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Abstract. In this paper we study the set G of values at algebraic points of analytic continuations
of G-functions (in the sense of Siegel). This subring of C contains values of elliptic integrals,
multiple zeta values, and values at algebraic points of generalized hypergeometric functions
pC1Fp with rational coefficients. Its group of units contains non-zero algebraic numbers, � ,
�.a=b/b and B.x; y/ (with a; b 2 Z such that a=b 62 Z, and x; y 2 Q such that B.x; y/ exists
and is non-zero). We prove that for any � 2 G, both Re � and Im � can be written as f .1/,
where f is a G-function with rational coefficients of which the radius of convergence can be
made arbitrarily large. As an application, we prove that quotients of elements of G \ R are
exactly the numbers which can be written as limits of sequences an=bn, where

P1

nD0 anzn andP1

nD0 bnzn are G-functions with rational coefficients. This result provides a general setting
for irrationality proofs in the style of Apéry for �.3/, and gives answers to questions asked by
T. Rivoal in “Approximations rationnelles des valeurs de la fonction Gamma aux rationnels : le
cas des puissances”, Acta Arith. 142 (2010), no. 4, 347–365.
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1. Introduction

The purpose of this text is to study the set of values of G-functions at algebraic num-
bers. Let us recall the following definition, which essentially goes back to Siegel [30].

Definition 1. A G-function f is a formal power series f .z/ D P1
nD0 anzn such that

the coefficients an are algebraic numbers and there exists C > 0 such that:

(i) the maximum of the moduli of the conjugates of an is � C nC1.

(ii) there exists a sequence of integers dn, with jdnj � C nC1, such that dnam is an
algebraic integer for all m � n.
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(iii) f .z/ satisfies a homogeneous linear differential equation with coefficients in
xQ.z/. 1

Throughout this paper we fix an embedding of xQ into C; all algebraic numbers
and all convergent series are considered in C.

G-functions occur frequently in analysis, number theory, geometry and physics:
for example, algebraic functions over xQ.z/ which are holomorphic at 0, polyloga-
rithms, Gauss’ hypergeometric function with rational parameters, are G-functions.
The exponential function is not a G-function but an E-function (that is, it satisfies the
requirements of Definition 1 if an is replaced with an=nŠ in the expansion of f .z/).

In Definition 1, condition (i) ensures that any non-polynomial G-function has
finite non-zero radius of convergence at z D 0. Condition (iii) implies that in fact
the coefficients an, n � 0, all belong to a same number field. Classical references on
G-functions are the books [1] and [17].

Siegel’s goal was to find conditions ensuring that E and G-functions take irrational
or transcendental values at algebraic points: the picture is very well understood for
E-functions but largely unknown for G-functions. The main tool to study the nature
of values of G-functions is inexplicit Padé-type approximation (see [3], [12], [14],
[22]). In an explicit form, Padé approximation is also behind Apéry’s celebrated
proof [7] of the irrationality of �.3/, and similar results in specific cases (see for
instance [9], [19]).

In this paper, we study the following set.

Definition 2. Let G denote the set of all values f .˛/, where f is a G-function and
˛ 2 xQ. More precisely, all values at ˛ of analytic continuations of f are considered,
as soon as they are finite.

This subset of C is a subring (this can be seen as a consequence of Theorem 1
below). It contains xQ, and also (see §2.2 for proofs) multiple zeta values, elliptic
integrals, and values at algebraic points of generalized hypergeometric functions
pC1Fp with rational coefficients. André proved in [1], p. 123, that the units of the
ring of G-functions are exactly the algebraic functions which are holomorphic and
don’t vanish at the origin. The description of the units of G is an interesting open
problem whose solution is not as simple as for functions, for we show in §2.2 that
the group of units of G contains not only the non-zero algebraic numbers but also � ,
the values of the Gamma function �.a=b/b and that of Euler’s Beta function B.x; y/

(with a; b 2 Z such that a=b 62 Z, and x; y 2 Q such that B.x; y/ exists and is
non-zero). On the other hand, there is no explicit interesting number for which we

1All differential equations considered in this text are homogeneous and consequently we will no longer
mention the term “homogeneous”.
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are able to prove that it is not in G;2 it is likely that e, Euler’s constant � , �.a=b/

(with a, b integers such that a=b 62 Z) or Liouville numbers do not belong to G.
A conjecture of Bombieri and Dwork predicts a strong relationship between dif-

ferential equations satisfied by G-functions and Picard–Fuchs equations satisfied by
periods of families of algebraic varieties defined over xQ. See the precise formulation
given by André in [1], p. 7, who proved half of the conjecture in [1], pp. 110–111.
Christol [13] also conjectured that globally bounded G-functions are diagonals of
rational functions, which are known to satisfy Picard–Fuchs equations. This raises
the question of a connection between the set G and the set P of periods considered
by Kontsevich and Zagier [26]; all elements of P we have thought of belong also to
G. However 1=� is conjectured not to belong to P , so that G is presumably distinct
from P . However, a natural problem is the determination of the link between G and
P Œ1=�� (see the discussion at the end of § 2.2).

Our main result is the following.

Theorem 1. A complex number � belongs to G if, and only if, its real and imaginary
parts can be written as f .1/, where f is a G-function with rational coefficients of
which the radius of convergence can be made arbitrarily large.

One of the consequences of this theorem is that the set of values of G-functionsP1
nD0 anzn with an 2 Q at points z 2 Q inside the disk of convergence (respectively

at points where this series is absolutely convergent, respectively convergent) is equal
to G \ R.

The main tool in the proof of Theorem 1 is André–Chudnovski–Katz’s theorem
(stated as Theorem 6 in §4.1 below), which provides for any G-function f and any
� 2 xQ a local basis .g1; : : : ; g�/ of solutions around � of a minimal differential
equation satisfied by f . Expanding an analytic continuation of f in this basis yields
connection constants $1; : : : ; $� 2 C such that f .z/ D P�

j D1 $j gj .z/. As a step
towards Theorem 1, we prove the following result which is of independent interest:

Theorem 2. The connection constants $1; : : : ; $� belong to G.

We would like to emphasize that analytic continuation (and its properties en-
compassed in André–Chudnovski–Katz’s theorem) is the main tool in our approach.
As the referee pointed out to us, it would be interesting to find a connection with
other methods used in similar contexts, including Dèbes–Zannier’s [15] or Euler’s
for accelerating convergent series; however we did not find any. For instance, Euler’s
binomial transform

P
n�0.�1/nan D P

n�0

� Pn
kD0.�1/k

�
k
n

�
ak

�
2�n�1 is involu-

tive and therefore it cannot be used to obtain series with arbitrarily large radius of
convergence.

2Since the set G is countable, there are complex numbers outside G but the real difficulty is to exhibit such a
number by an effective process leading to an analytic expression like a series or an integral for example.



316 S. Fischler and T. Rivoal CMH

As an application of Theorem 1, we answer questions asked in [28], p. 351,
where the second author introduced the notion of rational G-approximations to a
real number. This corresponds to assertion (ii) in the next result, which provides a
characterization of numbers admitting rational G-approximations.

Given a subring A of C, we denote by Frac.A/ the field of fractions of A, namely
the subfield of C consisting in all elements �=� 0 with �; � 0 2 A, � 0 ¤ 0.

Theorem 3. Let � 2 R?. The following statements are equivalent:

(i) We have � 2 Frac.G/ \ R D Frac.G \ R/.

(ii) There exist two sequences .an/n�0 and .bn/n�0 of rational numbers such that
the series

P1
nD0 anzn and

P1
nD0 bnzn are G-functions, bn ¤ 0 for any n large

enough and limn!C1 an=bn D �.

(iii) For any R � 1 there exist two G-functions A.z/ D P1
nD0 anzn and B.z/ DP1

nD0 bnzn, with rational coefficients and radius of convergence D 1, such that
A.z/ � �B.z/ has radius of convergence > R.

Remark. When � 2 G, we can take bn D 1 in (ii). However, it is not clear to us
if this is also the case for other elements � 2 Frac.G/, in particular because it is
doubtful that G itself is a field.

Apéry has proved [7] that �.3/ 62 Q by constructing sequences .an/n�0 and
.bn/n�0 essentially as in (iii), such that bn 2 Z and lcm.1; 2; : : : ; n/3an 2 Z. Since
�.3/ D Li3.1/ (where the polylogarithms defined by Lis.z/ D P1

nD1
1

ns zn, s � 1,
are G-functions), we have �.3/ 2 G. Theorem 3 provides a general setting for such
irrationality proofs and one may wonder if, given a real irrational number � 2 Frac.G/,
there exists a proof à laApéry that � is irrational. In particular, this would be a strategy
to prove the following conjecture (see §7.2 below):

Conjecture 1. No � 2 Frac.G/ can be a Liouville number.

Our approach does not yield (at least for now) any actual result towards this con-
jecture, because the denominators of the coefficients of the G-functions we construct
grow too fast. It would be interesting to control them in some way.

The paper is organized as follows. We introduce some notation in §2.1, and state
slight generalizations of Theorems 1 and 3, namely Theorems 4 and 5. We prove in
§2.2 that the numbers mentioned above actually belong to G. Then we start proving
Theorems 4 and 5 by gathering some lemmas in §§2.3 and 2.4. In §3, we prove that
the conclusion of Theorem 1 holds for algebraic numbers and their logarithms. In §4,
we review some classical results concerning the properties of differential equations
satisfied by G-functions (namely Theorem 6, due to André, Chudnovski and Katz).
We also prove in this section that connection constants belong to G, and the conclusion



Vol. 89 (2014) On the values of G-functions 317

of Theorem 1 holds for them (see Theorem 7). This result, along with the analytic
continuation properties of G-functions deduced from Theorem 6, is used to prove
Theorem 4 in §5. In §6, we present the proof of Theorem 5: the main tool is the
results of Singularity Analysis due to Flajolet and Odlyzko [21], described in details
in the book [20]. Finally, we mention in §7 a few problems suggested by our results:
what can be said about the case of E-functions and about Diophantine perspectives.

