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1. Introduction

Let X be a Calabi–Yau threefold, that is, a compact complex Kähler manifold of
dimension three with trivial canonical bundle KX ' OX and finite fundamental
group.

In a series of foundational papers starting with [Wil89], Wilson began a systematic
study of the geometry of Calabi–Yau threefolds by looking at the structure of their
ample cone and deducing from that several remarkable kind of algebraic fiber space
structures on them (especially in the case of large Picard number). In particular, he
obtained as a consequence that every Calabi–Yau threefold whose Picard number is
greater than 19 always contains a rational curve (this result was later improved to
Picard number greater than 13 in [HBW92]).

Using the same circle of ideas, Peternell showed in [Pet91] (see also [Ogu93])
that, under the condition of the existence of a non-zero effective non-ample divisor,
one can recover a rational curve on X ; roughly speaking, this is because such a
divisor defines a fibration which is not an isomorphism so that one tries to get some
positive dimensional fiber in which one hopes to find the desired curve. Of course,
the existence of such a divisor forces the Picard number of X to be greater than one;
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moreover, one can suppose that every such effective divisor is nef, otherwise by the
Cone Theorem one would get immediately a rational curve. Thus, one should ask
what happens if one merely has a non-zero nef non-ample divisor; this is the content
of a conjecture proposed by Oguiso:

Conjecture 1.1 (Oguiso [Ogu93]). Let X be a Calabi–Yau threefold possessing a
non-zero nef non-ample divisor D. Then, X contains a rational curve.

In [Ogu93] and independently in [Wil94], some partial answers are given, as-
suming for instance that the numerical dimension of D is one, or that D intersects
non-trivially the second Chern class of X . Here we give a positive answer to Conjec-
ture 1.1 with just an extra (mild) hypothesis on the Picard number (or, equivalently
on the second Betti number) of X .

Theorem 1.2. Let X be a Calabi–Yau threefold. If there exists on X a non-zero nef
non-ample divisor, then X does contain a rational curve, provided its second Betti
number is greater than 4.

We also have some partial result – depending on the existence of special divisors on
X satisfying certain numerical conditions – for the remaining cases b2.X/ D 2; 3; 4.
Such results can be summarized in the following:

Proposition 1.3. Let X be a Calabi–Yau threefold possessing a non-zero nef non-
ample divisor D. Then, X contains a rational curve provided one of the following
conditions is fulfilled:

(i) the null cone NX of X is irreducible and b2.X/ D 4,

(ii) the null cone NX of X is irreducible, b2.X/ D 3 and there do not exist two
Q-divisors E; F such that

D2 � E D 0; E3 D 0; E2 � F D 0; E � F 2 D 0;

and D, E, F span NS.X/R.

(iii) b2.X/ D 2 and either there exists a divisor E, not a multiple of D, such that
E3 D 0, or there exists a Q-divisor E, not a multiple of D, and such that
3.E2 � D/2 D 4E3 � .E � D2/.

The null cone of X is defined as the locus in NS.X/R of divisors whose top
self-intersection vanishes: being a polynomial locus in NS.X/R, its irreducibility in
the statement is intended as an algebraic variety. Moreover, we shall see that on a
Calabi–Yau threefold without rational curves all nef non-ample divisors must sit in it
(cf. Proposition 2.1).
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One of our motivations to look at this kind of problem was to get some evidence
in the direction of a conjecture by Kobayashi, which states that every projective
Kobayashi hyperbolic manifold has ample canonical bundle. It turns out (see Section 4
for more details) that in order to prove this conjecture in dimension three it suffices
to show that Calabi–Yau threefolds are not Kobayashi hyperbolic, i.e. they do admit
a non-constant entire (a priori transcendental) map from the complex plane. Of
course, such a map exists if the manifold contains a rational or an elliptic curve
(or more generally a non-constant holomorphic image of a complex torus). Another
perhaps more appropriate way to show the non-hyperbolicity of X would be to exhibit
a sequence of curves of general type .C`/ in X such that

� �. yC`/

deg C`

! 0 as ` ! 1;

where yC` is the normalization of C` and the degree is taken with respect to any
polarization of X – see [Dem97] for more details.

