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Riemann surfaces and totally real tori
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Abstract. Given a totally real torus unknotted in the unit sphere S3 of C2, we prove the
following alternative: either the torus is rationally convex and there exists a filling of the torus
by holomorphic discs, or its rational hull contains a holomorphic annulus or a pair of holomorphic
discs.
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Introduction

In this paper we address the following question: given a totally real torus in C2, does
there always exist a compact Riemann surface in C2 with boundary in (or simply
attached to) the torus?

Recall that (closed connected) surfaces in C2 are totally real if they are never
tangent to a complex line. The only orientable ones are tori. Special cases are
Lagrangian tori, those on which the standard Kähler form of C2 vanishes.

Our question is motivated by geometric function theory (see [15] for background).
Given a compact set K in C2, its polynomial hull yK is defined as

yK D fz in C2=jP.z/j � kP kK for every polynomial P g:
The set K is polynomially convex if yK D K. In this case K satisfies Runge theorem.
Note that any compact Riemann surface attached to K is contained in yK. It is therefore
tempting to explain the presence of a non trivial hull by Riemann surfaces, at least for
nice sets like orientable surfaces (they are not polynomially convex for homological
reasons). But quite often a complex tangency of a surface locally gives birth to small
holomorphic discs attached to it. Thus the very first global problem arises with totally
real orientable surfaces, namely tori.

Note that, in the definitions above, instead of polynomials we could as well work
with rational functions without poles on K. This gives rise to the notions of rational
hull and rational convexity. Again an obstruction to rational convexity is the presence
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of a compact Riemann surface C attached to K with the additional restriction that
@C bounds in K.

Here is a bit of history around our question. In 1985 Gromov [10] gave a positive
answer for Lagrangian tori, constructing holomorphic discs attached to them. In
1996 by the same method Alexander [1] exhibited for every totally real torus a proper
holomorphic disc with all its boundary except one point in the torus. Later on [2] he
gave examples of totally real tori without holomorphic discs with full boundary in
them, but still admitting holomorphic annuli attached to them.

In the present work we focus1 on tori in the unit sphere S3 of C2. They are
unknotted if they are isotopic to the standard torus in S3. We prove the following

Theorem. Let T be a totally real torus unknotted in S3. Then either T is rationally
convex and bounds a solid torus foliated by holomorphic discs in the unit ball B ,
or its rational hull contains a holomorphic annulus or a pair of holomorphic discs
attached to T .

The solid torus is called a filling of T which is said in this case fillable. The
standard torus is an example of the first situation, while the second is illustrated by
the following

Example (compare with [2]). Consider the conjugate Hopf fibration

� W S3 � C2 ! S2 � C � R; .z; w/ 7! .2zw; jzj2 � jwj2/:

Remark that the fibers of � are circles. Denote by T� the preimage by � of an
embedded closed curve � in S2. Then T� is an unknotted torus in S3, totally real
if the projection of � on C is immersed. Choose this projection as a figure eight
which avoids the origin. It follows (see [2]) that every compact Riemann surface
with boundary in T� is in a fiber of the polynomial p.z; w/ D 2zw. But T� does
not separate p�1.a/ except if a is the double point of the figure eight. We then get
only one holomorphic annulus attached to T . If on the other hand the figure eight
intersects itself at the origin we get instead a pair of holomorphic discs attached to T .

The proof of the theorem relies on the technique of filling spheres by holomorphic
discs due to Bedford and Klingenberg [5] and Kruzhilin [12] (see also Eliashberg
[8]). This is where the restriction to S3 enters. The spheres come into the picture
as approximations of a lift of the torus in a suitable covering. More precisely take
a totally real unknotted torus T in S3. It divides S3 in two solid tori. In the same
manner its hull yT separates the unit ball B in two pseudoconvex components. At least
one of them has a universal covering which unwinds the corresponding solid torus.
Push T slightly in this good component, building a sequence of tori Tn converging

1following [13] which by the way seems uncorrect (see our example)
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toward T . We therefore get as a lift of Tn a periodic cylinder sitting in a pseudoconvex
boundary. Approximate it by a sphere Sn containing say 2n periods of the cylinder.

We are now in position to apply the technique of filling. It provides a sequence
of balls bounded by Sn and foliated by holomorphic discs. Single out one of these
discs passing through the equator of Sn and call �n its projection downstairs. The
alternative reads as follows: either the area of �n remains bounded, or not.

