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Harmonic diffeomorphisms between domains in the Euclidean
2-sphere

Antonio Alarcón and Rabah Souam�

Abstract. We study the existence or non-existence of harmonic diffeomorphisms between
certain domains in the Euclidean 2-sphere. In particular, we show the existence of harmonic
diffeomorphisms from circular domains in the complex plane onto finitely punctured spheres,
with at least two punctures. This result follows from a general existence theorem for maximal
graphs in the Lorentzian product M � R1, where M is an arbitrary n-dimensional compact
Riemannian manifold, n � 2. In contrast, we show that there is no harmonic diffeomorphism
from the unit complex disc onto the once-punctured sphere and no harmonic diffeomeorphisms
from finitely punctured spheres onto circular domains in the Euclidean 2-sphere.
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1. Introduction

In 1952, Heinz [He] proved there is no harmonic diffeomorphism from the unit
complex disk D onto the complex plane C, with the Euclidean metric. Later, Schoen
and Yau [SY] asked whether Riemannian surfaces which are related by a harmonic
diffeomorphism are quasiconformally related, and proposed to investigate whether
there is a harmonic diffeomorphism from C onto the hyperbolic plane H2. Markovic
[Ma] answered the first question in the negative, by showing an example consisting of
a pair of Riemann surfaces of infinite topological type. He also gave conditions under
which the question has a positive answer in the case of surfaces of finite topology.
Finally, Collin and Rosenberg [CR] gave an example of a harmonic diffeomorphism
from C onto H2, disproving the conjecture by Schoen andYau [SY]. To do that, they
constructed an entire minimal graph † over H2 in the Riemannian product H2 � R,
with the conformal type of C. Then the vertical projection † ! H2 is a surjective
harmonic diffeomorphism. See [GR] for further generalizations.
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and is partially supported by MCYT-FEDER grants MTM2007-61775 and MTM2011-22547, Junta deAndalucía
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Let S2 and xC denote the 2-dimensional Euclidean unit sphere and the Riemann
sphere, respectively. A domain in xC is said to be a circular domain if every connected
component of its boundary is a circle.

In this paper we study the existence or non-existence of harmonic diffeomorphisms
between certain domains in S2. Our main result asserts:

Theorem I. (i) For any m 2 N, m � 2, and any subset fp1; : : : ; pmg � S2

there exist a circular domain U � xC and a harmonic diffeomorphism � W U !
S2 � fp1; : : : ; pmg.

(ii) There exists no harmonic diffeomorphism ' W D ! S2 � fpg.
(iii) For any m 2 N, any subset fz1; : : : ; zmg � xC and any pairwise disjoint

closed discs D1; : : : ;Dm in S2 there exists no harmonic diffeomorphism  W xC �
fz1; : : : ; zmg ! S2 � Sm

j D1Dj .

Notice that Theorem I is related to Schoen andYau’s questions [SY], since circular
domains are of hyperbolic conformal type whereas xC with a finite set removed is
parabolic. Moreover, it is worth mentioning that Items (i) and (iii) actually follow from
much more general results (see Corollary 4.3 and Proposition 4.7). Concretely, we
show that, given a compact Riemannian surface M and a subset fp1; : : : ; pmg � M,
m � 2, there exist an open Riemann surface R and a harmonic diffeomorphism
� W R ! M � fp1; : : : ; pmg such that every end of R is of hyperbolic conformal
type (see Theorem 1.2 of [Ma] for a good setting).

Our strategy to show the harmonic diffeomorphism of Item (i) in Theorem I
consists of constructing a maximal graph† over S2 �fp1; : : : ; pmg in the Lorentzian
manifold S2 �R1, with the conformal type of a circular domain. Then, the projection
† ! S2 � fp1; : : : ; pmg is a surjective harmonic diffeomorphism.

In this direction, we prove the following general existence result:

Theorem II. Let M D .M; h�; �iM/ be a compact Riemannian manifold without
boundary of dimension n 2 N, n � 2, and denote by M � R1 the product manifold
M � R endowed with the Lorentzian metric h�; �iM � dt2. Let m 2 N, m � 2, and
let A D f.pi ; ti /giD1;:::;m be a subset of M � R1 such that

� pi ¤ pj , and
� jti � tj j < distM.pi ; pj /, for all fi; j g � f1; : : : ;mg with i ¤ j .

Then there exists exactly one entire graph †.A/ over M in M � R1 such that
� A � †.A/, and
� †.A/ � A is a spacelike maximal graph over M � fpigiD1;:::;m.

