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Ricci flow on three-dimensional manifolds with symmetry
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Abstract. We describe the Ricci flow on two classes of compact three-dimensional manifolds:
1. Warped products with a circle fiber over a two-dimensional base. 2. Manifolds with a free
local isometric T 2-action.
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1. Introduction

In understanding three-dimensional Ricci flow solutions, a special role is played by
three-manifolds with symmetry. It is plausible that one can get more precise results
about such Ricci flows than in the general case. Consequently, such Ricci flows with
symmetry have been studied for quite a while. We begin by describing some of the
earlier results.

Locally homogeneous three-dimensional Ricci flow solutions were examined by
Isenberg–Jackson [IJ92] and Knopf–McLeod [KM01]. The flow equations reduced
to a system of three coupled ODEs. The solutions are now fairly well understood;
see, for example, [Lot07, Section 3].

Certain three-dimensional Ricci flow solutions with a two-dimensional isometry
group were analyzed by Carfora–Isenberg–Jackson [CIJ90] and Hamilton [Ham95,
Section 11]. They considered Riemannian three-manifolds that admit a free isometric
T 2-action. The base is a circle and the total space is (necessarily) diffeomorphic to
a 3-torus. Under some additional assumptions (F -metric [CIJ90] or square torus
metric [Ham95, Section 11]) it was shown that the Ricci flow exists for all time and
converges to a flat metric.

Hamilton and Isenberg considered a twisted version of such torus bundles [HI93].
That is, there was a local (with respect to the base) free isometric T 2-action. The
T 2-bundle over the circle was globally twisted by a hyperbolic element of SL.2; Z/;
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see Subsection 3.1 for a more precise description. Under the additional assumption of
a “solv-Gowdy” metric, it was shown that the Ricci flow approaches that of a locally
homogeneous Sol-metric; see also [Kno00].

Passing to one-dimensional isometry groups, a natural class of geometries comes
from warped product metrics with circle fibers and a closed surface base M . One
starts with a product metric on N D M � S1 and then allows the circle length over
m 2 M to become m-dependent. That is, we consider Riemannian metrics h on N

of the form
h D g C e2ud�2; (1.1)

where g is a Riemannian metric on M , u 2 C 1.M/ and � is the standard coordinate
on S1. It is not hard to see that the Ricci flow preserves the warped product structure.
The Ricci flow equation on N becomes two coupled evolution equations on M for
g.t/ and u.t/. The evolution equation for g.t/ is like the Ricci flow equation on the
surface M , but there is an extra term involving u.t/. Because of this extra term, the
techniques used to analyze Ricci flow on surfaces [CK04, Chapter 5] break down.

When M is a two-sphere, Xiaodong Cao showed that the product of R and a cigar
soliton cannot arise as a finite-time dilation limit of a warped product Ricci flow on
S2 � S1 ([Cao05]). His argument used an isoperimetric inequality. (Cao’s work
preceded Perelman’s proof that the product of R and a cigar soliton can never arise as
a finite-time dilation limit for the Ricci flow on a compact three-manifold [Per02].)

In the present paper we use new techniques to give general results about the Ricci
flow on three-manifolds with symmetries. One of our tools is the result of [Lot10]
giving the long-time behavior of a three-dimensional Ricci flow solution .N; h. �//
satisfying maxp2N jRmN j.p; t/ D O.t�1/ and diam.N; h.t// D O.

p
t /. Thus one

of our main goals is to show that these bounds are satisfied in the relevant cases.
In particular, we show that maxp2N jRmN j.p; t/ D O.t�1/ for all of the immortal
Ricci flows under consideration. (A Ricci flow solution is immortal if it exists for
t 2 Œ0; 1/.) It is an open question whether an immortal Ricci flow solution on a
compact three-manifold always satisfies this curvature bound.

To describe the results of the paper, we start with warped products. In the special
case of a product metric, the Ricci flow solution is the isometric product of S1 with
a Ricci flow solution on the base M . Such two-dimensional Ricci flows are well
understood [CK04, Chapter 5]. If h.0/ is a warped product metric on N D M � S1

then a natural conjecture is that the Ricci flow asymptotically approaches a product
flow.

Theorem 1.1. Let h. �/ be a Ricci flow solution on a closed connected orientable
three-dimensional manifold N . Suppose that h.0/ is a warped product metric as in
(1.1) with a two-dimensional orientable base M .

(i) If �.M/ > 0 then there is a finite singularity time T < 1. As t ! T �, the
lengths of the circle fibers remain uniformly bounded above and below. For any
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p 2 N , the pointed smooth limit limt!T �

�
N; p; 1

T �t
h.t/

�
exists and is the

isometric product of R with a sphere S2 of constant curvature 1
2
.

(ii) If �.M/ � 0 then the Ricci flow exists for all t 2 Œ0; 1/. Also, there is a constant
C < 1 such that for all p 2 N and t 2 Œ0; 1/, one has

ˇ̌
RmN

ˇ̌
.p; t/ � C

t
.

(iii) If�.M/ D 0 then limt!1 h.t/ exists and is aflatmetric onT 3. The convergence
is exponentially fast.

(iv) If �.M/ < 0, put Og.t/ D g.t/
t

. For any i0 > 0, define the i0-thick part of
.M; Og.t// by

Xi0.t/ D fm 2 M W inj Og.t/.m/ � i0g: (1.2)

Then
lim

t!1 max
x2Xi0

.t/
jR Og.t/.x/ C 1j D 0 (1.3)

and
lim

t!1 max
x2Xi0

.t/
j yruj Og.t/.x/ D 0: (1.4)

For all sufficiently small i0, if t is sufficiently large then Xi0.t/ is nonempty.

Remark 1.2. The proof of Theorem 1.1 (i) is essentially contained in List’s paper
[Lis08] on a modified Ricci flow. The only thing missing from [Lis08] is the obser-
vation that his flow differs from the warped product flow by a Lie derivative.

Remark 1.3. The proof of the curvature bound in Theorem 1.1 (ii) is by contradiction,
using a blowup argument, a sharp volume estimate and the Gauss–Bonnet theorem.

Remark 1.4. The proof of Theorem 1.1 (iii) is somewhat indirect. We first show that
Vol.M; g.t// D O.

p
t / and that the length of the shortest noncontractible curve on

M is nondecreasing in t . A geometric argument then shows that diam.M; g.t// D
O.

p
t /. From [Lot10], we deduce that�

max
p2N

jRmN j.p; t/
� � diam2.N; h.t// D o.t/: (1.5)

Rescaling at a given time t to diameter one, if t is sufficiently large then we can
assume that maxp2N jRmN j.p; t/ is arbitrarily small. After passing to a finite cover
yN , we can assume that there is a universal lower bound on the injectivity radius of

the pullback metric Oh.t/. By the linear stability of flat metrics [GIK02], limt!1 Oh.t/

exists and is a flat metric. Hence limt!1 h.t/ exists and is a flat metric.

Remark 1.5. Theorem 1.1 (iv) says that in the case �.M/ < 0 and as t ! 1,
over a large part of M the flow .N; h.t// approaches a product flow of S1 times a
finite-volume surface of constant sectional curvature � 1

2t
. Our result here is possibly

nonoptimal; see Remark 2.20.
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Our other main result is about Ricci flow solutions with a local U.1/ � U.1/

symmetry.

Theorem 1.6. Let N be an orientable three-manifold that fibers over S1 with T 2-
fibers. Choosing an orientation for S1, let H 2 SL.2; Z/ D �0.DiffC.T 2// be the
holonomy of the torus bundle. We can consider N to be the total space of a twisted
principal U.1/ � U.1/ bundle, where the twisting is determined by H .

Let h. �/ be a Ricci flow solution on N . Suppose that h.0/ is invariant under the
local U.1/ � U.1/ actions. Then the Ricci flow exists for all t 2 Œ0; 1/. There is a
constant C < 1 such that for all p 2 N and t 2 Œ0; 1/, one has

ˇ̌
RmN

ˇ̌
.p; t/ � C

t
.

(i) If H is elliptic, i.e. has finite order, then limt!1 h.t/ exists and is a flat metric
on N . The convergence is exponentially fast.

(ii) Suppose that H is hyperbolic, i.e. has two distinct real eigenvalues. We write
h.t/ in the form

h.t/ D gyy.y; t/ dy2 C .dx/T G.y; t/dx; (1.6)

where fx1; x2g are local coordinates on T 2 and y 2 Œ0; 1/ is a local coordinate
on S1. Then up to an overall change of parametrizations for S1 and T 2, we
have

lim
t!1

gyy.y; t/

t
D 1

2
Tr.X2/; (1.7)

lim
t!1 G.y; t/ D eyX ;

where X is the real symmetric matrix such that eX D H T H . The convergence
in (1.7) is power-decay fast in t .

