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Abstract. In this article, we prove several results about the extension to the boundary of confor-
mal immersions from an open subset � of a Riemannian manifold L into another Riemannian
manifold N of the same dimension. In dimension n � 3, and when the .n � 1/-dimensional
Hausdorff measure of @� is zero, we completely classify the cases when @� contains essential
singular points, showing that L and N are conformally flat and making the link with the theory
of Kleinian groups.
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1. Introduction

The aim of this paper is to make progress toward the understanding of singular sets for
conformal maps between Riemannian manifolds of dimension at least 3. The general
problem we are considering can be stated very easily: assume that .L; g/ and .N; h/
are two smooth, connected, Riemannian manifolds of same dimension n � 2, and
assume that we have a smooth immersion s W L nƒ ! N , from the complement of
a closed subset ƒ � L, to the manifold N , which is conformal, namely s�h D e'g

for some smooth function ' on L n ƒ. The set ƒ is called a singular set for the
conformal immersion s, and a data s W L n ƒ ! N as above is referred to as a
conformal singularity. A basic question is to understand under which conditions the
singular set ƒ is removable, namely it is possible to extend s “across” ƒ.

The main contribution of the article is an almost complete understanding of the
situation when the dimension n is at least 3, and the .n � 1/-dimensional Hausdorff
measure of ƒ, denoted Hn�1.ƒ/, is zero. Under those assumptions, our principal
result is Theorem 1.3, stated in Section 1.2 below, which yields a local classification
of essential conformal singularities, namely those for which s W L n ƒ ! N does
not extend to a continuous map from L into the one-point compactification of N .
Theorem 1.3 implies that such essential singular sets can only occur whenL andN are
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conformally flat, and moreoverN is a Kleinian manifold. As a consequence, except in
very peculiar situations that are completely classified, singular sets with Hn�1.ƒ/ D
0 are removable (maybe adding a point at infinity to N , when N is noncompact),
and the extended map is still a conformal immersion (see Theorem 1.1). Finally,
under the extra assumption that L is compact and the .n� 2/-dimensional Hausdorff
measure of ƒ is zero, we also classify globally essential conformal singularities in
Theorem 1.4: in this case L and N are both Kleinian manifolds.

Since conformal immersions are very peculiar instances in the much larger class
of quasiregular mappings, it is natural, before describing our results into more de-
tails, to mention the existing theorems about removable sets and boundary behavior of
quasiregular maps. Quasiregular mappings (see [IM], [R2], [V1] for comprehensive
introductions to the subject) are usually presented as the “good” higher dimensional
generalization of holomorphic functions of one complex variable. And indeed, clas-
sical theorems of function theory, such as Picard’s theorem, or Painlevé’s theorem
on removable sets, find analogous statements in the framework of quasiregular map-
pings (see for instance [R1], [R3], [V2]). Most of those results, though, only deal
with quasiregular mappings between domains of the extended space xRn. Although
more recent works (for instance [BH], [HP], [P] and [Zo1], among others) aimed at
some generalizations involving broader classes of target manifolds N , they do not
help much for the problem we are considering, except in very peculiar cases. More-
over, let us stress that the tools used in the theory of quasiregular mappings involve
elaborate analysis, while the very rigid behavior displayed by conformal immersions
in higher dimension allow to settle the problem in the conformal framework by purely
geometric arguments. Actually, we hope that the ideas introduced here will be helpful
to study removable and essential singular sets for conformal structures which are not
Riemannian, the Lorentz signature being of particular interest, and maybe for other
geometric structures of the same kind, such as Cartan geometries.

1.1. Extension results. Throughout the paper, manifolds and maps between them
are assumed to be smooth.

We consider as above a conformal immersion s W L nƒ ! N , where .L; g/ and
.N; h/ are two connected Riemannian manifolds of dimension n � 3. The conformal
structure on L n ƒ is that induced by .L; g/. We will assume that Hn�1.ƒ/ D 0,
where Hn�1 stands for the .n � 1/-dimensional Hausdorff measure on .M; g/ (we
refer to Chapter 4 of [Ma] for basic notions on Hausdorff measures). In particular,
L nƒ is connected and dense in L. In the sequel, those sets satisfying the condition
Hn�1.ƒ/ D 0will be referred to as thin singular sets. The points of a (thin) singular
set ƒ split naturally into three categories.

– The removable singular points are those x1 2 ƒ at which the map s extends
continuously. In other words, there exists a point y 2 N so that for every sequence
.xk/ of L nƒ converging to x1, the sequence s.xk/ tends to y.
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– The poles are those points x1 2 ƒ such that for every sequence .xk/ of L nƒ
converging to x1, the sequence s.xk/ leaves every compact subset of N .

– Finally, the points of ƒ which are neither removable, nor poles are essential
singular points.

