Entropy on Riemann surfaces and the Jacobians of finite covers

Curtis T. McMullen*

Abstract. This paper characterizes those pseudo-Anosov mappings whose entropy can be detected homologically by taking a limit over finite covers. The proof is via complex-analytic methods. The same methods show the natural map $\mathcal{M}_g \to \prod \mathcal{A}_h$, which sends a Riemann surface to the Jacobians of all of its finite covers, is a contraction in most directions.

Mathematics Subject Classification (2010). 32G15, 37E30.

Keywords. Entropy, pseudo-Anosov maps, Kobayashi metric, Siegel space, Teichmüller space, homology.

1. Introduction

Let $f: S \to S$ be a pseudo-Anosov mapping on a surface of genus g with n punctures. It is well-known that the topological entropy h(f) is bounded below in terms of the spectral radius of $f^*: H^1(S, \mathbb{C}) \to H^1(S, \mathbb{C})$; we have

$$\log \rho(f^*) \le h(f).$$

If we lift f to a map $\tilde{f}: \tilde{S} \to \tilde{S}$ on a finite cover of S, then its entropy stays the same but the spectral radius of the action on homology can increase. We say the entropy of f can be *detected homologically* if

$$h(f) = \sup \log \rho(\tilde{f}^* \colon H^1(\tilde{S}) \to H^1(\tilde{S})),$$

where the supremum is taken over all finite covers to which f lifts.

In this paper we will show:

Theorem 1.1. The entropy of a pseudo-Anosov mapping f can be detected homologically if and only if the invariant foliations of f have no odd-order singularities in the interior of S.

The proof is via complex analysis. Hodge theory provides a natural embedding $\mathcal{M}_g \to \mathcal{A}_g$ from the moduli space of Riemann surfaces into the moduli space of

^{*}Research supported in part by the NSF.

C. T. McMullen

Abelian varieties, sending X to its Jacobian. Any characteristic covering map from a surface of genus h to a surface of genus g, branched over n points, provides a similar map

$$\mathcal{M}_{g,n} \to \mathcal{M}_h \to \mathcal{A}_h. \tag{1.1}$$

It is known that the hyperbolic metric on a Riemann surface X can be reconstructed using the metrics induced from the Jacobians of its finite covers ([Kaz]; see the Appendix). Similarly, it is natural to ask if the Teichmüller metric on $\mathcal{M}_{g,n}$ can be recovered from the Kobayashi metric on \mathcal{A}_h , by taking the limit over all characteristic covers $\mathcal{C}_{g,n}$. We will show such a construction is impossible.

Theorem 1.2. The natural map $\mathcal{M}_{g,n} \to \prod_{\mathcal{C}_{g,n}} \mathcal{A}_h$ is not an isometry for the Kobayashi metric, unless dim $\mathcal{M}_{g,n} = 1$.

It is an open problem to determine if the Kobayashi and Carathéodory metrics on moduli space coincide when dim $\mathcal{M}_{g,n} > 1$ (see e.g. [FM], Problem 5.1). An equivalent problem is to determine if Teichmüller space embeds holomorphically and isometrically into a (possibly infinite) product of bounded symmetric domains. Theorem 1.2 provides some support for a negative answer to this question.

Here is a more precise version of Theorem 1.2, stated in terms of the lifted map

$$\widetilde{\mathcal{I}}_{g,n} \to \widetilde{\mathcal{I}}_h \stackrel{J}{\to} \mathfrak{H}_h$$

from Teichmüller space to Siegel space determined by a finite cover.

Theorem 1.3. Suppose the Teichmüller mapping between a pair of distinct points $X, Y \in \mathcal{T}_{g,n}$ comes from a quadratic differential with an odd order zero. Then

$$\sup d(J(\widetilde{X}), J(\widetilde{Y})) < d(X, Y),$$

where the supremum is taken over all compatible finite covers of X and Y.

Conversely, if the Teichmüller map from X to Y has only even order singularities, then there is a double cover such that $d(J(\tilde{X}), J(\tilde{Y})) = d(X, Y)$ (cf. [Kra]). In particular, the complex geodesics generated by squares of holomorphic 1-forms map isometrically into \mathcal{A}_g . The only directions contracted by the map $\mathcal{M}_g \to \prod \mathcal{A}_h$ are those identified by Theorem 1.3.

