
Comment. Math. Helv. 89 (2014), 125–155
DOI 10.4171/CMH/314

Commentarii Mathematici Helvetici
© Swiss Mathematical Society
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Abstract. In the present paper we solve the following different but interrelated problems:
(a) the moment problem on Riemann surfaces, (b) the vanishing problem for polynomialAbelian
integrals of dimension zero on the projective plane, (c) the vanishing problem for polynomial
hyperelliptic Abelian integrals.

Mathematics Subject Classification (2010). 44A60, 34C07.

Keywords. Moment problem, Abelian integrals.

1. Introduction

Let f be a non-constant meromorphic function on a compact Riemann surface R, !
be a meromorphic one-form on R, and � � R be a curve. In the present paper we
solve the following different but interrelated problems:

(a) In Section 2 we give necessary and sufficient conditions for the “moments”

ms D
Z

�

f s!; s � 0; (1)

to vanish for all s. These conditions are expressed in terms of the identical
vanishing of a finite collection of algebraic functions, which can be interpreted
as Abelian integrals of dimension zero on R.

(b) In Section 3, motivated by problem (a), we describe necessary and sufficient con-
ditions for the identical vanishing of polynomial Abelian integrals of dimension
zero on the projective plane.

(c) Finally, in Section 4 we apply the results obtained to the problem of identical
vanishing of complete hyperelliptic Abelian integrals of the form

I.t/ D
Z

�.t/

P.x; y/dx CQ.x; y/dy; P;Q 2 CŒx; y�; (2)
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where �.t/ 2 H1.�t ;Z/ is a continuous family of 1-cycles and

�t D f.x; y/ 2 C2 W y2 � f .x/ D tg; f 2 CŒx� (3)

is a family of hyperelliptic curves.

In the particular case where f is a polynomial, ! D gdz is polynomial one form,
and � � CP 1 is a non-closed curve, the moment vanishing problem (a), called in this
case the polynomial moment problem, has been studied by several authors in a series
of papers initiated by [2]. The main motivation for a study of the polynomial moment
problem is its relation with the center problem for the Abel differential equation

dy

dz
D p.z/y2 C q.z/y3; p; q 2 CŒz�;

which in its turn is closely related to the classical center-focus problem of Poincaré
(see [3] and an extensive list of references therein). A solution of problem (a) in the
general case presented here is given in terms of zero-dimensionalAbelian integrals and
is inspired by the approach of [12], [13]. Notice that the initial polynomial moment
problem admits also a more explicit solution involving compositional properties of
f , g in the composition algebra of polynomials (see [15], [14]).

Polynomial zero-dimensional Abelian integrals on CP 1, that is, algebraic func-
tions of the form

I.z/ D n1g.f
�1

1 .z//C n2g.f
�1

1 .z//C � � � C ndg.f
�1

d .z//; ni 2 Z;

where f and g are polynomials and f �1
i .z/ are branches of the algebraic function

inverse to f , were introduced recently in the paper [7] in an attempt to verify certain
conjectures concerning the 16th Hilbert problem in dimension zero. In particular, the
problem of identical vanishing of such zero-dimensional integrals for simple cycles
has been studied and solved in [7], [4]. Notice however that in this case the problem
reduces to the finding of conditions implying that for a pair of polynomials f , g the
equality g.f �1

i .z// � g.f �1
j .z//, i ¤ j , holds, and in such a form the problem

was studied and solved earlier (see e.g. [17], [10]). In the general case a solution
of the problem (b) in an implicit form essentially was already done in [15] as an
ingredient of the solution of the polynomial moment problem. However, having in
mind possible applications, we present here a detailed and full exposition which is
self-contained up to a single purely algebraic result of [15]. Notice that the problem
(b) also was studied in the recent paper [1] where however only a partial solution has
been achieved.

The last problem (c) solved in this paper concerns the identical vanishing of
complete hyperelliptic Abelian integrals of the form .2/. Although this problem is of
independent interest, we are once again motivated by applications to the 16th Hilbert
problem. Namely, it is well known that if a limit cycle of the perturbed plane foliation

d.y2 � f .x//C ".P.x; y/dx CQ.x; y/dy/ D 0; " � 0; (4)
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bifurcates from the periodic orbit �.t0/ � �t0 of the non-perturbed foliation, then
the Abelian integral I.t/ defined by (2) vanishes at t0. This is a corollary of the
representation

P".t/ D t C "I.t/C o."/ (5)

of the first return mapP" associated to the family of periodic orbits �.t/. The situation
in which I.t/ � 0 is exceptional, and this phenomenon is related to the singularities
of the algebraic set of plane integrable foliation. On the other hand, the identical
vanishing of I.t/ only shows that the foliation (4) is integrable “at a first order”, and
the study of the higher order terms in the expansion (5) is needed in order to solve
the associated center problem on the plane [5], [8].

The key idea to solve problem (c) is to interpret the derivatives of I.t/ as moments
(1) for a certain choice of R; f and !. Then the identical vanishing of I.t/ turns out
to be equivalent, according to (a), to the identical vanishing of a collection of Abelian
integrals of dimension zero. Furthermore, these Abelian integrals essentially reduce
to the ones studied in (b).

2. Moments on Riemann surfaces and zero-dimensional Abelian integrals

2.1. Moment problem and zero-dimensional Abelian integrals. Let f be a non-
constant meromorphic function on a compact Riemann surface R, ! be a meromor-
phic one-form onR, and � � R be a rectifiable curve which avoids the poles of f and
!. Then the moments (1) are well defined. In this subsection we will give necessary
and sufficient conditions for the generating function

J.t/ D J.!; f; �; t/ D �
1X

sD0

ms

t sC1
D

Z
�

!

f � t ; t � 1; (6)

of the momentsms to vanish identically or more generally to be rational. Our approach
to this problem is inspired by [13], where the genus zero case,R D CP 1, was studied
in details. We will suppose for simplicity that the set of poles of ! is contained in
the set of poles of f and that � is closed (for the general case see the remarks given
in the end of this subsection).

Consider the induced holomorphic map f W R ! CP 1 and let fc1; c2; : : : ckg be
the set of all finite critical values of f . For a regular generic value c0 2 C, consider
the “star” S � C consisting of the segments Œc0; ci �, i D 1; 2 : : : k. Using the
assumption that S contains all finite critical values of f , one can show that the path
� can be continuously deformed, without changing the corresponding function J.t/,
in such a way that the image f .�/ will be contained in S (the explicit construction is
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given below). Therefore, moments (1) may be written in the form

ms D
Z

�

f s! D
Z

�

f s !

df
df D

kX
iD1

Z ci

c0

'i .z/z
sdz; (7)

where each 'i is an appropriate sum of branches of the algebraic function

!

df
B f �1

in some simply-connected domain U containing S n fc1; c2; : : : ckg.
Clearly,

J.t/ D
kX

iD1

Ji .t/; where Ji .t/ D
Z ci

c0

'i .z/

z � t dz: (8)

Further, the functions Ji .t/ and therefore J.t/ allow for an analytic continuation on
CP 1 n fc1; c2; : : : ckg. On the other hand, by a well-known property of Cauchy type
integrals, the limits of the function J.t/ when t approaches to a point t 2 Œc0; ci �

from the “left” and “right” sides of Œc0; ci � are related by the equality

JC.t/ � J�.t/ D 2�
p�1 'i .t/:

Therefore, if the generating function J.t/ vanishes identically (or just allows for a
single-valued analytical continuation), then the algebraic functions 'i , 1 � i � k,
defined by (7) vanish identically. Of coarse, the equalities 'i � 0, 1 � i � k, in
their turn imply that J � 0.

The study of conditions implying the vanishing of the algebraic functions 'i is a
priori a simpler problem than the initial one. Furthermore, the functions 'i allow for
the following remarkable interpretation as zero-dimensional Abelian integrals.