Moreover the space Gm of entiremaximal graphs over M in M�R1 with precisely
m singularities, endowed with the topology of uniform convergence, is non-empty,
and there exists an mŠ-sheeted covering, SGm ! Gm, where SGm is an open subset
of .M � R/m.
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Let us point out that our method is different from the one of Collin and Rosen-
berg [CR] and strongly relies on the theory of maximal hypersurfaces in Lorentzian
manifolds. More precisely, it is based on the construction of maximal hypersurfaces
with isolated singularities in Lorentzian products M � R1. The study of complete
maximal surfaces, with a finite number of singularities and their moduli spaces in
the 3-dimensional Minkowski space L3, was developed by Fernández, López and
Souam [FLS]. Their study strongly relies on the Weierstrass representation for max-
imal surfaces in L3 . Our approach here relies on a different idea which consists of
dealing with the existence problem in Theorem II as a generalized Dirichlet problem.
Let us also point out that Klyachin and Miklyukov [KM] have obtained results on the
existence of solutions, with a finite number of singularities, to the maximal hypersur-
face equation in the n-dimensional Minkowski space Ln with prescribed boundary
conditions.

Harmonic maps from Riemann surfaces into S2 are related to other natural geo-
metric theories. For instance, the Gauss map of constant mean curvature surfaces in
R3 is harmonic for the conformal structure induced by the immersion [Ru] (see also
[Ke]), whereas the Gauss map of positive constant Gaussian curvature is harmonic for
the conformal structure of the second fundamental form [GM]. The latter statement is
the key in the proof of Theorem I (ii). More precisely, we show that if the Gauss map
of a surface of positive constant curvature in R3 is a diffeomorphism onto S2 � fpg,
then the conformal structure induced by the second fundamental form of the surface
is that of C.

On the other hand, using the harmonicity of the Gauss map of surfaces of positive
constant curvature in R3, harmonic diffeomorphisms from circular domains into
domains in S2 bounded by a finite family of convex Jordan curves and satisfying a
Neumann boundary condition have been recently shown by Gálvez, Hauswirth and
Mira [GHM]. It is an open question whether a harmonic diffeomorphism as those in
Theorem I (i) can be realized as the Gauss map of either a constant mean curvature
or a constant Gaussian curvature surface in R3.

The paper is laid out as follows. In Section 2 we state the necessary notations
and preliminaries on harmonic maps between Riemannian manifolds and maximal
graphs in Lorentzian product spaces. In Sections 3 and 4 we prove Theorems II and I,
respectively. Also in Section 4 we introduce some background on both Riemann
surfaces and surfaces of positive constant curvature, for a well understanding of
the proofs of items (i) and (ii) in Theorem I. Finally, in Section 5 we discuss the
relation between harmonic diffeomorphisms U ! S2 � fp1; : : : ; pmg as those of
Theorem I (i) and conformal maximal immersions U ! S2 � R1.
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2. Preliminaries

Let M D .M; g/ and N D .N; h/ be smooth Riemannian manifolds. Given a
smooth map f W M ! N and a domain � � M with piecewise C 1 boundary @�,
the quantity

E�.f / D 1

2

Z
�

jdf j2dVg (2.1)

is called the energy of f over �. Here dVg denotes the volume element of M , and
j � j the norm on .N; h/.

A smooth map f W M ! N is said to be harmonic if it is a critical point of
the energy functional, that is, if for any relatively compact domain � � M and any
smooth variationF W M �.��; �/ ! N of f supported in� (i.e.,F is a smooth map,
f0 D f and ft jM�� D f jM�� for all t 2 .��; �/, where ft WD F.�; t / W M ! N

and � > 0), the first variation d
dt
E�.ft /jtD0 is zero.

If M is 2-dimensional, that is to say, a Riemannian surface, then the energy
integral (2.1) is invariant under conformal changes of the metric g, hence so is the
harmonicity of f . Therefore, the harmonicity of a map from a Riemann surface to a
Riemannian manifold is a well defined notion. On the other hand, the harmonicity of
a map is not preserved under conformal changes in the metric of the target manifold.

See the surveys [EL1], [EL2], [HW] for appropriate references.

Remark 2.1. Throughout the paper we denote by M D .M; h�; �iM/ a compact
n-dimensional Riemannian manifold without boundary, n 2 N, n � 2.

We denote by M � R1 the Lorentzian product space M � R endowed with the
Lorentzian metric

h�; �i D ��
M.h�; �iM/ � ��

R.dt
2/;

where�M and�R denote the projections from M�R onto each factor. For simplicity,
we write

h�; �i D h�; �iM � dt2:
A smooth immersion X W † ! M � R1 of a connected n-dimensional manifold

† is said to be spacelike if X induces a Riemannian metric X�.h�; �i/ on †.
Let � � M be a connected domain and let u W � ! R be a smooth function.

Then the map

Xu W � ! M � R1; Xu.p/ D .p; u.p// for all p 2 �;
determines a smooth graph over� in M � R1. The metric induced on� by h�; �i via
Xu is given by

h�; �iu WD .Xu/�.h�; �i/ D h�; �iM � du2;

hence Xu is spacelike if and only if jruj < 1 on �, where ru denotes the gradient
of u in � and jruj denotes its norm, both with respect to the metric h�; �iM in �.
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In this case the function u is said to be spacelike as well. If u is spacelike, then the
mean curvature H W � ! R of Xu is given by the equation

H D 1

n
Div

� rup
1 � jruj2

�
;

where Div denotes the divergence operator on � with respect to h�; �iM.
A smooth function u W � ! R and its graph Xu W � ! M � R1 are said to be

maximal if u is spacelike and H vanishes identically on �.
If K � M is compact then a function u W K ! R is said to be smooth (resp.,

spacelike, maximal) if and only if u extends to an open domain containing K as a
smooth (resp., spacelike, maximal) function.