Theorem 1.1 follows from Theorem 1.3 by taking X and Y to be points on the Teichmüller geodesic stabilized by the mapping-class f. It would be interesting to find a direct topological proof of Theorem 1.1.

As a sample application, let $\beta \in B_n$ be a pseudo-Anosov braid whose monodromy map $f: S \to S$ (on the *n*-times punctured plane) has an odd order singularity. Then Theorem 1.1 implies the image of β under the Burau representation satisfies

$$\log \sup_{|q|=1} \rho(B(q)) < h(f).$$

Indeed, $\rho(B(q))$ at any *d*-th root of unit is bounded by $\rho(\tilde{f}^*)$ on a \mathbb{Z}/d cover *S* [Mc2]. This improves a result in [BB]. Similar statements hold for other homological representations of the mapping–class group.

Notes and references. For C^{∞} diffeomorphisms of a compact smooth manifold, one has $h(f) \ge \log \sup_i \rho(f^*|H^i(X))$ [Ym], and equality holds for holomorphic maps on Kähler manifolds [Gr]. The lower bound $h(f) \ge \log \rho(f^*|H^1(X))$ also holds for homeomorphisms [Mn]. For more on pseudo-Anosov mappings, see e.g. [FLP], [Bers] and [Th].

A proof that the inclusion of $\mathcal{T}_{g,n}$ into universal Teichmüller space is a contraction, based on related ideas, appears in [Mc1].

2. Odd order zeros

We begin with an analytic result, which describes how well a monomial z^k of odd order can be approximated by the square of an analytic function.

Theorem 2.1. Let $k \ge 1$ be odd, and let f(z) be a holomorphic function on the unit disk Δ such that $\int |f(z)|^2 = 1$. Then

$$\left|\int_{\Delta} f(z)^2 \left(\frac{\bar{z}}{|z|}\right)^k\right| \le C_k = \frac{\sqrt{k+1}\sqrt{k+3}}{k+2} < 1.$$

Here the integral is taken with respect to Lebesgue measure on the unit disk.

Proof. Consider the orthonormal basis $e_n(z) = a_n z^n$, $n \ge 0$, $a_n = \sqrt{n+1}/\sqrt{\pi}$, for the Bergman space $L^2_{\alpha}(\Delta)$ of analytic functions on the disk with $||f||_2^2 = \int |f(z)|^2 < \infty$. With respect to this basis, the nonzero entries in the matrix of the symmetric bilinear form $Z(f,g) = \int f(z)g(z)\overline{z}^k/|z|^k$ are given by

$$Z(e_n, e_{k-n}) = a_n a_{k-n} \int_{\Delta} |z|^k = \frac{2\sqrt{n+1}\sqrt{k-n+1}}{k+2}$$

In particular, $Z(e_i, e_i) = 0$ for all *i* (since *k* is odd), and $Z(e_i, e_j) = 0$ for all i, j > k.

Note that the ratio above is less than one, by the inequality between the arithmetic and geometric means, and it is maximized when n < k/2 < n+1. Thus the maximum of $|Z(f, f)|/||f||^2$ over $L^2_{\alpha}(\Delta)$ is achieved when $f = e_n + e_{n+1}$, n = (k-1)/2, at which point it is given by C_k .

3. Siegel space

In this section we describe the Siegel space of Hodge structures on a surface S, and its Kobayashi metric.

Hodge structures. Let *S* be a closed, smooth, oriented surface of genus *g*. Then $H^1(S) = H^1(S, \mathbb{C})$ carries a natural involution $C(\alpha) = \overline{\alpha}$ fixing $H^1(S, \mathbb{R})$, and a natural Hermitian form

$$\langle \alpha, \beta \rangle = \frac{\sqrt{-1}}{2} \int_{S} \alpha \wedge \bar{\beta}$$

of signature (g, g). A Hodge structure on $H^1(S)$ is given by an orthogonal splitting

$$H^1(S) = V^{1,0} \oplus V^{0,1}$$

such that $V^{1,0}$ is positive-definite and $V^{0,1} = C(V^{1,0})$. We have a natural norm on $V^{1,0}$ given by $\|\alpha\|^2 = \langle \alpha, \alpha \rangle$.