Consider the singular fibration f W R ! CP 1 with fibers

f �1.z/ D ff �1
1 .z/; f �1

2 .z/; : : : ; f �1
d .z/g (9)

where d is the degree of f . For z ¤ ci ;1 define the (reduced) zero-homology group

zH0.f
�1.z/;Z/ D fn1f

�1
1 .z/Cn2f

�1
1 .z/C� � �Cndf

�1
d .z/ W P

ni D 0; ni 2 Zg:
It is a free Z-module generated by

f �1
1 .z/ � f �1

d .z/; f �1
2 .z/ � f �1

d .z/; : : : ; f �1
d�1.z/ � f �1

d .z/

and its dual space is denoted by zH 0.f �1.z/;C/. The map f W R ! CP 1 in-
duces homology and co-homology bundles with the base C n fc1; : : : ; ckg and fibers
zH0.f

�1.z/;Z/ and zH 0.f �1.z/;C/. The continuous families of cycles

f �1
i .z/ � f �1

j .z/ 2 zH0.f
�1.z/;Z/
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generate a basis of locally constant sections of a canonical connection on the homology
bundle (the Gauss–Manin connection). Clearly, a meromorphic function g on R
defines a meromorphic section of the co-homology bundle, and we may define a
zero-dimensional Abelian integral as follows (see [7]).

Definition 2.1. A zero-dimensional Abelian integral is an algebraic functionZ
ı.z/

g D n1g.f
�1

1 .z//C n2g.f
�1

1 .z//C � � � C ndg.f
�1

d .z//; (10)

where g is a meromorphic function on R and

ı.z/ D n1f
�1

1 .z/C n2f
�1

2 .z/C � � � C ndf
�1

d .z/ 2 zH0.f
�1.z/;Z/ (11)

is a continuous family of 0-cycles.

Clearly, the functions 'i in (8) may be interpreted as zero-dimensional Abelian
integrals

'i .z/ D
Z

ıi .z/

!

df
; (12)

where

ıi .z/ D
dX

j D1

nijf
�1

j .z/ (13)

and nij are suitable integers (computed below).
Thus, we proved that the following statement is true.

Theorem 2.1. The moments

ms D
Z

�

f s!; s � 0; (14)

vanish if and only if the zero-dimensional Abelian integrals

'i .z/ D
Z

ıi .z/

!

df
; i D 1; 2; : : : ; k;

vanish identically. �

Of course, in order to apply Theorem 2.1 we must define values of the integer
numbers nij in (13). For this purpose, following [13], consider the preimage of the
star S under f

�f D f �1.S/ � R

as a graph embedded in the Riemann surface R. This graph, called a constellation,
in a sense is a “combinatorial portrait” of the corresponding covering (see [9] for
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details and different versions of this construction). By construction, the restriction
of f .z/ on R n �f is a covering of the topological punctured disk CP 1 n fS [ 1g
and therefore R n �f is a disjoint union of disks. This implies that the graph �f

is connected and the faces of �f are in a one-to-one correspondence with poles of
f .z/. For each i , 1 � i � k, we will mark vertices of �f which are preimages of
the point ci by the number i (see Figure 1). Further, define a star of �f as a subset
of edges of �f consisting of edges adjacent to some non-marked vertex. If U is a
simply-connected domain such that S n fc1; c2; : : : ; ckg � U , then the set of stars of
�P may be naturally identified with the set of single-valued branches of f �1.z/ in
U as follows: to the branch f �1

j .z/, 1 � j � d , corresponds the star Sj such that
f �1

j .z/ maps bijectively the interior of S to the interior of Sj .

P.z/
S1

S2

S3

S4

S5

S6

S7

S8

S9

S

�

�

�

Figure 1

Since R n �f is a disjoint union of disks each of which contains a single pole
of f , we may deform � continuously from the interior of each of these disks to its
boundary avoiding poles of f (see Figure 2). Since by assumption the set of poles of
! is contained in the set of poles of f , this deformation does not change the function
J.z/. Keeping the same notation � for this deformation we see that f .�/ � S .
Furthermore, denoting by ci;j a unique vertex of the star Sj marked by the number
i , it is easy to see that the number nij in formula (13) is equal to a sum of “signed”
appearances of the vertex cij on � . By definition, this means that an appearance is
taken with the sign plus if the center of Sj is followed by cij , and minus if cij is
followed by the center of Sj . For example, for the graph �f shown in Figure 1 and
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Figure 2

the path � � �f pictured by the fat line we have

ı1.z/ D f �1
3 .z/ � f �1

2 .z/;

ı2.z/ D f �1
2 .z/ � f �1

1 .z/C f �1
5 .z/ � f �1

4 .z/;

ı3.z/ D f �1
1 .z/ � f �1

5 .z/C f �1
4 .z/ � f �1

3 .z/:

Since � is a closed loop, it follows from the above construction that
P

j nij D 0

implying that ıi in (13) are contained in zH0.f
�1.z/;Z/. Furthermore, the following

statement is true.

Corollary 2.1. If the curve � is not homological to zero inRwith poles of f removed,
then the vanishing of moments (14) implies that there exists a non-zero cycle ı 2
zH0.f

�1.z/;Z/ such that
R

ı
!

df
D 0. �

Theorem 2.1 and Corollary 2.1 remain true without the restriction that the set of
poles of ! is contained in the set of poles of f if to change the condition J.t/ � 0 to
the condition that J.t/ is rational. Indeed, we always may find a polynomial R such
that the set of poles of the form z! D R.f /! is contained in the set of poles of f .
On the other hand, it follows from the definition of the function J.t/ that J.!; f; �; t/
and J.f!; f; �; t/ are related by the equality

J.f!; f; �; t/ D J.!; f; �; t/t C
Z

�

!

which implies inductively that the function J.!; f; �; t/ is rational if and only if the
function J.z!; f; �; t/ does.

Further, observe that the above method may be applied also in the situation where
the curve � is not closed and/or is not connected (see [13], Section 3, for the rational
case which extends to the general case in the same way as above). Of coarse, if � is
non-closed, then the condition

P
j nij D 0 for ıi .z/ in (13) is not necessary true.
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2.2. Case of generic position. Let f W R ! CP 1 be a holomorphic function on
a compact Riemann surface R, z0 be a fixed regular value of f , and � be the set
of critical values of f . Recall that the monodromy group Gf of the function f is
defined as the image of the homomorphism

�1.C n�; z0/ ! Aut.f �1.z0//; (15)

where Aut.f �1.z0// is the full permutation group. Further, a holomorphic function
f W R ! CP 1 can be decomposed into a composition f D p B q of holomorphic
functions q W R ! C and p W C ! CP 1, where C is another compact Riemann
surface, if and only if the group Gf has an imprimitivity system which consists of
l D degp blocks. Notice that the set of blocks of the imprimitivity system corre-
sponding to the decomposition f D p B q has the form Bi D q�1ftig, 1 � i � l ,
where ft1; t2; : : : ; tlg D p�1fz0g. Finally, notice that iff D Qp B Qq, where Qq W R ! zC ,
Qp W zC ! CP 1, is an other decomposition of f , then the corresponding imprimitivity

systems coincide if and only if there exists an isomorphism � W zC ! C such that

p D Qp B ��1; q D � B Qq:
In this case the decompositions p B q and Qp B Qq are called equivalent.

We say that two holomorphic functions f; g W R ! CP 1 on a compact Riemann
surface R have a non-trivial common compositional right factor if there exists a
Riemann surface zR, a holomorphic function h W R ! zR of degree greater than one,
and holomorphic functions Qf; Qg W zR ! CP 1 such that f D Qf B h, g D Qg B h. The
property of two functions f , g to have a common compositional right factor may be
expressed via the vanishing of some zero-dimensional Abelian integrals.

Proposition 2.1. Twoholomorphic functionsf; g W R ! CP 1 on a compact Riemann
surfaceR have a common compositional right factor if and only if there exists a cycle
ı.z/ 2 zH0.f

�1.z/;Z/ of the form f �1
i .z/ � f �1

j .z/, i ¤ j , such thatZ
ı.z/

g � 0: (16)

In particular, equality (16) holds for all ı.z/ 2 zH0.f
�1.z/;Z/ if and only if there

exists a rational function Qg such that g D Qg B f .