A locally Lipschitz function u W � ! R is said to be weakly spacelike if and only
if jruj � 1 a.e. in �. In this case the graph Xu is said to be weakly spacelike as
well. If u is weakly spacelike then the area of Xu.�/ is given by

A.u/ WD
Z

�

p
1 � jruj2 dVM; (2.2)

where dVM denotes the volume element of h�; �iM. A smooth u W x� ! R is a critical
point of (2.2) if and only if u is maximal.

If u W � ! R is maximal then Xu W .�; h�; �iu/ ! .M � R1; h�; �i/ is a harmonic
map. In particular

Id W .�; h�; �iu/ ! .�; h�; �iM/

is a harmonic diffeomorphism, and

u W .�; h�; �iu/ ! R

is a harmonic function.

3. Moduli space of maximal graphs with isolated singularities.
Proof of Theorem II

Throughout this section let m 2 N and let A D f.pi ; ti /gm
iD1 denote a set of points

in M � R such that pi ¤ pj if i ¤ j for all i; j 2 f1; : : : ;mg.
We denote by MA the space of continuous functions u W M ! R such that

� u.pi / D ti for all i D 1; : : : ;m, and

� Ou WD ujM�fpi gm
iD1

is maximal.

The following claim trivially follows from the maximum principle for maximal
surfaces.
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Claim 3.1. If m D 1 then MA consists of the constant function u � t1.

From now on in this section assume that m � 2. The set A is said to satisfy the
spacelike condition if and only if

jti � tj j < distM.pi ; pj / for all i; j 2 f1; : : : ;mg; i ¤ j;

where distM.�; �/ means distance in .M; h�; �iM/.
From now on assume that A satisfies the spacelike condition.
For each .i; n/ 2 f1; : : : ;mg � N consider an open disk Bn

i in M satisfying

that @Bn
i is a smooth Jordan curve, Bn

i \ Bn
j D ; if i ¤ j , BnC1

i � Bn
i , and

fpig D \n2NB
n
i . Define �n D M � Sm

iD1B
n
i , n 2 N. Let ftni gn2N be a sequence

of real numbers converging to ti , i D 1; : : : ;m.
Consider the function 'n W @�n ! R such that

'nj@Bn
i

D tni ; i D 1; : : : ;m. (3.1)

Since A is finite then A satisfies the spacelike condition if and only if there exists
�A 2 .0; 1/ such that jti � tj j < �A � distM.pi ; pj / for all i ¤ j . It follows that there
exists n0 2 N such that for each n � n0, the function 'n is �A;n-Lipschitz for some
�A;n 2 .0; 1/.

It is proved in [Fe], p. 202, that there exists an �A;n-Lipschitz extension Q'n of 'n

to �n. More precisely, such an extension is given by the formula:

Q'n.p/ D inff'n.x/C �A;ndistM.p; x/; x 2 @�ng, for p 2 �n. (3.2)

Notice that Q'n is smooth near @�n. A simple approximation argument then shows
that

Claim 3.2. For all n � n0, there exists a smooth spacelike function N'n W �n ! R
such that N'nj@Bn

i
D tni ; i D 1; : : : ;m.

Then by Theorem 5.1 of [Ge], there exists a maximal function un W �n ! R such
that

unj@Bn
i

D N'nj@Bn
i

D tni , for all n � n0. (3.3)

Notice that the sequence fungn2N is uniformly bounded (the un’s are maximal
and there are uniform bounds on the boundary of the�n’s). Moreover jrunj < 1 on
�n, hence Ascoli–Arzela’s Theorem and a diagonal argument give that, up to passing
to a subsequence,

Claim 3.3. fungn2N uniformly converges on compact sets of

M � fpigm
iD1 D

[
n2N

�n

to a weakly spacelike function Ou W M � fpigm
iD1 ! R.
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Moreover, from (3.3), the convergence of ftni gn2N to ti and the Lipschitz conti-
nuity of Ou one has that

Claim 3.4. Ou extends to a weakly spacelike function u W M ! R with u.pi / D ti for
all i D 1; : : : ;m.

By the results in [Ba1], §6, Ou is a maximal function except for a set of points
ƒ � M � fpigm

iD1 given by ƒ WD ˚
p 2 M � fpigm

iD1 j .p; Ou.p// D �.s0/

for some 0 < s0 < 1, where � W Œ0; 1� ! M � R1 is a null geodesic such that
�..0; 1// � X Ou.M � fpigm

iD1/ and �M.f�.0/; �.1/g/ � fpigm
iD1

�
.