The results stated above thus permit, as in [Pet91], to exclude a certain number of
cases to be checked in order to prove such a non-hyperbolicity statement. Finally, as
far as we know, there is no known example of a Calabi–Yau threefold without either
rational curves, elliptic curves or non-constant holomorphic images of complex tori.

1.1. Notation and conventions. By a Calabi–Yau threefold we shall always mean
a compact Kähler manifold of dimension three with trivial canonical bundle and
finite fundamental group. In particular, this implies that the irregularity q.X/ D
dim H 1.X; OX / is zero. Since on a compact complex threefold

H 1.X; OX / Š �
H 2.X; KX /

��

by Serre’s duality, a Calabi–Yau threefold X satisfies H 2.X; OX / D 0 and thus it is
always projective. From H 1.X; OX / D H 2.X; OX / D 0, one easily deduces that
Pic.X/ is isomorphic to H 2.X; Z/ and that they are both isomorphic to the Néron–
Severi group of X . In particular, the Picard number of X equals its second Betti
number.

With our definition, one also has c2.X/ ¤ 0. To see this, just recall (see for
instance [Kob87]) that a compact Kähler manifold such that c1.X/ D c2.X/ D 0 in
H �.X; R/ is a finite unramified quotient of a torus. Thus, the fundamental group of
X must contain a free abelian group of rank 6, which is impossible by our assumption
on �1.X/.

For the definitions, basic properties and notations about positive cones and posi-
tivity concepts for divisors we refer to [Laz04], while for the birational geometry of
pairs and related classical results we follow [KM98].

Finally, by a rational point, we shall always mean a Q-rational point.
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2. Structure of the nef cone and rational curves

Let X be a projective manifold. As usual, define the nef cone Nef.X/ and the
pseudoeffective cone Psef.X/ of X to be the closed convex cones in the real Néron–
Severi space generated respectively by the classes of nef and effective divisors on X ;
it always holds Nef.X/ � Psef.X/ and the interior of these two cones gives the open
convex cones respectively of ample and of big classes. On NS.X/R it is defined a
(integral) top-intersection form

NS.X/R 3 D 7! Ddim X 2 R:

Its zero locus will be denoted by NX � NS.X/R and is usually called the null cone.
Finally, the nef boundary BX � NS.X/R is the boundary @ Nef.X/ of the nef cone.

Proposition 2.1. Let X be a projective manifold with trivial canonical bundle and
no rational curves. Then, Nef.X/ D Psef.X/ and moreover the nef boundary BX is
entirely contained in the null cone NX .

Proof. Let D be a big Q-divisor – in particular D is Q-effective. By taking a small
multiple of D, we can suppose that the pair .X; D/ is Kawamata log terminal (klt).
Since KX ' OX , then KX C D D D and the Cone Theorem tells us immediately
that D is nef, otherwise we would have some negative extremal ray generated by the
class of a rational curve in X . Thus, the interior of Psef.X/ is contained in Nef.X/

and therefore Psef.X/ � Nef.X/.
The second assertion is quite general and holds for any (smooth) projective mani-

fold such that Nef.X/ D Psef.X/. Since the nef cone is contained in (one connected
component of) the locus fDdim X � 0g, if BX was not contained in NX we would
find a nef R-divisor D with strictly positive top self-intersection Dn > 0. Then, D

is a big R-divisor, that is, its class lies in the interior of Psef.X/. But in this case it
cannot be on BX . �

Thus, on a projective manifold with trivial canonical bundle and no rational curves,
every effective divisor is nef. Now, let D be a non-zero effective Q-divisor on X .
Similarly as above, by taking a small (rational) multiple of D, we can suppose that the
pair .X; D/ is log canonical (lc). Since D D KX C D is nef, by the log-abundance
for threefolds [KMM94], [KMM04], the linear system associated to some multiple
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of D is free, so that it defines an algebraic fiber space structure �D W X ! Y , with Y

a normal projective variety whose dimension

dim Y D �.X; D/

equals the Kodaira dimension of D (which coincides, since D is abundant, with its
numerical dimension �.X; D/ D maxfk 2 N j Dk 6� 0g) and D �Q ��

DA for some
ample line bundle A on Y .