Remark 1.7. Theorem 1.6 (ii) says that .N; h. �// approaches a locally homogeneous
Ricci flow solution of Sol-type. The proof of Theorem 1.6 (ii) uses the monotonicity
of the modified WC-functional from [Lot10, Section 4.2.3], along with the local
stability result of [Kno09, Theorem 3].

Remark 1.8. Theorem 1.6 (i) includes the cases considered in [CIJ90] and [Ham95,
Section 11]. Theorem 1.6 (ii) includes the case considered in [HI93].

The structure of the paper is as follows. In Section 2 we prove Theorem 1.1. In
Section 3 we prove Theorem 1.6. More detailed descriptions are at the beginnings of
the sections.

We are grateful to Jim Isenberg for introducing us to these problems and for
sharing his knowledge with us. We learned the estimates (2.19), (2.24) and (2.26)
from Jim.

In what follows we will use the Einstein summation convention freely.
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2. Warped products

In this section we prove Theorem 1.1. In Subsection 2.1 we write the warped prod-
uct Ricci flow equations and the corresponding evolution equations for geometric
quantities. In Subsection 2.2 we give a priori bounds using the maximum principle
and integral estimates. In Subsection 2.3 we deal with the case �.M/ > 0. In Sub-
section 2.4 we prove that the Ricci flow exists for t 2 Œ0; 1/ when �.M/ � 0. In
Subsection 2.5 we deal with the case �.M/ D 0. In Subsection 2.6 we deal with the
case �.M/ < 0.

2.1. Warped product Ricci flow. Let N D M � S1 be endowed with a warped
product metric

h D g C e2ud�2: (2.1)

Here g is a Riemannian metric on M , u is a smooth function on M and � 2 Œ0; 2�/.
We use i; j; k; l for the indices on M . Nonzero components of the curvature tensor
of .N; h/ are

RN
ijkl D RM

ijkl ;

RN
�i�j D �e2u

�rirj u C .riu/.rj u/
�

:
(2.2)

Its square norm is

ˇ̌
RmN

h

ˇ̌2 D ˇ̌
RmM

g

ˇ̌2

C 2gi i 0

gjj 0 �rirj u C .riu/.rj u/
� �ri 0rj 0u C .ri 0u/.rj 0u/

�
:

(2.3)

We will often think of
ˇ̌
RmN

h

ˇ̌
. �; t / as a function on M rather than N , since it pulls

back from M , and write
ˇ̌
RmN

h

ˇ̌
.m; t/. Note that a sectional curvature bound on

.N; h/ implies the same sectional curvature bound on .M; g/.
The nonzero components of the Ricci tensor are

RicN
ij D RicM

ij � rirj u � .riu/.rj u/;

RicN
�� D �e2u

�4u C jruj2�
:

(2.4)

The scalar curvature is

RN D RM � 24u � 2jruj2: (2.5)

The Ricci flow equation
dh

dt
D � 2 Rich.t/ (2.6)



6 J. Lott and N. Sesum CMH

on N preserves the warped product structure. In terms of g and u, it becomes

@gij

@t
D �2Rij C 2rirj u C 2.riu/.rj u/;

@u

@t
D �u C jruj2;

(2.7)

where � D �g.t/. Adding the Lie derivative with respect to �ru to the right-hand
side of (2.7) gives the modified equations

@gij

@t
D �2Rij C 2.riu/.rj u/;

@u

@t
D �u:

(2.8)

Hereafter we will mainly work with the system (2.8), since geometric statements
about (2.8) will imply the corresponding statements about the Ricci flow (2.7).

Given s > 0 and a solution .g. �/; u. �// of (2.8), we obtain another solution
.gs. �/; us. �// of (2.8) by putting

gs.t/ D 1

s
g.st/;

us.t/ D u.st/:

(2.9)

Note that the rescaling in (2.9) differs from the three-dimensional rescaling of the
Ricci flow .N; h. �//, which would give

Gs.t/ D 1

s
g.st/;

Us.t/ D u.st/ � 1

2
ln.s/:

(2.10)

The rescaling in (2.9) can be interpreted in the following way. There is a Z-cover
yN D M � R of N with a pullback Ricci flow Oh. �/. On yN , the rescaling in (2.9)

amounts to looking at the Ricci flow solution 1
s
��

s
Oh.st/, where �s.m; r/ D �

m;
p

sr
�
.

We refer to [Lot07, Section 4] for further discussion of this point.
Put

hs D gs C e2us d�2: (2.11)

One sees from (2.3) and (2.9) thatˇ̌
Rmhs

ˇ̌2 D s2 jRmhj2 : (2.12)

This can also be seen from the discussion of the previous paragraph on yN along with
the fact that under the three-dimensional rescaling of (2.10), the norm square of the
curvature gets multiplied by s2.
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Following [Lis08], we introduce the tensor

Sij D Rij � .riu/.rj u/ (2.13)

and its trace
S D R � jruj2: (2.14)

Putting ˛n D 1 in [Lis08, Lemma 3.2] gives

@jruj2
@t

D 4jruj2 � 2jHess.u/j2 � 2jruj4 (2.15)

and
@S

@t
D 4S C 2jSij j2 C 2j4uj2: (2.16)

Hereafter we specialize to the case when M is closed, connected and orientable,
with dim.M/ D 2. Then (2.8) simplifies to

@gij

@t
D �Rgij C 2.riu/.rj u/; (2.17)

@u

@t
D �u:

Note that if u is nonconstant then the conformal class of g.t/ is t -dependent.

2.2. A priori bounds

2.2.1. Bounds from the maximum principle. We take the Ricci flow to start at
time zero. Applying the maximum principle to the second equation in (2.8) shows
that there exist constants C1; C2 > 0 such that for all m 2 M and all t for which the
flow exists,

C1 � u.m; t/ � C2: (2.18)

Next, applying the maximum principle to (2.15) implies (cf. [Lis08, Lemma 5.6])
that

jruj2. �; t / � c

2ct C 1
; (2.19)

where c D maxp2M jruj2.p; 0/. Similarly, applying the maximum principle to
(2.16) implies that

S. �; t / � �1

t
: (2.20)

In particular,

R. �; t / � �1

t
: (2.21)
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2.2.2. Volume estimates. Let V.t/ denote the volume of .M 2; g.t//. As

d

dt
dVg.t/ D 1

2
gij @gij

@t
dVg.t/ D ��R C jruj2�

dVg.t/; (2.22)

we have
dV

dt
D �4� � �.M/ C

Z
M

jruj2 dVg.t/; (2.23)

where �.M/ is the Euler characteristic of M . Thus dV
dt

� �4� � �.M/ and so

V.t/ � �4� � �.M/ � t C V.0/: (2.24)

Using (2.19) in addition, we can control V.t/ from above. Namely, from (2.19),

dV

dt
� �4� � �.M/ C c

2ct C 1
� V (2.25)

where c is as in (2.19). Then by ODE comparison,

V.t/ � �4�

c
� �.M/ � .2ct C 1/ C p

2ct C 1 �
�

4� � �.M/

c
C V.0/

�
: (2.26)

If �.M/ D 0 then estimates (2.24) and (2.26) imply that

V.0/ � V.t/ � C.1 C p
t / (2.27)

for an appropriate constant C < 1.
When �.M/ < 0, the linear term on the right-hand side of (2.26) is �8��.M/t .

We would like to improve this to �4��.M/t , to bring it in line with (2.24). Put
E.t/ D R

M
jruj2 dVg.t/.

Lemma 2.1. We have
dE

dt
� �E2.t/

V .t/
: (2.28)

Proof. First, as in (2.22), the volume density changes by

d

dt
.dVg.t// D �SdVg.t/: (2.29)

Note thatZ
M

S dVg.t/ D
Z

M

.R � jruj2/ dVg.t/ D 4��.M/ � E.t/: (2.30)
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Then

�dE

dt
D d

dt

Z
M

S dVg.t/ D
Z

M

.�S C 2jSij j2 C 2.�u/2 � S2/ dVg.t/

D 2

Z
M

ˇ̌̌
ˇSij � 1

2
Sgij

ˇ̌̌
ˇ2 dVg.t/ C 2

Z
M

.�u/2 dVg.t/

D
Z

M

�
2

ˇ̌̌
ˇ � riurj u C 1

2
jruj2gij

ˇ̌̌
ˇ2 C 2.�u/2

�
dVg.t/

D
Z

M

.jruj4 C 2.�u/2/ dVg.t/

�
Z

M

jruj4 dVg.t/

� 1

V.t/

� Z
M

jruj2 dVg.t/

�2

;

(2.31)

which proves the lemma. �

We now show that E.t/ decays logarithmically in time when �.M/ < 0.