Acknowledgements. We warmly thank Yves André, Daniel Bertrand, Frits Beukers,
Gilles Christol, Julien Roques and MichelWaldschmidt for their constructive remarks.
We are also indebted to the referee for his pertinent comments that helped us to
improve this work, in particular those we present in §7.1. Both authors have been
supported by the project HAMOT (ref. ANR 2010-BLAN-0115), and the second
author partially by the project Q-DIFF (ref. ANR 2010-JCJC-010501), of the Agence
Nationale de la Recherche.

2. Background of the proofs

2.1. Notation and results. In this section we introduce some notation that will
be used throughout this text. We also state Theorems 4 and 5, which are slight
generalizations of Theorems 1 and 3 respectively.

The letter K will always stand for a (finite or infinite) algebraic extension of Q,
embedded into xQ � C.

Definition 3. Given an algebraic extension K of Q, we denote by Ga:c:
K the set of

all values, at points in K, of multivalued analytic continuations of G-functions with
Taylor coefficients at 0 in K.

For any G-function f with coefficients in K and any ˛ 2 K, we consider all values
of f .˛/ obtained by analytic continuation, as in the definition of G in the introduction;
obviously G D Ga:c:xQ . If ˛ is a singularity of f , then we consider also these values

if they are finite. Of course f .˛z/ is also a G-function with coefficients in K so that
we may restrict ourselves to values at the point 1. By Abel’s theorem, Ga:c:

K contains
all convergent series

P1
nD0 an˛n where f .z/ D P1

nD0 anzn is a G-function with
coefficients in K and ˛ 2 K.

Definition 4. Given an algebraic extension K of Q, we denote by Gcv
K the set of all

� 2 C such that, for any R � 1, there exists a G-function f with Taylor coefficients
at 0 in K and radius of convergence > R such that � D f .1/.

For any R � 1, we denote by Gcv
R;K the set of all � D f .1/ where f is a G-

function with Taylor coefficients at 0 in K and radius of convergence > R. In this
way we have Gcv

K D T
R�1 Gcv

R;K, and also Gcv
R;K � Ga:c:

K for any R � 1.
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With this notation, Theorem 1 reads Ga:c:xQ D Gcv
Q C iGcv

Q D Gcv
Q.i/

. Actually
we prove that Ga:c:

K is independent from K, so that it is always equal to G D Ga:c:xQ .
Concerning Gcv

K , there is an obvious remark: if K � R then Gcv
K � R. Apart from

this, Gcv
K is independent from K, and equal (up to taking real parts) to G. Our result

reads as follows.

Theorem 4. Let K be an algebraic extension of Q. Then:

� We have Ga:c:
K D G D Gcv

Q C iGcv
Q:

� If K 6� R then Gcv
K D G D Gcv

Q C iGcv
Q; if K � R then Gcv

K D G \ R D Gcv
Q.

In particular this result contains the fact that xQ \ R � Gcv
Q and xQ � Gcv

Q C iGcv
Q;

this will be proved in §3.1. Another consequence of this theorem is that the set of
values of G-functions

P1
nD0 anzn with an 2 K at points z 2 K inside the disk

of convergence (respectively at points where this series is absolutely convergent,
respectively convergent) is equal to Gcv

K (so that it is equal to either G or G \ R).

We also generalize Theorem 3 as follows.

Theorem 5. Let K be an algebraic extension of Q, and � 2 C?. Then the following
statements are equivalent:

(i) We have � 2 Frac.Gcv
K/.

(ii) There exist two sequences .an/n�0 and .bn/n�0 of elements of K such thatP1
nD0 anzn and

P1
nD0 bnzn are G-functions, bn ¤ 0 for infinitely many n and

an � �bn D o.bn/.

(iii) For any R � 1 there exist two G-functions A.z/ D P1
nD0 anzn and B.z/ DP1

nD0 bnzn, with coefficients an; bn 2 K and radius of convergence D 1, such
that A.z/ � �B.z/ has radius of convergence > R and an; bn ¤ 0 for any n

sufficiently large.

When K D Q, this is a refinement of Theorem 3 because assumption (ii) of
Theorem 3 implies assumption (ii) of Theorem 5, and (iii) of Theorem 5 implies (iii)
of Theorem 3 (see also Lemma 2 below). The point in assertion (ii) of Theorem 5 is
that bn may vanish for infinitely many n; by asking an � �bn D o.bn/ we require
that an D 0 as soon as bn D 0 and n is sufficiently large.

2.2. Examples and connection to periods. In this section, we prove that the num-
bers mentioned in the introduction belong to G, and give some hints on the connection
with periods. This section is independent from the rest of the paper, except that we
assume here that G is a ring.
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Many examples of G-functions are provided by the generalized hypergeometric
series 1X

nD0

.˛1/n.˛2/n : : : .˛k/n

.1/n.ˇ1/n : : : .ˇk�1/n

zn

with rational coefficients ˛’s and ˇ’s, and .x/n D x.x C 1/ : : : .x C n � 1/. Special
cases are the polylogarithmic functions Lik.z/ D P

n�1
zn

nk (k � 1) and arctan.z/ DP
n�0.�1/n zn

2nC1
. We deduce in particular that � D 4 arctan.1/ and the values of

the Riemann zeta function �.k/ D Lik.1/ are in G for any integer k � 2. Catalan’s
constant

P
n�0

.�1/n

.2nC1/2 is also in G.

Other examples of G-functions are the multiple polylogarithms

X
n1>���>ns�1

zn1

n
k1

1 : : : n
ks
s

where the k’s are positive integers. This is a consequence of the fact that for s D 1,
we have a polylogarithm from which we obtain the multiple series by a succession
of integrations and multiplications by 1=z or 1=.1 � z/; this process does not leave
the set of G-functions. As a consequence, multiple zeta values �.k1; : : : ; ks/ DP

n1>���>ns�1
1

n
k1
1

:::n
ks
s

(with k1 � 2) are in G.

It could seem more surprising that 1=� is also in G, a fact proved by each one of
the following identities:

1

�
D

1X
nD0

�
2n
n

�2

.1 � 2n/24nC1
;

1

�
D

1X
nD0

�
2n
n

�3
.42n C 5/

212nC4
:

The first identity is a direct translation of the identity E.1/ D 1 where E.k/ DR 1

0

q
1�k2t2

1�t2 dt is Legendre’s complete elliptic function of the second kind. The
second identity is due to Ramanujan and it also has an elliptic interpretation. Both
series are in fact values of generalized hypergeometric series, hence 1=� 2 G.

In particular, � and the non-zero algebraic numbers are units of G. These numbers
do not span the whole group of units, as we now proceed to prove. Euler’s Beta
function is defined by

B.x; y/ D
Z 1

0

tx�1.1 � t /y�1dt

for Re.x/; Re.y/ > 0. It is well-known that B.x; y/ D �.x/�.y/
�.xCy/

, which provides the

meromorphic continuation of B to C2; we recall that � D B.1
2
; 1

2
/.

Proposition 1. (i) For all rational numbers x; y such that B.x; y/ is defined and
non-zero, the number B.x; y/ is a unit of G.
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(ii) For any integers a; b � 1, we have

�
�a

b

�b D .a � 1/Š

b�1Y
j D1

B
�a

b
;
ja

b

�

and �
�

a
b

�b
is a unit of G.

Remark. a) To sum up, the group of units of G contains the algebraic numbers and
the numbers B.x; y/ where x; y 2 Q (as soon as they are defined and non-zero). We
don’t know if this provides a complete list of generators of this group.

b) Chudnovski proved in 1974 that �.1=3/, respectively �.1=4/, and � are alge-
braically independent over xQ. Hence one needs other transcendental generators than
� in the group of units of G.

c) This proposition is a transposition in our context of a discussion in André’s
book [6], pp. 211–212, where he shows that the numbers �.a=b/b are periods (in the
geometric sense).

Proof. (i) We first show that B.x; y/ 2 G for all rational numbers 0 < x; y � 1.
Clearly, B.x; y/ is well defined in this case and

B.x; y/ D
Z 1

0

tx�1.1 � t /y�1dt D
Z 1

0

1X
nD0

.�1/n

�
y � 1

n

�
tnCx�1dt

D
1X

nD0

.�1/n

�
y � 1

n

� Z 1

0

tnCx�1dt D
1X

nD0

.�1/n

�
y � 1

n

�

n C x
:

Since .�1/n
�

y�1
n

�
is positive, permuting the series and integral is licit. Moreover,

.y�1
n /

nCx
D O.1=nyC1/ so that the final series converges absolutely and is the value at

z D 1 of a G-function. This proves that B.x; y/ 2 G in this case.
From now on, we let x; y 2 Q and we assume that x; y; x C y 62 Z (otherwise

the conclusion is easier to prove). Then B.x; y/ is defined and non-zero. There exist
two integers M; N such that 0 < x C M; y C N � 1, and the functional equations

B.x; y/ D x C y

x
B.x C 1; y/; B.x; y/ D x C y

y
B.x; y C 1/

yield B.x; y/ D RM;N .x; y/B.x C M; y C N / with RM;N .x; y/ 2 Q.x; y/. Since
B.x C M; y C N / is in G by the previous case, it follows that B.x; y/ 2 G.