Theorem 2.2 (Peternell [Pet91], see also [Ogu93]). Let X be a smooth projective
threefold with trivial canonical bundle and c2.X/ ¤ 0, and let D be as above.
Assume that D is not ample, so that D 2 BX ; then X does contain a rational curve.

Remark that the hypothesis c2.X/ ¤ 0 is necessary: otherwise X is a finite
unramified quotient of a torus and therefore it cannot contain any rational curve. We
shall sketch and slightly rephrase the proof here below, since it clarifies the general
strategy and fixes notations for the entire business.

Outline of the proof (see [Ogu93] for more details). To begin with, observe that since
c2.X/ ¤ 0, by the Beauville–Bogomolov decomposition theorem (see also Section
4), after a finite étale cover, X is either a Calabi–Yau threefold or a product of a
projective K3 surface and of an elliptic curve. In the latter case, by [MM83], we find
a rational curve on the K3 factor and hence on X . So, from now on, we can suppose
that X is a Calabi–Yau threefold.

The idea is to find a rational curve in the fibers of the fibration �D W X ! Y

defined by D. By Proposition 2.1, we can suppose that every big divisor is ample.
Thus �.X; D/ D �.X; D/ is either 1 or 2 and the fibers of �D have codimension
�.X; D/ in X . Moreover, by adjunction, the (very) general fiber of �D has trivial
canonical bundle (since D �Q ��

DA is trivial when restricted to fibers).
If �.X; D/ D 2, then it can be shown that Y D W is a rational surface and the

general fiber of �D is a smooth elliptic curve. A finer analysis shows that, depending
on c2.X/ � D the following two cases can occur:

(IIC) c2.X/ � D > 0; then W has only quotient singularities and �D is an elliptic
fibration with at least one singular fiber and with no multiple fibers; this gives
us the desired rational curve as a singular fiber.

(II0) c2.X/ � D D 0; then W is non-Gorenstein with only quotient singularities and
�D is a smooth elliptic fibration in codimension one over W ; moreover there
is a non-Gorenstein point w 2 W such that dim ��1

D .w/ D 2 so that �D is
never equi-dimensional.

In order to find a rational curve in case of fibration of type (II0), one can then use
the following result, which we state in a simplified form that suffices for our aims:
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Theorem 2.3 (Kawamata [Kaw91]). Let f W X ! Y be a surjective projective
morphism, where X is smooth and �KX is f -nef (that is, it intersects non negatively
the curveswhich are contracted byf ). Then, any irreducible component of Exc.f / D
fx 2 X j dim f �1.f .x// > dim X � dim Y g is uniruled.

Suppose now �.X; D/ D 1. In this case, Y D P 1 and the general fiber of �D is
either a K3 surface or an abelian surface. The first case corresponds to c2.X/ �D > 0

and by the existence of rational curves on any projective K3 surface [MM83], we
are done. If c2.X/ � D D 0, then nothing can be said using merely the semiample
fibration associated to D.

In this case, starting from D, we try to construct another divisor N for which one
of the two following statements applies.

Lemma 2.4 (Key Lemma, [Wil89]). Let X be a Calabi–Yau threefold. Assume that
there exists an ample divisor H and a non-nef divisor N on X such that

N 3 > 0; N 2 � H > 0 and N � H 2 > 0:

Then, X contains a rational curve.

Proposition 2.5 (Oguiso [Ogu93]). Let X be a Calabi–Yau threefold and N a non-
zero nef divisor on X such that c2.X/ � N > 0. Then N is Q-effective (and hence
semiample).