In the former case (the rationally convex case) we check that the tori Tn are fillable
for large n, and that their fillings converge in some sense to a filling of T . This relies
on Gromov compactness theorem.

In the latter (the non rationally convex case) we rather look at the limit of �n in
terms of currents. Define U as the limit of the normalized currents of integration on
�n. Then U is a positive current such that dU bounds in T . Therefore the support
of U is contained in the rational hull of T Moreover a dividing process of U shows
that it can be written as an integral of currents of integration over Riemann surfaces.
Finally we apply Ahlfors theory of covering surfaces to prove that these Riemann
surfaces are holomorphic discs or annuli.

Before entering the details of the proof, we collect some background. In the
sequel a limit of a sequence often occurs up to extracting a subsequence, even if not
explicitly mentioned. Pseudoconvex domains are also sometimes confused with their
closure.

1. Background

a) Filling spheres. Recall the central result of [12] (see also [5]).

Theorem. Let � be a bounded strictly pseudoconvex domain in C2 and S a sphere
in @�. Suppose that the complex tangencies of S are elliptic or hyperbolic points.
Then S bounds a unique ball † in � foliated by holomorphic discs.

This ball † is called the filling of S . The complex tangencies of S are the points
where S is tangent to a complex line. Being of elliptic or hyperbolic type (see [5], [12]
for the definition) is a generic condition. It can be achieved by a small perturbation
localized near the complex points.

The picture looks as follows. Take a sphere in R3 endowed with its height function,
which is Morse if the sphere is generic. Elliptic points correspond to local maxima
and minima of the height, while hyperbolic points translate in saddle points. By
Morse theory we have e � h D 2 where e and h are respectively the number of
elliptic and hyperbolic points. The filling corresponds to the ball bounded by the
sphere foliated by the level sets of the height. Therefore all the holomorphic discs
of the filling are smooth up to the boundary except those touching a hyperbolic point
which have corners.
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Another way to describe the complex points of S is via its characteristic foliation.
This is the foliation generated by the characteristic line field TC@� \ TS where
TC@� is the complex part of T @�. It is singular precisely at the complex points
of S , elliptic points corresponding to foci and hyperbolic to saddle points. The
characteristic foliation gives a control on the discs of the filling, in the sense that their
boundaries are always transversal to it. This comes from Hopf lemma which asserts
that a holomorphic disc contained in � is transversal to @�.

Here are further properties of the filling. First every compact Riemann surface
in � attached to S is contained in †. Next † is the envelope of holomorphy of
S . Hence † is contained in any pseudoconvex domain containing S . Finally if we
divide out the sphere S into two half spheres by an equator, at least one of them can
be partially filled in the sense of [8]: the surface swept by the boundaries of the discs
in † contained in the half sphere reaches the equator.

In the sequel we will apply this technique of filling to a sphere in @ z� where z� is
the universal covering of a pseudoconvex domain � which is strictly pseudoconvex
where the sphere projects down. The reader can check that all the arguments of [5],
[12] apply mutatis mutandis.

b) Geometric function theory. We will use the following facts concerning polyno-
mial convexity (see [15] for this paragraph). Let K be a compact set in S3 separating
the sphere in finitely many components, then its polynomial hull yK divides B in the
same number of components. Moreover by Rossi local maximum principle these
components are pseudoconvex domains. We will also rely on the theorem by Alexan-
der describing the polynomial hull of a curve of finite length (with finitely many
components): it is a Riemann surface attached to the curve.

We move on to rational convexity. The rational hull r.K/ of a compact set K

in C2 is geometrically defined as the set of points z such that any algebraic curve
passing through z meets K. If K � P where P is a rational polyhedron, then the
algebraic curves can be replaced by analytic curves in P . The usual obstruction to
rational convexity is the presence of a compact Riemann surface with boundary in
K with the additional restriction that this boundary bounds in K. In our theorem
(second situation) the holomorphic annulus or the pair of holomorphic discs will
satisfy this condition and therefore be part of r.T /. As for the first situation we have
the following

Lemma. A fillable totally real torus in S3 is rationally convex.

Proof. Call T the torus and ‚ its filling. We first prove that ‚ is rationally convex. By
Rossi local maximum principle and the Runge property of B it is enough to construct
through any point near ‚ in the ball B an analytic curve in B (smooth up to S3)
avoiding ‚. We produce them by stability of the filling of T (see [4] for a similar
situation). Foliate a neighborhood of T in S3 by tori, then the fillings of these tori
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foliate a neighborhood of ‚ in B . Therefore the corresponding holomorphic discs
fill out this neighborhood and avoid T if they are not in ‚. At this stage r.T / � ‚.