To prove that 1=B.x; y/ is also in G, we use the reflection formula �.x/�.1�x/ D
�

sin.�x/
to get

1

B.x; y/
D sin.�x/ sin.�y/

sin �.x C y/
� 1 � x � y

�
� B.1 � x; 1 � y/:
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Now B.1 � x; 1 � y/ 2 G by the case above, .1�x�y/ sin.�x/ sin.�y/
sin �.xCy/

is an algebraic

number (hence in G) and 1=� 2 G, so that 1
B.x;y/

2 G.

(ii) We have

b�1Y
j D1

B
�a

b
;
ja

b

�
D

b�1Y
j D1

�
�

a
b

�
�

�
aj
b

�
�

�
a.j C1/

b

� D �
�a

b

�b�1 �
�

a
b

�
�.a/

;

from which we obtain the claimed identity. Moreover, for any integer j � 1, B
�

a
b
; ja

b

�
is obviously defined and non-zero, hence is a unit of G by (i). Thus, this is also the

case of �
�

a
b

�b
. �

To conclude this section, we mention some remarks (due to the referee) towards
the determination of the link between G and P Œ1=��, where P is the ring of periods
(in Kontsevich and Zagier’s sense [26]); in particular a natural question is whether
G D P Œ1=�� or not.

Bombieri–Dwork’s conjecture suggests that G might be contained in P Œ1=��.
Indeed, this conjecture predicts that any G-function is solution of an extension of
sub-quotients of Picard–Fuchs equations. It is not clear that such an extension is
motivic, but for a Picard–Fuchs equation the G-matrix solution Y.z/ is the quotient
P.z/P.0/�1 of two period matrices. Since the determinant of P.0/ is an algebraic
number times a power of � (see [2]), the inclusion G � P Œ1=�� would follow.

Towards the converse inclusion, it is possible to prove that if a one-parameter
Picard–Fuchs equation doesn’t have 0 as a singularity then the special values of its
solutions can be expressed in terms of G-functions which are solutions of the same
equation.

In view of this discussion, it would be very interesting to refine Theorem 1 by
ensuring that 0 isn’t a singularity of the minimal differential equation of the G-
function f we construct (such that f .1/ is a given � 2 G). However our proof does
not provide this refinement directly and new ideas are necessary to do that.

2.3. General properties of the ring Gcv
K

. The set of G-functions satisfies a number

of structural properties. It is a ring and even a xQŒz�-algebra; it is stable by dif-
ferentiation and the Hadamard product of two G-functions (obtained by pointwise
multiplication of the coefficients) is again a G-function. These properties will be
used throughout the text, as well as the fact that algebraic functions over xQ.z/ which
are holomorphic at z D 0 are G-functions: this is a consequence of Eisenstein’s the-
orem 3 and the fact that an algebraic function over xQ.z/ satisfies a linear differential
equation with coefficients in xQŒz�.

The following property is useful too:

3which states that for any power series
P1

nD0 anzn algebraic over xQ.z/, there exists a positive integer D
such that Dnan is an algebraic integer for any n.
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Lemma 1. Consider a G-function
P1

nD0 anzn. Then the series

1X
nD0

anzn;

1X
nD0

Re.an/zn and
1X

nD0

Im.an/zn

are also G-functions.

Proof. The series
P1

nD0 anzn satisfies a linear differential equation Ly D 0 with
coefficients in xQŒz�, hence

P1
nD0 anzn satisfies the linear differential equation

NLy D 0 where NL is obtained from L by replacing each coefficient
Pd

kD0 pkzk

with
Pd

kD0 pkzk . Furthermore, the moduli of the conjugates of an and their com-
mon denominators obviously grow at most geometrically. Hence,

P1
nD0 anzn is a

G-function.
For

P1
nD0 Re.an/zn and

P1
nD0 Im.an/zn, we write 2Re.an/ D an C an,

2i Im.an/ D an � an and use the fact that the sum of two G-functions is also a
G-function. �

The following lemma includes the easiest properties of Gcv
K ; especially (i) will be

used very often without explicit reference.

Lemma 2. Let K be an algebraic extension of Q.

(i) Gcv
K is a ring and it contains K.

(ii) If K is invariant under complex conjugation then:

� Gcv
K is invariant under complex conjugation.

� Gcv
K\R D Gcv

K \ R.

� R \ Frac.Gcv
K/ D Frac.Gcv

K\R/ D Frac.Gcv
K \ R/.

(iii) Gcv
Q.i/

D Gcv
QŒi � D Gcv

Q C iGcv
Q, and more generally if K � R then Gcv

K.i/
D

Gcv
K Œi � D Gcv

K C iGcv
K .

Proof. (i) The properties of G-functions ensure that the sum and product of two G-
functions with coefficients in K and radii of convergence > R � 1 are G-functions
with coefficients in K and radii of convergence > R. Moreover algebraic constants
are G-functions with infinite radius of convergence.

(ii) Using Lemma 1 and the fact that K is invariant under complex conjugation, ifP1
nD0 anzn is a G-function with coefficients in K and radii of convergence > R � 1

then so is
P1

nD0 anzn: this proves that Gcv
K is invariant under complex conjugation.

The inclusion Gcv
K\R � Gcv

K \R is obvious. Conversely, if � 2 R\Gcv
K then for any

R � 1 we have � D P1
nD0 an where

P1
nD0 anzn is a G-function with coefficients

in K and radius of convergence > R. Then
P1

nD0 Re.an/zn is also a G-function (by
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Lemma 1); it has coefficients in K \ R (because Re.an/ D 1
2
.an C an/) and radius

of convergence > R. Therefore � D P1
nD0 Re.an/ 2 Gcv

K\R.
Finally, the inclusion Frac.Gcv

K \ R/ � R \ Frac.Gcv
K/ is trivial. The converse

is trivial too if K � R; otherwise let �; � 0 2 Gcv
K be such that � 0 ¤ 0 and �=� 0 2 R.

Multiplying if necessary by a non-real element of K, we may assume �; � 0 62 iR.
Then we have �=� 0 D .� C N�/=.� 0 C x� 0/ 2 Frac.Gcv

K \ R/.

(iii) Assume K � R. Since Gcv
K is a ring and i2 D �1 2 Gcv

K , we have Gcv
K Œi � D

Gcv
K C iGcv

K . This is obviously a subset of Gcv
K.i/

. Conversely, K.i/ is invariant
under complex conjugation (because K � R) so that for any � 2 Gcv

K.i/
we have

Re.�/ D 1
2
.� C N�/ 2 Gcv

K.i/
\ R D Gcv

K by (ii). Since i 2 K.i/ � Gcv
K.i/

we
have Im.�/ D �i.� � Re.�// 2 Gcv

K.i/
\ R D Gcv

K , using (ii) again. Finally � D
Re.�/ C i Im.�/ 2 Gcv

K C iGcv
K . �

The following lemma is a consequence of Lemma 7 proved in §3 below; of course
the proof of Lemma 7 does not use Lemma 3, hence there is no circularity.

Lemma 3. Let K be an algebraic extension of Q.

(i) We have xQ \ R � Gcv
Q � Gcv

K , and Gcv
K is a . xQ \ R/-algebra.

(ii) If K 6� R then xQ � Gcv
Q.i/

� Gcv
K , and Gcv

K is a xQ-algebra.

Proof. (i) By Lemma 7, we have xQ \ R � Gcv
Q.i/

\ R; this is equal to Gcv
Q by

Lemma 2. The inclusion Gcv
Q � Gcv

K is trivial since Q � K.

(ii) Since K 6� R, there exist ˛; ˇ 2 R such that ˛ C iˇ 2 K and ˇ ¤ 0;
since ˛ � iˇ is also algebraic, we have ˛; ˇ 2 xQ. Therefore we can write i D
1
ˇ

..˛ C iˇ/ � ˛/ with 1
ˇ

; ˛ 2 xQ \ R � Gcv
K (by (i)). Since Gcv

K is a ring which
contains ˛ C iˇ, this yields i 2 Gcv

K , so that (using Lemma 2 and the trivial inclusion
Gcv

Q � Gcv
K ) Gcv

Q.i/
D Gcv

Q C iGcv
Q � Gcv

K . Using the inclusion xQ � Gcv
Q.i/

proved in
Lemma 7, this concludes the proof of (ii). �

To conclude this section, we state and prove the following lemma, which is very
useful for constructing elements of Gcv

R;K. Recall that Gcv
R;K is the set of all � D f .1/

where f is a G-function with coefficients in K and radius of convergence > R.

Lemma 4. Let K be an algebraic extension of Q. Let � 2 K, and g.z/ be a
G-function in the variable � � z, with coefficients in K and radius of convergence
� r > 0. Theng.z0/ 2 Gcv

R;K for anyR � 1 and any z0 2 K such that jz0��j < r=R.

Proof. Letting f .z/ D g
�
�Cz.z0��/

�
, we have f .1/ D g.z0/ and f is a G-function

with coefficients in K and radius of convergence > R. �
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2.4. Miscellaneous lemmas. We gather in this section two lemmas which are neither
difficult nor specific to G-functions, but very useful.

