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Entropy on Riemann surfaces and the Jacobians of finite covers
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Abstract. This paper characterizes those pseudo-Anosov mappings whose entropy can be
detected homologically by taking a limit over finite covers. The proof is via complex-analytic
methods. The same methods show the natural map Mg — [] 4, which sends a Riemann
surface to the Jacobians of all of its finite covers, is a contraction in most directions.
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1. Introduction

Let f: S — S beapseudo-Anosov mapping on a surface of genus g with n punctures.
It is well-known that the topological entropy 4 ( f) is bounded below in terms of the
spectral radius of f*: H'(S,C) — H(S,C); we have

log p(f*) < h(f).

If we lift f to a map f : § — § on afinite cover of S, then its entropy stays the same
but the spectral radius of the action on homology can increase. We say the entropy
of f can be detected homologically if

h(f) = suplogp(f*: H'(S) — H'(S)).

where the supremum is taken over all finite covers to which f lifts.
In this paper we will show:

Theorem 1.1. The entropy of a pseudo-Anosov mapping f can be detected homo-
logically if and only if the invariant foliations of f have no odd-order singularities
in the interior of S.

The proof is via complex analysis. Hodge theory provides a natural embedding
Mg — Ay from the moduli space of Riemann surfaces into the moduli space of
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Abelian varieties, sending X to its Jacobian. Any characteristic covering map from a
surface of genus 4 to a surface of genus g, branched over n points, provides a similar
map

Mg n — My — Ay (L.

Itis known that the hyperbolic metric on a Riemann surface X can be reconstructed
using the metrics induced from the Jacobians of its finite covers ([Kaz]; see the
Appendix). Similarly, it is natural to ask if the Teichmiiller metric on Mg , can be
recovered from the Kobayashi metric on #y,, by taking the limit over all characteristic
covers Cg ,. We will show such a construction is impossible.

Theorem 1.2. The natural map Mg, — Hfgn Ay Is not an isometry for the
Kobayashi metric, unless dim Mg , = 1.

It is an open problem to determine if the Kobayashi and Carathéodory metrics
on moduli space coincide when dim Mg, > 1 (see e.g. [FM], Problem 5.1). An
equivalent problem is to determine if Teichmiiller space embeds holomorphically
and isometrically into a (possibly infinite) product of bounded symmetric domains.
Theorem 1.2 provides some support for a negative answer to this question.

Here is a more precise version of Theorem 1.2, stated in terms of the lifted map

J
Tgmn = T —> Op
from Teichmiiller space to Siegel space determined by a finite cover.

Theorem 1.3. Suppose the Teichmiiller mapping between a pair of distinct points
X, Y € T4 n comes from a quadratic differential with an odd order zero. Then

sup d(J(X), J(Y)) < d(X.Y),
where the supremum is taken over all compatible finite covers of X and Y .

Conversely, if the Teichmiiller map from X to Y has only even order singularities,
then there is a double cover such that d(J(X), J(Y)) = d(X.,Y) (cf. [Kra]). In
particular, the complex geodesics generated by squares of holomorphic 1-forms map
isometrically into 4. The only directions contracted by the map Mg — [] 4y are
those identified by Theorem 1.3.

Theorem 1.1 follows from Theorem 1.3 by taking X and Y to be points on the
Teichmiiller geodesic stabilized by the mapping-class f. It would be interesting to
find a direct topological proof of Theorem 1.1.

As asample application, let 8 € B, be a pseudo-Anosov braid whose monodromy
map f: S — S (on the n-times punctured plane) has an odd order singularity. Then
Theorem 1.1 implies the image of 8 under the Burau representation satisfies

log ﬂlpl p(B(q)) < h(f).
=
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Indeed, p(B(g)) at any d-th root of unit is bounded by p(f*) on a Z/d cover S
[Mc2]. This improves aresultin [BB]. Similar statements hold for other homological
representations of the mapping—class group.