We now prove that r.T / D T . According to the first step ‚ is a decreasing limit
of rational polyhedrons. It is then enough to construct through any point z of ‚ n T

an analytic curve in a neighborhood of ‚ avoiding T . Take through z a real closed
curve in ‚ n T transversal to the holomorphic discs, parametrized by the unit circle.
Extend this parametrization as a smooth map f from a thin round annulus in such a
way that N@f vanishes to infinite order along the unit circle. By solving an adequate
N@-equation perturb now f into a holomorphic map. This map parametrizes a thin
holomorphic annulus still passing through z and intersecting ‚ near the initial curve,
hence avoiding T .

Finally let us recall the analogue in terms of currents of the usual obstructions to
polynomial or rational convexity [7]. Let K a compact set in C2 and U a positive 1,1-
current with compact support. If supp.dU / � K then supp.U / � yK. If moreover
dU D dV where V is a current supported by K, then supp.U / � r.K/.

c) Ahlfors currents. They are the local version of the currents built from an entire
curve in complex hyperbolicity. In our context a current U is an Ahlfors current
if U D lim Œ�n�

an
, where Œ�n� are currents of integration over holomorphic discs

�n of area an contained in B whose boundary sits mainly in S3. Precisely, one
has length.@�n n S3/ D o.an/. Hence U is a positive 1,1-current with compact
support such that supp.dU / � S3. The following lemma (compare with [6]) will be
important for the non rationally convex case.

Lemma. Let U be an Ahlfors current whose support is an analytic curve in B . Then
each irreducible component of this curve is a holomorphic disc or annulus.

Proof. It relies on Ahlfors theory of covering surfaces [14] under the form of the
following

Isoperimetric inequality. Let E be a compact connected Riemann surface with
boundary, of negative Euler characteristic. Then there is a constant c such that for
any holomorphic disc f W D ! E we have area.f .D// � c length.f .@D/ n @E/.

Here area and length are computed by means of a given metric on E, taking into
account multiplicities.

As in [6] we proceed by contradiction. Let C be a component of the analytic
curve which is neither a disc nor an annulus. Then there exists a figure eight e in C

such that any component of C n e meets @C . In particular e is polynomially convex
[15]. We may suppose moreover that e avoids the singularities of C . Thickening e

slightly in C we get a disc with two holes E. Identify now a polynomially convex
neighborhood V of e to E � d where d is a small disc. Call � the projection of V
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on E. Recall that the current U comes from a sequence of discs .�n/. Shrinking d a
bit we may suppose that length.�n \ .E �@d// D o.an/. This uses the fact that U jV
does not charge V n E and the coarea formula. Now, as V is polynomially convex,
�n \ V consists in a union of discs ın by the maximum principle. By construction
the boundaries of ın sit mainly in @E � d We infer that area.�.�n \ V // D o.an/

by applying the isoperimetric inequality to the maps � W ın ! E and summing up.
This contradicts the fact that U charges E.

Remark. Suppose we have an annulus A among the components of the analytic
curve. Then the discs �n approximating U satisfy the following additional property:
they cannot avoid (for large n) a fixed analytic curve C in B meeting A. Indeed
if not we could work out the previous argument in the complement of C , replacing
everywhere the polynomial convexity by the convexity with respect to the algebra M

of meromorphic functions in B with poles on C . We would find a M-convex figure
eight in the punctured annulus A n C and proceed as above to reach a contradiction.

We enter now the proof of the theorem.

2. The set up

Let T be an unknotted totally real torus T in S3. It divides S3 into two solid tori
!i (diffeomorphic to S1 � D2) and its polynomial hull yT separates B into two
pseudoconvex domains �i containing !i in their closure (§1 b)).

Lemma. For one of these domains the map H1.!i ; Z/ ! H1.�i ; Z/ is injective.

Proof. If not, let �i be a generator of H1.!i ; Z/. Note first that �1 and �2 are linked
in S3, and next that the linking number of two disjoint cycles in S3 can be computed
as the intersection number of the chains they bound in B . Now by assumption ni�i

bounds a chain in �i for some integer ni . But �1 and �2 being disjoint this shows
that n1�1 and n2�2 (hence �1 and �2) are not linked in S3. Contradiction.