In order to do that, consider the affine line (of rational slope) of divisors Nt D
H � tD, where H is an ample divisor and t 2 Q, and the inequalities (suggested by
Lemma 2.4):

N 3
t > 0; N 2

t � H > 0 and Nt � H 2 > 0:

Since c2.X/ ¤ 0 and X is supposed to be not uniruled, then by [Miy87] we have
c2.X/ � Nef.X/ � 0 and the inequality is strict on ample classes. From D2 � 0, one
can deduce that the previous system of inequalities is equivalent to

t < t0 D H 3

3D � H 2
; (1)

and moreover t0 is such that N 3
t0

D 0 and N 2
t0

� H > 0.
If Nt is not nef for some solution t of (1), then we are done by applying Lemma 2.4

to N D Nt (perhaps after perturbing a little bit t in order to deal with rational divisors).
Otherwise, Nt is nef for every rational solution of (1), therefore Nt0 is also nef (and
t0 is of course rational). Since c2.X/ � Nt0 D c2.X/ � H > 0, Proposition 2.5 with
N D Nt0 gives effectiveness of Nt0 . Finally, N 2

t0
� H > 0 implies �.X; Nt0/ D 2

and therefore Nt0 endows X with the structure of an algebraic fiber space of type
(IIC). �



Vol. 89 (2014) On a conjecture of Oguiso about rational curves on Calabi–Yau threefolds 163

Observe that in the last part of the proof, in order to construct the new divisor N ,
we did not use any effectivity property of D, but just its nefness and the fact that its
numerical dimension was one. As a byproduct, one obtains:

Proposition 2.6 (Oguiso [Ogu93], see also [Wil94]). Let X be aCalabi–Yau threefold
possessing a non-zero nef Q-divisor D 2 BX such that either c2.X/ � D ¤ 0 or
�.X; D/ D 1. Then, X contains a rational curve.

Let us rephrase the statement in the following form, more convenient for what
follows.

Proposition 2.7. Let X be a smooth projective threefoldwith trivial canonical bundle,
c2.X/ ¤ 0 and without rational curves. Then, X is a Calabi–Yau threefold and every
rational divisor D 2 BX is such that �.X; D/ D 2 and c2.X/ � D D 0.

3. Arithmetic of the nef boundary

Using the description of the nef boundary given in the previous section, we now prove
the following result.

Theorem 3.1. Let X be a smooth projective Calabi–Yau threefold with b2.X/ > 4,
and assume there exists a non-zero rational divisor D on the nef boundary of X .
Then, X does contain a rational curve.

The naïve idea of the proof is as follows. Start with the given divisor D which is
by hypothesis rational, non-zero, and on the nef boundary. By Proposition 2.7, we can
assume that �.X; D/ D 2 and c2.X/ � D D 0, otherwise we are done. By [Miy87],
c2.X/ � A > 0 for every ample divisor A on X , so that the hyperplane in NS.X/R

defined by c2.X/ � x D 0 is a supporting hyperplane for the convex cone Nef.X/ at
D. By Proposition 2.1, we may assume that BX is locally described by the cubic
equation x3 D 0, so that the tangent space at the point D is given by fD2 � x D 0g.
On the other hand, �.X; D/ D 2 tells us that this is a true hyperplane, that is, BX

is smooth at D, and thus the supporting hyperplane fc2.X/ � x D 0g is in fact the
tangent hyperplane to BX at D and coincides with the hyperplane fD2 � x D 0g.

Now, two different scenarios are possible: either NX is irreducible or it factorizes
as a union of the hyperplane fc2.X/ � x D 0g and a residual quadratic locus (we shall
see that it can never factorize as a product of three linear loci as soon as b2.X/ � 4).
By Proposition 2.6, it will suffice to find a non-zero rational point E 2 BX which
satisfies c2.X/ � E ¤ 0. In the first case, this will be achieved by finding such an E

by an iteration argument and, in the second case, by finding it as a non-zero rational
point sitting on the residual quadric (and not on the hyperplane).
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Let us now make some general remarks and state some elementary lemmata
before entering into the proof. First of all, it is quite natural to look at things in
the projective space P .NS.X/R/. We shall fix once and for all an affine open chart
U of P .NS.X/R/ containing all directions of Nef.X/: one has to think at it as
an affine hyperplane of rational slope in NS.X/R passing through D and cutting
Nef.X/ transversally (see Figure 1 for a qualitative picture of the situation); with a
slight abuse of language we shall continue to call NX and BX their projectivized in
P .NS.X/R/ and talk about convexity and boundedness properties referring to the
open affine part U.