Notes and references. For C*° diffeomorphisms of a compact smooth manifold,
one has h(f) > logsup; p(f*|H'(X)) [Ym], and equality holds for holomorphic
maps on Kihler manifolds [Gr]. The lower bound A( f) > log p( f*|H'(X)) also
holds for homeomorphisms [Mn]. For more on pseudo-Anosov mappings, see e.g.
[FLP], [Bers] and [Th].

A proof that the inclusion of 7 , into universal Teichmiiller space is a contraction,
based on related ideas, appears in [Mc1].

2. Odd order zeros

We begin with an analytic result, which describes how well a monomial z¥ of odd
order can be approximated by the square of an analytic function.

Theorem 2.1. Let k > 1 be odd, and let f(z) be a holomorphic function on the unit
disk A such that [ | f(z)|* = 1. Then

‘ /A f(Z)z(%)k

Here the integral is taken with respect to Lebesgue measure on the unit disk.

Vk+1Vk +3
=CG=—75, <t

Proof. Consider the orthonormal basis e, (z) = a,z",n > 0,a, = /n + 1/ /7, for
the Bergman space L2 (A) of analytic functions on the disk with || /13 = [| f(2)|* <
oo. With respect to this basis, the nonzero entries in the matrix of the symmetric
bilinear form Z(f,g) = [ f(2)g(2)z% /|z|¥ are given by

2Vn +1vVk —n +1
k+2

Z(en,ex—n) = anak—n/ |Z|k =
A

In particular, Z(e;,e;) = 0 for all i (since k is odd), and Z(e;,e;) = 0 for all
i,j >k

Note that the ratio above is less than one, by the inequality between the arithmetic
and geometric means, and it is maximized whenn < k/2 < n+1. Thus the maximum
of |Z(f, f)I/I.f11* over L2(A) is achieved when f = e, + en+1,n = (k — 1)/2,
at which point it is given by Cy. O
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3. Siegel space

In this section we describe the Siegel space of Hodge structures on a surface S, and
its Kobayashi metric.

Hodge structures. Let S be a closed, smooth, oriented surface of genus g. Then
H'(S) = H'(S,C) carries a natural involution C(«) = & fixing H'(S,R), and a

natural Hermitian form
/—1 -
@p) =5 [and
S

of signature (g, g). A Hodge structure on H'(S) is given by an orthogonal splitting
HI(S) — VI,O oy VO,l

such that V' 1-0 is positive-definite and V%! = C(V'1-9). We have a natural norm on
V10 given by ||la||? = (o, ).

The set of all possible Hodge structures forms the Siegel space $(S). To describe
this complex symmetric space in more detail, fix a splitting H!(S) = W10 @ wo!,
Then for any other Hodge structure V10 @ V%1, there is a unique operator

Z:wh - wol
such that V10 = (I + Z)(W'9). This means V' !:? coincides with the graph of Z

in W0 @ wo 1
The operator Z is determined uniquely by the associated bilinear form

Z(a, p) = («.CZ(B))

on W0 and the condition that V1% @ V%! is a Hodge structure translates into the
conditions

Z(a,B)=Z(PB,a) and |Z(a,a)| <lif|«| =1. (3.1

Since the second inequality above is an open condition, the tangent space at the base
point p ~ W10 @ W% s given by

T,$(S) = {symmetric bilinear maps Z: W' x wh? — C}.
Comparison maps. Any Hodge structure on H ' (S) determines an isomorphism
V10~ HY(S,R) (3.2)

sending o to N () = (o + C(«))/2. Thus H (S, R) inherits a norm and a complex
structure from V' 1-0,
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Put differently, (3.2) gives a marking of V1% by H'(S,R). By composing one
marking with the inverse of another, we obtain the real-linear comparison map

T=U+2Z)I+CZ)':who_ pLo (3.3)
between any pair of Hodge structures. It is characterized by Ji(a) = N(T («)).
Symmetric matrices. The classical Siegel domain is given by

He ={Z €M (C) : Zjj=Zj;and [ —ZZ > O}.

(cf. [Sat], Chapter I1.7). It is a convex, bounded symmetric domain in C N N =
g(g + 1)/2. The choice of an orthonormal basis for W0 gives an isomorphism
Z — Z(w;,w;) between H(S) and Hg, sending the basepoint p to zero.