The set of all possible Hodge structures forms the *Siegel space* $\mathfrak{S}(S)$. To describe this complex symmetric space in more detail, fix a splitting $H^1(S) = W^{1,0} \oplus W^{0,1}$. Then for any other Hodge structure $V^{1,0} \oplus V^{0,1}$, there is a unique operator

$$Z\colon W^{1,0}\to W^{0,1}$$

such that $V^{1,0} = (I + Z)(W^{1,0})$. This means $V^{1,0}$ coincides with the graph of Z in $W^{1,0} \oplus W^{0,1}$.

The operator Z is determined uniquely by the associated bilinear form

$$Z(\alpha,\beta) = \langle \alpha, CZ(\beta) \rangle$$

on $W^{1,0}$, and the condition that $V^{1,0} \oplus V^{0,1}$ is a Hodge structure translates into the conditions

$$Z(\alpha, \beta) = Z(\beta, \alpha) \quad \text{and} \quad |Z(\alpha, \alpha)| < 1 \text{ if } \|\alpha\| = 1. \tag{3.1}$$

Since the second inequality above is an open condition, the tangent space at the base point $p \sim W^{1,0} \oplus W^{0,1}$ is given by

$$T_p\mathfrak{S}(S) = \{$$
symmetric bilinear maps $Z : W^{1,0} \times W^{1,0} \to \mathbb{C} \}.$

Comparison maps. Any Hodge structure on $H^1(S)$ determines an isomorphism

$$V^{1,0} \cong H^1(S,\mathbb{R}) \tag{3.2}$$

sending α to $\Re(\alpha) = (\alpha + C(\alpha))/2$. Thus $H^1(S, \mathbb{R})$ inherits a norm and a complex structure from $V^{1,0}$.

Vol. 88 (2013) Entropy on Riemann surfaces and the Jacobians of finite covers 95

Put differently, (3.2) gives a *marking* of $V^{1,0}$ by $H^1(S, \mathbb{R})$. By composing one marking with the inverse of another, we obtain the real-linear *comparison map*

$$T = (I + Z)(I + CZ)^{-1} \colon W^{1,0} \to V^{1,0}$$
(3.3)

between any pair of Hodge structures. It is characterized by $\Re(\alpha) = \Re(T(\alpha))$.

Symmetric matrices. The classical Siegel domain is given by

$$\mathfrak{H}_g = \{ Z \in \mathcal{M}_g(\mathbb{C}) : Z_{ij} = Z_{ji} \text{ and } I - ZZ \gg 0 \}.$$

(cf. [Sat], Chapter II.7). It is a convex, bounded symmetric domain in \mathbb{C}^N , N = g(g+1)/2. The choice of an orthonormal basis for $W^{1,0}$ gives an isomorphism $Z \mapsto Z(\omega_i, \omega_j)$ between $\mathfrak{S}(S)$ and \mathfrak{S}_g , sending the basepoint *p* to zero.

The Kobayashi metric. Let $\Delta \subset \mathbb{C}$ denote the unit disk, equipped with the metric $|dz|/(1-|z|^2)$ of constant curvature -4. The *Kobayashi metric* on $\mathfrak{H}(S)$ is the largest metric such that every holomorphic map $f : \Delta \to \mathfrak{H}(S)$ satisfies $||Df(0)|| \leq 1$. It determines both a norm on the tangent bundle and a distance function on pairs of points [Ko].