Since A satisfies the spacelike condition then ƒ D ; and

Claim 3.5. u 2 MA.

Now let us show the following

Claim 3.6. MA consists of exactly one element.

Proof. Consider u1; u2 2 MA. By compactness of M there exists r1 2 R; r1 � 0,
such that r1 C u1 � u2 on M and the equality holds at a non-empty subsetW � M.
If r1 > 0 then, since u1; u2 2 MA, we must have W \ .M � fpigm

iD1/ ¤ ;. By the
maximum principle for maximal surfaces r1 C u1 D u2 on M. This contradicts the
fact that u1; u2 2 MA. Therefore r1 D 0 and so u1 � u2. In a symmetric way we
also have u2 � u1. Therefore u1 D u2 and we are done. �

At this point notice that the first part of Theorem II in the introduction follows
from Claims 3.5 and 3.6. Even more,

Remark 3.7. The first part of Theorem II holds with the same proof if in the sentence

� †.A/ � A is a spacelike maximal graph over M � fpigiD1;:::;m

one changes “maximal” by “constant mean curvature”.

Write MA D fuAg.
Denote by Gm the set of functions uA such that A consists of m points, A satisfies

the spacelike condition and jruAj D 1 at any point in �M.A/.
Consider a sequence fuAn

gn2N[f0g � Gm. We say that fAngn2N ! A0 if
and only if, up to a relabeling, fdistM�R

�
.pn

i ; t
n
i /; .p

0
i ; t

0
i /

�gn2N ! 0 for all i D
1; : : : ;m, where Ak D f.pk

i ; t
k
i /giD1;:::;m for all k 2 N [ f0g, and distM�R.�; �/

means distance in M�R with respect to the metric h�; �iM Cdt2. Likewise we define
the convergence of a sequence of families of m points in M.

Claim 3.8. fuAn
gn2N uniformly converges to uA0

in the C 0 topology in M if and
only if fAngn2N ! A0.
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Proof. Assume first that fuAn
gn2N uniformly converges to uA0

in the C 0 topology
in M. Up to passing to a subsequence, assume that f�M.An/gn2N is convergent
and let us show that f�M.An/gn2N ! �M.A0/. Indeed, suppose for a moment that
there exist p 2 �M.A0/ and an open geodesic disc B centered at p such that, up
to passing to a subsequence, �M.An/ \ B D ; for all n 2 N. Reasoning as in
the paragraph preceding Claim 3.5, Bartnik’s results [Ba1] give that uA0

is smooth
and spacelike around p, a contradiction. Then �M.A0/ � limn!1 �M.An/. Since
both sets consists of exactly m points then they agree. Since fuAn

gn2N ! uA0
and

f�M.An/gn2N ! �M.A0/ then fAngn2N ! A0 as well.
For the converse assume that fAngn2N ! A0. For each .i; n; k/ 2 f1; : : : ;mg �

N � N consider an open disc Bk
i;n in M such that @Bk

i;n is a smooth Jordan curve,

Bk
i;n \ Bk

j;n D ; if i ¤ j , BkC1
i;n � Bk

i;n, pn
i 2 Bk

i;n and

for any compact K � M � fp0
1 ; : : : ; p

0
mg there

exists n0 2 N such that K � �n
n for all n � n0,

(3.4)

where An D f.pn
1 ; t

n
i /; : : : ; .p

n
m; t

n
m/g and�k

n WD M�Sm
iD1B

k
i;n. Let uk

n W �k
n ! R

be a maximal function satisfying uk
nj@Bk

i;n
D tni . (See the discussion preceding

Claim 3.3.) By Claims 3.3, 3.4 and 3.5, the sequence

fuk
ngk2N uniformly converges in the C 0 topology on M to uAn

. (3.5)

Taking into account (3.4), a similar argument gives that the sequence

fuf .n/
n gn2N uniformly converges in the C 0 topology on M to uA0

(3.6)

as well, where f W N ! N is any map with f .n/ � n for all n 2 N. Fix p 2
M � fp0

1 ; : : : ; p
0
mg and � > 0. From (3.5), for any n 2 N there exists kn 2 N such

that
juk

n � uAn
j.p/ < �=2 for all k � kn; (3.7)

where we are assuming that n and k are large enough so that p 2 �k
n. Set vn WD uh

n

for h WD maxfkn; ng. Then (3.6) gives n0 2 N such that

jvn � uA0
j.p/ < �=2 for all n � n0: (3.8)

Combining (3.7) and (3.8) one has that juAn
� uA0

j.p/ < � for all n � n0. Since
also fAngn2N ! A0, we conclude that fuAn

gn2N simply converges to uA0
. As M

is compact and the uAn
are weakly spacelike, this convergence is uniform on M and

we are done. �

Consider m different points fp1; : : : ; pmg � M and take t1 D � � � D tm�1 ¤
tm 2 R such that A WD f.pi ; ti /giD1;:::;m satisfies the spacelike condition. This is
nothing but choosing t1 and tm close enough. By Claim 3.5, uA is well defined and
by the maximum principle for maximal surfaces, uA 2 Gm. Hence,
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Claim 3.9. Gm ¤ ; for any m � 2.