Corollary 2.2. If �.M/ < 0 then there exist constants A; B > 0 such thatZ
M

jruj2 dVg.t/ � A

1 C B ln.t C 1/
(2.32)

at all t for which the flow exists.

Proof. By Lemma 2.1 and the volume estimate (2.26) we have

dE

dt
� �E2.t/

V .t/
� � E2.t/

c1t C c2

(2.33)

for appropriate constants c1; c2 > 0. The corollary follows from ODE comparison.
�

Corollary 2.3. If �.M/ < 0 then there is a function ˛ W Œ0; 1/ ! Œ0; 1/, with
limt!1 ˛.t/ D 0, such thatˇ̌̌

ˇ V.t/

�4��.M/ � .t C 1/
� 1

ˇ̌̌
ˇ � ˛.t/ (2.34)

at all t for which the flow exists.

Proof. This follows from (2.23) and (2.32). �
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Lemma 2.4. The quantity V.t/
t

is nonincreasing along the flow (2.8).

Proof. From (2.20) and (2.29),

d

dt

�
V.t/

t

�
D � 1

t

Z
M

�
S C 1

t

�
dVg.t/ � 0: (2.35)

This proves the lemma. �

In the sequel we will distinguish between the cases �.M/ > 0, �.M/ D 0 and
�.M/ < 0.

2.3. Positive Euler characteristic

Proposition 2.5. If �.M/ > 0 then there is a finite singularity time T < 1. For any
p 2 N , the pointed smooth limit limt!T �

�
N; p; 1

T �t
h.t/

�
exists and is the isometric

product of R with a sphere S2 of constant curvature 1
2
.

Proof. If a smooth flow existed for all t 2 Œ0; 1/ then equation (2.26) would imply
that V.t/ < 0 for large t , which is impossible. Thus there is a singularity at some
time T < 1.

From [Lis08, Theorem 5.15], limt!T � maxm2M jRj .m; t/ D 1, where R is the
scalar curvature of M . Let ftkg1

kD1
be a sequence of times such that for sufficiently

large k, tk is the first time t for which maxm2M jRj.m; t/ D k. Let mk 2 M be such
that jRj.mk; tk/ D k. From [Lis08, Theorem 7.9], a subsequence of the rescaled
pointed solutions

.M; mk; gk.t/; uk.t// D .M; mk; kg.tk C t=k/; u.tk C t=k// (2.36)

converges smoothly to a solution .M1; m1; g1. �/; u1. �// defined for t 2 .�1; 0�,
where g1. �/ is a �-solution on M1 in the sense of [Per02, Section 11.1] and u1. �/
is constant both spatially and temporally. The proof of this statement uses a modified
W -functional which was introduced in [Lis08] and [Lot10], and which becomes

W.g; u; f; 	/ D
Z

M

�
	

�jrf j2 C R � jruj2� C f � 2
�

.4�	/�1e�f dVg.t/:

(2.37)
in our three-dimensional warped product case.

The only �-solution on an orientable surface is the round shrinking 2-sphere
[KL08, Corollary 40.1]. In particular, limk!1.M; kg.tk/; u.tk// D .S2; gS2 ; u1/,
where gS2 has constant scalar curvature one. (Because S2 is compact, we no longer
have to refer to basepoints. At this point our convergence is still modulo diffeomor-
phisms.) Standard arguments show that the system (2.7) is stable around the solution
given by the round shrinking S2 and constant u, with exponential convergence for
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the normalized flow. It follows that limt!T �

�
M; 1

T �t
g.t/; u.t/

� D .S2; gS2 ; u1/,
where the convergence is now taken without diffeomorphisms.

In terms of the three-dimensional geometry, from (2.18) the fiber lengths are
uniformly bounded above and below by positive constants, up to time T . The three-
dimensional pointed limit limt!T �

�
N; 1

T �t
h.t/; p

�
is the isometric product of R

with
�
S2; gS2

�
. This proves the proposition. �

Remark 2.6. We could also prove Proposition 2.5 by looking at the three-dimensional
singularity models with a nowhere-vanishing Killing vector field. Such a proof would
be less elementary, since it would use the results of [Per02, Section 11].

Remark 2.7. The method of proof of Proposition 2.5 works for finite-time singular-
ities of warped products M � S1 if M is a compact manifold of arbitrary dimension
n�1. Blowing up at points of maximal curvature, one obtains an .n�1/-dimensional
ancient solution which is �-noncollapsed at all scales.

2.4. Nonsingularity when �.M/ � 0

Proposition 2.8. If �.M 2/ � 0 then the Ricci flow exists for t 2 Œ0; 1/.

Proof. If not then there is a singularity at some time T < 1. The same argument as
in Subsection 2.3 gives limk!1.M; kg.tk/; u.tk// D .S2; gS2 ; u1/. In particular,
M is diffeomorphic to S2, which contradicts our assumption. �

2.5. Vanishing Euler characteristic

Proposition 2.9. If �.M/ D 0 then limt!1 h.t/ exists and is a flat metric on T 3.
The convergence is exponentially fast.

Proof. We first show in the following two propositions that if �.M/ D 0 then
maxp2N

ˇ̌
RmN

ˇ̌
.p; t/ D O.t�1/ and diam.N; h.t// D O.

p
t /. Here RmN denotes

the three-dimensional sectional curvatures.

Proposition 2.10. If �.M/ D 0 then there is a C < 1 such that for all t 2 Œ0; 1/,
we have

t � max
p2N

ˇ̌
RmN

ˇ̌
.p; t/ � C: (2.38)

Proof. If not, lim supt!1 t � maxm2M

ˇ̌
RmN

ˇ̌
.m; t/ D 1. (Since the functionˇ̌

RmN
ˇ̌
. �; t / pulls back from M , we can think of it as a function on M .) We perform

an analog of Hamilton’s pointpicking algorithm for a type IIb Ricci flow solution; see
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[CLN06, Chapter 8.2.1.3]. Namely, take any sequence fTig1
iD1 with limi!1 Ti D 1

and let .mi ; ti / 2 M � Œ0; Ti � be such that

ti .Ti � ti /
ˇ̌
RmN

ˇ̌
.mi ; ti / D sup

.m;t/2M�Œ0;Ti �

t .Ti � t /
ˇ̌
RmN

ˇ̌
.m; t/: (2.39)

Dilate the flow in space and time by Qi D ˇ̌
RmN

ˇ̌
.mi ; ti / in the following way:

gi .t/ D Qi � g.ti C tQ�1
i /; ui .t/ D u.ti C tQ�1

i /: (2.40)

Then .gi . �/; ui . �// satisfies (2.8) on a time interval .Ai ; 
i /, with limi Ai D �1
and limi 
i D 1. Put

hi .t/ D gi .t/ C e2ui d�2: (2.41)

By construction,
ˇ̌̌
RmN

hi

ˇ̌̌
.mi ; 0/ D 1 and after redefining Ai and 
i , there is a

sequence f�ig1
iD1 with limi!1 �i D 1 such that

max
.m;t/2M�ŒAi ;�i �

ˇ̌̌
RmN

hi

ˇ̌̌
.m; t/ � �i : (2.42)

The curvature bound on N implies a curvature bound on M which, along with the
a priori bounds on ui and jrui j, implies higher derivative bounds on RmM .gi / and
ui [Lis08, Theorem 5.12]. We would now like to take a convergent subsequence of the
pointed flows f.M � ŒAi ; 
i �; .mi ; 0/; gi . �/; ui . �//g1

iD1 to obtain an eternal solution
.M1 � R; .m1; 0/; g1. �/; u1. �// of (2.8), where R denotes a time interval. To do
so, we need a uniform positive lower bound on the injectivity radius at .mi ; 0/. If
the two-dimensional manifolds .M; gi .0// were positively curved then such a bound
would be automatic. Since we don’t know that .M; gi .0// is positively curved, we
argue differently.

Lemma 2.11. There is some � > 0 such that for all i , the injectivity radius of
.M; gi .0// at mi is bounded below by �.