Lemma 5. Let A be a subring of C. Let S � N and T � Q be finite subsets. For
any .s; t/ 2 S � T , let fs;t .z/ D P1

nD0 as;t;nzn 2 AŒŒz�� be a function holomorphic
at 0, with Taylor coefficients in A. Let � denote an open subset of C, with 0 in its
boundary, on which a continuous determination of the logarithm is chosen. Then
there exist c 2 A, 	 2 N and 
 2 Q such that, as z ! 0 with z 2 �,X

s2S

X
t2T

.log z/sztfs;t .z/ D c .log z/�z� .1 C o.1//: (2.1)

Proof. Let T C N D ft C n; t 2 T; n 2 Ng. For any s 2 S and any � 2 T C N, let
cs;� D P

t2T as;t;��t where we let as;t;��t D 0 if � � t 62 N. Then the left-hand side
of (2.1) can be written, for z 2 � sufficiently close to 0, as an absolutely converging
series

P
�2T CN

P
s2S cs;� .log z/sz� . If cs;� D 0 for any .s; �/ then (2.1) holds with

c D 0. Otherwise we denote by 
 the minimal value of � for which there exists s 2 S

with cs;� ¤ 0, and by 	 the largest s 2 S such that cs;� ¤ 0. Then (2.1) holds with
c D c�;� 2 A. �

The following result will be used in the proof of Theorem 5.

Lemma 6. Let !1; : : : ; !t be pairwise distinct complex numbers, with j!1j D � � � D
j!t j D 1. Let �1; : : : ; �t 2 C be such that limn!C1 �1!n

1 C � � � C �t!
n
t D 0. Then

�1 D � � � D �t D 0.

Proof. For any n � 0, let ın D det Mn where

Mn D

0
BBB@

!n
1 !n

2 : : : !n
t

!nC1
1 !nC1

2 : : : !nC1
t

:::
:::

:::

!nCt�1
1 !nCt�1

2 : : : !nCt�1
t

1
CCCA :

Let Ci;n denote the i -th column of Mn. Since Ci;n D !n
i Ci;0 we have jınj D

j!n
1 : : : !n

t ı0j D jı0j ¤ 0 because ı0 is the Vandermonde determinant built on
the pairwise distinct numbers !1; : : : ; !t . Now assume that �j ¤ 0 for some
j . Then for computing ın we can replace Cj;n with 1

�j

Pt
iD1 �iCi;n; this implies

limn!C1 ın D0, in contradiction with the fact that jınj D jı0j ¤ 0. �

3. Algebraic numbers and logarithms as values of G -functions

An important step for us is to show that algebraic numbers are values of G-functions
with coefficients in Q.i/ (and, more precisely, that they satisfy the conclusion of
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Theorem 1). Despite quite general results in related directions, this fact does not
seem to have been proved in the literature in the full form we need. Eisenstein [31]
showed that the G-function (of hypergeometric type)

1X
nD0

.�1/n

�
5n
n

�
4n C 1

a4nC1

is a solution of the quintic equation x5 Cx D a, provided that jaj � 5�5=4 (to ensure
the convergence of the series). Eisenstein’s formula can be proved using Lagrange’s
inversion formula. More generally, given a polynomial P.x/ 2 CŒx�, it is known
that multivariate series can be used to find expressions of the roots of P in terms
of its coefficients pj . For example in [32], it is shown that these roots can be for-
mally expressed as A-hypergeometric series evaluated at rational powers of the pj ’s.
(A-hypergeometric series are an example of multivariate G-functions.) It is not clear
how such a representation could be used to prove Lemma 7 below: beside the multi-
variate aspect, the convergence of the series imposes some conditions on the pj ’s and
their exponents are not integers in general. Our proof is more in Eisenstein’s spirit.

Lemma 7. Let ˛ 2 xQ, and Q.X/ 2 QŒX� be a non-zero polynomial of which ˛ is a
simple root. For any u 2 Q.i/ such that Q0.u/ ¤ 0, the series

ˆu.z/ D u C
1X

nD1

.�1/n Q.u/n

nŠ

@n�1

@xn�1

��
x � u

Q.x/ � Q.u/

�n
�

jxDu

zn

is a G-function with coefficients in Q.i/; it satisfies the equation

Q.ˆu.z// D .1 � z/Q.u/:

For any R � 1, if u is close enough to ˛ then the radius of convergence of ˆu

is > R and ˛ D ˆu.1/ 2 Gcv
R;Q.i/

.

Accordingly we have xQ � Gcv
Q.i/

.

Remarks. a) The proof can be made effective, i.e., given ˛, Q and R, we can compute
".˛; Q; R/ such that for any u 2 Q.i/ with j˛�uj < ".˛; Q; R/, we have ˆu.1/ D ˛

and the radius of convergence of ˆu is > R.
b) Using Lemma 2 (ii), we deduce that any real algebraic number is in Gcv

Q.

We also need a similar property for values of the logarithm.

Lemma 8. Let ˛ 2 xQ?. For any determination of the logarithm, the number log.˛/

belongs to Gcv
Q.i/

.
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3.1. Algebraic numbers

Proof of Lemma 7. If deg Q D 1 then ˆu.z/ D uC .˛ �u/z so that Lemma 7 holds
trivially. From now on we assume deg Q � 2. Then Q.X/�Q.u/

X�u
is a non-constant

polynomial with coefficients in Q.i/; its value at X D u is Q0.u/ ¤ 0 so that
the coefficients of ˆu.z/ are well-defined and belong to Q.i/. If Q.u/ D 0 then
ˆu.z/ D u and the result is trivial, so that we may assume Q.u/ ¤ 0 and define the
polynomial function

zu.t/ D 1 � Q.t C u/

Q.u/
2 Q.i/Œt �

so that zu.0/ D 0 and z0
u.0/ D �Q0.u/

Q.u/
¤ 0. Hence zu.t/ can be locally inverted

around t D 0 and its inverse tu.z/ D P
n�1 n.u/zn is holomorphic at z D 0.

The Taylor coefficients of tu can be computed by means of the Lagrange inversion
formula [20], p. 732, which in this case gives ˆu.z/ D u C tu.z/. By definition of
tu.z/, this implies Q.ˆu.z// D .1 � z/Q.u/. Therefore ˆu is an algebraic function
hence it is a G-function.

Now let

n.u/ D .�Q.u//n

nŠ

@n�1

@xn�1

��
x � u

Q.x/ � Q.u/

�n
�

jxDu

denote, for n � 1, the coefficient of zn in ˆu.z/. Then for any n � 1 we have

n.u/ D Q.u/n

2i�

Z
C

dz

.Q.u/ � Q.z//n
(3.1)

where C is a closed path surrounding u but no other roots of the polynomial Q.X/ �
Q.u/. This enables us to get an upper bound on the growth of the coefficients n.u/.
Let us denote by ˇ1.u/ D u; ˇ2.u/; : : : ; ˇd .u/ the roots (repeated according to their
multiplicities) of the polynomial Q.X/�Q.u/, with d D deg Q � 2. We take u close
enough to ˛ so that ˇ2.u/; : : : ; ˇd .u/ are also close to the other roots ˛2; : : : ; ˛d of the
polynomial Q.X/. Since ˛ is a simple root of Q.X/, we have ˛ 62 f˛2; : : : ; ˛d g. We
can then choose the smooth curve C in (3.1) independent from u such that the distance
from C to any one of u; ˇ2.u/; : : : ; ˇd .u/ is � " > 0 with " also independent from
u, in such a way that u lies inside C and ˇ2.u/; : : : ; ˇd .u/ outside C . 4 It follows in
particular that, for any z 2 C , jQ.u/ � Q.z/j � � for some � > 0 independent from

u. Hence maxz2C

ˇ̌ˇ 1
Q.u/�Q.z/

ˇ̌ˇ � 1
	

. From the Cauchy integral in (3.1), we deduce

that

jn.u/j � jC j
2�

� jQ.u/jn
�n

; (3.2)

4We do so because we want to use a curve C that does not depend of u, whereas the poles of the integrand
move with u.
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where jC j is the length of C . Let R � 1. Since Q.u/ ! Q.˛/ D 0 as u ! ˛, we
deduce that the radius of convergence of ˆu.z/ is > R provided that u is sufficiently
close to ˛ (namely as soon as RjQ.u/j < �). Then the series ˆu.1/ is absolutely
convergent and we have

jˆu.1/ � uj D
ˇ̌ˇ̌ 1X

nD1

n.u/

ˇ̌ˇ̌ � jC j
2�

1X
nD1

jQ.u/jn
�n

D O
�jQ.u/j�: (3.3)

Therefore ˆu.1/ can be made arbitrarily close to u, and accordingly arbitrarily close
to ˛. Now for any z inside the disk of convergence of ˆu we have Q.ˆu.z// D
.1 � z/Q.u/, so that ˆu.1/ is a root of Q.X/. If it is sufficiently close to ˛, it has to
be ˛. This completes the proof of Lemma 7. �

3.2. Logarithms of algebraic numbers

Proof of Lemma 8. Throughout this proof, we will always consider the determination
of log z of which the imaginary part belongs to .��; �� (but the result holds for any
determination because i� D log.�1/ 2 Gcv

Q.i/
).

Using the formula log.˛/ D n log.˛1=n/ with n sufficiently large, we may assume
that ˛ is arbitrarily close to 1; in particular the imaginary part of log ˛ gets arbitrarily
close to 0.