NS.X/R

U

BX

NX

D

Figure 1. The null cone and the nef boundary cut by the affine hyperplane U at the rational nef
non-ample divisor D.

From now on, we will work in this real projective space of real dimension
b2.X/ � 1. Notice that BX bounds a compact convex set in U.

Remark 3.2. Let � 	 Rn, n � 2, an open bounded set, x 2 @� smooth point of the
boundary and T@�;x the tangent space of @� at x. If ` is any line passing through x

and not contained in T@�;x , then ` must meet @� in at least one more point different
from x and, of course, not contained in T@�;x .

Lemma 3.3. Let Q 	 Rn, n � 2, be a singular quadric and H 	 Rn an affine
hyperplane such that {.Q [ H/ has a bounded connected component K. Then the
singular set of Q consists of a single point which lies on @K n H .

In particular, three affine hyperplanes can never bound a compact set in Rn, as
soon as n � 3.
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Proof. To prove that Q has just one singular point it is enough to prove that Q \ H

is a smooth quadric. Indeed the singular locus of Q is an affine space, hence it is a
point if it is disjoint from H . Notice that Q \ H bounds a compact set in H ; since
a singular quadric is a cone, it cannot bound a compact set, hence Q \ H is smooth.

It remains to check that the vertex of Q lies on @K. If this is not the case, let
x 2 @K be any point outside H ; then the half-line starting from x and going away
from the vertex must lie on @K, contradicting its boundedness. �

Lemma 3.4. Let P 	 Rn, n � 3, be an irreducible cubic and x 2 P be a smooth
point with tangent space T D TP;x . Suppose that P jT is everywhere non-reduced.
Then, for every neighbourhood U of x, P \ U cannot lie on only one side of T . In
particular, P cannot bound a convex set near x.

Proof. Observe that a cubic which is everywhere non-reduced is necessarily given
by a linear equation raised to the cube. We can suppose without loss of generality
that x D 0 2 Rn and, after a linear transformation, that T D fxn D 0g. Moreover,
we can arrange the coordinates so that P is given by the equation

p.x/ D x3
1 C xn q.x/;

where q is a quadratic polynomial. For every " 2 R consider the equation

�".t/ D t3 C "q.t; 0; : : : ; 0; "/ D 0:

Since it is cubic, there is always at least one solution. For " D 0 we have the triple
solution t D 0; hence every zero of �" remains small for " small. In particular there
are arbitrarily small points on P both in the case " > 0 and " < 0, which is the thesis.

�

Proof of Theorem 3.1. Suppose first that the cubic locus NX is reducible. Since
b2.X/ � 5, by Lemma 3.3 it cannot be the union of three hyperplanes. Therefore
NX splits as a union H [ Q, where H is a hyperplane and Q the residual irreducible
(indefinite) quadric. Since NX is defined over Q, then H and Q are defined over
Q, too; this can be seen straightforwardly by acting on the defining equations with
automorphisms of C which by hypothesis leave NX invariant. Observe moreover
that in this case Nef.X/ is bounded by H [ Q.

Of course, rational points are dense in H ; by Meyer’s theorem [Ser77], since
b2.X/ � 5, Q satisfies the Hasse–Minkowski local-global principle and thus it does
have a rational point. If this point is smooth, then rational points of Q are dense by
projection and thus rational points are also dense in NX (and hence in BX ). So, we
find (plenty of) rational divisors in BX whose intersection with c2.X/ is non-zero,
and we are done thanks to Proposition 2.6. If the rational point is singular for Q,
then by Lemma 3.3 it lies in BX . Thus, we have found a rational point on the nef
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boundary with numerical dimension 1 (otherwise it would be a regular point) and we
conclude again by Proposition 2.6.