Proposition 3.1. The Kobayashi norm on $T_p \mathfrak{S}(S)$ is given by

$$||Z||_{K} = \sup\{Z(\alpha, \alpha)| : ||\alpha|| = 1\},\$$

and the Kobayashi distance is given in terms of the comparison map (3.3) by

$$d(V^{1,0}, W^{1,0}) = \log ||T||.$$

Proof. Choosing a suitable orthonormal basis for $W^{1,0}$, we can assume that

$$Z(\omega_i, \omega_i) = \lambda_i \delta_{ii}$$

with $\lambda_1 \ge \lambda_2 \ge \cdots \lambda_g \ge 0$. Since \mathfrak{S}_g is a convex symmetric domain, the Kobayashi norm at the origin and the Kobayashi distance satisfy

$$||Z||_{K} = r$$
 and $d(0, Z) = \frac{1}{2} \log \frac{1+r}{1-r}$,

where $r = \inf\{s > 0 : Z \in s\mathfrak{H}_g\}$ (see [Ku]). Clearly $r = \lambda_1 = \sup |Z(\alpha, \alpha)| / ||\alpha||^2$, and by (3.3), we have

$$||T||^{2} = ||T(\sqrt{-1}\omega_{1})||^{2} = \left\|\frac{\omega_{1}}{1-\lambda_{1}} + \frac{\lambda_{1}\bar{\omega}_{1}}{1-\lambda_{1}}\right\|^{2} = \frac{1+\lambda_{1}}{1-\lambda_{1}}$$

which gives the expressions above.

957

4. Teichmüller space

This section gives a functorial description of the derivative of the map from Teichmüller space to Siegel space.

Markings. Let \overline{S} be a compact oriented surface of genus g, and let $S \subset \overline{S}$ be a subsurface obtained by removing n points.

Let $\operatorname{Teich}(S) \cong \mathcal{T}_{g,n}$ denote the Teichmüller space of Riemann surfaces marked by S. A point in Teich(S) is specified by a homeomorphism $f: S \to X$ to a Riemann surface of finite type. This means there is a compact Riemann surface $\overline{X} \supset X$ and an extension of f to a homeomorphism $\overline{f}: \overline{S} \to \overline{X}$.

Metrics. Let Q(X) denote the space of holomorphic quadratic differentials on X such that

$$\|q\|_X = \int_X |q| < \infty.$$

There is a natural pairing $(q, \mu) \mapsto \int_X q\mu$ between the space Q(X) and the space M(X) of L^{∞} -measurable Beltrami differentials μ . The tangent and cotangent spaces to Teichmüller space at X are isomorphic to $M(X)/Q(X)^{\perp}$ and Q(X) respectively.

The Teichmüller and Kobayashi metrics on Teich(S) coincide [Roy1], [Hub], Chapter 6. They are given by the norm

$$\|\mu\|_T = \sup \{ |\int q\mu| : \|q\|_X = 1 \}$$

on the tangent space at X; the corresponding distance function

$$d(X,Y) = \inf \frac{1}{2} \log K(\phi)$$

measures the minimal dilatation $K(\phi)$ of a quasiconformal map $\phi: X \to Y$ respecting their markings.

Hodge structure. The periods of holomorphic 1-forms on X serve as classical moduli for X. From a modern perspective, these periods give a map

$$J: \operatorname{Teich}(S) \to \mathfrak{H}(\overline{S}) \cong \mathfrak{H}_g,$$

sending X to the Hodge structure

$$H^1(\overline{S}) \cong H^1(\overline{X}) \cong H^{1,0}(\overline{X}) \oplus H^{0,1}(\overline{X}).$$

Here the first isomorphism is provided by the marking $\overline{f}: \overline{S} \to \overline{X}$. We also have a natural isomorphism between $H^{1,0}(\overline{X})$ and the space of holomorphic 1-forms $\Omega(\overline{X})$. The image J(X) encodes the complex analytic structure of the Jacobian variety $Jac(\overline{X}) = \Omega(\overline{X})^*/H_1(\overline{X},\mathbb{Z})$. (It is does not depend on the location of the punctures of X.)

Proposition 4.1. The derivative of the period map sends $\mu \in M(X)$ to the quadratic form $Z = DJ(\mu)$ on $\Omega(\overline{X})$ given by

$$Z(\alpha,\beta) = \int_{\bar{X}} \alpha \beta \mu$$

This is a basis-free reformulation of Ahlfors' variational formula [Ah], §5; see also [Ra], [Roy2] and Proposition 1 of [Kra]. Note that $\alpha\beta \in Q(X)$.