Letting Q.X/ denote the minimal polynomial of ˛, we keep the notation in the
proof of Lemma 7, and write ˛ D ˆu.1/ D u C u‰u.1/ where u 2 Q.i/ is close
enough to ˛, ‰u.1/ is in Gcv

Q.i/
and ‰u.0/ D 0. By Equation (3.2), the radius of

convergence at z D 0 of the G-function ‰u.z/ can be taken arbitrarily large provided
that u 2 Q.i/ is close enough to ˛. We have

log.˛/ D log.˛=u/ C log.u/ D log
�
1 C ‰u.1/

� C log.u/;

because all logarithms in this equality have imaginary parts arbitrarily close to 0. Let
R � 1; we shall prove, if u is close enough to 1, that both log.1 C ‰u.1// and log.u/

belong to Gcv
R;Q.i/

.

a) Provided that u is close enough to ˛, reasoning as in Equation (3.3) we get
j‰u.z/j < 1 for all z in a disk of center 0 and radius > R. Hence for such a
u, the radius of convergence of the Taylor series of log.1 C ‰u.z// at z D 0 is
> R � 1. To see that it is a G-function with coefficients in Q.i/, we observe that
d
dz

log
�
1C‰u.z/

� D ‰0
u.z/

1C‰u.z/
is an algebraic function holomorphic at the origin: its

Taylor series is a G-function
P1

nD0 anzn 2 Q.i/ŒŒz��: Therefore log.1 C ‰u.z// DP1
nD0

an

nC1
znC1 2 Q.i/ŒŒz��; this is a G-function because the set of G-functions

is stable under Hadamard product and both
P1

nD0 anznC1 and
P1

nD0
1

nC1
znC1 are

G-functions. Whence, log.1 C ‰u.1// 2 Gcv
R;Q.i/

.
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b) It remains to prove that log.u/ 2 Gcv
R;Q.i/

for any u 2 Q.i/ sufficiently close
to 1. Let a; b 2 Q be such that u D a C ib. Then we have

log.u/ D 1

2
log.a2 C b2/ C i arctan

�
b

a

�
:

Now log.1 C z/ D P1
nD1

.�1/n�1

n
zn and arctan.z/ D P1

nD0
.�1/n

2nC1
z2nC1 are G-

functions with rational coefficients and radius of convergence D 1, and we may
assume that ja2 C b2 � 1j < 1=R and jb=aj < 1=R. Then log.u/ 2 Gcv

R;Q.i/
(see

Lemma 4). �

4. Analytic continuation and connection constants

4.1. Properties of differential equations of G -functions. Let K be an algebraic
extension of Q, and f .z/ D P1

nD0 anzn 2 KŒŒz�� be a G-function with coefficients
an 2 K. Let L be a minimal differential equation with coefficients in KŒz� of which
f .z/ is a solution. We denote by �1; : : : ; �p 2 C the singularities of L (throughout
this paper, we will consider only points at finite distance). For any i 2 f1; : : : ; pg, let
�i be a closed broken line from �i to the point at infinity; we assume �i \ �j D ;
for any i ¤ j , and let D D C n .�1 [ � � � [ �p/: this is a simply connected open
subset of C. In most cases we shall take for �i a closed half-line starting at �i .

The differential equation Ly D 0 has holomorphic solutions on D , and these
solutions make up a C-vector space of dimension equal to the order of L; a basis of
this vector space will be referred to as a basis of solutions of L.

Let � be a singularity of L. Then for any sufficiently small open disk D centered
at �, the intersection D \ D is equal to D with a ray removed; let us choose a
determination of the logarithm of � � z, denoted by log.� � z/, for z 2 D \ D (in
such a way that it is holomorphic in z). If � 2 D is not a singularity of L, the function
log.� � z/ will cancel out in what follows.

We shall use the following theorem (see [4], p. 719, for a discussion).

Theorem 6 (André, Chudnovski, Katz). Let K denote an algebraic extension of Q.
Consider a minimal differential equation L of order �, with coefficients in KŒz� and
admitting a solution at z D 0 which is a G-function in KŒŒz��. Let D , �1,…, �p be as
above. Then L is fuchsian with rational exponents at each of its singularities, and
for each point � 2 D [ f�1; : : : ; �pg there is a basis of solutions .g1.z/; : : : ; g�.z//

of L, holomorphic on D , with the following properties:
� There exists an open disk D centered at � and functions Fs;t;j .z/, holomorphic

at 0, such that for any j 2 f1; : : : ; �g and any z 2 D \ D:

gj .z/ D
X
s2Sj

X
t2Tj

�
log.� � z/

�s
.� � z/tFs;t;j .� � z/
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where Sj � N and Tj � Q are finite subsets.

� If � 2 K then the functions Fs;t;j .z/ are G-functions with coefficients in K.

� If � is not a singularity of L then Sj D Tj D f0g for any j , so that g1.z/; : : : ;

g�.z/ are holomorphic at z D �.

This theorem is usually stated in a more precise form, namely

.g1.z/; : : : ; g�.z// D �
f1.� � z/; f2.� � z/; : : : ; f�.� � z/

� � �
� � z

�C�

where the functions fj .z/ are holomorphic at 0 and C
 is an upper triangular matrix,
and a similar formulation holds for the singularity at infinity, where one replaces � �z

by 1=z. However this precise version won’t be used in this paper.

4.2. Statement of the theorem on connection constants. Let K, f , L and D be
as in §4.1. Let .g1; : : : ; g�/ denote a basis of the C-vector space of holomorphic
solutions on D of the differential equation Ly D 0; here � is the order of L. Since
f 2 KŒŒz�� satisfies Lf D 0 and is holomorphic on a small open disk centered at 0,
it can be analytically continued to D and expanded in the basis .g1; : : : ; g�/:

f .z/ D
�X

j D1

$j gj .z/ (4.1)

for any z 2 D , where $1; : : : ; $� 2 C are called connection constants.
The following theorem5 is an important ingredient in the proof of Theorems 4

and 5.

Theorem 7. Let K denote an algebraic extension of Q. Consider a minimal dif-
ferential equation L of order �, with coefficients in KŒz� and admitting a solu-
tion at z D 0 which is a G-function f 2 KŒŒz��. Let D , �1, …, �p be as above,
� 2 K \ .D [ f�1; : : : ; �pg/ and .g1; : : : ; g�/ be a basis of solutions given by Theo-
rem 6. Then the connection constants $1; : : : ; $� defined by Equation (4.1) belong
to Gcv

K.i/
.

The following corollary is a consequence of Theorem 7 and Lemma 5 (applied
with A D Gcv

K.i/
). It is used in the proof of Theorem 5.

Corollary 1. Let K, f , D , � be as in Theorem 7. Then there exist c 2 Gcv
K.i/

, 	 2 N
and 
 2 Q such that, as z ! � with z 2 D ,

f .z/ D c
�

log.� � z/
��

.� � z/� .1 C o.1//:

5As the proof shows, Theorem 7 holds under slightly weaker assumptions: it applies to any G-operator L
such that Lf D 0, and also to 
 D 1.
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4.3. Wronskian of fuchsian equations. Given a linear differential equation L with
coefficients in xQ.z/, of order � and with a basis of solutions f1; f2; : : : ; f�, the
wronskian W D W.f1; : : : ; f�/ is the determinant

W.z/ D

ˇ̌
ˇ̌ˇ̌ˇ̌ˇ

f1.z/ f2.z/ � � � f�.z/

f
.1/

1 .z/ f
.1/

2 .z/ � � � f
.1/

� .z/
:::

::: � � � :::

f
.��1/

1 .z/ f
.��1/

2 .z/ � � � f
.��1/

� .z/

ˇ̌
ˇ̌ˇ̌ˇ̌ˇ
:

The wronskian can be defined in a more intrinsic way as follows. We write L as

y.�/.z/ C a��1.z/y.��1/.z/ C � � � C a1.z/y.z/ D 0

where aj .z/ 2 xQ.z/, j D 1; : : : ; � � 1. Then W.z/ is a solution of the linear
equation

y0.z/ D �a��1.z/y.z/; (4.2)

hence W.z/ D �0 exp
� � R

a��1.z/dz
�
. The value of the constant �0 is determined

by the solutions f1; f2; : : : ; f�.

Lemma 9. Let K, f , L, D , �, g1, …, g� be as in Theorem 7. Then the wronskian
W.z/ D W.g1; : : : ; g�/.z/ is an algebraic function over xQ.z/, and its zeros and
singularities lie among the poles of a��1.z/.

Proof. Since the differential equation (4.2) is fuchsian, Equation (5.1.16) in [24],
p. 148, yields W.z/ D �

QJ
j D1.z � pj /�rj where p1; : : : ; pJ 2 xQ are the poles of

a��1.z/ (which are simple because L is fuschian), r1; : : : ; rj 2 Q (because L has
rational exponents at its singularities), and � 2 C?. It remains to prove that � is
algebraic.

With this aim in view, we compute the determinant W.z/ for z 2 D sufficiently
close to � by means of the expansions of g1,…, g� and their derivatives. This yields

W.z/ D
X
s2S

X
t2T

�
log.� � z/

�s
.� � z/tFs;t .� � z/

where S � N and T � Q are finite subsets, and the Fs;t .z/ are G-functions with
coefficients in K. Now Lemma 5 provides c 2 K, 	 2 N and 
 2 Q such that, as
z ! � with z 2 D :

W.z/ D c
�

log.� � z/
��

.� � z/� .1 C o.1//:

On the other hand we also have
QJ

j D1.z � pj /�rj D Qc.� � z/Q� .1 C o.1// for some

Qc 2 xQ? and Q
 2 Q. Since the quotient is a constant, namely �, taking limits as z ! �

yields 	 D 0, 
 D Q
 and � D c= Qc 2 xQ. This concludes the proof of Lemma 9. �
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4.4. Proof of Theorem 7. Let R � 1. For any � 2 .D nf0; �g/\K.i/, let r� > 0 be
the distance of � to the border �1 [� � �[�p of D (with the notation of §4.1), and D�

be the open disk centered at � of radius r�=R. Since � is not a singularity of L, there
is a basis g1;�.z/; : : : ; g�;�.z/ of solutions of Ly D 0 consisting in G-functions in
the variable � � z with coefficients in K.i/ (by Theorem 6); these G-functions have
radii of convergence � r� , so that gj;�.z/ 2 Gcv

R;K.i/
for any z 2 D� \ K.i/ and any

j (see Lemma 4).
Let r0 > 0 be the radius of convergence of the G-function f .z/, and D0 denote

the open disk centered at 0 with radius r0=R. Finally, for any j 2 f1; : : : ; �g we let
gj;
 .z/ D gj .z/; by assumption there exists r
 > 0 such that

gj;
 .z/ D
X
s2Sj

X
t2Tj

�
log.� � z/

�s
.� � z/tFs;t;j .� � z/

for any z 2 D such that jz � �j < r
 , where Sj � N and Tj � Q are finite subsets
and the Fs;t;j are G-functions with coefficients in K and radii of convergence � r
 .
Then we let D
 be the open disk centered at � with radius r
=R, so that for any
z 2 D
 \ K.i/ and any j we have gj;
 .z/ 2 Gcv

R;K.i/
by Lemmas 4, 7 and 8.

