Floer and quantum cohomologies in this paper were defined over the ground
field Z2. It is well known that both theories can be extended to work over any ground
ring (e.g. Z) under the following conditions: the Lagrangians must be oriented and
one should fix a spin structure on them. These choices allow to orient the moduli
spaces of holomorphic disks and pearly trajectories in a coherent way. Consequently
the pearly differential can be defined over Z. See [FOOO2], [FOOO3] for orientations
of holomorphic disks and Floer trajectories and [BC3] for pearly trajectories and the
pearl complex.

Considering our situation, assume that L � † is oriented and endowed with a
spin structure sL. The orientation of L induces a natural orientation on �L (we orient
the fibers of �L ! L with the orientation coming from the fibers of the complex
line bundle N ! †). Moreover, the spin structure sL induces a corresponding spin
structure s�L

on �L. With these structures at hand the pearl complexes of L and
�L can be defined over Z. It seems very plausible that most of the theory (i.e., the
Floer–Gysin long exact sequence as well as the analysis of the Floer–Euler class)
continues to hold in this setting too. In particular the Floer–Euler class eF will now
be related to the Z classical Euler class e 2 H 2.LI Z/ and moreover, the quantum
contribution to eF whenever it exists will be in Zt and might lead to more interesting
computations and stronger consequences. For example, when W is subcritical (or
more generally, when QH.�L/ D 0) one would expect that eF is invertible over Z
which is a much stronger restriction than over Z2 (or even over a field).

In the same context, it would be interesting to study the relations between the
wide varieties of L and �L via the techniques of the paper once they are extended
over Z. (See [BC3] for the definitions of wide varieties.) It would also be interesting
to study the invariants from [BC3] for L and �L, e.g. the quadratic forms and their
discriminants, by our techniques.

Another interesting direction is to study the behavior of the Floer–Gysin sequence
with respect to other quantum structures, such as the quantum module structure and
the quantum inclusion. For example, the quantum cohomology of L is endowed with
a structure of a QH.†/-module and it seems likely that one can lift it to a natural
QH.†/-module structure on QH.�L/. One would then expect that the Floer–Gysin
becomes compatible with these QH.†/-module structures in the sense that the maps
i , p and the connecting homomorphism all become linear over QH.†/. Note that
this is obviously the case for the classical Gysin sequence.

Finally, we expect that much of the theory developed in this paper can be gener-
alized to Floer homologies of pairs of Lagrangians. More precisely, let L1; L2 � †

be two Lagrangian submanifolds and let �L1
; �L2

� W be the corresponding La-
grangian circle bundles over them. It seems plausible that similarly to Theorem 1.1
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there should be a long exact sequence relating HF.L1; L2/ to HF.�L1
; �L2

/. Of
course, one could try to extend this to questions relating the A1-algebras (or Fukaya
categories) of Lagrangians in † and the corresponding ones in W .

References

[BC1] P. Biran and K. Cieliebak, Lagrangian embeddings into subcritical Stein manifolds.
Israel J. Math. 127 (2002), 221–244. Zbl 1165.53378 MR 1900700

[BC2] P. Biran and K. Cieliebak, Symplectic topology on subcritical manifolds. Comment.
Math. Helv. 76 (2002), 712–753. Zbl 1001.53057 MR 1881704

[BC3] P. Biran and O. Cornea, Lagrangian topology and enumerative geometry. Geom.
Topol. 16 (2012), no. 2, 963–1052. Zbl 1253.53079 MR 2928987

[BC4] P. Biran and O. Cornea, Quantum structures for Lagrangian submanifolds.
Manuscript, arXiv:0708.4221 [math.SG].

[BC5] P. Biran and O. Cornea, A Lagrangian quantum homology. In New perspectives and
challenges in symplectic field theory, CRM Proc. Lecture Notes 49, Amer. Math.
Soc., Providence, RI, 2009, 1–44. Zbl 1185.53087 MR 2555932

[BC6] P. Biran and O. Cornea, Rigidity and uniruling for Lagrangian submanifolds. Geom.
Topol. 13 (2009), no. 5, 2881–2989. Zbl 1180.53078 MR 2546618

[Bir1] P. Biran, Lagrangian barriers and symplectic embeddings. Geom. Funct. Anal. 11
(2001), no. 3, 407–464. Zbl 1025.57032 MR 1844078

[Bir2] P. Biran, Lagrangian non-intersections. Geom. Funct. Anal. 16 (2006), no. 2, 279–
326. Zbl 1099.53054 MR 2231465

[BJ] P. Biran and Y. Jerby, The symplectic topology of projective manifolds with small
dual. Preprint, arXiv:1107.0174 [math.AG].

