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Entropy on Riemann surfaces and the Jacobians of finite covers
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Abstract. This paper characterizes those pseudo-Anosov mappings whose entropy can be
detected homologically by taking a limit over finite covers. The proof is via complex-analytic
methods. The same methods show the natural map Mg ! Q

Ah, which sends a Riemann
surface to the Jacobians of all of its finite covers, is a contraction in most directions.
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1. Introduction

Let f W S ! S be a pseudo-Anosov mapping on a surface of genus g with n punctures.
It is well-known that the topological entropy h.f / is bounded below in terms of the
spectral radius of f � W H 1.S; C/ ! H 1.S; C/; we have

log �.f �/ � h.f /:

If we lift f to a map Qf W zS ! zS on a finite cover of S , then its entropy stays the same
but the spectral radius of the action on homology can increase. We say the entropy
of f can be detected homologically if

h.f / D sup log �. Qf � W H 1. zS/ ! H 1. zS//;

where the supremum is taken over all finite covers to which f lifts.
In this paper we will show:

Theorem 1.1. The entropy of a pseudo-Anosov mapping f can be detected homo-
logically if and only if the invariant foliations of f have no odd-order singularities
in the interior of S .

The proof is via complex analysis. Hodge theory provides a natural embedding
Mg ! Ag from the moduli space of Riemann surfaces into the moduli space of
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Abelian varieties, sending X to its Jacobian. Any characteristic covering map from a
surface of genus h to a surface of genus g, branched over n points, provides a similar
map

Mg;n ! Mh ! Ah: (1.1)

It is known that the hyperbolic metric on a Riemann surface X can be reconstructed
using the metrics induced from the Jacobians of its finite covers ([Kaz]; see the
Appendix). Similarly, it is natural to ask if the Teichmüller metric on Mg;n can be
recovered from the Kobayashi metric on Ah, by taking the limit over all characteristic
covers Cg;n. We will show such a construction is impossible.

Theorem 1.2. The natural map Mg;n ! Q
Cg;n

Ah is not an isometry for the
Kobayashi metric, unless dim Mg;n D 1.

It is an open problem to determine if the Kobayashi and Carathéodory metrics
on moduli space coincide when dim Mg;n > 1 (see e.g. [FM], Problem 5.1). An
equivalent problem is to determine if Teichmüller space embeds holomorphically
and isometrically into a (possibly infinite) product of bounded symmetric domains.
Theorem 1.2 provides some support for a negative answer to this question.

Here is a more precise version of Theorem 1.2, stated in terms of the lifted map

Tg;n ! Th

J! Hh

from Teichmüller space to Siegel space determined by a finite cover.

Theorem 1.3. Suppose the Teichmüller mapping between a pair of distinct points
X; Y 2 Tg;n comes from a quadratic differential with an odd order zero. Then

sup d.J. zX/; J. zY // < d.X; Y /;

where the supremum is taken over all compatible finite covers of X and Y .

Conversely, if the Teichmüller map from X to Y has only even order singularities,
then there is a double cover such that d.J. zX/; J. zY // D d.X; Y / (cf. [Kra]). In
particular, the complex geodesics generated by squares of holomorphic 1-forms map
isometrically into Ag . The only directions contracted by the map Mg ! Q

Ah are
those identified by Theorem 1.3.

Theorem 1.1 follows from Theorem 1.3 by taking X and Y to be points on the
Teichmüller geodesic stabilized by the mapping-class f . It would be interesting to
find a direct topological proof of Theorem 1.1.

As a sample application, let ˇ 2 Bn be a pseudo-Anosov braid whose monodromy
map f W S ! S (on the n-times punctured plane) has an odd order singularity. Then
Theorem 1.1 implies the image of ˇ under the Burau representation satisfies

log sup
jqjD1

�.B.q// < h.f /:
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Indeed, �.B.q// at any d -th root of unit is bounded by �. Qf �/ on a Z=d cover S

[Mc2]. This improves a result in [BB]. Similar statements hold for other homological
representations of the mapping–class group.

Notes and references. For C 1 diffeomorphisms of a compact smooth manifold,
one has h.f / � log supi �.f �jH i .X// [Ym], and equality holds for holomorphic
maps on Kähler manifolds [Gr]. The lower bound h.f / � log �.f �jH 1.X// also
holds for homeomorphisms [Mn]. For more on pseudo-Anosov mappings, see e.g.
[FLP], [Bers] and [Th].

A proof that the inclusion of Tg;n into universal Teichmüller space is a contraction,
based on related ideas, appears in [Mc1].