Following a smooth injective compact path from 0 to � inside D [ f0; �g, we
can find s � 2 points �2; : : : ; �s�1 2 .D n f0; �g/ \ K.i/ (with s � 3) such that
Dk�1 \ Dk ¤ ; for any k 2 f2; : : : ; sg, where we let Dk D D�k

and �1 D 0,
�s D �.

As in the beginning of §4.2, we have connection constants $j;2 2 C such that

f .z/ D
�X

j D1

$j;2 gj;�2
.z/ (4.3)

for any z 2 D . In the same way, for any z 2 D , any k 2 f3; : : : ; sg and any
j 2 f1; : : : ; �g we have

gj;�k�1
.z/ D

�X
`D1

$j;k;` g`;�k
.z/: (4.4)

Obviously the connection constants $j 2 C in Theorem 7 are obtained by mak-
ing products of the vector .$j;2/1�j �� and the matrices .$j;k;`/1�j;`�� (for k 2
f3; : : : ; sg), because gj;�s

.z/ D gj .z/. Since Gcv
R;K.i/

is a ring and R � 1 can be any
real number, Theorem 7 follows from the fact that all constants $j;2 and $j;k;` in
(4.3) and (4.4) belong to Gcv

R;K.i/
. We will prove it now for (4.4); the proof is similar

for (4.3).
Let k 2 f3; : : : ; sg and j 2 f1; : : : ; �g. We differentiate � � 1 times Equa-

tion (4.4), so that we get the � equations

g
.s/

j;�k�1
.z/ D

�X
`D1

$j;k;` g
.s/

`;�k
.z/; s D 0; : : : ; � � 1:
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We choose z D �k 2 Dk�1 \ Dk \ K.i/ outside the poles of a��1.z/ (with the
notation of §4.3). Doing so yields a system of � linear equations in the � unknowns
$j;k;`, ` D 1; : : : ; �, which can be solved using Cramer’s rule because the determi-
nant of the system (namely W.�k/, where W.z/ is the wronskian of L built on the
basis of solutions g1;�k

.z/; : : : ; g�;�k
.z/) does not vanish, by Lemma 9. Using again

Lemma 9, we have W.�k/ 2 xQ? and therefore 1
W.	k/

2 xQ � Gcv
Q.i/

� Gcv
K.i/

by
Lemma 7. Now Cramer’s rule yields the following expression for $j;k;`:

1

W.�k/

ˇ̌ˇ̌ˇ̌ˇ̌ˇ̌

g1;�k
.	k/ � � � g`�1;�k

.	k/ gj;�k�1
.	k/ g`C1;�k

.	k/ � � � g�;�k
.	k/

g
.1/

1;�k
.	k/ � � � g

.1/

`�1;�k
.	k/ g

.1/

j;�k�1
.	k/ g

.1/

`C1;�k
.	k/ � � � g

.1/

�;�k
.	k/

:
:
: � � �

:
:
:

:
:
:

:
:
: � � �

:
:
:

g
.��1/

1;�k
.	k/ � � � g

.��1/

`�1;�k
.	k/ g

.��1/

j;�k�1
.	k/ g

.��1/

`C1;�k
.	k/ � � � g

.��1/

�;�k
.	k/

ˇ̌ˇ̌ˇ̌ˇ̌ˇ̌
:

Since �k 2 Dk�1 \ Dk , the entries in this determinant belong to the ring Gcv
R;K.i/

(as
noticed above), so that $j;k;` 2 Gcv

R;K.i/
. This concludes the proof of Theorem 7.

5. Proof of Theorem 4

The main part in the proof of Theorem 4 is to prove that Ga:c:xQ � Gcv
Q.i/

; this will

be done below. We deduce Theorem 4 from this inclusion as follows, by Lemmas 2
and 3. If K 6� R, we have

Ga:c:
K � Ga:c:xQ � Gcv

Q.i/ � Gcv
K � Ga:c:

K

and Theorem 4 follows. If K � R, we have:

Gcv
K � Ga:c:xQ \ R � Gcv

Q.i/ \ R D Gcv
Q � Gcv

K

so that Gcv
K D Gcv

Q. The inclusion Ga:c:
K � Ga:c:xQ D Gcv

Q C iGcv
Q is trivial; let us

prove that Gcv
Q C iGcv

Q � Ga:c:
K . Let �1; �2 2 Gcv

Q, and f , g, h be G-functions with
rational coefficients and radii of convergence > 2 such that f .1/ D �1, g.1/ D �2, and

h.1/ D 4
p

2. Then k.z/ D f .z/Cg.z/h.z/ 4

q
1 � z

2
is a G-function with coefficients

in Q � K, and �1 C i�2 is the value at 1 of an analytic continuation of k (obtained
after a small loop around z D 2). This concludes the proof that Ga:c:

K D Gcv
Q C iGcv

Q
if K � R.

The rest of the section is devoted to the proof that Ga:c:xQ � Gcv
Q.i/

. Let � 2 Ga:c:xQ ; we

may assume � ¤ 0. There exists a G-function f .z/ D P1
nD0 anzn with coefficients

an 2 xQ, and z0 2 xQ, such that � is one of the values at z0 of the multivalued
analytic continuation of f . Replacing f .z/ with f .z0z/, we may assume z0 D 1.
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Let L denote the minimal differential equation satisfied by f , and �1; : : : ; �p be the
singularities of L. To keep the notation simple (and because the general case can be
proved along the same lines), we shall assume that there is an open subset D � C (as
in §4.1) such that 1 2 D [ f�1; : : : ; �pg and � D f .1/, where f denotes the analytic
continuation of the G-function

P
anzn to D . If 1 is a singularity of L then f .1/ is

the (necessarily finite) limit of f .z/ as z ! 1, z 2 D .
The coefficients an .n � 0/ belong to a number field K D Q.ˇ/ for some

primitive element ˇ of degree d say. We can assume without loss of generality that
K is a Galois extension of Q, i.e, that all Galois conjugates of ˇ are in K. There
exist d sequences of rational numbers .uj;n/n�0, j D 0; : : : ; d � 1; such that, for all
n � 0, an D Pd�1

j D0 uj;nˇj and thus (at least formally)

f .z/ D
1X

nD0

anzn D
d�1X
j D0

ˇj

1X
nD0

uj;nzn: (5.1)

The power series Uj .z/ D P1
nD0 uj;nzn are G-functions (see [17], Proposi-

tion VIII.1.4, p. 266), so that Equation (5.1) holds as soon as jzj is sufficiently small.
Moreover Uj has rational coefficients, so that it satisfies a differential equation with
coefficients in QŒz� (see for instance [17], Proposition VIII.2.1 (iv), p. 268). We let
Lj denote a minimal one, of order �j . Let Sj denote the set of singularities of Lj ,
and S D S0 [ � � � [ Sd�1. Let � denote a compact broken line without multiple
points from 0 to 1 inside D [ f0; 1g. Since S is a finite set, we may assume that
� \ S � f0; 1g and find a (small) simply connected open subset � � C such that
� n f0; 1g � � � D n f1g and � \ S D ;. If � and � are chosen appropriately, it
is possible to construct D0, …, Dd�1 as in §4.1 (with respect to L0, …, Ld�1) such
that � � D0 \ � � � \ Dd�1. Since � is simply connected and 1 62 �, we choose a
continuous determination of log.1 � z/ for z 2 �. Now Equation (5.1) holds in a
neighborhood of 0, and 0 lies in the closure of � so that, by analytic continuation,

f .z/ D
d�1X
j D0

ˇj Uj .z/ for any z 2 �: (5.2)

We shall now expand this equality around the point 1, which lies also in the closure of
�. For any j 2 f0; : : : ; d � 1g, let .gj;1; : : : ; gj;�j

/ denote a basis of solutions of the
differential equation Lj y D 0 provided by Theorem 6 with � D 1. Then Theorem 7
gives $j;1; : : : ; $j;�j

2 Gcv
Q.i/

such that Uj .z/ D $j;1gj;1.z/C� � �C$j;�j
gj;�j

.z/

for any z 2 �. Since ˇj 2 Gcv
Q.i/

by Lemma 7, Equation (5.2) yields finite subsets
S � N and T � Q such that, for z 2 � sufficiently close to 1,

f .z/ D
X
s2S

X
t2T

�
log.1 � z/

�s
.1 � z/tFs;t .1 � z/
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where the functions Fs;t .z/ are holomorphic at 0 and have Taylor coefficients at 0
in Gcv

Q.i/
. Then Lemma 5 gives c 2 Gcv

Q.i/
, 	 2 N and 
 2 Q such that f .z/ D

c
�

log.1�z/
��

.1�z/� .1Co.1// as z ! 1 with z 2 �. Since limz!1 f .z/ D � ¤ 0,
we have 	 D 
 D 0 and � D c 2 Gcv

Q.i/
. This concludes the proof of Theorem 4.