Proof. It is easy to see by the analytical continuation that, for a fixed index i , the set
of indices j ¤ i satisfying the equality

g.f �1
i .z// D g.f �1

j .z// (17)

form a block of an imprimitivity system I with respect to the action ofGf on fibers of
f . Therefore, if (16) holds, then there exists a Riemann surface zR and a meromorphic



Vol. 89 (2014) Moments on Riemann surfaces and hyperelliptic Abelian integrals 133

function h W R ! zR such that f D Qf B h and fibers of h coincide with blocks of I .
Furthermore, since any branch of f �1 may be written as

f �1
i D h�1

j B Qf �1
k

for some branches ofh�1 and Qf �1, equalities (17) imply that the functiong is constant
on fibers of h. Therefore, the function Qg D g B h�1 is well defined and satisfies the
equality g D Qg B h. �

Notice that in the case whereR D CP 1 Proposition 2.1 is well known and follows
easily from the Lüroth theorem (see e.g. [17], [10]).

Proposition 2.1 permits to obtain the following very implicit solution of the mo-
ment problem in the case where f is in a generic position.

Theorem 2.2. If the monodromy group Gf of f is the full symmetric group of
d D degf elements, then the vanishing of moments (14) implies that either � is
homological to zero in R with poles of f removed, or there exists a rational function
Q such that ! D Q.f / df and f .�/ is homological to zero in CP 1 with poles ofQ
removed.

Proof. If � is not homological to zero in R with poles of f removed, then by Corol-
lary 2.1 there exist integer numbers ˛1; ˛2; : : : ; ˛d not all equal to zero such that

dX
j D1

j̨

�
!

df

�
.f �1

j .z// D 0 (18)

and
Pn

iD1 ˛i D 0. The last equality implies that the numbers ˛1; ˛2; : : : ; ˛d are not
all equal between themselves. Let us assume that ˛1 ¤ ˛2.

SinceGf is a full symmetric group, it contains the transposition 	 D .12/. Acting
by 	 on equality (18) and subtracting we obtain the equality

.˛1 � ˛2/

��
!

df

�
.f �1

1 .z// �
�
!

df

�
.f �1

2 .z//

�
D 0

implying the equality �
!

df

�
.f �1

1 .z// D
�
!

df

�
.f �1

2 .z//: (19)

Since the full symmetric group of f is primitive, the function f is indecomposable.
Therefore, Proposition 2.1 applied to equality (19) implies that there exists a rational
function Q such that !

df
D Q.f /. Hence, moments (14) equal to the momentsZ

f .�/

Q.z/zsdz; s � 0;

and the statement follows from the classical result of the complex analysis. �
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Notice that Theorem 2.2 remains true if Gf is only doubly transitive. This is a
corollary of the characterization of doubly transitive groups via the structure of their
irreducible subspaces over C, see [10], [13] where this approach is used for rational
f and g.

3. Vanishing of zero-dimensional polynomial Abelian integrals

In this section we give necessary and sufficient conditions for zero-dimensional
Abelian integral (10) to vanish identically in the case whereR is the Riemann sphere
and the functions involved are polynomials. More precisely, we solve the following
problem:

for a given polynomial P of degree n and a cycle ı.z/ 2 zH0.P
�1.z/;Z/

describe polynomialsQ such that the associated Abelian integral

I.z/ D
Z

ı.z/

Q D
nX

iD1

viQ.P
�1
i .z// (20)

vanishes identically.

In distinction with the previous section we will not assume that zH0.P
�1.z/;Z/ is

reduced. Thus ı.z/ may be any expression of the form

ı.z/ D v1P
�1
1 .z/C v2P

�1
2 .z/C � � � C vnP

�1
n .z/;

where vi 2 Q. It is convenient to identify the cycle ı.z/ with the vector

Eı D .v1; v2; : : : ; vn/

of Qn. Under such an identification the natural action of the monodromy group
GP of P on zH0.P

�1.z/;Z/ descends to an action on Qn defining a permutation
representation of the group GP


 W GP ! GL.Qn/: (21)

The understanding of irreducible components of 
 plays a crucial role in the
solution of the problem above. Indeed, let Zı be the vector space consisting of
polynomials Q such that Abelian integral (20) vanishes identically, and Vı be the
minimal 
-invariant vector subspace of Qn containing the vector Eı. Then it is easy
to see by the analytical continuation that

R
ı.z/

Q � 0 if and only if
R

�.z/
Q � 0 for

any �.z/ 2 zH0.P
�1.z/;Z/ such that E� 2 Vı . This implies that in order to describe

Zı it is enough to solve the following three problems:
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(1) First, describe all possible irreducible GP -invariant subspaces of Qn.

(2) Second, provide a method which allows for any given Eı 2 Qn to decompose the
invariant subspace Vı into a direct sum of irreducible GP -invariant subspaces.

(3) Third, for each irreducible GP -invariant subspace U , describe the vector space
ZU consisting of polynomials Q such that

R
ı.z/

Q � 0 for all ı 2 U .

A solution of problem (1) is given in [15] in a closed form (see Theorem 3.1 of
[15]), while solutions of problems (2) and (3) can be obtained by appropriate modifi-
cations of proofs of Proposition 4.1 and Theorem 1.1 of [15] correspondingly. Below
we recall the classification of irreducible GP -invariant subspaces of Qn obtained in
[15] and provide self-contained solutions of problems (2) and (3) using the approach
of [15].

3.1. Description of irreducible GP -invariant subspaces of Qn. In this subsection
we recall the description of GP -invariant subspaces of Qn obtained in [15]. More
generally, we will describe G-invariant subspaces of Qn for a permutation repre-
sentation of an arbitrary permutation group G � Sn containing a cycle of length n
(the monodromy group of a polynomial of degree n always contains such a cycle
which corresponds to a loop around infinity). For more details we refer the reader to
Section 3 of [15].

Without loss of generality we may assume that the cycle of length n contained in
G coincides with the cycle .1 : : : n/. This implies in particular that any imprimitivity
system for G must coincide with residue classes modulo d for some d jn. For each
d jn we denote by Vd the subspace of Qn consisting of “d -periodic” vectors that is
of vectors of the form

.v1; : : : ; vd ; v1; : : : ; vd ; : : : ; v1; : : : ; vd /:

It is easy to see that for given d residue classes modulo d form an imprimitivity
system for G if and only if the subspace Vd is G-invariant.

Denote by D.G/ the set of all divisors of n for which Vd is G-invariant. Notice
thatD.G/ is a lattice with respect to the operations ^;_, where d ^ Qd WD gcd.d; Qd/
and d _ Qd WD lcm.d; Qd/. Indeed, for an element x 2 X the intersection of two
blocks containing x and corresponding to d; Qd 2 D.G/ is a block which corresponds
to d _ Qd . On the other hand, the intersection of two invariant subspaces Vd ; V Qd is an

invariant subspace which is equal to V
d^ Qd . We say that d 2 D.G/ covers Qd 2 D.G/

if Qd jd , Qd < d , and there exists no l 2 D.G/ such that Qd < l < d and Qd j l , l jd .

Theorem 3.1. ([15]) Each irreducible G-invariant subspace of Qn has the form

Ud WD Vd \ �
V ?

d1
\ � � � \ V ?

d`

�
(22)
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where d 2 D.G/ and d1; : : : ; d` is a complete set of elements of D.G/ covered by
d . The subspaces Ud are mutually orthogonal and every G-invariant subspace of
Qn is a direct sum of some Ud as above.

3.2. Decomposition of Vı into a direct sum of irreducible subspaces. Set

Åwk D .1; "k
n; "

2k
n ; : : : ; "

.n�1/k
n /; "n D e2�i=n; 1 � k � n: (23)

Clearly, the vectors Åwk , 1 � k � n, form an orthonormal basis of Cn with respect
to the standard Hermitian inner product in Cn, and for any divisor d of n the vectors
Åwk for which .n=d/ j k form a basis of the complexification V C

d
of the subspace

Vd . Furthermore, defining ‰d , d 2 D.G/, as a subset of f1; 2; : : : ; ng consisting of
numbers r such that n=d is a divisor of r but for any element Qd 2 D.G/ covered by
d the number n= Qd is not a divisor of r , we see that the vectors Åwr , r 2 ‰d , form a
basis of UC

d
.