Proof. Suppose that the lemma is false. Then after passing to a subsequence, we
can assume that limi!1 injgi .0/.mi / D 0. Passing to a further subsequence, we
can assume that f.M � ŒAi ; 
i �; .mi ; 0/; gi . �/; ui . �//g1

iD1 converges to a solution
of (2.8) on an étale groupoid. For information about the use of étale groupoids in
Ricci flow, we refer to [Lot07] and [Lot10]. The upshot is that after passing to a
subsequence, we have smooth pointed convergence to an eternal solution .M1 �
R; .m1; 0/; g1. �/; u1. �// of (2.8), where M1 is a two-dimensional étale groupoid.
Furthermore, this solution has uniformly bounded curvature by (2.42), and for each
t 2 R, .M1; g1.t// is a complete closed effective Riemannian groupoid.

By assumption, limi!1 tiQi D 1. As

max
m2M

jrui j2gi
.m; t/ D Q�1

i max
m2M

jruj2g
�
m; ti C tQ�1

i

�
; (2.43)
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when combined with (2.19) we conclude that ru1 D 0 on any time slice. Then u1
is constant spatially and temporally, and g1 is just a Ricci flow on M1. As it is an
eternal solution, it has nonnegative curvature, with positive curvature at .m1; 0/.

We already know that .M1; m1; g1.t// is a bounded curvature limit of
f.M; mi ; gi .t//g1

iD1. The Riemannian groupoid .M1; g1.t// has a locally con-
stant sheaf of finite dimensional Lie algebras g which act as germs of Killing vector
fields on the unit space M

.0/1 . Because of the bounded curvature assumption, these
local Killing vector fields do not have a point of common vanishing; see, for example,
[Ron07, Theorem 5.1].

As M
.0/1 is two-dimensional, and we are in the collapsing situation, the only

possibilities for g are R2 and R. If g D R2 then .M1; g1.t// is flat, which is a
contradiction.

Suppose that g D R. Locally, g1.t/ can be written as dx2 Cf 2.x; t/dy2. Since
its curvature is K D �f 00

f
, the function f is concave. Fixing the value of f at a

single point in M
.0/1 , the function f pulls back from a function on the orbit space O

of M1, which in our case is a one-dimensional orbifold [Lot10, Proposition 5.2]. If
O is a circle then we immediately get a contradiction, since the concave function f

must be constant, but this contradicts the fact that .M1; g1/ has nonzero curvature
at .m1; 0/. If O is an interval orbifold then we can pass to a double cover and argue
as before. If O is R then the positive concave function f must be constant, which
again contradicts the fact that .M1; g1/ has nonzero curvature at .m1; 0/. If O is
Œ0; 1/ then we can pass to a double cover and argue as before.

This proves the lemma. �

We can now take a convergent subsequence of the pointed flows

f.M � ŒAi ; 
i �; .mi ; 0/; gi . �/; ui . �//g1
iD1

to obtain an eternal solution .M1 �R; .m1; 0/; g1. �/; u1. �// of (2.8). From (2.19)
and (2.43), u1 is constant. Thus we have a nonflat eternal Ricci flow solution on the
two-dimensional manifold M1, with uniformly bounded curvature (from (2.42)) and
complete time slices. In particular,

R
M1

Rg1.0/ dVg1.0/ > 0. Although we won’t
really need it, .M1; g1. �// must be the cigar soliton, as follows from the fact that
the spacetime supremum of R is achieved at a point, along with a differential Harnack
inequality [CLN06, Theorem 9.4]. HenceZ

M1

Rg1.0/ dVg1.0/ D 4�: (2.44)

For large i , there is a bounded domain Si � .M; g.ti // which, after rescaling, is
almost isometric to a large piece of the time-zero slice of the cigar soliton. Then for
large i , Z

Si

Rg.ti / dVg.ti / � 3�: (2.45)
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On the other hand,Z
M�Si

Rg.ti / dVgi .t/ � � 1

ti
Volg.ti /.M � Si / � � V.ti /

ti
: (2.46)

Adding (2.45) and (2.46), and using (2.27), we see that for large i ,Z
M

Rg.ti / dVg.ti / � 2�: (2.47)

This contradicts the assumption that �.M/ D 0 and proves Proposition 2.10 �

Proposition 2.12. diam.N; h.t// D O.
p

t /.

Proof. We will use the following general result about Riemannian submersions.

Lemma 2.13. If � W .N; h/ ! .M; g/ is a Riemannian submersion, with N compact
and connected, then

diam.M; g/ � diam.N; h/ � diam.M; g/ C 2 max
m2M

diam.��1.m//; (2.48)

where diam.��1.m// is the intrinsic diameter of ��1.m/.

Proof. Given m1; m2 2 M , we have

dM .m1; m2/ D dN .��1.m1/; ��1.m2//: (2.49)

It immediately follows that diam.M; g/ � diam.N; h/.
Given p1; p2 2 N , put m1 D �.p1/ and m2 D �.p2/. Then

dN .p1; p2/ � diam.��1.m1// C dN .��1.m1/; ��1.m2// C diam.��1.m2//:

(2.50)
The lemma follows. �

From (2.18) and Lemma 2.13, diam.N; h.t// � diam.M; g.t// C 2eC2 . Thus it
suffices to show that diam.M; g.t// D O.

p
t /.

Let L.t/ be the length (with respect to g.t/) of a shortest noncontractible closed
geodesic �t on M . We parametrize �t by an arclength parameter s. We will first
show the following claim, which is an analog of [Ham95, Theorem 12.1].

Claim 2.14. L.t/ is nondecreasing in t .

Proof. Given the curve �t at time t > 0, we obtain an upper bound on L.t � �t/ by
considering the length of the same curve �t at the earlier time t � �t . Then

lim inf
�t!0

L.t/ � L.t � �t/

�t
� 1

2

Z L.t/

0

@g

@t
.� 0

t ; � 0
t / ds

D
Z L.t/

0

�
� 1

2
R.�t .s// C h� 0

t ; rui2

	
ds:

(2.51)
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As �t is stable, applying the second variation formula with respect to a parallel normal
field along �t gives

�
Z L.t/

0

R.�t .s// ds � 0: (2.52)

The claim follows. �

Since �.M/ D 0, equations (2.27) and (2.38) imply that

lim
t!1

h

max
m2M

jRj.m; t/
�

� V.t/
i

D 0: (2.53)

The next claim is purely geometric and has nothing to do with flows.

Claim 2.15. There exist � > 0 and C < 1 such that for every metric g on M D T 2

with
�
maxm2M jRg j.m/

� � Vol.M; g/ � �, we have

L.g/ � diam.M; g/ � C � Vol.M; g/; (2.54)

where L.g/ is the length of the shortest noncontractible closed geodesic.

Proof. Suppose first that the metric g is flat. Let � be a shortest closed geodesic
and let yM be the corresponding cyclic cover of M . Then yM D S1 � R, where the
circle has length L.�/ D L.g/. A generator of the covering group Z acts on yM by
translation in the R-direction, by some distance L0, along with rotation around S1 by
some angle � 2 Œ� �; ��. For any Om 2 yM , we have

d yM . Om; g Om/ D
s

.L0/2 C
�

�L

2�

�2

: (2.55)

This is the length of a closed geodesic on M , so we must haves
.L0/2 C

�
�L

2�

�2

� L: (2.56)

This implies that L0 �
p

3
2

L. Now diam.M; g/ � 1
2
.LCL0/ and Vol.M; g/ D LL0,

so the claim holds in this case with C D 2. Hence we can assume that g is nonflat.
Suppose that the claim is false. Then there is a sequence �i ! 0 such that for

each i , there is a metric gi on M with

max
m2M

jRgi
j.m/

�
� Vol.M; gi / � �i (2.57)

but
L.gi / � diam.M; gi / > i � Vol.M; gi /: (2.58)
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Rescale gi so that maxm2M jRgi
j.m/ D 1. Then Vol.M; gi / � �i .

Let ı � 1 be a new parameter. Suppose first that for an infinite number of i , the
pointed Gromov–Hausdorff distance from .M; m; gi / to a point is greater than ı for
all m 2 M , i.e. diam.M; gi / > ı. After relabelling the sequence f.M; gi /g1

iD1, we
can assume that for all i and all m 2 M , the pointed Gromov–Hausdorff distance
from .M; m; gi / to a point is greater than ı. Since limi!1 Vol.M; gi / D 0, there is
a sequence fcig1

iD1 with limi!1 ci D 0 such that for any m 2 M , the pointed closed

metric ball
�
B.m; ı

10
/; m; gi

�
is ci -close to .Œ� ı

10
; ı

10
�; 0/ in the pointed Gromov–

Hausdorff topology.
Fix ı0 � 1. From [CFG92], for large i there is a diffeomorphism �i from .M; gi /

to .S1 � S1; g0
i /, where

� g0
i is a warped product metric dx2 C f 2

i .x/dy2,

� maxx2S1 fi .x/ ! 0 as i ! 1, and

� �i is a eı0

-biLipschitz map.