Let us call simply � this good side and ! the corresponding solid torus. We push
slightly T inside !, creating a sequence of tori Tn approximating T .

Consider the universal covering p W z� ! �. Because �1.!/ ! �1.�/ is injec-
tive, all the components of p�1.!/ are diffeomorphic to R � D2. Fix one of them
and call it Q!. Then Tn lifts to a cylinder zTn (diffeomorphic to R � S1) inside Q!. Let
� be the automorphism of z� induced by the action of a generator of �1.!/. It acts
on Q! as a translation on the factor R and zTn is invariant under this action.

Construct the sphere Sn approximating the cylinder zTn as follows. Pick a disc D

in ! (diffeomorphic to � � D2). Its boundary is a meridian of T . Deform D slightly
in Dn with boundary in Tn. Choose a lift zDn of Dn in Q!. The curves �˙n.@ zDn/
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bound an annulus QAn in zTn. The sphere Sn is obtained by smoothing the sphere
with corners ��n. zDn/ [ QAn [ �n. zDn/. Note that the complex points of Sn can be
made generic after a perturbation localized near the caps �˙n. zDn/. By construction
Sn projects down to the interior of ! where � is strictly pseudoconvex. Hence the
technics of §1 a) apply. Denote by †n the filling of Sn in z�. Now the equator @ zDn

divides Sn into two half spheres Sṅ . At least one of them, say S�
n , has a partial

filling. This means that we may single out a disc z�n of †n touching the equator and
whose boundary is entirely contained in S�

n . Put �n D p. z�n/.
The alternative reads as follows: either the area an of �n remains bounded or not.

In the former case we will verify by Gromov compactness theorem that T is fillable.
This is the rationally convex case. In the latter we will consider the Ahlfors current
U D lim Œ�n�

an
. By construction its support will be in the rational hull of T and, after

a detailed analysis, we will detect holomorphic annuli or discs in it. This is the non
rationally convex case.

In any case we need to control the boundary of �n. We know by Hopf lemma that
T @�n is transversal on Tn to the characteristic line field. Actually we have more.
Denote by !n the solid torus bounded by Tn in !. Perturb the ball B in a new strictly
convex domain Bn by bumping slightly !n out, keeping Tn still in @Bn. Note that
by construction @�n � Bn, so �n � Bn by the maximum principle. But tilting the
boundary of the domain along Tn translates in rotating the characteristic line field on
Tn. We infer that T @�n avoids a full cone field on Tn bounded on one side by the
original characteristic line field. As this can be done uniformly in n, we end up with
T�n.@�n \Tn/ avoiding a cone field on T . Here �n is a diffeomorphism between Tn

and T close to identity. We may perturb slightly the characteristic line field of T to
push it inside this cone field, still keeping its name. We summarize this discussion by
saying that �n D �n.@�n \Tn/ is uniformly transversal to the characteristic foliation
C of T . This actually holds for any disc of †n.

It follows that the length ln of �n is controlled by an. For this construct a 1-
form ˇ on T whose kernel is the characteristic line field and extend it to C2. Then
ln .

ˇˇ R
�n

ˇ
ˇˇ .

ˇˇ R
�n

dˇ
ˇˇ C ˇˇ R

@�n\Dn
ˇ

ˇˇ by the uniform transversality and Stokes
theorem. Here . stands for an estimate up to a multiplicative constant. The first
integral on the right is controlled by an. The second one is bounded. Indeed note that
@ z�n bounds a disc zVn in S�

n . Call Vn its projection downstairs. Then
ˇˇ R

@�n\Dn
ˇ

ˇˇ �R
@Dn\Vn

jˇj C R
Dn\Vn

jdˇj . length.@D/ C area.D/ by Stokes theorem and the
closeness of Dn and D. We end up with an estimate of the form ln � C.1 C an/.

Conversely an is controlled by ln in the same way. Indeed recall that an D R
�n

!

where ! is the standard Kähler form of C2. Write 	 for a primitive of !. Then
an D R

@�n
	 . ln C R

@�n\Dn
	 by Stokes theorem and, as before, the last integral

is bounded.
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The rationally convex case

In this case an remains bounded, and so is ln.
We first check that Tn is fillable. By assumption @ z�n remains at bounded distance

of the equator of Sn. This means that z�n is attached to both Sn and ��1.Sn/, hence
belongs to their fillings (§1 a)). In other words both z�n and �. z�n/ are part of
†n. The discs of †n interpolating between them project down to the desired filling
‚n of Tn. Note that all the discs �0

n of ‚n have bounded area. Indeed we haveR
�0

n
! � R

�n
! C R

Tn
j!j . an C area.T / by Stokes theorem.