Theorem 3.2. The subspace Ud , d 2 D.G/, is a component in the decomposition of
the subspace Vı into a sum of irreducible G-invariant subspaces of Qn, if and only
if there exists a number r 2 ‰d such that .Eı; Åwr/ ¤ 0.

Proof (cf. Proposition 4.1 in [15]). Let Vı D ˚ Udj
be a decomposition of Vı into

a sum of irreducible G-invariant subspaces. If Vı is orthogonal to Ud , then Vı is
orthogonal also to UC

d
implying that .Eı; Åwr/ D 0 for all r 2 ‰d , since the vectors

Åwr , r 2 ‰d , form a basis of UC
d

. Therefore, if .Eı; Åwr/ ¤ 0 for some r 2 ‰d , then
Ud coincides with some Udj

.
In other direction, if Ud coincides with some Udj

, then in view of the minimality
of Vı the projection of ı onto Ud is distinct from zero implying that there exists a
number r 2 ‰d such that .Eı; Åwr/ ¤ 0, since Åwr , r 2 ‰d , form a basis of UC

d
. �

3.3. Description of spaces ZUd
. First of all observe that if P D A B B is a de-

composition of a polynomial P into a composition of rational functions, then the
corresponding equivalence class of decompositions contains a decomposition where
both functions involved are polynomials, and below we always will consider only such
decompositions. In order to keep the correspondence between imprimitivity systems
of GP and equivalence classes of decompositions of P we modify the definition of
equivalence correspondingly. Namely, we will call decompositions P D A1 B W1

and P D A2 BW2 equivalent if there exists a polynomial � of degree one such that
A2 D A1 B �, W2 D ��1 B W1. Abusing of notation, usually we will mean by a
decomposition a corresponding equivalence class of decompositions.

Notice that since any imprimitivity system for a group G � Sn containing the
cycle .12 : : : n/ coincides with residue classes modulo d for some d jn, any two
decompositions P D P1 BW1 and P D P2 BW2 of P such that degP1 D degP2 are
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equivalent. Notice also that in the above notation the setD.GP / consists of numbers
d for which there exists a decomposition P D A BW with degA D d .

The structure of ZUd
or, more generally, of any GP -invariant subspace of Qn is

closely related to the compositional properties of polynomials. For example, for any
ı.z/ 2 zH0.P

�1.z/;Q/ and polynomial Q of the form Q D R B P we haveZ
ı.z/

Q D R.z/

nX
iD1

vi ; (24)

implying that
R

ı.z/
Q vanishes identically whenever ı.z/ is contained in the reduced

homology group, or equivalently the vector Eı is contained in V ?
1 .

Further, if P D A B W , degA D d , is a decomposition of P corresponding to
d 2 D.GP /, then for any branch P�1

i .z/ of P�1.z/ there exist a branch W �1
j .z/ of

W �1.z/ and a branch A�1
k
.z/ of A�1.z/ such that

P�1
i D W �1

j B A�1
k : (25)

Therefore, for any cycle ı.z/ 2 zH0.P
�1.z/;Q/ and polynomial Q we have:

Z
ı.z/

Q D
dX

kD1

� Z
ık;W .z/

Q

�
B A�1

k ; (26)

where ık;W .z/ 2 zH0.W
�1.z/;Q/, implying that the integral

R
ı.z/

Q vanishes iden-
tically whenever all the integrals

R
ık;W .z/

Q, 1 � k � d , do. In particular, if

ı.z/ 2 zH0.P
�1.z/;Q/ is a cycle such that all cycles ık;W .z/, 1 � k � d , are in the

reduced homology group zH0.W
�1.z/;Q/, then

R
ı.z/

Q vanishes identically for any
polynomial Q of the form Q D B BW .

In the following we always will assume that the numeration of roots P�1
i .z/

of P�1.z/ satisfies the requirement that the cycle in GP corresponding to a loop
around infinity coincides with the cycle .1 2 : : : n/. In particular, such a choice of
the numeration yields that without loss of generality we may assume that when k in
formula (25) remains fixed, the corresponding i runs the set of numbers equal to k
by modulo d , implying that a cycle ık;W .z/ 2 zH0.W

�1.z/;Q/ in (26) is reduced if
and only if

.Eı; Eek;d / D 0; (27)

where Eek;d , 1 � k � d , denotes a vector of Qn with coordinates v1; v2; : : : ; vn such
that vi D 1 if i D kmod d , and vi D 0 otherwise. Since vectors Eek;d , 1 � k � d ,
obviously form a basis of Vd , this implies that all cycles ık;W .z/, 1 � k � d , are

reduced if and only if Eı is orthogonal to Vd .
Returning to the description of the space ZUd

, d 2 D.GP /, observe that it
always contains the space ZVd

in view of the inclusion Ud � Vd . Furthermore, if
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Qd 2 D.GP / is covered by d and P D zA B �W is a decomposition corresponding to
Qd , then, since Ud is orthogonal to V Qd , the cycles ı

k; �W .z/, 1 � k � Qd , are reduced

for any ı 2 Ud . Therefore, for any such Qd , the ring CŒ�W � of polynomials in �W is
contained in the space ZUd

.

Theorem 3.3. Let d be an element of D.GP /. Furthermore, let d1; : : : ; d` be a
complete set of elements of D.GP / covered by d and P D Ai BWi , 1 � i � `, be
the corresponding decompositions. Then

ZUd
D ZVd

C CŒW1�C CŒW2�C � � � C CŒWl �: (28)

Proof (cf. Theorem 1.1 in [15]). In view of the above remarks, the right part of (28)
is contained in ZUd

. So, we only must establish the inverse inclusion.
First, observe that the numeration of branches of P�1.z/ implies that at points

close enough to infinity the functions Q.P�1
i .z//, 1 � i � n, may be represented

by converging Puiseux series

Q.P�1
i .z// D

1X
kD�q

sk"
.i�1/k
n z� k

n ; (29)

where q D degQ.z/ and "n D exp .2�i=n/. Furthermore, substituting (29) to (20)
we see that the integral

R
ı.z/

Q vanishes identically if and only if for any k � �q the
equality

nX
iD1

visk"
.i�1/k
n D .Eı; Åwk/sk D 0 (30)

holds. In particular, if Q.z/ 2 ZUd
, d 2 D.GP /, then the equalities

.Ev; Åwk/sk D 0; k � �q; (31)

hold for any Ev 2 Ud and therefore they hold also for any Ev 2 UC
d

. Since UC
d

is
generated by the set of vectors Åwr , r 2 ‰d , and this set transforms to itself under
the complex conjugation, this implies that if Q.z/ 2 ZUd

, then for any r 2 ‰d the
equality sk D 0 holds for any k such that k � r mod n. Furthermore, clearly the
inverse is also true. Similarly, it is easy to see thatQ.z/ 2 ZVd

if and only if sk D 0

for any k such that .n=d/jk.
Assume now thatQ.z/ 2 ZUd

and consider series (29). If sk D 0 for any k such
that .n=d/jk, then Q.z/ 2 ZVd

and we are done. Thus, suppose that there exists k
such that .n=d/jk but sk ¤ 0. It follows from the definition of Ud and the above
characterization of coefficients of (29) for Q.z/ 2 ZUd

that in this case necessarily
.n= Qd/jk for some Qd 2 D.GP / covered by d , and without loss of generality we may
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assume that Qd D d1. Set

 .z/ D
X

k��q
k�0 mod n=d1

skz
� k

n ; (32)

where sk , k � �q, are coefficients of series (29). Clearly, we have:�
n

d1

�
 .z/ D Q.P�1

1 .z//CQ.P�1
d1C1.z//CQ.P�1

2d1C1.z//C� � �CQ.P�1
n�d1C1.z//:

(33)
Since indices appearing in the right part of (33) form a block, the function  .z/

is invariant with respect to the subgroup of GP which stabilizes P�1
1 .z/. Therefore,

by the main theorem of Galois theory,  .z/ is contained in the field C.z/.P�1
1 .z//.