2. Odd order zeros

We begin with an analytic result, which describes how well a monomial zk of odd
order can be approximated by the square of an analytic function.

Theorem 2.1. Let k � 1 be odd, and let f .z/ be a holomorphic function on the unit
disk � such that

R jf .z/j2 D 1. Then

ˇ̌ˇ̌ Z
�

f .z/2
� Nz

jzj
�k

ˇ̌ˇ̌ � Ck D
p

k C 1
p

k C 3

k C 2
< 1:

Here the integral is taken with respect to Lebesgue measure on the unit disk.

Proof. Consider the orthonormal basis en.z/ D anzn, n � 0, an D p
n C 1=

p
� , for

the Bergman space L2
˛.�/ of analytic functions on the disk with kf k2

2 D R jf .z/j2 <

1. With respect to this basis, the nonzero entries in the matrix of the symmetric
bilinear form Z.f; g/ D R

f .z/g.z/ Nzk=jzjk are given by

Z.en; ek�n/ D anak�n

Z
�

jzjk D 2
p

n C 1
p

k � n C 1

k C 2
�

In particular, Z.ei ; ei / D 0 for all i (since k is odd), and Z.ei ; ej / D 0 for all
i; j > k.

Note that the ratio above is less than one, by the inequality between the arithmetic
and geometric means, and it is maximized when n < k=2 < nC1. Thus the maximum
of jZ.f; f /j=kf k2 over L2

˛.�/ is achieved when f D en C enC1, n D .k � 1/=2,
at which point it is given by Ck . �
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3. Siegel space

In this section we describe the Siegel space of Hodge structures on a surface S , and
its Kobayashi metric.

Hodge structures. Let S be a closed, smooth, oriented surface of genus g. Then
H 1.S/ D H 1.S; C/ carries a natural involution C.˛/ D N̨ fixing H 1.S; R/, and a
natural Hermitian form

h˛; ˇi D
p�1

2

Z
S

˛ ^ Ň

of signature .g; g/. A Hodge structure on H 1.S/ is given by an orthogonal splitting

H 1.S/ D V 1;0 ˚ V 0;1

such that V 1;0 is positive-definite and V 0;1 D C.V 1;0/. We have a natural norm on
V 1;0 given by k˛k2 D h˛; ˛i.

The set of all possible Hodge structures forms the Siegel space H.S/. To describe
this complex symmetric space in more detail, fix a splitting H 1.S/ D W 1;0 ˚ W 0;1.
Then for any other Hodge structure V 1;0 ˚ V 0;1, there is a unique operator

Z W W 1;0 ! W 0;1

such that V 1;0 D .I C Z/.W 1;0/. This means V 1;0 coincides with the graph of Z

in W 1;0 ˚ W 0;1.
The operator Z is determined uniquely by the associated bilinear form

Z.˛; ˇ/ D h˛; CZ.ˇ/i
on W 1;0, and the condition that V 1;0 ˚ V 0;1 is a Hodge structure translates into the
conditions

Z.˛; ˇ/ D Z.ˇ; ˛/ and jZ.˛; ˛/j < 1 if k˛k D 1: (3.1)

Since the second inequality above is an open condition, the tangent space at the base
point p � W 1;0 ˚ W 0;1 is given by

TpH.S/ D fsymmetric bilinear maps Z W W 1;0 � W 1;0 ! Cg.

Comparison maps. Any Hodge structure on H 1.S/ determines an isomorphism

V 1;0 Š H 1.S; R/ (3.2)

sending ˛ to <.˛/ D .˛ C C.˛//=2. Thus H 1.S; R/ inherits a norm and a complex
structure from V 1;0.
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Put differently, (3.2) gives a marking of V 1;0 by H 1.S; R/. By composing one
marking with the inverse of another, we obtain the real-linear comparison map

T D .I C Z/.I C CZ/�1 W W 1;0 ! V 1;0 (3.3)

between any pair of Hodge structures. It is characterized by <.˛/ D <.T .˛//.

Symmetric matrices. The classical Siegel domain is given by

Hg D fZ 2 Mg.C/ W Zij D Zj i and I � Z xZ � 0g:
(cf. [Sat], Chapter II.7). It is a convex, bounded symmetric domain in CN , N D
g.g C 1/=2. The choice of an orthonormal basis for W 1;0 gives an isomorphism
Z 7! Z.!i ; !j / between H.S/ and Hg , sending the basepoint p to zero.