More precisely, we are using the fact that the results of [CFG92] hold in a localized
sense, i.e. without an upper diameter bound; see [CT06, Section 2] for discussion.
The paper [CFG92] gives a biLipschitz approximation of .M; gi / by a Riemannian
nilbundle with affine holonomy; see also [Fuk89]. In the present case such a Rie-
mannian nilbundle is a Riemannian submersion S1 � S1 ! S1.

For the metric g0
i , let Ai be the length of the circle base. We know that Ai � ı

10
.

To get an upper bound on L.gi /, we locate a shortest circle fiber of the fiber bundle
S1 � S1 ! S1 and take its preimage under �i . This gives a noncontractible closed
curve in M , so

L.gi / � eı0

min
x2S1

fi .x/: (2.59)

Next, using Lemma 2.13, the diameter of .S1 � S1; g0
i / is bounded above by Ai C

2 maxx2S1 fi .x/, so

diam.M; gi / � eı0

.Ai C 2 max
x2S1

fi .x//: (2.60)

The volume of .S1 � S1; g0
i / is bounded below by Ai times the length of the smallest

circle fiber, so
Vol.M; gi / � e�2ı0

Ai min
x2S1

fi .x/: (2.61)

For large i , equations (2.59), (2.60) and (2.61) contradict (2.58).
Thus we can assume that for all but a finite number of i , there is some point mi such

that the pointed Gromov–Hausdorff distance from .M; mi ; gi / to a point is at most ı.
We now rescale .M; gi / to a metric .M; Ogi / with diameter one. After this rescaling,
maxm2M

ˇ̌
R Ogi

ˇ̌
.m/ � ı2. Suppose that lim inf i!1 Vol.M; Ogi / D 0. After passing

to a subsequence, we can assume that limi!1 Vol.M; Ogi / D 0. As in the argument of
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the preceding paragraphs, for large i there is a biLipschitz approximation of .M; Ogi /

by a warped product metric on a fiber bundle S1�S1 ! S1, whose base has diameter
close to one, and we obtain a contradiction to (2.58).

Thus there is some v0 > 0 such that for all i , we have Vol.M; Ogi / � v0. Cheeger
compactness now gives a contradiction to (2.58). This proves the claim. �

To conclude the proof of Proposition 2.12 we argue as follows. By (2.27), V.t/ D
O.

p
t /. By (2.2) and Proposition 2.10, maxm2M jRM j.m; t/ D O.t�1/. Thus for

large t , we can apply Claim 2.15 to conclude that

diam.M; g.t// � C
V.t/

L.t/
� C

V.t/

L.0/
; (2.62)

where Claim 2.14 is used in the last inequality. Proposition 2.12 follows. �

By [Lot10, Theorem 1.2.1], maxm2M jRmN
n j.m; t/ D o.t�1/ by Propositions 2.10

and 2.12. Thus

lim
t!1

h

max
m2M

jRmN j.m; t/
�

� diam2.N; h.t//
i

D 0: (2.63)

For some given t , we rescale .N; h.t// so that it has diameter one. We now wish
to apply the local stability of flat metrics on T 3 under the Ricci flow. For this, we
need the following lemma, which is purely geometric.

Claim 2.16. There are a compact subset K of the moduli space of flat metrics on T 3

and a function �0 W Œ0; 1/ ! Œ0; 1/, with lim�!0 �0.�/ D 0, such that the following
holds. Suppose that h is a Riemannian metric on N D T 3 with diam.N; h/ D 1 and
maxp2N jRmhj.p/ � �. Then there is a finite cover yN of N such that . yN ; Oh/ has
distance at most �0.�/ in the C 1-topology from an element of K.

Proof. Given i0, D1 > 0 and D2 < 1, let Ki0;D1;D2
denote the isometry classes

of flat Riemannian metrics on T 3 with diameter in ŒD1; D2� and injectivity radius
bounded below by i0. For any ˛ 2 ZC, the set Ki0;D1;D2

is compact in the C ˛-
topology. We will take K D Ki0;D1;D2

, where the parameters i0, D1 and D2 will be
determined in the proof.

Given K, suppose that the claim is false. Then there is some �0 > 0 along
with a sequence f.Ni ; hi /g1

iD1 of Riemannian 3-tori with diam.Ni ; hi / D 1 and
maxp2Ni

jRmgi
j.p/ � 1

i
, but with the property that for no i is there a finite cover

. yNi ; Ohi / of .Ni ; hi / with distance less than �0 in the C 1-topology from an element
of K. Let zNi be the universal cover of Ni . Pick pi 2 Ni and let Qpi be a lift to
zNi . As i ! 1, . zNi ; Qpi / converges to .R3; 0/ in the pointed C 1-topology; this

follows from a uniform lower bound on the injectivity radius at Qpi [Ron07, (3.2)]
and C 1-convergence results. Let r1;i 2 �1.Ni ; pi / be a nontrivial element which
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minimizes d. Qpi ; r1;i Qpi /. Let r2;i 2 �1.Ni ; pi / � hr1;i i minimize d. Qpi ; r2;i Qpi /. Let
r3;i 2 �1.Ni ; pi / � hr1;i ; r2;i i minimize d. Qpi ; r3;i Qpi /. By the diameter condition,
for large i we have d. Qpi ; r3;i Qpi / � 10.

Let �1;i , �2;i , �3;i be minimizing geodesics from Qp to r1;i Qp, r2;i Qp, r3;i Qp. There is
a universal constant c > 0 such that for each i , pairs from f� 0

1;i .0/; � 0
2;i .0/; � 0

3;i .0/g
form an angle at Qp which is at least c [Gro78, Section 2.3]. Let k1;i and k2;i be
positive integers such that k1;id. Qpi , r1;i Qpi / and k2;id. Qp2; r2;i Qpi / lie in Œ 1

10
; 10�.

Let yNi be the cover of Ni such that �1. yNi , Opi / has generators r
k1;i

1;i , r
k2;i

2;i , r3;i .
After passing to a subsequence, we can assume that as i ! 1, with respect to

the approximations of zNi by R3, the triples r
k1;i

1;i Qpi , r
k2;i

2;i Qpi , r3;i Qpi converge to

vectors v1, v2, v3 in R3 with lengths in Œ 1
10

; 10� and mutual angles at least c. Then

limi!1. yNi ; Ohi / D R3=.Zv1 C Zv2 C Zv3/ in the C 1-topology. We can find i0,
D1 > 0 and D2 < 1, computed in terms of c, such that R3=.Zv1 CZv2 CZv3/ has
diameter in ŒD1; D2� and injectivity radius bounded below by i0. This contradicts
the properties of the sequence f.Ni ; hi /g1

iD1. The claim follows. �

By (2.63), for any �0 > 0, if t is large enough then we can apply Claim 2.16 to
.N; h.t//. Using the higher derivative curvature estimates coming from the Ricci flow
and applying a similar argument as in the proof of Claim 2.16, for any ˛ 2 ZC we
can also say that there is a compact subset K˛ of the moduli space of flat metrics on
T 3 so that for any �0 > 0, if t is large enough then a finite cover

� yN ; Oh.t/
�

is �0-close
in the C ˛-topology to an element of K˛ . Taking ˛ large, we can now apply [GIK02,

Theorem 3.7] to conclude that as t ! 1,
� yN ; Oh.t/

�
(or more precisely the solution of

(2.7)) converges to a flat metric on T 3. Furthermore, the convergence is exponentially
fast. (Strictly speaking, [GIK02] considers the evolution of a Riemannian metric h

which is sufficiently close to a fixed flat metric, but the arguments clearly extend to
the setting of closeness to a compact set K˛ of flat metrics, since there will be uniform
control on the constants.) Because of the equivariance of Ricci flow under isometries,
the same is true for .N; h.t//.

This proves Proposition 2.9. �

2.6. Negative Euler characteristic. By Proposition 2.8, the flow (2.8) or, equiva-
lently, (2.7) exists forever. We start with the following proposition.

Proposition 2.17. We have maxp2N jRmN j.p; t/ D O.t�1/.