We want now to prove that T is fillable as well. We rely on Gromov compactness
theorem [10] (see also [11]). In our context it reads as follows: given a disc �0

n

in ‚n, then the sequence .�0
n/ converges (after extracting a subsequence) toward a

finite bunch (with multiplicities) of holomorphic discs �0 attached to T . These discs
do not present self-intersections or mutual intersections in the interior of B . This
relies on two facts: intersections of distinct holomorphic curves persist under local
deformation, and the convergence does not show accidents inside the ball. Actually an
accident means an annulus component of �0

n in a fixed small ball converging toward
a pair of two discs (its modulus blows up). But all such local components are discs
by the maximum principle. Moreover the discs �0, if simple, are embedded inside B

by a knot-theoretic argument [5]. We want to build the filling of T out of these limit
discs. The problem is to exhibit sufficiently many such discs, embedded and disjoint
in the closed ball. The difficulty takes place at their boundaries. We focus on them.

For a sequence .�0
n/ as above call 
 0 D [@�0 the boundary of its limit. By

Hopf lemma it is a finite union of immersed curves (with multiplicities). Denote
by Sing.
 0/ the set of multiple points of 
 0, i.e. its geometric singularities and its
multiple components. Similarly put 
 for the boundary of the limit of the original
sequence .�n/ (after the same extraction). Our first observation is that Sing.
 0/ � 
 .
Indeed locally at least two strands of @�0

n converge at a given point of Sing.
 0/: if ˛

is a short piece of the characteristic leaf through this point, it meets �n.@�0
n/ at least

twice. Here again �n is a diffeomorphism between Tn and T close to identity. In
other words ˛ runs from one boundary to the other in the cylinder obtained from T by
cutting out �n.@�0

n/. As �n.@�n/ is parallel to these boundaries it always intersects
˛, and so does 
 . Shrinking ˛ to the initial point concludes.

In particular at each point q 2 
 0 n
 the convergence of .�0
n/ is good: there exists

a unique simple disc �0 through q in the limit such that �0
n converges toward �0 near

q. Our second observation is that this disc does not really depend on .�0
n/. If we

consider another similar sequence .�00
n/ converging after the same extraction, such

that q 2 .
 0\
 00/n
 , then �0 D �00. Indeed if not, �0 and �00 would be distinct. But
intersections of distinct holomorphic discs attached to a totally real surface and on the
same side of a strictly pseudoconvex boundary persist under local deformation. This
can be seen by reflecting the discs through the surface to get (pseudo)holomorphic
curves in a neighborhood of q and using the positivity of their intersections [16].
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Therefore �0
n and �00

n would still intersect, contradicting their being part of the same
filling ‚n.

According to our previous discussion we focus on T � D T n 
 where all the
convergences are good. Pick a countable set Q dense in T �. Denote by �n;q the disc
of ‚n passing through ��1

n .q/ for q 2 Q. By extracting once more we may suppose
that all sequences .�n;q/ converge in Gromov sense. Hence there exists a unique
simple disc �q through q in limn!1 �n;q . We want to extend this construction to
T �.

Pick a point p in T �. Then the component through p of limq!p �q (in Gromov
sense) is well defined. Indeed any component through p in limq!p �q appears also as
a limit of discs in ‚n: consider discs of the form �nk ;qk

for some sequence qk going
to p and nk rapidly growing. Therefore by the observations above this component
is unique and does not depend on any choice. We get a distribution of holomorphic
discs �p (p 2 T �) whose boundaries are embedded and disjoint (if distinct) in T �.
It turns out that the same holds in the whole T .

Lemma. The curves @�p are embedded and disjoint (if distinct).

Proof. We proceed by contradiction. Pick an intersection point s (necessarily in 
)
of two different local branches � 0, � 00 of such curves. Note that � 0 [ � 00 cuts out four
components in T near s, two of which avoiding the characteristic leaf through s. Call
C the union of these two components and put C � D C n 
 . Now for all p in C �
the curve @�p is canalized by � 0 and � 00 through s. Thus we get a whole family of
holomorphic discs �p attached to T with a common point. On the other hand by the
maximum principle these discs sit in yT and even in @ yT as limits of discs in ‚n � �.
This will be the contradiction.