The Kobayashi metric. Let � 	 C denote the unit disk, equipped with the metric
jdzj=.1�jzj2/ of constant curvature �4. The Kobayashi metric on H.S/ is the largest
metric such that every holomorphic map f W � ! H.S/ satisfies kDf .0/k � 1. It
determines both a norm on the tangent bundle and a distance function on pairs of
points [Ko].

Proposition 3.1. The Kobayashi norm on TpH.S/ is given by

kZkK D supfZ.˛; ˛/j W k˛k D 1g;
and the Kobayashi distance is given in terms of the comparison map (3.3) by

d.V 1;0; W 1;0/ D log kT k:

Proof. Choosing a suitable orthonormal basis for W 1;0, we can assume that

Z.!i ; !j / D �iıij

with �1 � �2 � � � � �g � 0. Since Hg is a convex symmetric domain, the Kobayashi
norm at the origin and the Kobayashi distance satisfy

kZkK D r and d.0; Z/ D 1

2
log

1 C r

1 � r
;

where r D inffs > 0 W Z 2 sHgg (see [Ku]). Clearly r D �1 D sup jZ.˛; ˛/j=k˛k2,
and by (3.3), we have

kT k2 D kT .
p�1 !1/k2 D

���� !1

1 � �1

C �1 N!1

1 � �1

����
2

D 1 C �1

1 � �1

;

which gives the expressions above. �
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4. Teichmüller space

This section gives a functorial description of the derivative of the map from Teich-
müller space to Siegel space.

Markings. Let xS be a compact oriented surface of genus g, and let S 	 xS be a
subsurface obtained by removing n points.

Let Teich.S/ Š Tg;n denote the Teichmüller space of Riemann surfaces marked
by S . A point in Teich.S/ is specified by a homeomorphism f W S ! X to a Riemann
surface of finite type. This means there is a compact Riemann surface xX 
 X and
an extension of f to a homeomorphism Nf W xS ! xX .

Metrics. Let Q.X/ denote the space of holomorphic quadratic differentials on X

such that

kqkX D
Z

X

jqj < 1:

There is a natural pairing .q; �/ 7! R
X

q� between the space Q.X/ and the space
M.X/ of L1-measurable Beltrami differentials �. The tangent and cotangent spaces
to Teichmüller space at X are isomorphic to M.X/=Q.X/? and Q.X/ respectively.

The Teichmüller and Kobayashi metrics on Teich.S/ coincide [Roy1], [Hub],
Chapter 6. They are given by the norm

k�kT D sup
˚ˇ̌R

q�
ˇ̌ W kqkX D 1

�
on the tangent space at X ; the corresponding distance function

d.X; Y / D inf
1

2
log K.�/

measures the minimal dilatation K.�/ of a quasiconformal map � W X ! Y respect-
ing their markings.

Hodge structure. The periods of holomorphic 1-forms on X serve as classical moduli
for X . From a modern perspective, these periods give a map

J W Teich.S/ ! H. xS/ Š Hg ;

sending X to the Hodge structure

H 1. xS/ Š H 1. xX/ Š H 1;0. xX/ ˚ H 0;1. xX/:

Here the first isomorphism is provided by the marking Nf W xS ! xX . We also have a
natural isomorphism between H 1;0. xX/ and the space of holomorphic 1-forms �. xX/.
The image J.X/ encodes the complex analytic structure of the Jacobian variety
Jac. xX/ D �. xX/�=H1. xX; Z/. (It is does not depend on the location of the punctures
of X .)
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Proposition 4.1. The derivative of the period map sends � 2 M.X/ to the quadratic
form Z D DJ.�/ on �. xX/ given by

Z.˛; ˇ/ D
Z

xX
˛ˇ�:

This is a basis-free reformulation of Ahlfors’ variational formula [Ah], §5; see
also [Ra], [Roy2] and Proposition 1 of [Kra]. Note that ˛ˇ 2 Q.X/.

5. Contraction

This section brings finite covers into play, and establishes a uniform estimate for
contraction of the mapping Tg;n ! Th ! Hh.

Jacobians of finite covers. A finite connected covering space S1 ! S0 determines
a natural map

P W Teich.S0/ ! Teich.S1/

sending each Riemann surface to the corresponding covering space X1 ! X0. By
taking the Jacobian of X1, we obtain a map J B P W Teich.S0/ ! H. xS1/.