6. Rational approximations to quotients of values of G -functions

This section is devoted to the proof of Theorem 5: in §6.1 we prove that (i) ) (iii),
and in §6.2 that (ii) ) (i). Since (iii) obviously implies (ii), this will conclude the
proof.

6.1. Construction of rational approximants. Assume that assertion (i) holds. Let
�1; �2 2 Gcv

K n f0g be such that � D �1=�2. Let R � 1, and U.z/ D P1
nD0 unzn,

V.z/ D P1
nD0 vnzn be G-functions with coefficients in K and radii of convergence

> R, such that U.1/ D P1
nD0 un D �1 and V.1/ D P1

nD0 vn D �2.
For any n � 0, let an D Pn

kD0 uk and bn D Pn
kD0 vk , A.z/ D P1

nD0 anzn

and B.z/ D P1
nD0 bnzn. Then A.z/ D U.z/

P1
nD0 zn D U.z/

1�z
and B.z/ D V.z/

1�z

are G-functions with coefficients in K and radii of convergence D 1. Moreover
limn!C1 an D �1 and limn!C1 bn D �2 so that an; bn ¤ 0 for any n sufficiently
large, and

ˇ̌
an � �bn

ˇ̌ D ˇ̌
.an � �1/ � �.bn � �2/

ˇ̌ �
1X

kDnC1

jukj C j�j
1X

kDnC1

jvkj D O
�
R�n

�

because un; vn D O.R�n/ as n ! C1 and we may assume R � 2. Therefore
A.z/ � �B.z/ has radius of convergence � R, thereby concluding the proof that
(i) ) (iii).

6.2. Application of SingularityAnalysis. Let us prove that (ii) ) (i) in Theorem 5.
Let A.z/ D P1

nD0 anzn and B.z/ D P1
nD0 bnzn be G-functions with coeffi-

cients in K, such that bn ¤ 0 for infinitely many n and an � �bn D o.bn/. Since
� ¤ 0, we have an ¤ 0 for infinitely many n: none of A.z/ and B.z/ is a polynomial.
Therefore these G-functions have finite positive radii of convergence, say � and Q�
respectively.

Let us denote by L the minimal differential equation over KŒz� satisfied by A.z/,
and by ��1, …, ��q the pairwise distinct singularities of A.z/ of modulus � (so that
j�1j D � � � D j�qj D 1). Then we have q � 1, and all ��i are singularities of L and
are algebraic numbers.

Let �0 2 .��=2; �=2/ and �0 D fz 2 C; z D 1 or arg.z � 1/ � �0 mod 2�g.
For any i 2 f1; : : : ; qg, let �i D ��i�0 D f��iz; z 2 �0g. Denoting by �1 D ��1,
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…, �q D ��q , �qC1, …, �p the singularities of L, we may assume (by choosing �0

properly) that �1, …, �q and some appropriate half-lines �qC1, …, �p satisfy the
assumptions made at the beginning of §4.1, so that we can take D D C n .�1 [
� � � [ �p/. Choosing arbitrary determinations for log.��i / (i D 1; : : : ; q), and also
a continuous one for log z when z 2 C n �0, we may define log.��i � z/ to be
log.��i / C log

�
1 � z

	
i

�
for z 2 D sufficiently close to ��i (because 1

	
i
�i D �0).

For any i 2 f1; : : : ; qg, Corollary 1 yields ci 2 Gcv
K.i/

n f0g, 	i 2 N and 
i 2 Q such
that

A.z/ D ci

�
log.��i � z/

��i
�
��i � z

��i .1 C o.1//

D ci .��i /
�i

�
log

�
1 � z

��i

���i
�

1 � z

��i

��i

.1 C o.1//

as z ! ��i with z 2 D . Replacing A.z/ and B.z/ with their `-th derivatives from the
beginning, where ` is a sufficiently large integer, we may assume 
1 < 0 (because ��1

is a singularity of A.z/). Let 
 D min.
1; : : : ; 
q/ < 0, and 	 denote the maximal
value of 	i among those indices i such that 
i D 
 . Let g.z/ D .log.1�z//� .1�z/�

for z 2 C n �0, and di D ci .��i /
�i if .	i ; 
i / D .	; 
/, di D 0 otherwise. Then

.d1; : : : ; dq/ ¤ .0; : : : ; 0/ and, for any i 2 f1; : : : ; qg, we have di 2 Gcv
K.i/

(by

Lemma 7, because ��i 2 xQ). Finally,

A.z/ D dig

�
z

��i

�
C o

�
g

�
z

��i

��
(6.1)

as z ! ��i with z 2 D . We have checked all assumptions of Theorem VI.5 (§VI.5,
p. 398) of [20] (see also [21]). This result enables one to transfer this estimate (6.1)
around the singularities on the circle of convergence into an asymptotic estimate for
the coefficients of A.z/, namely

an D .�1/�

�.�
/
� .log n/�

�nn�C1
� �

�n C o.1/
�
; with �n D

qX
iD1

di�
�n
i : (6.2)

Remark. Equation (6.2), the proof of which is based on Singularity Analysis, seems
to be interesting for itself (and not only as a step in the proof of Theorem 5).

The same arguments with B.z/ provide Q�, Q	 , Q
 , Q�1, …, Q� Qq , Qd1, …, Qd Qq such that

bn D .�1/Q�

�.�Q
/
� .log n/Q�

Q�nnQ�C1
� � Q�n C o.1/

�
; with Q�n D

QqX
iD1

Qdi
Q��n
i : (6.3)

Let N0 D fn 2 N; bn D 0g and N D N n N0. By assumption N is infinite, and
an D 0 for any n 2 N0 sufficiently large. In what follows, we assume implicitly
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that N0 is infinite (otherwise the proof is the same, and even easier since everything
works as if N0 D ; and N D N).

By Equations (6.2) and (6.3), we have as n ! C1 with n 2 N ,

an

bn

D .�1/��Q� �.�Q
/

�.�
/
� �n C o.1/

Q�n C o.1/
�
� Q�

�

�n

nQ��� .log n/��Q� : (6.4)

Now the left-hand side tends to � ¤ 0 as n ! C1 with n 2 N . If .�; 	; 
/ ¤
. Q�; Q	; Q
/ then

ˇ̌
�nCo.1/
Q�nCo.1/

ˇ̌
tends to 0 or C1 as n ! C1 with n 2 N . Since both �n

and Q�n are bounded, this implies that �n or Q�n tends to 0 as n ! C1 with n 2 N .
Since �n D o.1/ and Q�n D o.1/ as n ! 1 with n 2 N0 (using (6.2) and (6.3),
because an D bn D 0 for n 2 N0 sufficiently large), we have limn!C1 �n D 0 or
limn!C1 Q�n D 0. By Lemma 6 this implies d1 D � � � D dq D 0 or Qd1 D � � � D
Qd Qq D 0, which is a contradiction.

Therefore we have .�; 	; 
/ D . Q�; Q	; Q
/ in Equation (6.4), so that an

bn
D �nCo.1/

Q�nCo.1/

as n ! C1 with n 2 N . Therefore �n�� Q�nCo.1/
Q�nCo.1/

D an

bn
� � tends to 0 as n !

C1 with n 2 N . Since Q�n is bounded, we deduce limn!C1 �n � � Q�n D 0

(using the fact that �n D o.1/ and Q�n D o.1/ as n ! 1 with n 2 N0). Writing
�n � � Q�n D Pt

j D1 �j !n
j where f!1; : : : ; !tg D f��1

1 ; : : : ; ��1
q ; Q��1

1 ; : : : ; Q��1
Qq g with

!1; : : : ; !t pairwise distinct, Lemma 6 yields �1 D � � � D �t D 0. Reordering the
�j ’s and the !k’s if necessary, we may assume that d1 ¤ 0 and !1 D ��1

1 . Then
�1 D d1 � � Qdi if there is a (necessarily unique) i such that !1 D Q��1

i , and �1 D d1

otherwise. Since �1 D 0 ¤ d1, there is such an i and it satisfies Qdi ¤ 0 and
� D d1= Qdi 2 Frac.Gcv

K.i/
/. If K 6� R then Gcv

K D Gcv
K.i/

by Theorem 4; otherwise we
have � 2 R \ Frac.GcvxQ/ D Frac.GcvxQ\R

/ D Frac.Gcv
K/ by Theorem 4 and Lemma 2.

In both cases, this concludes the proof of Theorem 5.

7. Perspectives

7.1. Other classes of arithmetic power series. It is natural to wonder if the results
presented in this paper can be adapted to other classes of arithmetic power series.
The most natural class is that of E-functions, also introduced by Siegel in [30].
The definition of these functions (see the Introduction) is formally similar to that
of G-functions, but of course the presence of nŠ at the denominator of the Taylor
coefficients changes drastically the properties of E-functions. An E-function is entire
and André proved in Theorem 4.3 of [4] that any E-function is solution of a linear
differential equation with polynomial coefficients (not necessarily minimal) whose
singularities are 0 (a regular singularity with rational exponents) and infinity (an
irregular singularity in general). Like the set of G-functions, the set of E-functions
enjoys certain stability properties; for instance, it is a ring.
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Let us denote by E as the set of all values of E-functions at algebraic points. This
is the analogue of G and it is a ring; it would be interesting to prove a result on E
analogous to Theorem 1. However we do not even know what a reasonable conjecture
would be in this respect; what is clear is that the situation is really different, as the
following result shows (we are indebted to the referee for suggesting its proof to us).

Proposition 2. Let f be an E-function with coefficients in Q.i/, and ˛ 2 xQ be such
that f .1/ D ˛ or f .1/ D e˛ . Then ˛ 2 Q.i/.