Let us make this precise. Recall first that we may associate to an immersed holo-
morphic disc � attached to T an even integer, its Maslov index �.�/ (see [3] for
background). This index is related to the dimension of the manifold of the holomor-
phic discs close to � and attached to T . If �.�/ � 0 this manifold is of dimension
0: � does not have any deformation attached to T . If �.�/ > 0 it is of positive
dimension �.�/ � 1. Moreover if �.�/ D 2 we get a small 1-parameter family of
nearby locally disjoint discs attached to T . In particular they cannot pass through a
common point. On the other hand if �.�/ > 2 the (at least) 3-parameter family of
nearby discs attached to T fills out a whole neighborhood of � in B . This forbids
� to be in @ yT . To conclude it remains to exhibit a genuine deformation among the
family �p passing through s.

What we know already is that �p is the unique component through p in limq!p �q

for p in C �. We would like to really have limq!p �q D �p . This will be at least
the case for �p big enough. For this recall that any holomorphic disc attached to T

cannot be too small. This relies for instance on the existence of a basis of strictly
pseudoconvex neighborhoods of T . Then according to Lelong theorem the area of
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such a disc is bounded from below by some positive constant, say 2�. Now pick p

in C � such that area.�p/ � supC � area.�q/ � �. As the area is preserved under the
convergence in Gromov sense, we infer that there is no other component but �p in
limq!p �q . This concludes.

At this stage we do have a whole smooth family of disjoint embedded holomorphic
discs attached to T whose boundaries sweep out at least T �. To achieve the filling it
remains to close this family up on 
 . This goes along the same lines as before. The
main point is that if p is in 
 then limq!p �q does not present singularities. If it did,
as in the first observation above, all the discs �q would pass through this singular
point, contradicting the lemma. We leave the details to the reader.

The non rationally convex case

In this case an blows up. We want to prove that there exists a Riemann surface
(holomorphic annulus or pair of holomorphic discs) attached to T and part of its
rational hull. We look at the limit of �n in terms of currents. Consider Œ�n�

an
the

normalized current of integration on �n. We get a sequence of positive currents of
mass 1 supported in the unit ball. Up to extracting it converges toward an Ahlfors
current U . Recall that @�n D @Vn where Vn is the projection of the disc zVn bounded
by @ z�n in Sn. Note that an is comparable to ln (§2) and so to the maximal number
of sheets of zVn over Tn. Hence ŒVn�

an
converges toward a current V supported on T

such that dV D dU . Therefore supp.U / � r.T / (§1 b)). We have dU D lim Œ�n�
an

where �n D �n.@�n \ Tn/ (§2). As an blows up we may even neglect parts of
�n of bounded length in this limit. To exhibit Riemann surfaces in r.T / we further
investigate the current U . We focus first on its boundary.

a)Describing dU . We will prove an integral formula of the form dU D R
G

Œ��d�.�/.
Here G is a compact space of Lipschitz curves in T and � a positive measure on it,
supported on closed curves.

This requires an extra discussion of the characteristic foliation C . By Denjoy
theorem [9] any smooth foliation on T can be perturbed in order to get only a finite
number of attracting or repulsive cycles (closed leaves). We may suppose that this
holds true for C as we already perturbed it (§2).

Call c such a characteristic cycle. Observe that the lifts of ��1
n .c/ cannot be

closed in zTn. If it were the case such a lift would divide Sn out into two half spheres,
one of which partially fillable We would thus get a contact between this lift and the
boundary of a disc of the filling †n, contradicting the uniform transversality. Hence
p�1.��1

n .c// consists in finitely many periodic curves invariant by a power �q of � .
It follows that the number of intersection points between �n and c is bounded.

Indeed each lift of ��1
n .c/ cuts at most once @ z�n by transversality and because @ z�n
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separates Sn. Consider now thin tubes along the cycles in T . They divide T in a finite
number of annuli. By uniform transversality �n cuts the tubes in a bounded number
of short arcs. We may neglect them for the computation of dU . Hence the relevant
part of �n consists in a bounded number of long arcs contained in the annuli.