Let q0 2 Q.X0/ be a holomorphic quadratic differential with a zero of odd order
k, say at p 2 X0. Let � D Nq0=jq0j 2 M.X0/; then k�kT D 1. Let � W X1 ! X0

denote the natural covering map, and let q1 D ��.q0/.
We will show that J.X1/ cannot change too rapidly under the unit deformation �

of X0. Indeed, if J.X1/ were to move at nearly unit speed, then ��.�/ D Nq1=jq1j
would pair efficiently with ˛2 for some unit-norm ˛ 2 �. xX1/, which is impossible
because of the many odd-order zeros of q1.

To make a quantitative estimate, choose a holomorphic chart � W .�; 0/ ! .X0; p/

such that ��.�/ D zk=jzjk d Nz=dz. Let U D �.�/, and let

m.U / D inffkqkU W q 2 Q.X0/; kqkX D 1g:
(Here kqkU D R

U
jqj.) Since Q.X0/ is finite-dimensional, we have m.U / > 0.

Theorem 5.1. The image Z of the vector Œ�	 under the derivative of J B P satisfies

kZkK � ı < 1 D k�kT ;

where ı D max.1=2; 1 � .1 � Ck/m.U /=2/ does not depend on the finite cover
S1 ! S0.

Proof. The derivative of P sends � to ��.�/. By Proposition 3.1, to show kZkK � ı

it suffices to show that

jZ.˛; ˛/j D
ˇ̌ˇ̌Z

X1

˛2���

ˇ̌ˇ̌ � ı
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for all ˛ 2 �. xX1/ with k˛2kX1
D 1. Setting q D ��.˛2/, we also have

jZ.˛; ˛/j D
ˇ̌
ˇ̌Z

X0

q�

ˇ̌
ˇ̌ � kqkX0

;

so the proof is complete if kqkX0
� 1=2. Thus we may assume that

k˛2kV � kqkU � m.U /kqkX0
� m.U /=2;

where V D ��1.U / D Sd
1 Vi is a finite union of disjoint disks. Using the coordinate

charts Vi Š U Š � and Theorem 2.1, we find that on each of these disks we have
ˇ̌ˇ̌Z

Vi

˛2��.�/

ˇ̌ˇ̌ D
ˇ̌ˇ̌Z

�

˛.z/2
�

z

jzj
�k

ˇ̌ˇ̌ � Ckk˛2kVi
:

Summing these bounds and using the fact that k˛2k.X1�V / C k˛2kV D 1, we obtain
ˇ̌ˇ̌Z

X1

˛2��.�/

ˇ̌ˇ̌ � k˛2k.X1�V / C Ckk˛2kV � 1 � .1 � Ck/m.U /

2
� ı: �

6. Conclusion

It is now straightforward to establish the results stated in the Introduction.

Proof of Theorem 1.3. Assume the Beltrami coefficient of the Teichmüller mapping
between X; Y 2 Tg;n has the form � D k Nq=q, where q 2 Q.X/ has an odd order
zero. Then the same is true for the tangent vectors to the Teichmüller geodesic 


joining X to Y . Theorem 5.1 then implies that D.J B P /j� is contracting by a factor
ı < 1 independent of P , and therefore

d.J B P.X/; J B P.Y // D d.J. zX/; J. zY // < ı � d.X; Y /: �

Proof of Theorem 1.2. The contraction of Mg;n ! Q
Cg;n

Ah in some directions is
immediate from the uniformity of the bound in Theorem 1.3, using the fact that the
Kobayashi metric on a product is the sup of the Kobayashi metrics on each term, and
that there exist q 2 Q.X/ with simple zeros whenever X 2 Mg;n and dim Mg;n > 1.

�

Proof of Theorem 1.1. Let f W S0 ! S0 be a pseudo-Anosov mapping. If f has
only even order singularities, then its expanding foliation is locally orientable, and
hence there is a double cover zS ! zS such that log �. Qf �/ D h.f /.

Now suppose f has an odd-order singularity. Let X0 2 Teich.S0/ be a point on
the Teichmüller geodesic stabilized by the action of f on Teich.S0/. Then h.f / D
d.f � X0; X0/ > 0 (see e.g. [FLP] and [Bers]).
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Let Qf W S1 ! S1 be a lift of f to a finite covering of S0, and let X1 D P.X0/ 2
Teich.S1/. Using the marking of X1 and the isomorphism H 1.X1; R/ Š H 1;0.X1/,
we obtain a commutative diagram