Proof. The argument is similar to that in the proof of Proposition 2.10. If the statement
were not true, i.e. if lim supt!1 t � maxm2M jRmN j.m; t/ D 1, then we begin the
argument exactly the same as in the proof of Proposition 2.10 to take a limit of
rescalings at times ftig1

iD1. This limit is an eternal solution of the form h1.t/ D
g1.t/ C Cd�2, where C is a constant and g1.t/ is a nonflat eternal solution to
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the Ricci flow on a two-dimensional manifold M1, with complete time slices and
nonnegative bounded curvature. As in the proof of Proposition 2.10, .M1; g1. �//
must be a cigar soliton and Z

M1

Rg1.0/ dVg1.0/ D 4�: (2.64)

For large i , there is a bounded domain Si � .M; g.ti // which, after rescaling, is
almost isometric to a large region in the cigar soliton. ThenZ

Si

Rg.ti / dVg.ti / � 3�: (2.65)

Furthermore, by (2.21) and Corollary 2.3, we haveZ
M�Si

Rg.ti / dVg.ti / � � 1

ti
Volg.ti /.M � Si / � �V.ti /

ti
� 4��.M/ � .1 C o.i0//:

(2.66)
Adding (2.65) and (2.66), and taking i ! 1, contradicts the Gauss–Bonnet theorem
for M . �

Put Og.t/ D g.t/
t

. Let yr denote the corresponding Levi-Civita connection.

Claim 2.18. There exist i0 > 0 and t0 > 0 such that for every t � t0, there is a point
mt 2 M where the injectivity radius satisfies inj Og.t/.mt / � i0.

Proof. By (2.2) and Proposition 2.17, for t � 1 the metrics .M; Og.t// have uniformly
bounded curvature. If the claim were not true then for every � > 0, there would be
some t� � 1 such that inj Og.t�/.m/ < � for all m 2 M . Then M would have an F -
structure and hence a vanishing Euler characteristic [CG90]. This is a contradiction.

�

Proposition 2.19. For any i0 > 0, define the i0-thick part of .M; Og.t// by

Xi0.t/ D fm 2 M W inj Og.t/.m/ � i0g: (2.67)

Then

lim
t!1 sup

x2Xi0
.t/

jR Og.t/.x/ C 1j D 0 (2.68)

and

lim
t!1 sup

x2Xi0
.t/

j yruj Og.t/.x/ D 0: (2.69)
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Proof. Suppose that the proposition is not true. Then there are some i0; � > 0 along
with sequences ti ! 1 and fmig1

iD1 such that for each i , inj Og.ti /.mi / � i0 and either

jR Og.ti /.mi / C 1j � � or j yruj Og.ti /.mi / � �.
By Hamilton’s compactness theorem and the derivative estimates on u from

[Lis08, Section 5], after passing to a subsequence we can assume that there is a
smooth pointed limit of flows

lim
i!1

�
M; mi ;

1

ti
g.ti t /; u.ti t /

�
D .M1; m1; g1.t/; u1.t// : (2.70)

For any bounded domain S � M1, using Corollary 2.2 we have that at any time a,Z
S

jru1j2g1.a/ dVg1.a/ � lim sup
i!1

Z
M

jru.tia/j2g.ti a/ dVg.ti a/ D 0: (2.71)

Thus u1 is spatially constant at time a. Because a is arbitrary, and u1 satisfies
the time-dependent heat equation, it follows that u1 is also temporally constant. In
particular,

0 D jru1jg1.1/.m1/ D lim
i!1 j yruj Og.ti /.mi /: (2.72)

Now Rg1.t/ C 1
t

� 0. Given 0 < a < b < 1, equations (2.35) and (2.72), along
with Corollary 2.3, giveZ b

a

Z
M1

�
Rg1.t/ C 1

t

�
dVg1.t/

dt

t

D
Z b

a

Z
M1

�
Rg1.t/ � jru1j2.t/ C 1

t

�
dVg1.t/

dt

t

� lim
i!1

Z ti b

ti a

Z
M

�
Rg.t/ � jruj2.t/ C 1

t

�
dVg.t/

dt

t

D lim
i!1

�
V.tia/

tia
� V.tib/

tib

�
D 0:

(2.73)

Since a and b were arbitrary, we obtain Rg1.t/.m/ D �1
t

for all m 2 M1 and
t 2 .0; 1/. In particular,

� 1 D Rg1.1/.m1/ D lim
i!1 R Og.ti /.mi /: (2.74)

Equations (2.72) and (2.74) together contradict our assumptions about ftig1
iD1 and

fmig1
iD1, thereby proving the proposition. �

Remark 2.20. In the case �.M/ < 0 one could hope for a bound diam.M; g.t// D
O.

p
t /. With such a bound one could conclude that in Proposition 2.19, there is some

i0 > 0 such that for large t , Xi0.t/ is all of M . Without such a bound, one could
imagine that as t ! 1, the manifolds .M; Og.t// approach a family of surfaces of
constant curvature �1

2
that slowly pinch off a closed geodesic.
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3. Torus bundles

In this section we prove Theorem 1.6. In Subsection 3.1 we write down the Ricci
flow equations with a U.1/ � U.1/ symmetry and give some direct consequences. In
Subsection 3.2 we show that the Ricci flow exists for all t 2 Œ0; 1/. In Subsection 3.3
we prove that the curvature decays like O

�
t�1

�
. In Subsection 3.4 we show that

the length of the circle base is O.
p

t /. In Subsection 3.5 we finish the proof of
Theorem 1.6.

3.1. Twisted principal U.1/ � U.1/ bundles. Let N be a an orientable 3-manifold
which is the total space of a fiber bundle � W N ! S1, with T 2-fibers. Choosing an
orientation of S1, the fiber bundle has a holonomy H 2 SL.2; Z/ D �0.DiffC.T 2//.
Taken up to inverses, H determines the topological type of the fiber bundle. We refer
to [Sco83, Theorem 5.5] for the Thurston types of such fiber bundles. If H is elliptic,
i.e. has finite order, then N has a flat structure. If H is parabolic, i.e. jTr.H/j � 2

but H is not elliptic, then N has a Nil structure. If H is hyperbolic, i.e. has no
eigenvalues on the unit circle, then N has a Sol structure.

If H is the identity then N D S1 �T 2 is the total space of a principal U.1/�U.1/

bundle. That is, N admits a free U.1/ � U.1/ action. In general, N is the total space
of a twisted principal U.1/ � U.1/ bundle, where “twisted” refers to the fact that H

may be nontrivial. The setup is a special case of that in [Lot10, Section 4.1]. Let E

be a local system over S1 of groups isomorphic to U.1/ � U.1/. We assume that the
holonomy of the local system is H 2 Aut.U.1/ � U.1//. Then there is a notion of a
free E-action on the T 2-bundle N , which generalizes the global U.1/ � U.1/ action
that exists when H is the identity.

Let h be a Riemannian metric on N which is E-invariant. There is a corresponding
horizontal distribution H on N . Since H is one-dimensional, it is integrable. Note
that even if H is the identity, H can have a nontrivial holonomy in U.1/ � U.1/,
when going around the circle base. Thus the flat structure on E is logically distinct
from the flat structure on N coming from H .

Let V be a coordinate chart of S1, with local coordinate y. The integrability of
H gives a local trivialization V � T 2 of ��1.V /. The restriction of h to ��1.V / is
invariant under the U.1/ � U.1/ action coming from E

ˇ̌
V

. Using this action and the
local trivialization, let x1, x2 denote local angular coordinates on the T 2-fibers. In
terms of these coordinates we can write

h D
2X

i;j D1

Gij .y/dxidxj C gyy.y/ dy2: (3.1)

We use i , j , k, l for vertical indices. From [Lot10, Section 4.2], nonzero compo-
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nents of the curvature tensor of .N; h/ are

RN
ijkl D �1

4
gyyGik;yGjl;y C 1

4
gyyGil;yGjk;y ;

RN
iyjy D �1

2
Gij Iyy C 1

4
GklGik;yGjl;y ;

(3.2)

where

Gij Iyy D Gij;yy � y
yyGij;y D Gij;yy � 1

2

gyy;y

gyy

Gij;y : (3.3)

The nonzero components of the Ricci tensor are

Rij D � 1

2
gyyGij Iyy � 1

4
gyyGklGkl;yGij;y C gyy 1

2
GklGik;yGlj;y ;

Ryy D � 1

2
Gij Gij Iyy C 1

4
Gij Gjk;yGklGli;y :

The scalar curvature is

R D � gyyGij Gij Iyy C 3

4
gyyGij Gjk;yGklGli;y � 1

4
gyyGij Gij;yGklGkl;y : (3.4)

We will use matrix notation G D �
Gij

�
. Note that G is symmetric and positive-

definite. The Ricci flow equation

dh

dt
D � 2 Rich.t/ (3.5)

preserves the local U.1/ � U.1/ invariance of the metric. In terms of g and G, it
becomes

@gyy

@t
D Tr

�
G�1GIyy

� � 1

2
Tr


�
G�1G;y

�2
�

;

@G

@t
D gyyGIyy C 1

2
gyyTr

�
G�1G;y

�
G;y � gyyG;yG�1G;y :

(3.6)

Adding a Lie derivative with respect to �r ln
p

det.G/ to the right-hand side gives
the modified equations

@gyy

@t
D 1

2
Tr


�
G�1G;y

�2
�

;

@G

@t
D gyy

�
GIyy � G;yG�1G;y

�
:

(3.7)

Taking y to run over R, the periodicity condition on G is

G.y C 1; t/ D H T G.y; t/H: (3.8)
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The manifold N can be recovered by taking the quotient of R�T 2 by the equivalence
relation .y C 1; x/ 	 .y; Hx C b/, where b is some fixed element of R2=Z2.