Proof. Let .z/ denote either ˛ or e˛z , with ˛ 2 xQ; assume there exists an E-
function f with coefficients in Q.i/ such that f .1/ D .1/. Replacing f .z/ with
f .z/ � ˇ or f .z/e�ˇz for a suitable ˇ 2 Q.i/, we may assume that ˛ has zero trace
over Q.i/. Now there exist xQ.z/-linearly independent E-functions f1, …, fn with
coefficients in Q.i/ such that f1.1/ D .1/ and the vector f D t .f1; : : : ; fn/ is a
solution of the differential system y0 D Ay where A is an n�n matrix with entries in
Q.i/.z/. Modifying f1; : : : ; fn if necessary as in the proof of Theorem 1.5 of [11],
we may assume that 1 is not a pole of an entry of A. Using Beukers’version of Siegel–
Shidlovskii’s theorem (namely Theorem 1.3 of [11]), the relation f1.1/ D .1/ can
be lifted to P1.z/f1.z/ C � � � C Pn.z/fn.z/ D P0.z/.z/ with P0; : : : ; Pn 2 xQŒz�

such that P0.1/ D P1.1/ D 1 and P2.1/ D � � � D Pn.1/ D 0.
If .z/ D ˛, taking the trace over Q.i/ yields Q0; : : : ; Qn 2 Q.i/Œz� such

that Q1.z/f1.z/ C � � � C Qn.z/fn.z/ D Q0.z/ with Q1.1/ D 1, Q2.1/ D � � � D
Qn.1/ D 0, and Q0.1/ D 0 since ˛ has zero trace. Therefore f1.1/ D 0, and ˛ D 0.

If .z/ D e˛z , we take the norm over Q.i/ of the relation P1.z/f1.z/ C � � � C
Pn.z/fn.z/ D P0.z/e˛z . Letting d denote the degree of a finite Galois extension
of Q.i/ which contains ˛ and all coefficients of P0; : : : ; Pn, this provides (since
˛ has zero trace) a relation

P
� Q�.z/f�.z/ D Q0.z/ where Q0 2 Q.i/Œz�, � D

.�1; : : : ; �n/ 2 Nn is such that �1 C � � � C �n D d , f�.z/ D f1.z/�1 : : : fn.z/�n , and
Q�.z/ 2 xQŒz� is such that Q�.1/ D 0 for � ¤ .d; 0; : : : ; 0/ and Q.d;0;:::;0/.1/ D 1.
Taking z D 1 yields f1.1/d D Q0.1/ 2 Q.i/ hence e˛ 2 xQ, so that ˛ D 0.

This concludes the proof of Proposition 2. �

The possibility of a result analogous to Theorem 3 is also uncertain. It is easy
to describe the limits of sequences An=Bn where An; Bn 2 xQ, Bn ¤ 0 for all
large enough n and

P1
nD0 Anzn and

P1
nD0 Bnzn are E-functions. This is simply

Frac.G/, because the series
P1

nD0 nŠAnzn and
P1

nD0 nŠBnzn are G-functions, and
conversely if

P1
nD0 anzn is a G-function, then

P1
nD0

an

nŠ
zn is an E-function. This

can hardly be the analogue we seek. We now observe that given an E-function
f .z/ D P1

nD0 Anzn, the sequence pn=qn, with pn D Pn
kD0 Ak and qn D 1, tends

to f .1/, but
P1

nD0 pnzn D f .z/
1�z

is not an E-function and
P1

nD0 zn D 1
1�z

is a G-
function. Hence a result analogous to Theorem 3 and involving E might be achieved
by considering simultaneously E and G-functions. It is also possible that similar
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questions might be easier to answer in the larger class of arithmetic Gevrey series
introduced by André in [4], [5].

7.2. Possible applications to irrationality questions. The Diophantine theory of
E-functions is well understood after the works of many authors, among which we may
cite Siegel [30] and Shidlovskii [29], and more recently André [5] and Beukers [11].
An E-function essentially takes transcendental values at all non-zero algebraic points,
and the algebraic points where it may take an algebraic value are fully controlled a
priori.

This is far from being true for a non-algebraic G-function. There are many
examples in the literature of G-functions taking algebraic values at some algebraic
points without an obvious reason, see for example [10]. After the pioneering works
of Galochkin [22] and Bombieri [12], it is known that, given a transcendental G-
function f , if ˛ is a non-zero algebraic number of modulus � c, then f .˛/ cannot
be an algebraic number of degree � d . Here, c > 0 and d � 1 are explicit quantities
that depend on f and on the degree and height of ˛. A typical example is that if
˛ D 1=q is the inverse of an integer, then f .˛/ is an irrational number provided that
jqj � Q is sufficiently large in terms of f . An important issue is that the constant
c is usually much smaller than the radius of convergence of f : the point where the
value is taken has to be very close to 0.

On the contrary, a few results are known in which such a restriction is not nec-
essary. One of them is Wolfart’s theorem [33] on transcendence of values of Gauss’
hypergeometric function at algebraic points. Another, more related to the present
paper, is Apéry’s proof of the irrationality of �.3/; it involves evaluating a G-function
on the border of its disk of convergence. The starting point of his method is given by
Theorem 5: he constructs two sequences .an/n�0 and .bn/n�0 of rational numbers,
whose generating functions are G-functions 6, such that an=bn tends to �.3/. To prove
irrationality, more is needed, i.e., one also has to find a suitable common denominator
Dn of an and bn, and then prove that the linear form Dnan CDnbn�.3/ 2 ZCZ�.3/

tends to 0 without being equal to 0. (In this case, Dn D lcm.1; 2; : : : ; n/3.) The
growth of Dn is usually the main problem in attempts at proving irrationality in
Apéry’s style. Indeed, there exist many examples of values f .˛/ of a G-function f

at an algebraic point ˛ having approximations in the sense of Theorem 3 (iii) (see [28]
for references), but the growth of the relevant denominators Dn prevents one to prove
irrationality when the modulus of ˛ is too close to the radius of convergence of f .
For instance, this approach has failed so far to establish the irrationality of �.5/ or of
Catalan’s constant G D P1

nD0
.�1/n

.2nC1/2 .
In the following proposition, we explain in details how the growth of Dn, the

radii of convergence and the irrationality exponent �.�/ of � are connected. Recall
that �.�/ is the supremum of the set of real numbers � such that, for infinitely many

6This was apparently first observed by Dwork in [16]; see also [18], §1.10, for references.
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fractions p=q, j� � p=qj < q��. In particular � is said to be a Liouville number if
�.�/ D C1.

Proposition 3. Let � 2 G \ R. Let A.z/ D P1
nD0 anzn and B.z/ D P1

nD0 bnzn

be G-functions, with rational coefficients and radii of convergence D r > 0, such
that A.z/ � �B.z/ has a finite radius of convergence, which is � R > r . Let C � 1

be such that an and bn have a common denominator � C n.1Co.1// (as n ! C1).
Then:

� If C < R then � 62 Q and �.�/ � 1 � log.C=r/
log.C=R/

.

� Necessarily C � p
Rr .

This proposition is analogous to the other ones used to bound �.�/ from above
when small linear forms an� � bn are available; the main difference here is that we
do not assume limn!1 jan� � bnj1=n to exist. We hope this proposition can be used
to make some progress towards Conjecture 1 stated in the introduction; of course the
difficult point is to construct the G-functions with a control upon the denominators
of an and bn (so that C is not too large).

We have considered here only the case of one number � , but G-functions also
arise in proofs of linear independence, in the same way as in Apéry’s, for instance
concerning the irrationality [8], [27] of �.s/ for infinitely many odd s � 3.

Proof of Proposition 3. The second assertion follows from the first one because
�.�/ � 2 for any � 2 R n Q. Let us prove the first one.

Let pn D Dnan 2 Z and qn D Dnbn 2 Z, where n is sufficiently large and
Dn 2 Z is such that 1 � Dn � C n (increasing C slightly if necessary). Decreasing
R slightly if necessary, we may assume that the radius of convergence of A.z/��B.z/

is > R, so that jqn� � pnj � .C=R/n for any n sufficiently large. Since C < R

and qn� � pn ¤ 0 for infinitely many n (because A.z/ � �B.z/ has a finite radius
of convergence), this implies � 62 Q. Moreover there exists a non-trivial linear
recurrence relation P0.n/un CP1.n/unC1 C� � �CPr.n/unCr D 0, with coefficients
Pj .n/ 2 ZŒn�, satisfied by both sequences .an/n�0 and .bn/n�0. We claim that for any
n sufficiently large, the vectors .pn; qn/, .pnC1; qnC1/, …, .pnCr ; qnCr/ span the Q-
vector space Q2. Using Lemma 3.2 in [23], this implies �.�/ � 1 � log.C=r 0/

log.C=R/
for any

r 0 < r , because jpnj; jqnj � .C=r 0/n for any n sufficiently large. To prove the claim
we argue by contradiction, and assume (permuting .pn/n�0 and .qn/n�0 if necessary)
that for some � 2 Q we have qk D �pk for any k 2 fn; n C 1; : : : ; n C rg. Then
the sequence .bi � �ai /i�n satisfies the above-mentioned recurrence relation, and its
first r C1 terms vanish. If n is sufficiently large then Pr.i/ ¤ 0 for any i � nCr C1

(because we may assume Pr to be non-zero), so that qi ��pi D bi ��ai D 0 for any
i � n. Since limi!C1 qi� � pi D 0 and pi ¤ 0 for infinitely many n, we deduce
�� D 1, in contradiction with the fact that � 62 Q. �
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