Further, since z D P..P�1
1 .z// the equality C.z/.P�1

1 .z// D C.P�1
1 .z// holds and

hence  .z/ D R1.P
�1
1 .z// for some rational function R1. Moreover, R1 is actually

a polynomial since the right part of (33) may have a pole only at infinity. Finally,
since (33) implies by analytical continuation that

R1.P
�1
1 .z// D R1.P

�1
d1C1.z// D R1.P

�1
2d1C1.z// D � � � D R.P�1

n�d1C1.z//;

reasoning now as in Proposition 2.1 we conclude that R1 is constant on fibers of W1

and R1 D S1 BW1 for some polynomial S1 (cf. Lemma 4.3 in [15]).
Define now a polynomial T1.z/ by the equality

T1.z/ D Q.z/ �R1.z/:

Then by construction the Puiseux series of T1.P
�1
1 .z// contains no non-zero co-

efficients with indices which are multiple of n=d1. If T1.z/ is contained in ZVd
,

then
Q.z/ D T1.z/C S1.W1.z//

and we are done. Otherwise arguing as above we may find polynomials R2, S2 such
that R2 D S2 BW2 and the Puiseux expansion of T2.P

�1
1 .z//, where

T2.z/ D T1.z/ �R2.z/;

contains no non-zero coefficients whose indices are multiple of n=d1 or n=d2. It is
clear that continuing this process we eventually will arrive to some Ts.z/ which is
contained in ZVd

and therefore to a representation

Q.z/ D Ts.z/C S1.W1.z//C S2.W2.z//C � � � C Sl.Wl.z//: �

In view of Theorem 3.3, in order to complete the description of the spaceZUd
we

only must describe the space ZVd
. Observe first that the vectors Eej;d , 1 � j � d ,

defined above satisfy the equality

.Eej;d ; Åwk/ D "k.j �1/
n .Ee1;d ; Åwk/:
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Therefore, in order to check that equality (31) holds for any Ev 2 ZVd
it is enough to

check that it holds for one single vector Ee1;d . In other words, the space ZVd
consists

of polynomials Q.z/ satisfying the equality

Q.P�1
1 .z//CQ.P�1

dC1.z//CQ.P�1
2dC1.z//C � � � CQ.P�1

n�dC1.z// � 0: (34)

Furthermore, if P D A BW is a decomposition corresponding to d 2 D.GP /, then
in view of (25) equality (34) reduces to the equality

Q.W �1
1 .z//CQ.W �1

2 .z//CQ.W �1
3 .z//C � � � CQ.W �1

n=d .z// � 0: (35)

The Newton formulae imply that whenever degQ < degW the sum in the left
hand side of (35) is a constant. Therefore, setting �i D W �1

i .c/, i D 1; 2; : : : ; n=d ,
for some generic c 2 C, we see that the intersectionZVd

\TW , where TW is a vector
space of polynomials of degree less than degW , has codimension one in TW and is
described by the relation

Q.�1/CQ.�2/C � � � CQ.�n=d / D 0:

On the other hand, usingW -adic decomposition, it is easy to see that that forQ.z/ of
arbitrary degree the sum in (35) is a polynomial, and that a polynomialQ.z/ satisfies
(35) if and only if all coefficients in its W -adic decomposition satisfy it.

Finally, notice that Theorem 3.3 provides a description of the space ZV for any
GP -invariant subspace V of Qn since by Theorem 3.1 any such a subspace has the
form V D ˚ Udj

implying that ZV D \ZUdj
.

3.4. Corollaries. In this subsection we discuss some particular cases of the above
results which may be useful for applications. Below, we always will assume that Q
is a non-zero polynomial and ı is a non-zero element of zH0.P

�1.z/;Q/.

Proposition 3.1. Let P be an indecomposable polynomial. If an Abelian integralR
ı.z/

Q vanishes identically, then eitherQ is a polynomial in P and the cycle ı.z/ is
reduced, orQ 2 ZV1

and there exists a rational number a such that

ı.z/ D a.P�1
1 .z/C P�1

2 .z/C � � � C P�1
n .z//: (36)

Proof. First, observe that Vı does not coincide with whole Qn since otherwise Ee1;n 2
Vı would imply that Q.z/ � 0. Therefore, by Theorem 3.1 either Vı D U1 or
Vı D Un D U?

1 . Obviously, in the first case Q 2 ZV1
and (36) holds, while

in the second case the cycle ı.z/ is reduced. Furthermore, by Theorem 3.3 in the
second case Q is contained in ZUn

D ZVn
C CŒP �, implying that Q 2 CŒP �, since

ZVn
D f0g by (35). Alternatively, one can observe that in the second case Vı contains

vectors ei � ej , 1 � i; j � n. Therefore,

Q.P�1
1 .z// D Q.P�1

2 .z// D � � � D Q.P�1
n .z// (37)

and hence Q 2 CŒP � by Proposition 2.1. �
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Notice that the conclusion of Proposition 3.1 holds for any polynomial P.z/ in
generic position since decomposable polynomials obviously form a proper algebraic
subset in the set of all polynomials of degree n. Notice also that in order to prove
Proposition 3.1 one can use instead of Theorem 3.1 the classical result, relating the
doubly transitivity of a group with the structure of its permutation representation
over C, combined with the Schur theorem, relating the doubly transitivity and the
primitivity for a group containing a transitive cyclic subgroup (see [10] for such an
approach).

The conclusion similar to the one in Proposition 3.1 is true for arbitrary P if to
impose some limitations on ı.z/.

Proposition 3.2. If an Abelian integral
R

ı.z/
Q vanishes identically and for any

d 2 D.GP /, d ¤ 1, there exists r 2 ‰d such that .Eı; Åwr/ ¤ 0, then Q is a
polynomial in P and the cycle ı.z/ is reduced.

Proof. Indeed, it follows from Theorem 3.1 and Theorem 3.2 that Vı D U?
1 . �

A finer version of Proposition 3.2 is the following statement.

Proposition 3.3. If an Abelian integral
R

ı.z/
Q vanishes identically and there exists

r 2 ‰n such that .Eı; wr/ ¤ 0, thenQ.z/ may be represented in the form

Q.z/ D S1.W1.z//C S2.W2.z//C � � � C Sl.Wl.z//; (38)

where S1; S2; : : : ; Sl are polynomials and W1; W2; : : : Wl are compositional right
factors of P.z/ corresponding to elements d1; : : : ; d` ofD.GP / covered by n.

Proof. It follows from Theorem 3.2 that Vı contains Un. Therefore, Zı 	 ZUn
and

the statement follows from Theorem 3.3. �

Notice that it follows from (32) and the characterization of polynomials Q sa-
tisfying

R
ı.z/

Q D 0 via their Puiseux expansions (30) that for any polynomialQj D
Sj .W.z//, 1 � j � l , appearing in representation (38) the integral

R
ı.z/

Qj vanishes.
However, unless Vı D Un, it is not true that for any polynomial Wj , 1 � j � l , the
corresponding cycles

ık;Wj
.z/ 2 zH0.W

�1
j .z/;Q/; 1 � k � dj ; (39)

are reduced. Still, the following statement is true.

Proposition 3.4. If an Abelian integral
R

ı.z/
Q vanishes identically and there exist

d1; d2; : : : dl 2 D.GP / such that for any d 2 D.GP / the inequality .Eı; wr/ ¤ 0
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holds for some r 2 ‰d if and only if d is not a divisor of one of the numbers
d1; d2; : : : ; dl , thenQ.z/ may be represented in the form (38), whereW1; W2; : : : Wl

are compositional right factors of P.z/ corresponding to d1; : : : ; d` and all cycles
(39) are reduced.

Proof. Since the condition of the theorem implies by Theorem 3.2 that Vı coincides
with the orthogonal complement to the sum of Vd1

; Vd2
; : : : ; Vdl

in Qn, the proof is
obtained by an obvious modification of the proof of Theorem 3.3. �

Remark. The results similar to Propositions 3.3, 3.4 (without a solution of the
general problem) were obtained in the recent paper [1] (Theorem 2.2) where they
also were deduced from Theorem 3.1 by the method of [15]. Notice however that
the corresponding statements in [1] are weaker. For example, the second part of
Theorem 2.2 in [1] which is an analog of our Proposition 3.3 contains an additional
assumption which in our settings means that r 2 ‰n for which .Eı; Åwr/ ¤ 0 is coprime
with n.