The Kobayashi metric. Let A C C denote the unit disk, equipped with the metric
|dz|/(1—]|z|?) of constant curvature —4. The Kobayashi metric on $(S) is the largest
metric such that every holomorphic map f: A — $(S) satisfies | Df(0)| < 1. It
determines both a norm on the tangent bundle and a distance function on pairs of
points [Ko].

Proposition 3.1. The Kobayashi norm on T,$(S) is given by
1Zllx = sup{Z(a, )| : [lef| =1},
and the Kobayashi distance is given in terms of the comparison map (3.3) by
d(vo, wh0 =1og|T].
Proof. Choosing a suitable orthonormal basis for W !9, we can assume that
Z(w;, wj) = A;6;j

withA; > A5 > --- A, > 0. Since H; is a convex symmetric domain, the Kobayashi
norm at the origin and the Kobayashi distance satisfy

1+r
1—r

1
IZI|lxk =r and d(0,Z2) = Elog

wherer = inf{s > 0: Z € s$,} (see [Ku]). Clearly r = 11 = sup|Z (e, @)|/||||?,
and by (3.3), we have
w1 )Lla_)l

T|? =||IT(V-1 2:”
171" = IT(vV=loyl T 1o

S Y
=)

which gives the expressions above. O
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4. Teichmiiller space

This section gives a functorial description of the derivative of the map from Teich-
miiller space to Siegel space.

Markings. Let S be a compact oriented surface of genus g, and let S C S be a
subsurface obtained by removing n points.

Let Teich(S) = 7, , denote the Teichmiiller space of Riemann surfaces marked
by S. A pointin Teich(S) is specified by ahomeomorphism f: S — X toaRiemann
surface of finite type. This means there is a compact Riemann surface X O X and
an extension of f to a homeomorphism f: § — X.

Metrics. Let Q(X) denote the space of holomorphic quadratic differentials on X

such that
lallx = [ la < o
X

There is a natural pairing (g, u) — fX g L between the space Q(X) and the space
M(X) of L°°-measurable Beltrami differentials ju. The tangent and cotangent spaces
to Teichmiiller space at X are isomorphic to M(X)/Q(X)* and Q(X) respectively.

The Teichmiiller and Kobayashi metrics on Teich(.S) coincide [Royl], [Hub],
Chapter 6. They are given by the norm

Il = sup{|[qu| : llglx =1}

on the tangent space at X ; the corresponding distance function
1
d(X,Y) = inf 3 log K(¢)
measures the minimal dilatation K(¢) of a quasiconformal map ¢: X — Y respect-

ing their markings.

Hodge structure. The periods of holomorphic 1-forms on X serve as classical moduli
for X. From a modern perspective, these periods give a map

J: Teich(S) — $(5) = H,,
sending X to the Hodge structure
H'(S)= H'(X) = H"°(X) @ H*'(X).

Here the first isomorphism is provided by the marking f : S — X. We also have a
natural isomorphism between H :°(X) and the space of holomorphic 1-forms €(X).
The image J(X) encodes the complex analytic structure of the Jacobian variety
Jac(X) = Q(X)*/H (X, Z). (It is does not depend on the location of the punctures
of X.)
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Proposition 4.1. The derivative of the period map sends p € M(X) to the quadratic
form Z = DJ(u) on Q(X) given by

Z(@.p) = fX oBy.

This is a basis-free reformulation of Ahlfors’ variational formula [Ah], §5; see
also [Ra], [Roy2] and Proposition 1 of [Kra]. Note that «8 € Q(X).

5. Contraction

This section brings finite covers into play, and establishes a uniform estimate for
contraction of the mapping 7, , — 7, — $p.

Jacobians of finite covers. A finite connected covering space S; — So determines
a natural map
P : Teich(S¢) — Teich(S1)

sending each Riemann surface to the corresponding covering space X1 — Xo. By
taking the Jacobian of X, we obtain a map J o P : Teich(Sy) — $(S)).