Next, suppose that NX is irreducible. In this case the hypothesis on the second
Betti number can be slightly weakened to b2.X/ � 4. Let D be the (smooth) rational
point of BX as in the hypotheses and consider the tangent space TBX ;D D TNX ;D of
NX at D: as we have seen, it is given by fD2 � x D 0g D fc2.X/ � x D 0g, and hence
it is defined over Q. The intersection

C D NX \ TNX ;D

is a cubic of dimension one less, which is by construction singular at D, hence rational
over Q. Unfortunately, this is not enough to find rational divisors on the boundary of
the ample cone which are not on TNX ;D D fc2.X/ � x D 0g. Denote by

S WD C.Q/

the set of rational points thus obtained. If one of the points in S is singular for NX ,
we are done as above by projection; otherwise we can repeat the procedure starting
from any point D0 2 S and produce more rational points on NX .

We claim that we can suppose that repeating the procedure will actually yield
some point not in S : thus we obtain a rational point E of NX such that either E is
already contained in BX and c2.X/ � E ¤ 0 or E 2 NX n BX and the line through
D and E is not contained in TNX ;D . In the first case we are done by Proposition 2.6.
In the second case the conclusion follows from Remark 3.2 and the fact that if a line
meets a cubic defined over Q at three points, two of which are rational, then the third
one is rational as well.

To prove the claim, suppose that the tangent space to NX at all points in S is the
same. Since the cubic C is rational over Q, rational points on C are dense in the
Zariski topology, and it follows that the tangent space to NX at all points of C is the
same. This implies that C is everywhere singular, hence everywhere non-reduced.
But then, by Lemma 3.4, BX cannot be convex at the point D, contradiction. �

As a byproduct of the proof above, we obtain immediately the following corollar-
ies, which improve slightly two results contained in [Wil89].

Corollary 3.5. Let X be a Calabi–Yau threefold whose second Betti number
b2.X/ > 4. If NX is reducible, then X contains a rational curve.

Remark that in the above corollary, there is no assumption on the existence of a
“special” divisor on X ; unluckily, we are unable to give any satisfactory description
of when such a situation actually occurs.

Corollary 3.6. Let X be a Calabi–Yau threefold whose second Betti number
b2.X/ > 3. If NX is irreducible and there exists a non-zero nef non-ample Q-divisor
on X , then X contains a rational curve.
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Let us now state a partial answer to Oguiso’s conjecture in the case when
b2.X/ D 3.

Proposition 3.7. Let X be a Calabi–Yau threefold with a non-zero nef non-ample
Q-divisor D. Suppose that NX is irreducible, b2.X/ D 3 and there do not exist two
Q-divisors E, F such that

D2 � E D 0; E3 D 0; E2 � F D 0; E � F 2 D 0; (2)

and D, E, F span NS.X/R. Then, X contains a rational curve.

Unfortunately, if NX is reducible, it seems to us that nothing can be really said as
soon as b2.X/ 
 4.

Proof. By hypothesis, NX is a cubic curve in P .NS.X/R/ ' P 2.R/, which is
smooth at D. By choosing a plane which cuts Nef.X/ transversely, we will look at
NX as an affine cubic and talk about bounded and unbounded components, as before
(see again Figure 1).

First, we can assume that NX is smooth. Otherwise its singular locus is defined
over Q; since it consists of only one single point, that point is rational. But then the
cubic is rational over Q and we are done.

By Harnack’s theorem, NX must have at most two real connected components,
and since part of NX bounds the nef cone, it must have exactly two components, one
of which bounded. Take the tangent line to NX at D: its equation is fD2 � x D 0g
(which can be assumed to coincide with fc2.X/ � x D 0g) and it meets NX at one
more rational (smooth) point E which satisfies then E3 D D2 � E D 0 and lies on
the unbounded component; clearly, the tangent line to NX at E cannot be the same
as the one tangent at D.

Now, suppose that E is not an inflection point for NX . Then, repeating the same
construction we find another rational point D0 on (the unbounded component of) NX

such that the line through it and D is different from the tangent line to NX at D. We
conclude then by Remark 3.2 since the third point obtained must be rational.