5. Contraction

This section brings finite covers into play, and establishes a uniform estimate for contraction of the mapping $\mathcal{T}_{g,n} \to \mathcal{T}_h \to \mathfrak{S}_h$.

Jacobians of finite covers. A finite connected covering space $S_1 \rightarrow S_0$ determines a natural map

$$P: \operatorname{Teich}(S_0) \to \operatorname{Teich}(S_1)$$

sending each Riemann surface to the corresponding covering space $X_1 \to X_0$. By taking the Jacobian of X_1 , we obtain a map $J \circ P$: Teich $(S_0) \to \mathfrak{H}(\overline{S_1})$.

Let $q_0 \in Q(X_0)$ be a holomorphic quadratic differential with a zero of odd order k, say at $p \in X_0$. Let $\mu = \bar{q}_0/|q_0| \in M(X_0)$; then $\|\mu\|_T = 1$. Let $\pi : X_1 \to X_0$ denote the natural covering map, and let $q_1 = \pi^*(q_0)$.

We will show that $J(X_1)$ cannot change too rapidly under the unit deformation μ of X_0 . Indeed, if $J(X_1)$ were to move at nearly unit speed, then $\pi^*(\mu) = \bar{q}_1/|q_1|$ would pair efficiently with α^2 for some unit-norm $\alpha \in \Omega(\bar{X}_1)$, which is impossible because of the many odd-order zeros of q_1 .

To make a quantitative estimate, choose a holomorphic chart $\phi: (\Delta, 0) \to (X_0, p)$ such that $\phi^*(\mu) = z^k/|z|^k d\bar{z}/dz$. Let $U = \phi(\Delta)$, and let

$$m(U) = \inf\{||q||_U : q \in Q(X_0), ||q||_X = 1\}.$$

(Here $||q||_U = \int_U |q|$.) Since $Q(X_0)$ is finite-dimensional, we have m(U) > 0.

Theorem 5.1. The image Z of the vector $[\mu]$ under the derivative of $J \circ P$ satisfies

$$||Z||_K \leq \delta < 1 = ||\mu||_T,$$

where $\delta = \max(1/2, 1 - (1 - C_k)m(U)/2)$ does not depend on the finite cover $S_1 \rightarrow S_0$.

Proof. The derivative of *P* sends μ to $\pi^*(\mu)$. By Proposition 3.1, to show $||Z||_K \leq \delta$ it suffices to show that

$$|Z(\alpha,\alpha)| = \left| \int_{X_1} \alpha^2 \pi^* \mu \right| \le \delta$$

for all $\alpha \in \Omega(\overline{X}_1)$ with $\|\alpha^2\|_{X_1} = 1$. Setting $q = \pi_*(\alpha^2)$, we also have

$$|Z(\alpha,\alpha)| = \left| \int_{X_0} q\mu \right| \le ||q||_{X_0},$$

so the proof is complete if $||q||_{X_0} \le 1/2$. Thus we may assume that

$$\|\alpha^2\|_V \ge \|q\|_U \ge m(U)\|q\|_{X_0} \ge m(U)/2,$$

where $V = \pi^{-1}(U) = \bigcup_{i=1}^{d} V_i$ is a finite union of disjoint disks. Using the coordinate charts $V_i \cong U \cong \Delta$ and Theorem 2.1, we find that on each of these disks we have

$$\left|\int_{V_i} \alpha^2 \pi^*(\mu)\right| = \left|\int_{\Delta} \alpha(z)^2 \left(\frac{z}{|z|}\right)^k\right| \le C_k \|\alpha^2\|_{V_i}$$

Summing these bounds and using the fact that $\|\alpha^2\|_{(X_1-V)} + \|\alpha^2\|_V = 1$, we obtain

$$\left| \int_{X_1} \alpha^2 \pi^*(\mu) \right| \le \|\alpha^2\|_{(X_1 - V)} + C_k \|\alpha^2\|_V \le 1 - \frac{(1 - C_k)m(U)}{2} \le \delta. \quad \Box$$

6. Conclusion

It is now straightforward to establish the results stated in the Introduction.