Let go € Q(Xo) be a holomorphic quadratic differential with a zero of odd order
k,say at p € Xo. Let u = Go/lq0| € M(Xo); then |u|lr = 1. Let w: X1 — Xo
denote the natural covering map, and let ¢, = 7*(go).

We will show that J(X;) cannot change too rapidly under the unit deformation p
of Xo. Indeed, if J(X) were to move at nearly unit speed, then 7*() = ¢,/|q1]
would pair efficiently with & for some unit-norm « € €(X;), which is impossible
because of the many odd-order zeros of ¢q; .

To make a quantitative estimate, choose aholomorphicchart¢: (A, 0) — (Xo, p)
such that ¢* (1) = z%/|z|K dZ/dz. Let U = ¢(A), and let

mU) = inf{llqllv : ¢ € Q(Xo). lgllx = 1}.
(Here |lglly = [y ql.) Since Q(X) is finite-dimensional, we have m(U) > 0.
Theorem 5.1. The image Z of the vector [jL] under the derivative of J o P satisfies
1Zllx =6 <1 =|lplr.

where § = max(1/2,1 — (1 — Cr)m(U)/2) does not depend on the finite cover
S1 rd So.

Proof. The derivative of P sends u to 77 * (). By Proposition 3.1, to show || Z||x < §
it suffices to show that
/ o’r*p
X

|Z (e, )| = <$é
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for all @ € Q(X;) with ||a?|x, = 1. Setting ¢ = 7. (a?), we also have

|Z(,00)| = '/ cm‘ < llqllxo-
Xo

so the proof is complete if || ¢||x, < 1/2. Thus we may assume that
le?lly = llgll = mU)lqllx, = mU)/2,

where V = 77 1(U) = U'lj V; is a finite union of disjoint disks. Using the coordinate
charts V; =~ U =~ A and Theorem 2.1, we find that on each of these disks we have

/V,.“z”*(’“‘)': [ oer (2 |)k

Summing these bounds and using the fact that ||@?||(x,—v) + l@?|ly = 1, we obtain
| @
X

6. Conclusion

< Clle®|ly; -

(1-Com®) s

< llo®llx,-v) + Crlle®|ly < 1— 5

It is now straightforward to establish the results stated in the Introduction.

Proof of Theorem 1.3. Assume the Beltrami coefficient of the Teichmiiller mapping
between X,Y € T, , has the form u = kg/q, where ¢ € Q(X) has an odd order
zero. Then the same is true for the tangent vectors to the Teichmiiller geodesic y
joining X to Y. Theorem 5.1 then implies that D(J o P)|, is contracting by a factor
8 < 1 independent of P, and therefore

d(J o P(X),J o P(Y)) =d(J(X),J(Y)) <§-d(X,Y). O

Proof of Theorem 1.2. The contraction of Mg, — ]_[ta Aj, in some directions is
immediate from the uniformity of the bound in Theorem 1 .3, using the fact that the
Kobayashi metric on a product is the sup of the Kobayashi metrics on each term, and
that there existg € Q(X) with simple zeros whenever X € M , and dim Mg , > 1.

|

Proof of Theorem 1.1. Let f: So¢ — So be a pseudo-Anosov mapping. If f has
only even order singularities, then its expanding foliation is locally orientable, and
hence there is a double cover S — S such that log p( /*) = h(f).

Now suppose f has an odd-order singularity. Let X € Teich(So) be a point on
the Teichmiiller geodesic stabilized by the action of f on Teich(Sy). Then h(f) =
d(f - Xo, Xo) > 0 (see e.g. [FLP] and [Bers]).
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Let f: S1 — 81 be alift of f to a finite covering of Sy, and let X1 = P(Xy) €
Teich(S;). Using the marking of X; and the isomorphism H!(X{,R) = H'%(X,),
we obtain a commutative diagram