Letu 2 Gm. By definition, a mark inu is an ordering OD..q1; r1/; : : : ; .qm; rm//

of the points in A, where u D uA. Then we say that .u;O/ is a marked function. We
denote by G�

m the space of marked functions in Gm. We define the maps

s1 W G�
m ! Gm; s1.u;O/ D u;

s2 W G�
m ! .M � R/m; s2.u;O/ D O:

By Claim 3.6, the map s2 is injective. Moreover,

Claim 3.10. s2.G
�
m/ is an open subset of .M � R/m.

Proof. Let .u;O/ 2 G�
m. Write

O D ..q1; r1/; : : : ; .qm; rm// and A D f.q1; r1/; : : : ; .qm; rm/g:
Since u D uA then A satisfies the spacelike condition. Reason by contradiction and
assume that there exists a sequence fOn D ..qn

1 ; r
n
1 /; : : : ; .q

n
m; r

n
m//gn2N converging

to O in the metric topology of .M � R/m and On … s2.G
�
m/ for all n 2 N. Write

An D f.qn
1 ; r

n
1 /; : : : ; .q

n
m; r

n
m/g and, up to passing to a subsequence, assume that An

satisfies the spacelike condition for alln 2 N (recall that A does so). Writeun D uAn
,

n 2 N. By Claim 3.8, fungn2N uniformly converges to u in the C 0 topology on M.
If, up to passing to a subsequence, un W M ! R extends as a spacelike function to
a point in �M.An/, that can be assumed to be qn

1 without loss of generality, n 2 N,
then again Bartnik’s results [Ba1] give that u extends as a spacelike function to q1

as well, a contradiction. Then un 2 Gm (recall that An consists of m points), hence
.un;On/ 2 G�

m and On 2 s2.G
�
m/, a contradiction. This proves the claim. �

We set SGm D s2.G
�
m/. We can identify G�

m, endowed with the topology in-
duced by the injection s2 into .M � R/m, with SGm. The permutation group 	m

of order m, acts naturally on G�
m as follows: for 
 2 	m and .u;O/ 2 G�

m

with O D ..q1; r1/; : : : ; .qm; rm//, we set 
:.u;O/ D .u; 
.O// where 
.O/ D
..q�.1/; r�.1//; : : : ; .q�.m/; r�.m///. This action is clearly free and properly discontin-
uous and the orbit space is naturally identified to Gm. By Claim 3.8 the topology
induced by the covering map coincides with the topology ofC 0-uniform convergence
of graphs on M.

This completes the proof of Theorem II.

4. Existence or non-existence of harmonic diffeomorphisms. Proof ofTheorem I

Throughout this section we assume that M D .M; h�; �iM/ is of dimension n D 2,
hence, a compact Riemannian surface without boundary.
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Let us recall the following classification of Riemann surfaces. A compact Riemann
surface (without boundary) is said to be elliptic. An open Riemann surface is said
to be hyperbolic if it carries non-constant negative subharmonic functions, and it is
said to be parabolic otherwise. A Riemann surface R with non-empty boundary is
said to be parabolic if bounded harmonic functions on R are determined by their
boundary values. Otherwise, R is said to be hyperbolic. (See [AS], [Pe] for a
good setting.) For instance, R1 D fz 2 C j 0 < jzj � 1g is parabolic whereas
R2 D fz 2 C j ˛ < jzj � 1g, ˛ 2 .0; 1/, is hyperbolic.

Remark 4.1. An open Riemann surface R is parabolic if and only if R � D is
parabolic for any open relatively compact disc D � R with smooth boundary.

Indeed, if R is parabolic then, by [FK], �IV.3.3, the Dirichlet problem has at most
one bounded solution on R �D, hence R �D is parabolic as well. For the converse
assume that R is hyperbolic. Then, by [FK], �IV.3.4, there exists a harmonic function
w on R � D such that 0 < w < 1 on R � xD and w D 1 on @D, hence R � D is
hyperbolic and we are done.

Let m 2 N, m � 2, u D uA 2 Gm and set � D M � �M.A/.
Recall that Xu W .�; h�; �iu/ ! M � R1 is a conformal harmonic map. Let

p 2 �M.A/ and let A be an annular end of .�; h�; �iu/ corresponding to p. Then
A is conformally equivalent to an annulus A.r; 1/ WD fz 2 C j r < jzj � 1g for
some 0 � r < 1. Identify A � A.r; 1/ and notice that u extends continuously to
S.r/ D fz 2 C j jzj D rg with ujS.r/ D u.p/. By [Ba2], Xu.A/ is tangent to either
the upper or the lower light cone at Xu.p/ in M � R1. In particular p is either a
strict local minimum or a strict local maximum of u. Then, up to a shrinking of A,
we can assume that ujS.1/ is constant, where S.1/ D fz 2 C j jzj D 1g. Since ujA
is harmonic, bounded and non-constant then r > 0 and A has hyperbolic conformal
type. This proves that

Claim 4.2. .�; h�; �iu/ is conformally an open Riemann surface with the same genus
as M and m hyperbolic ends.