Proof of Theorem 1.3. Assume the Beltrami coefficient of the Teichmüller mapping between $X, Y \in \mathcal{T}_{g,n}$ has the form $\mu = k\bar{q}/q$, where $q \in Q(X)$ has an odd order zero. Then the same is true for the tangent vectors to the Teichmüller geodesic γ joining X to Y. Theorem 5.1 then implies that $D(J \circ P)|_{\gamma}$ is contracting by a factor $\delta < 1$ independent of P, and therefore

$$d(J \circ P(X), J \circ P(Y)) = d(J(\tilde{X}), J(\tilde{Y})) < \delta \cdot d(X, Y).$$

Proof of Theorem 1.2. The contraction of $\mathcal{M}_{g,n} \to \prod_{\mathcal{C}_{g,n}} \mathcal{A}_h$ in some directions is immediate from the uniformity of the bound in Theorem 1.3, using the fact that the Kobayashi metric on a product is the sup of the Kobayashi metrics on each term, and that there exist $q \in Q(X)$ with simple zeros whenever $X \in \mathcal{M}_{g,n}$ and dim $\mathcal{M}_{g,n} > 1$.

Proof of Theorem 1.1. Let $f: S_0 \to S_0$ be a pseudo-Anosov mapping. If f has only even order singularities, then its expanding foliation is locally orientable, and hence there is a double cover $\tilde{S} \to \tilde{S}$ such that $\log \rho(\tilde{f}^*) = h(f)$.

Now suppose f has an odd-order singularity. Let $X_0 \in \text{Teich}(S_0)$ be a point on the Teichmüller geodesic stabilized by the action of f on $\text{Teich}(S_0)$. Then $h(f) = d(f \cdot X_0, X_0) > 0$ (see e.g. [FLP] and [Bers]).

CMH

Let $\tilde{f}: S_1 \to S_1$ be a lift of f to a finite covering of S_0 , and let $X_1 = P(X_0) \in$ Teich(S₁). Using the marking of X_1 and the isomorphism $H^1(X_1, \mathbb{R}) \cong H^{1,0}(X_1)$, we obtain a commutative diagram

where T is the comparison map between $J(X_1)$ and $J(\tilde{f} \cdot X_1)$ (see equation (3.3)). Then Theorem 1.3 and Proposition 3.1 yield the bound

$$\log \rho(\tilde{f}^*) \le \log \|T\| = d(J(X_1), \tilde{f} \cdot J(X_1)) \le \delta d(X_0, f \cdot X_0) = \delta h(f),$$

where $\delta < 1$ does not dependent on the finite covering $S_1 \rightarrow S_0$. Consequently, $\sup \log \rho(\tilde{f}^*) < h(f).$

Appendix. The hyperbolic metric via Jacobians of finite covers

Let $X = \Delta / \Gamma$ be a compact Riemann surface, presented as a quotient of the unit disk by a Fuchsian group Γ . Let $Y_n \to X$ be an ascending sequence of finite Galois covers which converge to the universal cover, in the sense that

$$Y_n = \Delta / \Gamma_n, \quad \Gamma \supset \Gamma_1 \supset \Gamma_2 \supset \Gamma_3 \cdots, \quad \text{and} \quad \bigcap \Gamma_i = \{e\}.$$
 (A.1)

The Bergman metric on Y_n (defined below) is invariant under automorphisms, so it descends to a metric β_n on X. This appendix gives a short proof of:

Theorem A.1 (Kazhdan). The Bergman metrics inherited from the finite Galois covers $Y_n \rightarrow X$ converge to a multiple of the hyperbolic metric; more precisely, we have

$$\beta_n o rac{\lambda_X}{2\sqrt{\pi}}$$

uniformly on X.

The argument below is based on [Kaz], §3; for another, somewhat more technical approach, see [Rh].

Metrics. We begin with some definitions. Let $\Omega(X)$ denote the Hilbert space of holomorphic 1-forms on a Riemann surface X such that

$$\|\omega\|_X^2 = \int_X |\omega|^2 < \infty.$$

The area form of the *Bergman metric* on X is given by

$$\beta_X^2 = \sum |\omega_i|^2, \tag{A.2}$$

where (ω_i) is any orthonormal basis of $\Omega(X)$. Equivalently, the Bergman length of a tangent vector $v \in TX$ is given by

$$\langle \beta_X, v \rangle = \sup_{\omega \neq 0} \frac{|\omega(v)|}{\|\omega\|_X}$$
 (A.3)

This formula shows that inclusions are contracting: if Y is a subdomain of X, then $\beta_Y \ge \beta_X$.