The crucial observation is that these arcs are embedded (up to splitting them into
two pieces). To prove this we further analyse the situation upstairs. Call Bn the
ball bounded by the sphere Sn in Q! and �n the pseudoconvex domain bounded by
Bn [ †n in z�. Then �q.S�

n / � �n for large n. This is where the choice of a half
sphere enters. Hence its partial filling, as part of its envelope of holomorphy (§1 a)),
must also be contained in �n. To be fully correct this argument requires to push
slightly Sn off Bn in a new sphere S 0

n � Q!, verify that the partial filling of �q.S�
n /

is contained in the corresponding pseudoconvex domain �0
n and deform back S 0

n to
Sn. In particular we get that �q. z�n/ � �n. Hence �q. z�n/ remains always on the
same side of †n, meaning that �q.@ z�n/ crosses @ z�n always in the same direction
(say entering zVn). Look now at a given lift of ��1

n .A/ in zTn where A is one of the
aforementioned annuli. This is a strip invariant by �q . It can be parametrized by
R � Œ0; 1� via a diffeomorphism sending the vertical foliation to the characteristic
one, �q corresponding to the translation by 1. By transversality any component of
@ z�n in the strip is a graph (via the diffeomorphism) with, say, zVn above it. Thus the
component and its image by �q intersect at most once as the latter crosses the former
always bottom up. This allows us to cut the component into two pieces, each of them
disjoint from its image by �q . Therefore these pieces project down to embedded
arcs.

According to this discussion dU is a finite sum of currents of the form lim Œ˛n�
an

,
where ˛n is an embedded arc sitting in an annulus A. We are now in position to prove
the integral formula for each such limit. Via the parametrization of the corresponding
strip and thanks to the uniform transversality, ˛n splits up into a union of graphs
of functions from Œ0; 1� to Œ0; 1� which are uniformly Lipschitz. Denote by G the
compact space of graphs � of functions g W Œ0; 1� ! Œ0; 1� such that Lip.g/ � C

(for some large C ). We have Œ˛n�
an

D R
G

Œ��d�n.�/ where �n is a positive measure
with finite support and bounded mass on G . Up to extracting �n converges toward
a positive measure � on G . We infer that lim Œ˛n�

an
D R

G
Œ��d�.�/. Moreover the

support of � consists in closed curves (graphs of functions g such that g.0/ D g.1/).
Indeed if the graph of g is in supp.�/ then it is certainly the limit of at least two
successive graphs (of say gn and hn) of ˛n (an blows up). As gn.1/ D hn.0/ we get
g.0/ D g.1/ in the limit.

b) Describing U . We will prove now an integral formula of the form
U D R

P
Wd.W /. Here P is the compact space of positive currents of mass 1

supported in the unit ball and  is a probability measure on it. The point is that
supp./ consists only in normalized currents of integration on holomorphic discs or
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annuli attached to T (or finite sums of them). This formula comes from a division
process.

We show first that U can be split up into a sum of four positive currents W

of mass at most 1
2

. These currents will be proportional to Ahlfors currents limit

of pieces of �n. Precisely W D lim Œın�
an

where ın � �n, area.ın/ � an

2
and

length.@ın n @�n/ D o.an/. In addition we want @ın \ @�n connected.
For this, parametrize �n by the unit disc via a holomorphic map fn W D ! B

such that the images by fn of the four half discs cut out in D by R or iR have the same
area an

2
. Denote by X the cross .R \ D/ [ .iR \ D/. According to the next lemma,

we may pick a generic angle � close to �
4

such that length.fn.ei�X// D o.an/.
The rotated cross ei�X divides D out in four quarter discs d . Put ın D fn.d/ and
W D lim Œın�

an
. The currents W have all the desired properties. Here is the precise

statement we used.

Lemma. Let fn W D ! B be a sequence of holomorphic discs (piecewise) smooth
up to @D. Put an D area.fn.D//, ln.�/ D length.fn.Œ0; ei� �// and suppose that an

blows up. Then ln.�/ D o.an/ for almost all � (up to extracting a subsequence).