[BEH+] F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki, and E. Zehnder, Compactness
results in symplectic field theory. Geom. Topol. 7 (2003), 799–888. Zbl 1131.53312
MR 2026549

[Cho] C.-H. Cho, Holomorphic discs, spin structures, and Floer cohomology of the Clifford
torus. Internat.Math. Res. Notices 2004 (2004), no. 35, , 1803–1843. Zbl 1079.53133
MR 2057871

[CO] C.-H. Cho and Y.-G. Oh, Floer cohomology and disc instantons of Lagrangian
torus fibers in Fano toric manifolds. Asian J. Math. 10 (2006), no. 4, 773–814.
Zbl 1130.53055 MR 2282365

[CR] O. Cornea and A. Ranicki, Rigidity and gluing for Morse and Novikov complexes.
J. Eur. Math. Soc. 5 (2003), no. 4, 343–394. Zbl 1052.57052 MR 2017851

[Don] S. K. Donaldson, Symplectic submanifolds and almost-complex geometry. J. Differ-
ential Geom. 44 (1996), no. 4, 666–705. Zbl 0883.53032 MR 1438190

[Eli] Y. Eliashberg, Symplectic geometry of plurisubharmonic functions. In Gauge theory
and symplectic geometry, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Kluwer
Acad. Publ., Dordrecht 1997, 49–67. Zbl 0881.32010 MR 1461569

http://www.emis.de/MATH-item?1165.53378
http://www.ams.org/mathscinet-getitem?mr=1900700
http://www.emis.de/MATH-item?1001.53057
http://www.ams.org/mathscinet-getitem?mr=1881704
http://www.emis.de/MATH-item?1253.53079
http://www.ams.org/mathscinet-getitem?mr=2928987
http://arxiv.org/abs/0708.4221
http://www.emis.de/MATH-item?1185.53087
http://www.ams.org/mathscinet-getitem?mr=2555932
http://www.emis.de/MATH-item?1180.53078
http://www.ams.org/mathscinet-getitem?mr=2546618
http://www.emis.de/MATH-item?1025.57032
http://www.ams.org/mathscinet-getitem?mr=1844078
http://www.emis.de/MATH-item?1099.53054
http://www.ams.org/mathscinet-getitem?mr=2231465
http://arxiv.org/abs/1107.0174
http://www.emis.de/MATH-item?1131.53312
http://www.ams.org/mathscinet-getitem?mr=2026549
http://www.emis.de/MATH-item?1079.53133
http://www.ams.org/mathscinet-getitem?mr=2057871
http://www.emis.de/MATH-item?1130.53055
http://www.ams.org/mathscinet-getitem?mr=2282365
http://www.emis.de/MATH-item?1052.57052
http://www.ams.org/mathscinet-getitem?mr=2017851
http://www.emis.de/MATH-item?0883.53032
http://www.ams.org/mathscinet-getitem?mr=1438190
http://www.emis.de/MATH-item?0881.32010
http://www.ams.org/mathscinet-getitem?mr=1461569


952 P. Biran and M. Khanevsky CMH

[EGH] Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory.
Geom. Funct. Anal. 2000 (2000), Visions in mathematics–Towards 2000 (Tel Aviv,
1999), Special Volume, Part II, 560–673. Zbl 0989.81114 MR 1826267

[EG] Y. Eliashberg and M. Gromov, Convex symplectic manifolds. In Several complex
variables and complex geometry Part 2 (Santa Cruz, CA, 1989), Proc. Sympos.
Pure Math. 52, Amer. Math. Soc., Providence, RI, 1991, 135–162. Zbl 0742.53010
MR 1128541

[EP] M. Entov and L. Polterovich, Rigid subsets of symplectic manifolds. Compos. Math.
145 (2009), no. 3, 773–826. Zbl 1230.53080 MR 2507748

[FOOO1] K. Fukaya,Y.-G. Oh, H. Ohta, and K. Ono, Floer theory for Lagrangian submanifolds
over Z. Manuscript 2009, http://www.math.kyoto-u.ac.jp/~fukaya/fukaya.html

[FOOO2] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer theory:
anomaly and obstruction. Part I, AMS/IP Stud. Adv. Math. 46.1, Amer. Math. Soc.,
Providence, RI, 2009. Zbl 1181.53002 MR 2553465

[FOOO3] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer theory:
anomaly and obstruction. Part II, AMS/IP Stud. Adv. Math. 46.2, Amer. Math. Soc.,
Providence, RI, 2009. Zbl 1181.53003 MR 2548482