Hereafter we will mainly work with (3.7). An example of a solution to (3.7) is

gyy.y; t/ D 4c2.t C a/;

G.y; t/ D
�

e2cy 0

0 e�2cy

�
:

(3.9)

If we take y to be defined in R=Z then we get a metric on a bundle with hyperbolic
holonomy H 2 SL.2; Z/, provided that H has eigenvalues ec and e�c . Here @x1

and @x2 are corresponding eigenvectors. The length of the circle base is 2c
p

t C a.
Given s > 0 and a solution .g. �/; G. �// of (3.7), we obtain another solution of

(3.7) by putting

gs.t/ D 1

s
g.st/;

Gs.t/ D G.st/:

(3.10)

Put
hs D .dx/T Gsdx C gs: (3.11)

Then ˇ̌
Rmhs

ˇ̌2 D s2 jRmhj2 : (3.12)

Lemma 3.1.
@ ln det.G/

@t
D 4 ln det.G/: (3.13)

Proof. We have

@ ln det.G/

@t
D Tr

�
G�1 @G

@t

�
(3.14)

D gyyTr
�
G�1.GIyy � G;yG�1G;y/

�
:

Passing to an arc-length parameter s on S1 at a given time t , we obtain

@ ln det.G/

@t
D Tr

�
G�1.G;ss � G;sG�1G;s/

�
: (3.15)

On the other hand

4 ln det.G/ D d 2

ds2
ln det.G/ D d

ds
Tr

�
G�1G;s

�
(3.16)

D Tr
�
G�1G;ss � G�1G;sG�1G;s

�
:

This proves the lemma. �



24 J. Lott and N. Sesum CMH

Note that det.G/ is globally defined on S1 since the holonomy lies in SL.2; Z/.
It represents the squares of the volumes of the fibers.

Corollary 3.2. There are constants C1; C2 > 0 such that for all y 2 S1 and all times
t for which the flow exists.

C1 �
p

det.G/.y; t/ � C2: (3.17)

Proof. This follows from applying the maximum principle to Lemma 3.1. �

Lemma 3.3. Put
E D gyyTr

�
.G�1G;y/2

�
: (3.18)

Then

@E

@t
D 4E � E2

2
� 2 gyygyyTr




G�1GIyy � .G�1G;y/2

�2�
: (3.19)

Proof. Differentiating (3.18) with respect to t gives

@E

@t
D �1

2
gyygyy

�
Tr

�
.G�1G;y/2

��2

� 2gyy Tr
�
G�1G;yG�1gyy.GIyy � G;yG�1G;y/G�1G;y

�
C 2gyy Tr



G�1G;yG�1

�
gyy.GIyy � G;yG�1G;y/

�
;y

�
:

(3.20)

Switching to an arc-length parameter s at a given time t , we obtain

@E

@t
D �E2

2
� 2Tr

�
G�1G;sG�1.G;ss � G;sG�1G;s/G�1G;s

�
C 2Tr



G�1G;sG�1

�
G;ss � G;sG�1G;s

�
;s

�
:

(3.21)

One now computes that

@E

@t
D �E2

2
C �

Tr
�
.G�1G;s/2

��
;ss

� 2Tr




G�1G;ss � .G�1G;s/2
�2�

:

(3.22)

This proves the lemma. �

Note that
E D gyyTr


�
G� 1

2 G;yG� 1
2

�2
�

(3.23)

is nonnegative, since G� 1
2 G;yG� 1

2 is symmetric.
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Corollary 3.4. For all y 2 S1 and all t � 0 for which the flow exists, we have
E.y; t/ � 2

t
.

Proof. We have

Tr

�

G�1GIyy � .G�1G;y/2
�2

�
D Tr




G� 1

2 GIyyG� 1
2 � �

G� 1
2 G;yG� 1

2

�2
�2�

;

(3.24)

which is nonnegative since G� 1
2 GIyyG� 1

2 � �
G� 1

2 G;yG� 1
2

�2
is symmetric. The

corollary now follows from applying the maximum principle to Lemma 3.3. �

3.2. Nonsingularity of the flow

Proposition 3.5. Given h.0/ as described in Subsection 3.1, the flow (3.7) exists for
t 2 Œ0; 1/.

Proof. If not then there is a singularity at some time T < 1. Specializing the
modified W -functional of [Lot10, Definition 4.48] to our case, it becomes

W.G; g; f; 	/ (3.25)

D
Z

S1

h
	 jrf j2 � 1

4
gyyTr


�
G�1G;y

�2
� �

C f � 1
i
.4�	/� 1

2 e�f p
gyydy:

Using this modified W -functional, we can go through the same steps as in the proof
of [Lis08, Theorem 7.9] to conclude that there is a blowup limit

.M1; m1; g1. �/; G1. �//
where

� G1 D const. and
� g1 is a nonflat Ricci flow solution on the 1-manifold M1.

However, there is no such nonflat Ricci flow solution. This proves the proposition.
�

3.3. Curvature bound

Proposition 3.6. We have maxp2N

ˇ̌
RmN

ˇ̌
.p; t/ D O

�
t�1

�
.

Proof. Suppose that the proposition is false. We take a rescaling limit as in the proof
of Proposition 2.10 to obtain a nonflat eternal solution .M1; p1; g1. �/; G1. �// on
a one-dimensional étale groupoid M1. (It will follow from Lemma 3.12 that M1
is a one-dimensional manifold.) From Corollary 3.4, G1 is constant. Then g1 is
a nonflat Ricci flow solution on a one-dimensional space, which is a contradiction.

�



26 J. Lott and N. Sesum CMH

3.4. Diameter bound. We compute how the length of the base circle varies with
time.

Lemma 3.7. Put L.t/ D R
S1

p
gyy.y/dy. Then

dL

dt
D 1

4

Z
S1

E.y; t/
p

gyy.y/dy: (3.26)

Proof. We have

dL

dt
D 1

2

Z
S1

gyy @gyy

@t

p
gyy.y/dy

D 1

4

Z
S1

gyyTr

�

G�1G;y

�2
� p

gyy.y/dy:

(3.27)

This proves the lemma. �

In particular, L.t/ is monotonically nondecreasing in t .

Lemma 3.8. t� 1
2 L.t/ is monotonically nonincreasing in t .

Proof. From Corollary 3.4 and Lemma 3.7, we derive

dL

dt
� L.t/

2t
: (3.28)

The lemma follows. �

3.5. Long-time behavior

Lemma 3.9. Given x 2 T 2 and linearly independent vectors v1; v2 2 TxT 2, there
is a constant C.v1; v2/ < 1 with the following property. Suppose that gT 2 is a flat
metric on T 2. Then

diam
�
T 2; gT 2

� � C.v1; v2/
�jv1jg

T 2
C jv2jg

T 2

�
: (3.29)

Proof. Let V1 and V2 be the affine-parallel vector fields on T 2 that extend v1 and
v2, respectively. Let g0 be a fixed flat metric on T 2. There is some c < 1 such that
any pair of points in T 2 can be joined by flowing first in the V1-direction for a length
at most c and then flowing in the V2-direction for a length at most c. With respect

to gT 2 , the length of this path is bounded above by c
jv1jg

T 2

jv1jg0

C c
jv2jg

T 2

jv2jg0

. The lemma

follows. �

We use the notation in the statement of Theorem 1.6.
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3.5.1. Elliptic holonomy. If H is elliptic then after pulling back the T 2-bundle from
a finite covering S1 ! S1, we can assume that H D I . Then G.y; t/ is a globally
defined matrix-valued function of y 2 R=Z and t 2 Œ0; 1/.

Lemma 3.10. The intrinsic diameter of the T 2-fibers is uniformly bounded above
in t .

Proof. Given v 2 R2, equation (3.7) implies that

@

@t
hv; Gvi D gyyhv; GviIyy � gyyhv; G;yG�1G;yvi: (3.30)

The maximum principle now implies that hv; G.y; t/vi is uniformly bounded above
for y 2 S1 and t 2 Œ0; 1/. The lemma follows from Lemma 3.9. �

Proposition 3.11. diam.N; h.t// D O.
p

t /.