In particular, one has the following

Corollary 4.3. Assume M is a compact Riemannian surface. Let m � 2 and let
fp1; : : : ; pmg � M. Then there exist an open Riemann surface R and a harmonic
diffeomorphism� W R ! M�fp1; : : : ; pmg such that every end of R is of hyperbolic
type.

By Koebe’s uniformization theorem, any finitely connected planar domain is con-
formally equivalent to a domain in xC whose frontier consists of points and circles.
In this setting the corollary above gives Item (i) in Theorem I, that is, one obtains
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the following existence result for harmonic diffeomorphism between hyperbolic and
parabolic domains in S2.

Corollary 4.4. Let m 2 N, m � 2, and let fp1; : : : ; pmg � S2.
Then there exist a circular domain U in xC and a harmonic diffeomorphism

� W U ! S2 � fp1; : : : ; pmg.

Let us now show Theorem I (ii).
The proof of Theorem I (ii) fundamentally relies on the theory of surfaces of

constant Gaussian curvature in Euclidean space. Before going into the details of the
proof, let us state the necessary background on this theory.

Let S be a smooth surface and let X W S ! R3 be an immersion with constant
Gauss curvatureK equal to 1. For convenience we assume thatS is simply connected.

Up to changing orientation if necessary, the second fundamental form IIX ofX is
a positive definite metric. Therefore, IIX induces on S a conformal structure. Denote
by � the Riemann surface with underlying differentiable structure S and conformal
structure induced by IIX , and let z D uC {v be a conformal parameter on � . Then
X may be understood as an immersion X W � ! R3 and, following the results by
Gálvez and Martínez [GM], �2.1, the equation K D 1 implies that

Xu D N �Nv and Xv D �N �Nu; (4.1)

whereN W � ! S2 denotes the unit normal vector field ofX . It follows thatN W � !
S2 is a harmonic local diffeomorphism.

Conversely, let N W � ! S2 be a harmonic local diffeomorphism. Then the map
X W � ! R3 given by (4.1) is an immersion with constant Gauss curvature K D 1

(see [GM] again and recall that S is assumed to be simply connected).
On the other hand, in terms of the conformal parameter z D u C {v, the first,

second and third fundamental forms of X W � ! R3 are given by

IX D hdX; dXiR3 D Qdz2 C 2�jdzj2 C xQd Nz2;

IIX D hdX; dN iR3 D 2
jdzj2;
IIIX D hdN; dN iR3 D �Qdz2 C 2�jdzj2 � xQd Nz2;

(4.2)

where h�; �iR3 denotes the Euclidean metric in R3, Qdz2 is a holomorphic quadratic
differential on � , and � and 
 are smooth positive real functions on � , see [GHM].
Then, as Klotz pointed out in Remark 1 of [Kl], there exists an immersionY W � ! R3

achieving IIIX as its first fundamental form, IIX as its second and IX as its third ones
(recall that S is simply connected and observe that IIIX is a positive definite metric).
Since X W � ! R3 is of constant Gauss curvature K D 1, it trivially follows from
(4.2) that so is Y W � ! R3.

Now we can prove Theorem I (ii).
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Theorem 4.5. There exists no harmonic diffeomorphism � W D ! S2 �fpg, p 2 S2.

Proof. Let � be a simply connected Riemann surface and let ' W � ! S2 � fpg
be a harmonic diffeomorphism. To finish it suffices to check that � is conformally
equivalent to the complex plane C.

By [GM], since ' W � ! S2 � fpg is a harmonic (local) diffeomorphism, then,
up to replacing ' by �' if necessary, there exists an immersion X W � ! R3 with
Gauss map ', constant curvatureKX D 1 and such that the conformal structure of �

is the one induced by the second fundamental form of X , IIX .
Denote by IX and IIIX the first and third fundamental forms ofX , respectively. By

[Kl] there exists another immersionY W � ! R3 with constant curvatureKY D 1, and
such that the first, second and third fundamental forms of Y are given by IY D IIIX ,
IIY D IIX and IIIY D IX , respectively, and

the conformal structure of � is the one induced by IIY D IIX . (4.3)

Since ' W � ! S2 � fpg is a diffeomorphism and IY D IIIX D hd'; d'iR3 D
'�.h�; �iS2/ (here h�; �iS2 denotes the canonical metric in S2), then '�1 W S2 � fpg !
.� ; IY / is an isometry. Since obviously Y W .� ; IY / ! R3 is an isometric immersion,
then

Y B '�1 W S2 � fpg ! R3 is an isometric immersion

as well. Following [Po], p. 419, Y B '�1 is the restriction to S2 � fpg � R3 of a
rigid motion of R3. (An alternate proof of the rigidity of S2 � fpg in R3 can be
given using the local structure around the singularities, of immersed surfaces with
constant Gaussian curvature in R3 having isolated singularities and finite area, see
Theorems 5 and 7 of [GHM].) In particular, Y.�/ � R3 is a once-punctured round
sphere. Therefore, the conformal structure induced on � by IIY D IIX is that of C.
This and (4.3) conclude the proof. �

Remark 4.6. Lemaire [Le] showed that if a harmonic map ' W D ! N with finite
energy satisfies that 'jS1 is constant then ' is constant as well, whereN is an arbitrary
Riemannian manifold. The above theorem particularly shows that the condition on
the energy of ' can be removed if ' is a diffeomorphism and N D S2.