3.5. Polynomial moment problem on a system of intervals with weights. Recall
that the polynomial moment problem, recently solved in [15], [14], asks to describe,
for a given polynomial P and a; b 2 C, all polynomials Q satisfying the system of
equations Z b

a

P sdQ D 0; s � 0: (40)

It is easy to see using a change of variable that if Wj is a right compositional
factor of P such thatWj .a/ D Wj .b/, then for any polynomial Sj .z/ the polynomial
Qj D Sj .Wj .z// is a solution of (40), and it is shown in [15] that any solution Q
may be represented in the form (38), where Wj are compositional right factors of
P.z/ satisfying the conditionWj .a/ D Wj .b/. In the above notation the proof given
in [15] may be sketched as follows.

First, by the method of Section 2 it is shown that there exists a collection of cycles
ıi .z/, 1 � i � k, in zH0.P

�1.z/;Q/ such that equalities (40) hold if and only if the
equalities Z

ıi .z/

Q D 0; 1 � i � k; (41)

hold. Then, it is shown that the minimalGP -invariant subspace containing the cycles
ıi .z/, 1 � i � k, contains a vector Ev such that .Ev;wr/ ¤ 0 for some r 2 ‰n (this
is done in [12] by means the so-called “monodromy lemma” which uses, in contrast
to Theorem 3.1, topological properties of polynomials). Further, by the method of
Section 3 it is proved that Q.z/ may be represented in the form (38), where for any
polynomial Qj D Sj .Wj .z// integrals (41) vanish implying that moments (40) also
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vanish (although it is not necessary true that Wj .a/ D Wj .b/). Finally, since

Z b

a

P sdQj D
Z Wj .b/

Wj .a/

Rs
jdSj ; s � 0;

where Rj is a polynomial such that degRj < degP , representation (38) with
Wj .a/ D Wj .b/ is obtained by the recursive use of the above construction for indices
j with Wj .a/ ¤ Wj .b/.

It is not hard to see that the results of the current section may be interpreted as a
solution of the polynomial moment problem “on a system of intervals with weights”.
More precisely, for any collection consisting of a polynomial P , complex numbers
ai ; bi , 1 � i � l , and rational numbers ci , 1 � i � l , using approach of Section
1 (see also [15], [13] where more attention to non-closed curves is given) one can
construct a finite collection of cycles ıi .z/, 1 � i � k, in zH0.P

�1
i .z/;Q/ such that

the equalities

c1

Z b1

a1

P sdQC c2

Z b2

a2

P sdQC � � � C cl

Z bl

al

P sdQ D 0; s � 0; (42)

hold if and only if equalities (41) hold. Since the results of this section provide a
description ofQ satisfying (41), they provide also a description of solutions of (42).

As a simple illustration take P equal to T6, where Tn denotes nth Chebyshev
polynomial, Tn.cos'/ D cos .n'/. Notice that it follows from the definition that
for ant d jn the equality Tn D Td B Tn=d holds. In particular, D.GTn

/ consists of all
divisors of n. Furthermore, it is easy to see that Tn has only two finite critical values
and that the corresponding constellation is a “chain” (see e.g. [11]). For n D 6 the
corresponding constellation is shown in Figure 3, where the “middle” vertices of stars
are omitted and the numeration of stars is chosen in such a way that a permutation at

1 2 3 456

�1 �p
3=2 �1=2 0 1=2

p
3=2 1

Figure 3

infinity coincides with the cycle .123456/.
Applying the above results, it is easy to see that if we are searching for solutions

of the moment problem

Z p
3=2

�p
3=2

T s
6 dQ D 0; s � 0; (43)
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on a single segment Œ�p
3=2;

p
3=2�, then we arrive to the vanishing problem for the

Abelian integral

I.z/ D Q.T �1
6;6 .z// �Q.T �1

6;2 .z//CQ.T �1
6;5 .z// �Q.T �1

6;3 .z//;

where by T �1
6;i .z/, 1 � i � 6, are denoted the branches of T �1

6 .z/ (formally, we
should obtain a cycle for each critical value, however, since we have only two critical
values, the corresponding cycles are proportional). Clearly, the corresponding vector
.0;�1;�1; 0; 1; 1/ 2 Q6 is orthogonal to both V2 and V3 implying that Vı D U6.
Therefore, by Theorem 3.3 any solution of (43) has the form

Q.z/ D A.T3.z//C B.T2.z//;

where A;B 2 CŒz�.
On the other hand, the “generalized” moment problemZ �1=2

�1

T s
6 dQ �

Z 1=2

�1=2

T s
6 dQC

Z 1

1=2

T s
6 dQ D 0; s � 0; (44)

leads to the vanishing problem for the Abelian integral

I.z/ D Q.T �1
6;1 .z// �Q.T �1

6;2 .z//CQ.T �1
6;3 .z//

�Q.T �1
6;4 .z//CQ.T �1

6;5 .z// �Q.T �1
6;6 .z//:

Since the corresponding vector Eı D .1;�1; 1;�1; 1;�1/ is contained in U2, the
subspace Vı coincides with U2, and Theorem 3.3 implies that any solution of (44)
has the form

Q.z/ D A.T6.z//C B.z/;

where A is an arbitrary polynomial and B is a polynomial such that

B.T �1
3;1 .z//C B.T �1

3;2 .z//C B.T �1
3;3 .z// � 0:

4. Vanishing of hyperelliptic Abelian integrals

Let f 2 CŒx� be a polynomial and �t D f.x; y/ 2 C2 W y2 � f .x/ D tg a family of
hyperelliptic curves. Consider the Abelian integral

I.t/ D
Z

�.t/

! (45)

where! D P.x; y/dxCQ.x; y/dy is a polynomial one form, and �.t/ 2 H1.�t ;Z/
is a continuous family of 1-cycles.
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The purpose of this section is to determine necessary and sufficient conditions for
the Abelian integral I to be single valued, polynomial, or rational function. These
three conditions are in fact equivalent. Indeed, I.t/ is a function of moderate growth,
with a bounded modulus in any sector, centered at a singularity. Thus I.t/ is single-
valued if and only if it is a rational, in fact polynomial function.

4.1. Reduction to the moment problem. The derivatives of I can be seen as mo-
ments on a Riemann surface and this permits to apply the results of the preceding
section. Indeed, every polynomial one-form ! can be written as

! D k.x/ydx C dAC Bd.y2 � f .x//; A;B 2 CŒx; y�; k 2 CŒx�:

Therefore,

I.t/ D
Z

�.t/

k.x/ydx; I 0.t/ D 1

2

Z
�.t/

k.x/dx

y
(46)

and more generally

I .kC1/.t/ D .1=2/.�1=2/.�3=2/ : : : .�k C 1=2/

Z
�.t/

k.x/

y2kC1
dx; k � 0: (47)

Thus,

I .kC1/.0/ D mk D .1=2/.�1=2/.�3=2/ : : : .�k C 1=2/

Z
�.0/

gkC1!

where

! D k.x/ydx; g D 1

f
;

implying that the Abelian integral I.t/ vanishes identically if and only if the momentsR
�.0/

gk!, k � 0, vanish. Furthermore, if we replace ! by gk!, then, for k suffi-

ciently big, the set of poles of gk! will be a subset of the set of poles of g and the
results of Section 1 apply.

The zero-dimensional integrals described in Theorem 2.1 take the form

'i .z/ D
Z

ıi

!

f kdf
D

Z
ıi .z/

k.x/

f .2k�1/=2f 0.x/
D z�.2k�1/=2 d

dz

Z
ıi .z/

K.x/

where K.x/ D R
k.x/dx is a primitive of k, and the zero-cycles ıi are constructed

from the constellation �f D f �1.S/ as explained in Section 2. The above gives nec-
essary and sufficient conditions for the momentsmi , i � k to vanish or, equivalently,
for I.t/ to be a polynomial. Thus, we have proved
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Theorem 4.1. The Abelian integral (45) is a rational function if and only if the
zero-dimensional integralsZ

ıi .z/

K.x/; i D 1; 2; : : : ; k;

are identically constant.