In remains to show that E is not an inflection point of NX , but a straightforward
computation shows that this is the case exactly when one can find another divisor F

satisfying the last two conditions in (2) and such that D, E, F span NS.X/R. �

To finish with, let us make a final remark concerning Oguiso’s conjecture in the
case b2.X/ D 2, which is the smallest possible dimension of H 2.X; R/ in order to
have a non-zero nef non-ample divisor. In such a situation, the nef cone is bounded
by two extremal rays, one of which is rational by hypothesis. Call D a generator
of this rational ray: we can suppose that it satisfies c2.X/ � D D 0 and D2 6� 0,
otherwise we find as usual a rational curve in X . Thus, in order to find a rational
curve by these methods one has to show that the other extremal ray is rational, too.
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Fix another rational divisor E linearly independent with D: the null cone NX with
respect to this basis is described by

E3 x3 C 3E2 � D x2y C 3E � D2 xy2 D 0: (3)

Therefore, its (projective) solutions other than D D Œ0 W 1� are rational if and only if

9.E2 � D/2 � 12E3 � .E � D2/

is a perfect square. This is the case if one can choose either E to be in NX (but not
necessarily in the nef boundary BX ) or such that 3.E2 � D/2 D 4E3 � .E � D2/ (and
E3 ¤ 0). The first possibility tells that we can thus find a non-zero nef non ample
divisor intersecting non-trivially c2.X/. The latter possibility means that (3) has,
apart from D, only one other solution of multiplicity two given by Œ�3E2 �D W 2E3�,
that is, the other extremal ray is spanned by the rational divisor

D0 WD .�3E2 � D/E C .2E3/D;

whose numerical dimension is 1 (by direct computation of .D0/2 �E D .D0/2 �D D 0).
By Proposition 2.6, this discussion gives:

Proposition 3.8. Let X be a Calabi–Yau threefold with a non-zero nef non-ample
Q-divisor D and suppose that b2.X/ D 2. Then X contains a rational curve provided

� either there exists a Q-divisor E, not a multiple of D, such that E3 D 0,

� or there exists a Q-divisor E, not a multiple of D, and such that 3.E2 � D/2 D
4E3 � .E � D2/.

4. On a conjecture of Kobayashi

Let X be a compact complex space. Recall that X is Kobayashi hyperbolic if and
only if there is no non-constant entire holomorphic map f W C ! X . In particular,
if X is Kobayashi hyperbolic, then it cannot contain any non-hyperbolic subvariety.

In 1970, S. Kobayashi proposed the following:

Conjecture 4.1. Let X be a smooth complex projective manifold. If X is Kobayashi
hyperbolic then the canonical bundle KX is ample.

We take the opportunity here to reproduce a quite standard argument in order
to reduce this conjecture to showing that projective varieties X with non-positive
Kodaira dimension �.X/ 
 0 are not hyperbolic. Observe that if X is uniruled (and
hence certainly not Kobayashi hyperbolic) then �.X/ D �1; on the other hand, it
is a conjecture that �.X/ D �1 implies uniruledness. This conjecture is known to
hold true in dimension less than or equal to three.
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So, let X be a smooth Kobayashi hyperbolic projective manifold. First of all, by
the celebrated criterion of Mori, KX is nef – otherwise X would contain a rational
curve. Thus, KX is already in the closure of the ample cone (it is somewhat surpris-
ing that Kobayashi could formulate Conjecture 4.1 without Mori’s criterion at his
disposal).

Suppose for a moment that one can prove that Kobayashi hyperbolicity implies
strictly positive Kodaira dimension. Then, we can apply the following to KX .

Theorem 4.2 (Iitaka fibrations). Let X be a normal projective variety and L ! X

a line bundle on X such that �.X; L/ > 0. Then, for all sufficiently large k such that
H 0.X; kL/ ¤ 0, the rational mappings �k W X Ü Yk induced by the linear system
jkLj are birationally equivalent to a fixed algebraic fiber space

�1 W X1 ! Y1

of normal varieties, and the restriction of L to a very general fiber of �1 has zero
Kodaira–Iitaka dimension.