Finally Theorem I (iii) is a very special instance of the following

Proposition 4.7. Let R be a parabolic open Riemann surface, let N be an oriented
Riemannian surface and let � W R ! N be a harmonic local diffeomorphism. Sup-
pose either that N has Gaussian curvature KN > 0 or that KN � 0 and N has no
flat open subset.

Then � is either holomorphic or antiholomorphic.
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Proof. Assume for instance that � preserves orientation and let us check that � is
holomorphic. Let z (resp. �) be a local conformal parameter in R (resp. in N ).
The metric on N writes 
.�/jd�j2. A conformal metric on R writes �.z/jdzj2.
Following [SY] we consider the following partial energy densities on R:

j@�j2 D 
.�.z//

�.z/

ˇ̌
ˇ̌@�
@z

ˇ̌
ˇ̌2 and jN@�j2 D 
.�.z//

�.z/

ˇ̌
ˇ̌@�
@ Nz

ˇ̌
ˇ̌2: (4.4)

Denote by J.�/ the Jacobian of �. We have J.�/ D j@�j2 � jN@�j2. By our
hypothesis J.�/ > 0, that is, j@�j > jN@�j.

Reason by contradiction and assume that � is not holomorphic, that is to say,
jN@�j is not identically zero on R. In this case, its zeroes are isolated [SY]. Set
R� WD R � fjN@�j D 0g. We have

log
jN@�j
j@�j < 0 on R�. (4.5)

By the Bochner formula (see again Chapter 1, §7, in [SY]):

�R log
jN@�j
j@�j D 2KNJ.�/: (4.6)

Now note that the parabolicity of R implies that of R� (see Claim 4.8 below).

Suppose KN > 0. By equations (4.5) and (4.6), log jN@�j
j@�j is a non-constant negative

subharmonic function on the parabolic surface R�, which is a contradiction. Suppose

now that KN � 0. Again, by the equations (4.5) and (4.6), the function log jN@�j
j@�j is

subharmonic and hence constant. From (4.6) we getKNJ.�/ � 0. Since J.�/ > 0 ,
we conclude thatKN � 0 on the open set �.R�/, which contradicts our hypothesis.

In the case when � reverses orientation then a parallel argument gives that � is
antiholomorphic. This concludes the proof. �

Since in the setting of Theorem I (iii) the domains xC � fz1; : : : ; zmg and S2 �Sm
j D1Dj are not conformally equivalents, then the result holds.

For the lack of a reference, we now prove the following well known fact needed
in the proof of Proposition 4.7.

Claim 4.8. Let R be an open parabolic Riemann surface and letE � R be a closed
subset consisting of isolated points.

Then R� WD R �E is an open parabolic Riemann surface.

Proof. The fact that R� is an open Riemann surface is evident. Let us show that it
is parabolic. Indeed, consider B an open relatively compact disc in R� with smooth
boundary and denote by N the Riemann surface with boundary N WD R� � B . To
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finish it is suffices to prove that N is parabolic (see Remark 4.1). Let u W N ! R be a
non-constant bounded harmonic function withuj@N D 0. SinceE consists of isolated
points then u extends harmonically to N [ E D R � B . Since R � B is parabolic
(see Remark 4.1 again), @.R � B/ D @N and uj@N D 0, then u is identically zero
on N � R � B . This proves that N is parabolic and we are done. �

This completes the proof of Theorem I.

5. Maximal graphs and harmonic diffeomorphisms between surfaces

Let R be a Riemann surface and let N be a Riemannian surface. A map X D
.f; h/ W R ! N � R1 is conformal if and only if