Now suppose X is a compact surface of genus g > 0. Then (A.2) shows its Bergman area is given by

$$\int_X \beta_X^2 = \dim \Omega(X) = g. \tag{A.4}$$

In this case β_X is also the pullback, via the Abel–Jacobi map, of the natural Kähler metric on the Jacobian of *X*.

Finally suppose $X = \Delta / \Gamma$. Then the hyperbolic metric of constant curvature -1,

$$\lambda_{\Delta} = \frac{2|dz|}{1-|z|^2},$$

descends to give the hyperbolic metric λ_X on X. Using the fact that $||dz||_{\Delta} = \pi$, it is easy to check that $4\pi\beta_{\Delta}^2 = \lambda_{\Delta}^2$.

Proof of Theorem A.1. We will regard the Bergman metric β_n on Y_n as a Γ_n -invariant metric on Δ . It suffices to show that $\beta_n/\beta_\Delta \to 1$ uniformly on Δ .

Let g and g_n denote the genus of X and Y_n respectively, and let d_n denote the degree of Y_n/X ; then $g_n - 1 = d_n(g - 1)$. By (A.1), the injectivity radius of Y_n tends to infinity. In particular, there is a sequence $r_n \to 1$ such that $\gamma(r_n \Delta)$ injects into Y_n for any $\gamma \in \Gamma$. Since inclusions are contracting, this shows

$$\beta_n \le (1 + \epsilon_n) \beta_\Delta \tag{A.5}$$

where $\epsilon_n \to 0$.

Next, note that both β_n and β_{Δ} are Γ -invariant, so they determine metrics on X. By (A.4), we have

$$\int_X \beta_n^2 = \frac{1}{d_n} \int_{Y_n} \beta_n^2 = \frac{g_n}{d_n} \to (g-1) = \int_X \beta_\Delta^2$$

(since $\int_X \lambda_X^2 = 2\pi (2g - 2)$ by Gauss–Bonnet). Together with (A.5), this implies

$$\int_X |\beta_n - \beta_\Delta|^2 \to 0. \tag{A.6}$$

To show $\beta_n \to \beta_\Delta$ uniformly, consider any sequence $p_n \in \Delta$ and let $x \in [0, 1]$ be a limit point of $(\beta_n / \beta_\Delta)(p_n)$. It suffices to show x = 1.

Passing to a subsequence and using compactness of X, we can assume that $p_n \rightarrow p \in \Delta$ and that $\beta_n(p_n) \rightarrow x\beta_{\Delta}(p)$. By changing coordinates on Δ , we can also assume p = 0. By (A.6) we can find $q_n \rightarrow 0$ such that $\beta_n(q_n) \rightarrow \beta_{\Delta}(0)$. Then by (A.3), there exist Γ_n -invariant holomorphic 1-forms $\omega_n(z) dz$ on Δ such that $\int_{Y_n} |\omega_n|^2 = 1$ and

$$|\omega_n(q_n)| = \beta_n(q_n) \to \beta_\Delta(0) = \frac{|dz|}{\pi}$$

Since ω_n is holomorphic and $\int_{r_n\Delta} |\omega_n|^2 < 1$, the equation above easily implies that $|\omega_n| \to |dz|/\pi$ uniformly on compact subsets of Δ . But we also have

$$\beta_n(p_n) \ge |\omega_n(p_n)| \to \beta_\Delta(0),$$

and thus $\beta_n(p_n) \rightarrow \beta_{\Delta}(0)$ and hence x = 1.