Remark. Consider the polynomial f .x/ D .x2=2 � 1/2 as in Figure 8 bellow and
the family of 1-cycles �.t/, represented on the x-plane by a big loop surrounding
the four roots of f .x/ C t , on the family of elliptic curves �t . Further, consider
the complete elliptic integral I.t/ D R

�.t/
xydx. A simple computation shows that

the associated zero-dimensional Abelian integral is
R

ı.z/
x2, where ı.z/ D x1.z/C

x2.z/C x3.z/C x4.z/, f .xi .z// � z. On the other hand

I 0.t/ D
Z

�.t/

xdx

2y

is a complete elliptic integral of third kind, and �.t/ is homologous to a small loop
around one of the two ”infinite” point of the affine curve �t . The conclusion is that
I 0.t/ is a residue, in fact a non zero constant. The Abelian integral I.t/ is therefore
linear in t . This example shows that the claim of Theorem 4.1 can not be improved.

Note that the zero-cycles ıi .z/ are by no means unique, they depend on the mutual
position of the segments Œc0; ci �. If all the zero-cycles ıi .z/ are in the orbit of a given
cycle ıi0 , obtained after a continuation with respect to z, then the vanishing of 'i0

implies the vanishing of all the 'i , and hence of all the moments. Finally, the orbit
of a given ıi0 may contain other cycles, more suitable for our purposes. In the next
subsection we propose an alternative construction of such a cycle, by using a residue
calculus. As we shall see, this will be more natural for the applications.

4.2. The Cauchy integral related to I . In this section we give an alternative com-
putation of a convenient necessary condition for the identical vanishing of theAbelian
integral I.t/, defined in (45), (46). Our result will hold under the additional assump-
tion that there is a path along which the cycle �.t/ vanishes. More precisely, let
�.t/ � �t be a continuous family of closed continuous curves defined in a neighbor-
hood of some regular value t0 of f . Consider a path

Œ0; 1� ! C W s 7! t .s/ (48)

such that s.0/ D t0, s.1/ D t1, t .s/ is a regular value of f for 0 � s < 1, and
t1 is a singular value of f . We shall say that the continuous family of closed loops
�.t/ vanishes along the path (48) if it can be extended to a continuous family of
loops along this path such that �.t1/ is homologous to zero on the singular affine
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curve �t1 . This implies in particular that I.t1/ D 0 as well as that the corresponding
zero-dimensional Abelian integral vanishes at t1.

Without loss of generality we suppose that y restricted to �.t0/ does not vanish.
Then, for all .t; z/ such that jzj and jt � t0j are sufficiently small, the Cauchy type
integral

Jt .z/ D
Z

�.t/

k.x/y

y2 � z dx; z � 0 (49)

is well defined and analytic in t , z. The definition of Jt .z/ is illustrated in Figure 4,
where a closed loop �.t/ projected on the x-plane is shown, which makes one turn
around two roots of the polynomial f .x/C t . The roots of f .x/C t are represented

�.t/

Figure 4. The definition of the Cauchy type integral Jt .z/.

by small black bullet circles, while the roots of f .x/C t � z by small empty circles.
Note that in Section 2 we supposed that z � 1, while in this section that z � 0, and
this is essential for what follows.

Since I 0.t/ D 1
2
Jt .0/, Jt .z/ is a deformation of the Abelian integral I 0.t/. At the

same time, for a fixed t , Jt .z/ is a generating function of the moments I k.t/, k � 1,
in the sense of Section 2 and

Jt .z/ D J.z/;

where the Riemann surface R D �t depends on the parameter t . For .x; y/ 2 �.t/

and jzj sufficiently small the series
1X

kD0

�
z

y2

�k

converges uniformly and hence

Jt .z/ D
Z

�.t/

k.x/y

y2.1 � z
y2 /

dx

D
Z

�.t/

k.x/

y
dx C z

Z
�0

k.x/

y3
dx C z2

Z
�0

k.x/

y5
dx C � � � :
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Taking into consideration (47) we conclude

Proposition 4.1. For every regular value t of f the equalities

��1=2
k

� dk

dzk
Jt .0/ D 2I .kC1/.t/; k D 0; 1; 2 : : :

hold.

The above proposition implies the following corollary.

Corollary 4.1. The Abelian integral I 0.t/ vanishes identically, if and only if the
Cauchy type integral Jt .z/ vanishes identically.

The main advantage of using Jt .z/ instead of I 0.t/ is the possibility to extend it
analytically with respect to z. The result is a function algebraic in z.

Proposition 4.2 ([16]). For every fixed regular value t the Cauchy type integral Jt .z/

extends to an algebraic function in z with singularities at z D 0 and at the critical
values of f .

Indeed, for a fixed regular t , Jt .z/ allows for an analytic continuation along
any path which does not contain critical values of f � t or the value z D 0. In a
neighborhood of a critical value of f � t or at z D 0, the Cauchy theorem implies
that, up to an addition of a holomorphic function, Jt .z/ is a linear combination of
residues of k.x/y

y2�z
dx at the roots f �1

i .z� t / of f .x/C t�z. Thus, Jt .z/ is a function
of moderate growth in z with a finite number of branches, and hence is algebraic
in z. �

Our next goal is to extend analytically Jt .z/ in a neighborhood of .t1; 0/ under
the condition that t1 is a critical value of f . To simplify the notation put t1 D 0,
f .0/ D 0. Consider the domain

Dı D f.t; z/ W jt j < ı; jzj < ı; t ¤ z; t ¤ 0; z ¤ 0g
and assume that ı > 0 is so small that t D 0 is the only critical value of f in the disc
ft W jt j < 2ıg. Take some .t; 0/ 2 Dı and consider the germ of the analytic function
J D Jt .z/ in a neighborhood of this point.

Proposition 4.3. The germ of J D Jt .z/ at .t; 0/ 2 Dı allows for an analytic
continuation along any path starting at .t; 0/ and contained inDı .

Indeed, the affine curve �t is regular, provided that t ¤ 0, and the differential
k.x/y

y2�z
dx has simple poles if and only if z ¤ t; z ¤ 0. Therefore the closed curve

�.t/ can be deformed in a way to avoid these simple poles. �
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Although the function Jt .z/ might be not analytic in t near the line t D 0, it has
a finite limit there which we compute next. For this purpose, let l be a closed smooth
path connecting the point .t; 0/ to .0; z/, t; z ¤ 0, and contained in Dı (except the
ends), see Figure 5. Suppose that the homology class of the limiting loop �.0/ � �0

is zero and hence is a linear combination of vanishing cycles.

t

z

t = z

(t, 0)

(0, z)

l

Figure 5. The domain Dı .

Theorem 4.2. If �.0/ � �0 is homologous to zero, then the limiting value of Jt .z/

at .0; z/ along l is a zero-dimensional Abelian integral

J0.z/ D 2�
p�z d

dz

Z
ı.z/

K.x/

where K.x/ is a primitive of k.x/, ı.z/ D P
i nif

�1
i .z/, f �1

i .z/ are the roots of
the polynomial f .x/ � z, and the numbers ni depend only on the homology class
represented by the loop �.0/ inH1.{�0;Z/, {�0 D f.x; y/ W y2 D f .x/; f .x/ ¤ zg.
Corollary 4.2. If I.t/ D R

�.t/
! � 0 then

R
ı.z/

K � 0

Corollary 4.3. According to Proposition 4.1, if I 0.t/ D 0 for some regular t , then
the multiplicity of this zero is the same as the multiplicity of Jt .z/ with respect to z
at z D 0. In the particular case where t D 0 is a Morse critical point, the Abelian
integral I 0 is analytic at t D 0, and the multiplicity of the zero of I 0 at t D 0 is just the
multiplicity of the zero of the analytic function J0.z/ at z D 0. Thus, the multiplicity
of the one-dimensional Abelian integral at a Morse critical point equals essentially
the corresponding multiplicity of the one-dimensional Abelian integral.
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Proof of Theorem 4.2. We can deform the loop �.t/ along the interior of the path l
in a way to avoid the poles of k.x/y

y2�z
dx. Taking the limit t ! 0 along l we obtain

that �.0/ is homologous to a sum of closed loops around the poles of k.x/y

y2�z
dx, as it

is shown in Figure 6.