ˇ̌̌
ˇ@f
@x

ˇ̌̌
ˇ
2

�
�
@h

@x

�2

D
ˇ̌̌
ˇ@f
@y

ˇ̌̌
ˇ
2

�
�
@h

@y

�2

and
�
@f

@x
;
@f

@y

�
D @h

@x

@h

@y
; (5.1)

where z D x C {y is a local conformal parameter on R and j � j and h ; i denote the
norm and metric on N , respectively. If in addition X is harmonic then the above
equalities hold if and only if the Hopf differential of f W R ! N ,

f̂ D
�
@f

@z
;
@f

@z

�
dz2 D 1

4

�ˇ̌̌
ˇ@f
@x

ˇ̌̌
ˇ
2

�
ˇ̌̌
ˇ@f
@y

ˇ̌̌
ˇ
2

� 2{
�
@f

@x
;
@f

@y

��
dz2;

and the one of h W R ! R,

ˆh D
�
@h

@z

�2

dz2 D 1

4

��
@h

@x

�2

�
�
@h

@y

�2

� 2{ @h
@x

@h

@y

�
dz2;

agree.
Furthermore, a conformal harmonic immersionX is spacelike (hence, a conformal

maximal immersion) if and only if

ˇ̌
ˇ̌@f
@x

ˇ̌
ˇ̌2 >

�
@h

@x

�2

: (5.2)

On the other hand, let � W R ! N be a harmonic map and denote byˆ� its Hopf
differential. Consider . zR;…/ a 2-sheeted covering of R such that ẑ

� WD ˆ� B …
has a well defined square root, and write ẑ

� D . Q'.z/dz/2 on a local conformal
parameter z D x C {y on zR. Observe that . zR;…/ is possibly branched at the zeros
of ˆ� .

Consider now . yR; y…/ a covering of zR such that O' WD Q' B y… has no real periods,
and define

X� W yR ! N � R1; X� D .f� ; h�/;
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where

f� WD � B z… B y… and h� WD <
Z

O'dz:

Notice that . yR; y…/ is infinitely sheeted unless Q' has no real periods (recall that the
periods are additive).

Clearly, the Hopf differentials of f� and h� agree, so the above discussion gives
thatX� is a conformal harmonic map. Assume in addition that �, and so f� , is a local
harmonic diffeomorphism. From (5.1) and Cauchy–Schwarz inequality one hasˇ̌̌

ˇ@f�

@x

ˇ̌̌
ˇ �

ˇ̌̌
ˇ@h�

@x

ˇ̌̌
ˇ:

Assume the equality holds at a point p 2 yR. Then (5.1) gives that, at the point p,
j@f�=@yj D j@h�=@yj as well and jh@f�=@x ; @f�=@yij D j@f�=@xj � j@f�=@yj. This
contradicts that f� is a local diffeomorphism. Therefore j@f�=@xj > j@h�=@xj on yR
and X� W yR ! N � R1 is a possibly branched conformal maximal immersion (see
(5.2)).

In this way we have showed the following

Proposition 5.1. Let R be a Riemann surface, let N be Riemannian surface and let
� W R ! N be a local harmonic diffeomorphism.

Then there exist a covering . yR;…/ of R and a possibly branched conformal
maximal immersionX� D .f� ; h�/ W R ! N �R1 such that f� D � B… W yR ! N .

Let us now focus on the particular case whenU WD R � C is a finitely connected
circular domain, N is the sphere S2 with a finite number of points removed and
� extends C 1 to the closure xU of U . Denote by N the double of xU (see [St] for
details on this construction). Recall that N is a compact Riemann surface carrying
an antiholomorphic involution J W N ! N having the boundary of xU as set of
fixed points. Let ˆ be a smooth quadratic differential on xU and holomorphic on U .
Assume thatˆ D '.z/dz2 with '.x/ 2 R for all x for any local conformal parameter
z D x C {y on xU applying a piece of the boundary @U of xU into R � C, then ˆ
extends holomorphically to N in the form J�ˆ D x̂ .

Let � W U ! N be a harmonic diffeomorphism extending C 1 to xU . Obviously �
is constant over any connected component of @U . Let z D x C {y be a conformal
parameter on xU with yj@U D 0. Then @�=@x D 0 on @U , hence the Hopf differential
of � can be written on @U as

.ˆ�/j@U D �1
4

ˇ̌̌
ˇ@�
@y

ˇ̌̌
ˇ
2

dz2: (5.3)

In particular,ˆ� extends holomorphically to N with J�ˆ� D x̂
� . This particularly

gives that
ˆ� has finitely many zeros on U . (5.4)
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Now, as above, we can take a 2-sheeted covering . zU ;…/ of U such that ẑ
� WD

ˆ� B… has a well defined square root. Write ẑ D .'.z/dz/2 in a local conformal
parameter z on zU . From (5.3) one obtains that '.z/dz has no real periods. Then
taking into account (5.4) and following the discussion preceding Proposition 5.1 one
has the following

Theorem 5.2. Let � W U ! S2 � fp1; : : : ; pmg be a harmonic diffeomorphism
extendingC 1 to xU , whereU is a finitely connected circular domain and fp1; : : : ; pmg
is a finite subset in S2.

Then there exist a 2-sheeted covering . yU ;…/ ofU and a possibly finitely branched
conformal maximal immersionX� D .f� ; h�/ W yU ! S2 �R1 such that f� D � B….

In the proof of the above theorem, we have used that � extends C 1 to xU in order
to obtain that the Hopf differential ˆ� of � extends holomorphically to the double
of U . The authors do not know whether this hypothesis can be removed from the
statement of the theorem.
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