References

- [Ah] L. Ahlfors, The complex analytic structure of the space of closed Riemann surfaces. In Analytic functions, Princeton University Press, Princeton, NJ, 1960, 45–66. Zbl 0100.28903 MR 0124486
- [BB] G. Band and P. Boyland, The Burau estimate for the entropy of a braid. Algebr. Geom. Topol. 7 (2007), 1345–1378. Zbl 1128.37028 MR 2350285
- [Bers] L. Bers, An extremal problem for quasiconformal maps and a theorem by Thurston. Acta Math. 141 (1978), 73–98. Zbl 0389.30018 MR 0477161
- [FLP] A. Fathi, F. Laudenbach, and V. Poénaru, *Travaux de Thurston sur les surfaces*. Astérisque, vol. 66–67, Soc. Math. France, Paris 1979. Zbl 0406.00016 MR 0568308
- [FM] A. Fletcher and V. Markovic, Infinite dimensional Teichmüller spaces. In *Handbook of Teichmüller theory*, ed. by A. Papadopoulos, Volume II, Eur. Math. Soc., Zürich 2009, 65–92. Zbl 1210.30015 MR 2497790
- [Gr] M. Gromov, On the entropy of holomorphic maps. *Enseign. Math.* 49 (2003), 217–235. Zbl 1080.37051 MR 2026895
- [Hub] J. H. Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics. Vol. I. Matrix Editions, Ithaca, NY, 2006. Zbl 1102.30001 MR 2245223
- [Kaz] D. A. Kazhdan, On arithmetic varieties. In *Lie groups and their representations* (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), Halsted, New York 1975, 151–217. Zbl 0308.14007 MR 0486316
- [Ko] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings. Marcel Dekker, Inc., New York 1970. Zbl 0207.37902 MR 0277770
- [Kra] I. Kra, The Carathéodory metric on abelian Teichmüller disks. J. Analyse Math. 40 (1981), 129–143. Zbl 0487.32017 MR 0659787

[Ku]	Y. Kubota, On the Kobayashi and Carathéodory distances of bounded symmetric do- mains. <i>Kodai Math. J.</i> 12 (1989), 41–48. Zbl 0672.32010 MR 0987140
[Mn]	A. Manning, Topological entropy and the first homology group. In <i>Dynamical systems—Warwick 1974</i> , Lecture Notes in Math. 468, Springer, Berlin 1975, 185–190. Zbl 0307.54042 MR 0650661
[Mc1]	C. McMullen, Amenability, Poincaré series and quasiconformal maps. <i>Invent. Math.</i> 97 (1989), 95–127. Zbl 0672.30017 MR 0999314
[Mc2]	C. McMullen, Braid groups and Hodge theory. <i>Math. Ann.</i> 355 (2013), no. 3, 893–946. Zbl 06149478 MR 3020148
[Ra]	H. E. Rauch, A transcendental view of the space of algebraic Riemann surfaces. <i>Bull. Amer. Math. Soc.</i> 71 (1965), 1–39. Zbl 0154.33002 MR 0213543
[Rh]	J. A. Rhodes, Sequences of metrics on compact Riemann surfaces. <i>Duke Math. J.</i> 72 (1993), 725–738. Zbl 0798.11018 MR 1253622
[Roy1]	H. L. Royden, Automorphisms and isometries of Teichmüller space. In <i>Advances in the theory of Riemann surfaces</i> , Ann. of Math. Studies 66, Princeton University Press, Princeton, NJ, 1971, 369–384. Zbl 0222.32011 MR 0288254
[Roy2]	H. L. Royden, Invariant metrics on Teichmüller space. In <i>Contributions to analysis</i> , Academic Press, New York 1974, 393–399. Zbl 0302.32022 MR 0377116
[Sat]	I. Satake, <i>Algebraic structures of symmetric domains</i> . Kanô Memorial Lectures 4, Princeton University Press, Princeton, NJ, 1980. Zbl 0483.32017 MR 0591460
[Th]	W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces. <i>Bull. Amer. Math. Soc.</i> 19 (1988), 417–432. Zbl 0674.57008 MR 0956596
[Ym]	Y. Yomdin, Volume growth and entropy. Israel J. Math. 57 (1987), 285–300. Zbl 0641.54036 MR 0889979
Received March 29, 2011	
Curtis T. McMullen, Mathematics Department, Harvard University, 1 Oxford St, Cambridge, MA 02138-2901, U.S.A	
E-mail: ctm@math.harvard.edu	

C. T. McMullen

CMH