More specifically, there exists for any such large k a commutative diagram

X

�k

���
�
� X1

u1��

�1

��
Yk Y1�k

��� � �

of rational maps and morphisms, where the horizontal maps are birational and u1 is
a morphism. One has that dim Y1 D �.X; L/ and moreover, if we set L1 D u�1L

and take F 	 X1 to be a very general fiber of �1, then

�.F; L1jF / D 0:

The Iitaka fibration of an irreducible variety X is by definition the Iitaka fibra-
tion associated to the canonical bundle (on any non-singular model) of X , provided
�.X/ > 0. A very general fiber F of the Iitaka fibration of X satisfies �.F / D 0.

We claim that this implies that the Kodaira dimension of a projective Kobayashi
hyperbolic manifold X must be maximal, that is, X is of general type. Indeed, if
1 
 �.X/ < dim X , then �1 has positive dimensional fibers and the very general
ones have zero Kodaira dimension. Since u1 is birational, the (Zariski closure of the)
image by u1 of a very general fiber of �1 will have zero Kodaira dimension, so that
we would, by our assumptions, find a non-Kobayashi hyperbolic positive dimensional
subvariety of X , contradiction.

Now, if KX is big and nef, the Base Point Free Theorem implies immediately
that it is semi-ample, so that a large multiple of KX defines a genuine surjective,
generically 1-1 morphism f W X ! X 0 whose exceptional locus Exc.f / is empty
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if and only if KX is ample; by Theorem 2.3, this locus, if non-empty, has uniruled
irreducible components. Thus, if X is hyperbolic and KX is big (and nef, by Mori),
then KX must be ample (see also [Tak08]).

Next, how to prove that a projective manifold X of non-positive Kodaira dimen-
sion is not hyperbolic? We restrict our attention to the three-dimensional case (for
some partial result on hyperKähler manifold in higher dimension, one can see also
[Cam92]), since in dimension two the conjecture follows from the birational classi-
fication plus the existence of rational curves on projective K3 surfaces [MM83]. As
observed above, we already know that a projective threefold X of negative Kodaira di-
mension is uniruled, so that we can suppose �.X/ D 0, that is, h0.X; mKX / 2 f0; 1g
for all m � 0. But then, since the abundance conjecture holds true in dimension
three, a large multiple of KX must be globally generated by only one global section;
in other words some large multiple of KX is trivial.

Thus, KX is torsion and c1.X/ 2 H 2.X; R/ is zero. By the Beauville–Bogomolov
decomposition theorem [Bea83], a manifold with vanishing real first Chern class
is, up to finite étale covers, a product of complex tori, Calabi–Yau manifolds and
holomorphic symplectic manifolds. Hence at least one factor of X is a torus, or X

is a Calabi–Yau. Since complex tori are obviously not Kobayashi hyperbolic, one is
reduced to showing that Calabi–Yau threefolds are not Kobayashi hyperbolic (since
Kobayashi hyperbolicity is preserved under étale covers).

It is now clear that results that suggest that Calabi–Yau threefolds are not hyper-
bolic also go in the direction of proving the Kobayashi conjecture. In particular, if the
Kobayashi conjecture is false, there must exist a hyperbolic Calabi–Yau threefold; by
our results together with [Pet91], [HBW92], [Ogu93], such a variety X will have the
following properties:

(i) the second Betti number b2.X/ 
 13;

(ii) every non-zero effective divisor on X is ample;

(iii) if b2.X/ � 5, every non-zero nef divisor on X is ample.

Of course, for b2.X/ 
 4, we have given a partial description in Propositions 3.7
and 3.8.

Needless to say, our results deal with the existence of rational curves while to
prove non-hyperbolicity of Calabi–Yau threefolds one could look at the much weaker
condition of the existence of entire (a priori just transcendental) curves: hopefully
this will be the subject of further investigations, possibly via the study of Ahlfors’
currents and their cohomology classes.
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