[Gir1] E. Giroux, Convexité en topologie de contact. Comment. Math. Helv. 66 (1991), no. 4,
637–677. Zbl 0766.53028 MR 1129802

[Gir2] E. Giroux, Géométrie de contact: de la dimension trois vers les dimensions
supérieures. In Proceedings of the International Congress of Mathematicians (Bei-
jing 2002), Volume II, Higher Ed. Press, Beijing 2002, 405–414. Zbl 1015.53049
MR 1957051

[MS] D. McDuff and D. Salamon, J -holomorphic curves and symplectic topology. Amer.
Math. Soc. Colloq. Publ. 52,Amer. Math. Soc., Providence, RI, 2004. Zbl 1064.53051
MR 2045629

[Per] T. Perutz, A symplectic Gysin sequence. Preprint, arXiv:0807.1863v1 [math.SG].

[WW1] K. Wehrheim and C. T. Woodward, Functoriality for Lagrangian correspondences in
Floer theory. QuantumTopol.1 (2010), no. 2, 129–170. Zbl 1206.53088 MR 2657646

[WW2] K. Wehrheim and C. T. Woodward, Quilted Floer cohomology. Geom. Topol. 14
(2010), no. 2, 833–902. Zbl 1205.53091 MR 2602853

Received January 21, 2011

Paul Biran, Department of Mathematics, ETH-Zürich, Rämistrasse 101, 8092 Zürich,
Switzerland
E-mail: biran@math.ethz.ch

Michael Khanevsky, Department of Mathematics, University of Chicago, 5734 S. University
Avenue, Chicago, Illinois 60637, U.S.A.
E-mail: khanev@math.uchicago.edu

http://www.emis.de/MATH-item?0989.81114
http://www.ams.org/mathscinet-getitem?mr=1826267
http://www.emis.de/MATH-item?0742.53010
http://www.ams.org/mathscinet-getitem?mr=1128541
http://www.emis.de/MATH-item?1230.53080
http://www.ams.org/mathscinet-getitem?mr=2507748
http://www.math.kyoto-u.ac.jp/~fukaya/fukaya.html
http://www.emis.de/MATH-item?1181.53002
http://www.ams.org/mathscinet-getitem?mr=2553465
http://www.emis.de/MATH-item?1181.53003
http://www.ams.org/mathscinet-getitem?mr=2548482
http://www.emis.de/MATH-item?0766.53028
http://www.ams.org/mathscinet-getitem?mr=1129802
http://www.emis.de/MATH-item?1015.53049
http://www.ams.org/mathscinet-getitem?mr=1957051
http://www.emis.de/MATH-item?1064.53051
http://www.ams.org/mathscinet-getitem?mr=2045629
http://arxiv.org/abs/0807.1863v1
http://www.emis.de/MATH-item?1206.53088
http://www.ams.org/mathscinet-getitem?mr=2657646
http://www.emis.de/MATH-item?1205.53091
http://www.ams.org/mathscinet-getitem?mr=2602853

	Introduction and main results
	Applications
	Examples
	Lagrangians L \subset  CP^n with 2H_1(L;Z)=0
	The Clifford torus

	Main ideas in the proof of Theorem 1.1
	Organization of the paper

	 The Lagrangian circle bundle construction
	Weinstein manifolds
	Standard symplectic disk bundles
	Symplectic hyperplane sections
	Lagrangian circle bundles
	A small simplification of the setting

	Lagrangian quantum cohomology versus Floer cohomology
	Negative almost gradient vector fields
	Relation to Floer homology

	A short exact sequence of pearly chain complexes
	Setting

	Stretching the neck and admissible almost complex structures
	Transversality
	Regularity of J_R
	Transversality for pearly trajectories of index 0
	Well-definedness of the pearl complex C(Gamma_L; _\tilde D_E)

	Lifting pearly trajectories
	Lifting of disks
	Lifting of pearly trajectories
	Chain property for i and p

	Independence of auxiliary data
	Construction of Phi^c_{D^0}, D^1

	Product structure
	Multiplicative structure.

	The Floer–Euler class
	The positive pearl complex
	Comparison with the sequence in singular homology

	More on the Floer–Euler class
	An analogous exact sequence in (M,omega )
	Further results and generalizations
	Applications and examples
	Proof of the corollaries from §1.1
	Examples revisited
	Lagrangians in CPn with 2-torsion H_1(L;Z)
	The Clifford torus revisited

	Wide and narrow Lagrangians

	Discussion and further questions
	References