Proof. This follows from Lemmas 2.13, 3.8 and 3.10. �

From [Lot10, Theorem 1.2.1],�
max
p2N

ˇ̌
RmN

h

ˇ̌
.p; t/

� � diam2.N; h.t// D o.t/: (3.31)

The argument of Subsection 2.5 now shows that limt!1 h.t/ exists and is a flat
metric on N , with the convergence being exponentially fast.

3.5.2. Hyperbolic holonomy. Suppose that H is hyperbolic.
Let P.2; R/ denote the positive-definite symmetric 2 � 2 matrices. Given G 2

P.2; R/ and symmetric 2 � 2 matrices ı1G; ı2G 2 TGP.2; R/, we define their inner
product by

hı1G; ı2Gi D 1

2
Tr

�
G�1.ı1G/G�1.ı2G/

�
: (3.32)

Consider the map ˆ W R � SL.2; R/ ! P.2; R/ given by .u; M/ ! euM T M .
Identifying SO.2/nSL.2; R/ with the hyperbolic space H 2, the map ˆ passes to an
isometry R � H 2 ! P.2; R/.

With respect to this isometry, the action of SL.2; Z/ on P.2; R/ (by .A; G/ !
AT GA) becomes the product of the trivial action of SL.2; Z/ on R with the isometric
action of SL.2; Z/ on H 2. Letting hH i denote the cyclic subgroup of SL.2; Z/

generated by the holonomy H , equation (3.8) can be interpreted as saying that for
each t , the function G. �; y/ describes a smooth map S1 ! .R � H 2=hH i/ whose
homotopy class is specified by H .

Lemma 3.12. There is a constant c > 0 such that for all t 2 Œ0; 1/, L.t/ � c
p

t .
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Proof. Lemma 3.4 says that the Lipschitz constant of the map G. �; t / from Œ0; 1� to
P.2; R/ is bounded above by 1p

t
. As H is hyperbolic, there is a minimal length

c > 0 among all noncontractible closed curves in H 2=hH i. Consequently, the
distance between G.0; t/ and G.1; t/ D H T G.0; t/H in P.2; R/ is bounded below
by c. Thus L.t/ � c

p
t . �

Recall the definitions of gs and Gs from (3.10). By an appropriate s-dependent
choice of basis for R2, we can assume that Gs.0; 1/ D I . In making such a choice of
basis, we are ignoring the lattice structure that comes from writing T 2 as a quotient
of R2. We are simply treating G and g as functions which satisfy (3.7) and (3.8).

Let X be the real symmetric matrix so that eX D H T H .

Proposition 3.13. For any sequence fsj g1
j D1 going to infinity, after passing to a

subsequence and possibly reparametrizing S1, we have

lim
j !1 gsj

.y; t/ D t

2
Tr.X2/dy2 (3.33)

and

lim
j !1 Gsj

.y; t/ D eyX ; (3.34)

with smooth convergence on compact subsets of S1 � Œ0; 1/.

Proof. The proof is similar to that in [Lot10, Propositions 4.39 and 4.79]; see also
[FIN05, Theorem 1.3].

We first construct a positive solution Qu1 of the conjugate heat equation

@u

@t
D �4u � 1

4
gyyTr

�
.G�1G;y/2

�
u (3.35)

that is defined for t 2 Œ0; 1/. To do so, note that if u is a solution to (3.35) thenR
S1 u

p
gyydy is constant in t . Let ftj g1

j D1 be a sequence of times going to infinity. Let

Quj . �/ be a solution to (3.35) on the interval Œ0; tj � with initial condition Quj .tj / D 1
L.tj /

.
One shows that one can extract a subsequence of the Quj ’s that converges smoothly
on compact subsets of S1 � Œ0; 1/ to a positive solution Qu1. �/ of (3.35).

Define Qf1. �/ by Qu1.t/ D .4�t/� n
2 e� Qf1.t/. Put

WC.G; g; Qf; t/ (3.36)

D
Z

S1

�
t


jr Qf j2 � 1

4
gyyTr

�
.G�1G;y/2

�� � Qf C 1

	
.4�t/� 1

2 e� Qf p
gyydy:
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From [Lot10, Proposition 4.64],

d

dt
WC.G.t/; g.t/; Qf1.t/; t/ (3.37)

D t

2

Z
S1

Tr
�


G�1.4G � gyyG;yG�1G;y � gyyG;y
Qf1;y/

�2
�

Qu1
p

gyy dy

C 2t

Z
S1

gyygyy
�

� 1

4
Tr

�
.G�1G;y/2

� C QfIyy C 1

2t
gyy

�2

Qu1
p

gyy dy:

In particular, WC.G.t/; g.t/; Qf1.t/; t/ is monotonically nondecreasing in t . Put

W1 D lim
t!1 WC.G.t/; g.t/; Qf1.t/; t/; (3.38)

which at the moment could be infinity.
Using the curvature bound from Proposition 3.6 and the diameter bounds from

Lemmas 3.8 and 3.12, one shows that after passing to a subsequence,

lim
j !1.gsj

. �/; Gsj
. �//

exists in the topology of smooth convergence on compact subsets of S1 � Œ0; 1/, and
equals a solution .g1. �/; G1. �// of (3.7) on a circle of time-1 length

L1 D lim
t!1

L.t/p
t

: (3.39)

(The notion of convergence allows for j -dependent diffeomorphisms of S1.)
Put uj .t/ D Qu1.t C sj /. After passing to a subsequence, we can assume that

limj !1 uj .t/ D u1.t/ for some solution u1. �/ to (3.35) (relative to g1. �/ and
G1. �/), with smooth convergence on compact subsets of S1 � Œ0; 1/. Define f1. �/
by u1.t/ D .4�t/� n

2 e� f1.t/. Then we have WC.G1.t/; g1.t/; f1.t/; t/ D W1
for all t . In particular, W1 < 1.

From (3.37), we obtain

4G1 � gyy1 G1;yG�11 G1;y � gyy1 G1;yf1;y D 0;

�1

4
Tr


�
G�11 G1;y

�2
�

C f1Iyy C 1

2t
g1;yy D 0:

(3.40)

From [Lot10, Proposition 4.80], there is a traceless symmetric matrix X such that
g1;yy.y; t/ D t

2
Tr.X2/ and G1.y; t/ D eyX . Here y is a parametrization of S1

whose time-1 velocity is L1. For each j , we had Gsj
.y C 1; t/ D H T Gsj

.y; t/H .
Hence G1.y C 1; t/ D H T G1.y; t/H and so eX D H T H . �

We now prove part (ii) of Theorem 1.6. From Proposition 3.13, for any K 2 ZC
and any � > 0, there is some t0 < 1 such that

�gyy.y;t0/

t0
; G.y; t0/

�
is �-close in the
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C K-norm to
�

1
2

Tr.X2/; eyX
�
. From the local stability result of [Kno09, Theorem 3],

after an overall reparametrization of S1, we have

lim
t!1

gyy.y; t/

t
D 1

2
Tr.X2/;

lim
t!1 G.y; t/ D eyX :

(3.41)

The convergence is exponentially fast in the variable ln.t/, i.e. power-law fast in t .
(Strictly speaking, the result in [Kno09, Theorem 3] is for the modified Ricci flow
(3.7) but there is a similar result for the unmodified Ricci flow (3.6).)

This proves Theorem 1.6.

Remark 3.14. Suppose that H is parabolic. By Corollary 3.2, the fiber volumes
are uniformly bounded above and below by positive constants. After pulling back
to a double cover of the base S1, if necessary, we can assume that Tr.H/ D 2. If
v 2 R2 is a nonzero H -invariant vector then (3.30) gives a uniform upper bound on
the squared length hv; G.y; t/vi.

Lemma 3.7 implies that the length L.t/ of the base circle is monotonically non-
decreasing in t . We claim that limt!1 L.t/p

t
D 0. If not then we would conclude

from the proof of Proposition 3.13 that N has a Sol-structure, which contradicts the
topological fact that it has a Nil-structure.

If we knew that the diameters of the T 2-fibers were O.
p

t / then we could conclude
from Lemma 2.13 and [Lot10, Theorem 1.2.2] that the pullback Ricci flow solution on
the universal cover zN approaches the Nil expanding soliton. Based on the calculation
in the locally homogeneous Nil case, as in [Lot07, Subsubsection 3.3.3], we expect
that both L.t/ and the fiber diameters are O.t

1
6 /.
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