Proof. We have ln.�/ D R 1

0
kf 0

n.rei� /kdr � l C R 1

1=2
kf 0

n.rei� /kdr for some

constant l as kf 0
nk is uniformly bounded in the disc of radius 1

2
. On the other hand,

let an.�/ be the area of the image by fn of the sector between Œ0; 1� and Œ0; ei� �.
Then dan

d�
.�/ D R 1

0
kf 0

n.rei� /k2rdr . By Cauchy–Schwarz inequality .ln.�//2 �
2l2 C 2 ln.2/dan

d�
.�/. Integrating, we get

R 2�

0
.ln.�//2d� � 4�l2 C 2 ln.2/an, so

lim
R 2�

0

�
ln.�/

an

�2
d� D 0. By Fatou’s lemma

R 2�

0
lim inf

�
ln.�/

an

�2
d� D 0, which

concludes.
Iterating this process we may write U as a sum of 4k positive currents of mass

at most 2�k proportional to Ahlfors currents coming from .�n/. Hence U DR
P

Wdk.W / where k is a probability measure supported on these Ahlfors currents.
By compactness of P we may suppose that .k/ converges toward a probability mea-
sure  on P and we get our integral formula U D R

P
Wd.W /. Take now a current

W in the support of . By construction W is an Ahlfors current as a limit of Ahlfors
currents. We will see below that dW is supported on a curve � � T of finite length
(with finitely many components). Hence supp.W / � O� which by Alexander theorem
(§1 b)) is a Riemann surface. By §1 c) we conclude that W is actually supported in
a finite union of holomorphic discs or annuli attached to T .

Let us describe dW . By construction W D lim Wk

mass.Wk/
where Wk D lim Œın;k �

an

with ın;k � �n, area.ın;k/ � 2�kan, length.@ın;k n @�n/ D o.an/ and @ın;k \ @�n

connected. We use the notations of the previous paragraph. Recall that we had singled
out an annulus A outside thin tubes of the characteristic cycles in T and an arc ˛n

of �n embedded in A. So @ın;k \ @�n gives rise to a subarc ˛n;k of ˛n. We check
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now that lim Œ˛n;k �

an
is supported in a set converging to a curve of finite length (with

at most two components). This will conclude as dW is a finite sum of such limits.
Indeed ˛n;k is built out of graphs in G and we have lim Œ˛n;k �

an
D R

G
Œ��d�k.�/ for

a positive measure �k � � on G . Note that we have a partial order on G given by
˛ � ˇ if the corresponding functions satisfy a � b. We may speak of intervals Œ˛; ˇ�

or �˛; ˇŒD Œ˛; ˇ� n f˛; ˇg. This order is total on the graphs appearing in ˛n;k (˛n is
embedded). Denote by �n;k and 	n;k the lowest and the highest of these graphs By
compactness of G we may suppose that �n;k; 	n;k converge to �k; 	k , and that �k; 	k

converge to �; 	. By construction supp.�k/ � Œ�k; 	k� and, moreover, �k D � on
��k; 	kŒ. As the mass of �k goes to 0, it follows that � does not charge ��; 	Œ. Hence
supp.�k/ � Œ�k; 	k�n��; 	Œ which goes to f�; 	g. This concludes.

c) End of the argument. At this stage we do have compact Riemann surfaces
(holomorphic discs or annuli) attached to T and contained in r.T /. We want more.
We are looking for a compact Riemann surface C (holomorphic annulus or a pair of
holomorphic discs) such that @C bounds in T . Here is how we proceed.

Choose a common orientation of the characteristic cycles. Note that the bound-
aries of our Riemann surfaces are parallel to these cycles. They also inherit a natural
orientation from the Riemann surface. We speak of a positive boundary if the two
orientations agree, or negative if not. Call positive (negative) an annulus or a disc with
only positive (negative) boundaries, and opposite an annulus or a pair of discs with
opposite boundaries. We are looking for an opposite annulus or a pair of opposite
discs among our Riemann surfaces. Suppose we do not have any.

Recall that dU bounds in T . This implies that our Riemann surfaces cannot be all
positive, or all negative. We have three possibilities left: either the presence among
them of a positive annulus and a negative annulus, or of a positive annulus and a
negative disc, or the converse. By symmetry we may suppose that we have a positive
annulus AC and a negative Riemann surface (annulus or disc) C �. Observe now that
two disjoint closed curves in T parallel to the characteristic cycles are necessarily
linked in S3. This can be checked for any pair of disjoint curves in the standard torus,
as soon as they are not meridians (i.e. do not bound a disc in the complement of the
standard torus).

Hence the boundaries of AC and C � are linked. This implies that AC and C �
intersect inside the unit ball. But by construction AC is contained in the support of an
Ahlfors current coming from .�n/. As AC intersects C �, before the limit �n would
have to intersect C � (§1 c)). This is impossible as C � � yT and �n � �.
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