H 1.S1; R/

��

Qf �

�� H 1.S1; R/

��
H 1;0. xX1/

T �� H 1;0. xX1/

where T is the comparison map between J.X1/ and J. Qf � X1/ (see equation (3.3)).
Then Theorem 1.3 and Proposition 3.1 yield the bound

log �. Qf �/ � log kT k D d.J.X1/; Qf � J.X1// � ıd.X0; f � X0/ D ıh.f /;

where ı < 1 does not dependent on the finite covering S1 ! S0. Consequently,
sup log �. Qf �/ < h.f /. �

Appendix. The hyperbolic metric via Jacobians of finite covers

Let X D �=� be a compact Riemann surface, presented as a quotient of the unit
disk by a Fuchsian group � . Let Yn ! X be an ascending sequence of finite Galois
covers which converge to the universal cover, in the sense that

Yn D �=�n; � 
 �1 
 �2 
 �3 � � � ; and
\

�i D feg: (A.1)

The Bergman metric on Yn (defined below) is invariant under automorphisms, so it
descends to a metric ˇn on X . This appendix gives a short proof of:

TheoremA.1 (Kazhdan). TheBergmanmetrics inherited from thefiniteGalois covers
Yn ! X converge to a multiple of the hyperbolic metric; more precisely, we have

ˇn ! �X

2
p

�

uniformly on X .

The argument below is based on [Kaz], §3; for another, somewhat more technical
approach, see [Rh].

Metrics. We begin with some definitions. Let �.X/ denote the Hilbert space of
holomorphic 1-forms on a Riemann surface X such that

k!k2
X D

Z
X

j!j2 < 1:
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The area form of the Bergman metric on X is given by

ˇ2
X D

X
j!i j2; (A.2)

where .!i / is any orthonormal basis of �.X/. Equivalently, the Bergman length of
a tangent vector v 2 TX is given by

hˇX ; vi D sup
!¤0

j!.v/j
k!kX

� (A.3)

This formula shows that inclusions are contracting: if Y is a subdomain of X , then
ˇY � ˇX .

Now suppose X is a compact surface of genus g > 0. Then (A.2) shows its
Bergman area is given by Z

X

ˇ2
X D dim �.X/ D g: (A.4)

In this case ˇX is also the pullback, via the Abel–Jacobi map, of the natural Kähler
metric on the Jacobian of X .

Finally suppose X D �=� . Then the hyperbolic metric of constant curvature
�1,

�� D 2jdzj
1 � jzj2 ;

descends to give the hyperbolic metric �X on X . Using the fact that kdzk� D � , it
is easy to check that 4�ˇ2

� D �2
�.

Proof of Theorem A.1. We will regard the Bergman metric ˇn on Yn as a �n-invariant
metric on �. It suffices to show that ˇn=ˇ� ! 1 uniformly on �.

Let g and gn denote the genus of X and Yn respectively, and let dn denote the
degree of Yn=X ; then gn � 1 D dn.g � 1/. By (A.1), the injectivity radius of Yn

tends to infinity. In particular, there is a sequence rn ! 1 such that 
.rn�/ injects
into Yn for any 
 2 � . Since inclusions are contracting, this shows

ˇn � .1 C �n/ˇ� (A.5)

where �n ! 0.
Next, note that both ˇn and ˇ� are �-invariant, so they determine metrics on X .

By (A.4), we haveZ
X

ˇ2
n D 1

dn

Z
Yn

ˇ2
n D gn

dn

! .g � 1/ D
Z

X

ˇ2
�

(since
R
X

�2
X D 2�.2g � 2/ by Gauss–Bonnet). Together with (A.5), this impliesZ

X

jˇn � ˇ�j2 ! 0: (A.6)
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To show ˇn ! ˇ� uniformly, consider any sequence pn 2 � and let x 2 Œ0; 1	

be a limit point of .ˇn=ˇ�/.pn/. It suffices to show x D 1.
Passing to a subsequence and using compactness of X , we can assume that pn !

p 2 � and that ˇn.pn/ ! xˇ�.p/. By changing coordinates on �, we can also
assume p D 0. By (A.6) we can find qn ! 0 such that ˇn.qn/ ! ˇ�.0/. Then
by (A.3), there exist �n-invariant holomorphic 1-forms !n.z/ dz on � such thatR

Yn
j!nj2 D 1 and

j!n.qn/j D ˇn.qn/ ! ˇ�.0/ D jdzj
�

�

Since !n is holomorphic and
R

rn�
j!nj2 < 1, the equation above easily implies that

j!nj ! jdzj=� uniformly on compact subsets of �. But we also have

ˇn.pn/ � j!n.pn/j ! ˇ�.0/;

and thus ˇn.pn/ ! ˇ�.0/ and hence x D 1. �
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