Figure 6. Computing the limit of �.t/ at a singular value.

Therefore,

J0.z/ D 2�
p�1

X
i

ni Resf �1
i

.z/

k.x/y

f .x/ � z dx

D 2�
p�z

X
i

˙ni

k.f �1
i .z//

f 0.f �1
i .z//

D 2�
p�z

Z
ı.z/

k.x/

f 0.x/

D 2�
p�z d

dz

Z
ı.z/

K.x/: �

Computation of the reduced 0-cycle ı.z/. For simplicity, suppose that �.t/
vanishes as t tends to 0 at the origin .0; 0/. Thus �.t/ is a linear combination of
cycles vanishing at .0; 0/. The standard basis of such cycles can be described as
follows. Let f �1

i .t/, i D 1; 2; : : : ; n, be the roots of the polynomial f .x/C t which
tend to 0 as t tends to 0, ordered cyclically with respect to the monodromy action.
We denote by �ij .t/ � �t a simple closed loop which is projected to the segment
Œf �1

i .t/; f �1
j .t/�. The loops �i;iC1.t/, i D 1; 2; : : : ; n� 1, form a basis of the local

homology group of the Milnor fiber of y2 � f .x/. We fix the orientations of these
cycles by the convention

�i;iC1 � �iC1;iC2.t/ D 1:

It is easy to check that then

�i;iC1.t/C �iC1;iC2.t/ D �i;iC2.t/;
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where the orientation of �i;iC2.t/ is appropriately chosen. Therefore the orientations
of the remaining cycles can be chosen to satisfy

�ij B �jk D C1; �ij C �jk D �ik for all i < j < k: (50)

As a by product we have also

�1;2 C �2;3 C � � � C �n;1 D 0:

Obviously this fixes the orientation of all cycles �ij up to simultaneous multiplication
by �1, which have no incidence on the result claimed in Corollary 4.2. The standard
basis of vanishing cycles of the singularity y2 C x5 is shown in Figure 7. We shall

�51

�45

�12 C �23 D C1

�12

�23

�34

Figure 7. The standard basis of vanishing cycles of the singularity y2 C x5.

construct an isomorphism

H1.�t ;Z/ ! zH0.f
�1.z/;Z/;

�.t/ 7! ı.z/;

having the property announced in Corollary 4.2. According to the proof of The-
orem 4.2 this should be a linear map which associates to the one-cycle �ij .t/ the
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reduced 0-cycle (see also Section 2) ıij .t/ D ˙.f �1
i .t/ � f �1

j .t// and should be
therefore compatible to the relations

�ij C �jk D �ik; ıij C ıjk D ıik :

It follows that the orientation of the 0-cycles ıij .t/ can be fixed as

ıij .t/ D f �1
i .t/ � f �1

j .t/ for all i < j:

Note that the above isomorphism is not compatible to the monodromy action.
In conclusion, if

�.t/ D
X

nij �ij .t/

and I.t/ D R
�.t/

! � 0 then
R

ı.z/
K � 0 where

ı.z/ D
X

nij .f
�1

i .z/ � f �1
j .z//:

4.3. HyperellipticAbelian integrals along ovals. Let f .x/ 2 RŒx� be an arbitrary
non-linear real polynomial. Consider a family of ovals f�.t/gt

�.t/ � f.x; y/ 2 R2 W y2 � f .x/ D tg; t 2 R;

depending continuously on the real parameter t . Each oval �.t/ can be parameterized
as

y D ˙
p
f .x/C t ; x1.t/ � x � x2.t/;

where x1.t/ < x2.t/ are two real roots of f .x/C t . The purpose of this last section
is to solve, by making use of Theorem 4.1 and Theorem 4.2, the following problem:
under what conditions the Abelian integral (46),

I.t/ D
Z

�.t/

k.x/ydx D 2

Z x2.t/

x1.t/

k.x/ydx;

is identically zero?

Theorem 4.3. The integral I.t/ vanishes identically if and only if there exists a
polynomial r 2 RŒx�, such that both f and K D R

k are polynomials in r , and
r.x1.t// � r.x2.t//.

Proof. First of all, note that ifK and f have a right compositional factor identifying
x1.t/ and x2.t/, then the Abelian integral

R
�.t/

k.x/ydx is a pull back of an integral
along a cycle homologous to zero, and hence vanishes identically.

Suppose further that I.t/ vanishes identically. It is enough to show that this
impliesK.x1.t// � K.x2.t// since in this case by Proposition 2.1 (or by the Lüroth
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theorem) f andK will have a right compositional factor identifying x1.t/ and x2.t/.
If there exists a path on the complex t -plane along which the cycle �.t/ vanishes,
then Theorem 4.2 applies and we conclude that K.x1.t// � K.x2.t//.

As an example, consider a real polynomial f of degree n � 2k, f D �x2k C� � � .
Let x1.t/ < x2.t/ be the two real roots of f .x/C t which tend to 0 as t tends to zero
and f�.t/g be the continuous family of ovals vanishing at the origin as t tends to zero.

�.t/ � f.x; y/ 2 R2 W y2 C x2k C � � � D tg
Then Theorem 4.2 applies and hence the result of Theorem 4.3 follows. In the Morse
case (k D 1), this has been proved by Christopher and Mardesic [4].

The condition that �.t/ vanishes along a suitable path is essential, and holds for
arbitrary real polynomials of degree four or five, see for instance [6], Section 3.1,
where the case f .x/ D .x2�1/2 is studied. We do not know whether this condition is
fulfilled for arbitrary polynomialf and family of ovals �.t/. See Figure 8 (continuous
families of ovals). However, using Theorem 4.1 instead of Theorem 4.2 we can prove
the theorem in its full generality.

x1

x1

x3 x4 x2

x2
0

c1

c2

Figure 8. The continuous families of ovals of y2 C.x2=2�1/2 and the graph of .x2=2�1/2 �1.

Indeed, let f be an arbitrary real polynomial of degree n > 1 and I.t/ be an
identically vanishing Abelian integral as before. Let us apply Theorem 4.1. For this
purpose, let us fix a regular real value t of f , and consider the moment problem asso-
ciated to the oval �.t/ on the Riemann surface �t . Following the method described
in Section 2 we have to consider a constellation �f � P 1 and to deform the image
of �.t/ under f C t on �f . The closed loop �.t/ being an oval, its image is just a
real interval connecting 0 to a critical value ck of f C t . Suppose for instance that
0 > c1 > c2 > � � � > ck are the remaining critical values of f C t contained in
Œck; 0�. We have therefore

Œck; 0� D Œck; ck�1� [ � � � [ Œc1; 0�

which, without loss of generality, will be used on the place of the constellation �f . To
each segment Œci�1; ci �we associate a 0-cycle ıi and I.t/ is a rational function if and
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only if
R

ıi .z/
K � 0. Fortunately in general we do not need to compute all of ıi . We

note that the image of Œx1.t/; x2.t/� is a closed curve covering Œck; 0�. The pre-image
of each point z 2 .0; c1/ consists of two points x1.z/ and x2.z/ (roots of f .x/Ct�z)
and hence ı1.z/ D x1.z/ � x2.z/. We conclude that K.x1.t// � K.x2.t// which
completes the proof of Theorem 4.3. �

Example. The critical values of the polynomial .x2=2 � 1/2 � 1 are �1 and �3=4.
The relevant constellation associated to the exterior family of ovals shown in Figure 8
is Œ�1;�3=4�[ Œ�3=4; 0�. To the segment Œ�3=4; 0�we associate the 0-cycle ı1.z/ D
x1.z/ � x2.z/ and to the segment Œ�1;�3=4� the 0-cycle ı2.z/ D x1.z/ � x3.z/C
x4.z/ � x2.z/.
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