HY(S1.R) — = H'(S,.R)

l i

HI,O()?I) *T> Hl,O(yl)

where 7 is the comparison map between J(X1) and J( f - X1) (see equation (3.3)).
Then Theorem 1.3 and Proposition 3.1 yield the bound

logp(f*) <log|IT|| = d(J(X1). f - J(X1)) < 8d(Xo. f - Xo) = Sh(f),

where § < 1 does not dependent on the finite covering S; — Sp. Consequently,
suplog p(f™*) < h(f). O

Appendix. The hyperbolic metric via Jacobians of finite covers

Let X = A/T be a compact Riemann surface, presented as a quotient of the unit
disk by a Fuchsian group I'. Let ¥;, — X be an ascending sequence of finite Galois
covers which converge to the universal cover, in the sense that

Yo=A/T,, IDT1 DI, D05+, and [\[y={e}. (Al

The Bergman metric on Y, (defined below) is invariant under automorphisms, so it
descends to a metric 8,, on X. This appendix gives a short proof of:
Theorem A.1 (Kazhdan). The Bergman metrics inherited from the finite Galois covers
Y, — X converge to a multiple of the hyperbolic metric; more precisely, we have
Ax
ﬁ —
Pn— 5 NG

uniformly on X.

The argument below is based on [Kaz], §3; for another, somewhat more technical
approach, see [Rh].

Metrics. We begin with some definitions. Let 2(X) denote the Hilbert space of
holomorphic 1-forms on a Riemann surface X such that

2 2
ol =/ 0l < oo.
X
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The area form of the Bergman metric on X is given by

Bz =D _loil, (A2)

where (w;) is any orthonormal basis of €2(X). Equivalently, the Bergman length of
a tangent vector v € TX is given by

(Bx.v) = sup 120
w#0 ”(UHX

(A.3)

This formula shows that inclusions are contracting: if Y is a subdomain of X, then
By > Bx.

Now suppose X is a compact surface of genus g > 0. Then (A.2) shows its
Bergman area is given by

f Bz = dimQ(X) = g. (A.4)
X

In this case By is also the pullback, via the Abel-Jacobi map, of the natural Kéhler
metric on the Jacobian of X.

Finally suppose X = A/TI". Then the hyperbolic metric of constant curvature
b _ 2)dz|
IREER
descends to give the hyperbolic metric Ax on X. Using the fact that ||dz|ao = 7, it
is easy to check that 4783 = A3.

N

Proof of Theorem A.1. We will regard the Bergman metric 8, on Y, as a [';,-invariant
metric on A. It suffices to show that 8,,/8a — 1 uniformly on A.

Let g and g, denote the genus of X and Y,, respectively, and let d,, denote the
degree of Y,/ X; then g, — 1 = d,(g — 1). By (A.1), the injectivity radius of Y},
tends to infinity. In particular, there is a sequence r,, — 1 such that y(r, A) injects
into Y, for any y € I'. Since inclusions are contracting, this shows

Bn = (1 +e€n)Ba (A.5)

where ¢,, — 0.
Next, note that both 8, and B are I'-invariant, so they determine metrics on X .
By (A.4), we have

1 g
[ =g [ =t e-n= 8
X nJY, n
(since fX )L}2( = 27 (2g — 2) by Gauss—Bonnet). Together with (A.5), this implies

/X |Bn — Bal* — 0. (A.6)
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To show B, — Ba uniformly, consider any sequence p, € A and let x € [0, 1]
be a limit point of (8, /8a)(px»). It suffices to show x = 1.

Passing to a subsequence and using compactness of X, we can assume that p,, —
p € A and that 8,(p,) — xBa(p). By changing coordinates on A, we can also
assume p = 0. By (A.6) we can find ¢, — 0 such that 8,(q,) — Ba(0). Then
by (A.3), there exist [',-invariant holomorphic 1-forms w,(z) dz on A such that
Jy, lon* = 1 and

|dz|
lwn(gn)| = Bn(gn) — Pa(0) = 7

Since w, is holomorphic and f A |wa|? < 1, the equation above easily implies that
|wy| — |dz|/7 uniformly on compact subsets of A. But we also have

:Bn(pn) = |a)n(pn)| — ﬁA(0)7
and thus B, (p,) — Ba(0) and hence x = 1. |
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