One thus gets a partitionƒ D ƒrem [ƒpole [ƒess into removable singular points,
poles and essential singular points. The results of this article will allow to determine
the structure of those three sets for thin singularities. We begin with ƒrem.

Theorem 1.1. Let .L; g/ and .N; h/ be two connected n-dimensional Riemannian
manifolds, n � 3. Let ƒ � L be a closed subset such that Hn�1.ƒ/ D 0, and
s W Lnƒ ! N a conformal immersion. Then the setƒrem is open inƒ and s extends
to a conformal immersion s0 W L n .ƒpole [ƒess/ ! N .

In view of this result, it will be interesting to find criteria ensuring that ƒess is
empty. We will prove in Theorem 3.7 that under the condition Hn�1.ƒ/ D 0, an
injectivity assumption on the immersion s is enough for that.

1.2. Local classification of thin essential singularities. Our next step will be to
understand, when it is nonempty, the set ƒess of essential singular points. First, we
introduce the following definition.

Definition 1.2 (Essential singular set). Let s W Lnƒ ! N be a conformal singularity.
We will say that ƒ is an essential singular set as soon as ƒess 6D ;. When ƒrem D ;
and ƒess 6D ;, we will say that ƒ is minimal essential.

The reader might like to see examples of conformal immersions admitting (mini-
mal) essential singularities. That’s what we do quickly now, referring to Section 4.1
for more details on the construction. Let � be an infinite Kleinian group, namely a
discrete subgroup of the Möbius group PO.1; nC 1/ acting properly on a nonempty
open subset � � Sn. We assume that the action of � on � is free and denote by
N WD �=� the corresponding Kleinian manifold. The conformal covering map
� W Sn n ƒ ! N , where ƒ stands for the complement of � in Sn, is an instance of
conformal singularity which, under our assumption that � is infinite, turns out to be
essential. Actually (see Section 4.1), ƒ D ƒess [ƒpole, and ƒess coincides with the
limit setƒ.�/ of � . Such conformal singularities will be said to be of Kleinian type.

Our main result says basically that locally, all thin conformal singularities which
are minimal essential (see Definition 1.2) are of Kleinian type. In particular, the
existence of essential singular points imposes strong restrictions on the geometry:
the source manifold must be conformally flat, and the target manifold has to be
Kleinian. It is interesting to notice that this geometric restriction does not appear in
dimension two, where all Riemannian manifolds are conformally flat.
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Observe that in view ofTheorem 1.1, studying thin singular sets which are essential
reduces to studying minimal essential ones.

Theorem 1.3. Let .L; g/ and .N; h/ be two connected n-dimensional Riemannian
manifolds, n � 3. Let ƒ � L be a closed subset such that Hn�1.ƒ/ D 0. Assume
that s W L n ƒ ! N is a conformal immersion for which ƒ is a minimal essential
singular set. Then:

(1) There exist an infinite Kleinian group � � PO.1; n C 1/, a connected open
set � � Sn on which � acts freely properly discontinuously, and a conformal
diffeomorphism  W N ! �=� .

(2) For each x1 2 ƒ, there exist an open neighborhood U � L containing x1,
and a conformal diffeomorphism ' W U ! V , where V is an open subset of Sn,
which makes the following diagram commute:

U nƒ
s

��

' �� V n @�
�

��
N

 �� �=� ,

where � W � ! �=� is the covering map. In particular, '.U \ƒ/ D V \ @�
and '.U \ƒess/ D V \ƒ.�/, whereƒ.�/ denotes the limit set of the group � .

In Corollary 5.5, we will derive from Theorem 1.3 precise information about the
behavior of a conformal immersion near an essential singular point. In particular, we
will get an higher dimensional analogue of Picard’s theorem.

1.3. Global classification of essential singularities. Theorem 1.3 describes com-
pletely the geometry of the target manifoldN , for a thin essential conformal singular-
ity s W Lnƒ ! N . The local geometry ofL is also determined, but in full generality,
we cannot expect to determineL globally. Now, if we assume thatL is compact, and
under the stronger assumption that the singular set has .n � 2/-dimensional Haus-
dorff measure zero, the singularity s W L nƒ ! N can be described globally. In the
statement below, for a Kleinian group � , we will denote by ƒ.�/ the limit set of � ,
�.�/ D Sn nƒ.�/ its domain of discontinuity, andM.�/ the quotient�.�/=� (see
Section 4.1 for the definitions).

Theorem 1.4. Let .L; g/ and .N; h/ be two connected n-dimensional Riemannian
manifolds, n � 3. We assume that L is compact. Let ƒ � L be a closed subset such
that Hn�2.ƒ/ D 0. Assume that s W Lnƒ ! N is a conformal immersion for which
ƒ is a minimal essential singular set. Then:
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(1) There exists an infinite Kleinian group � � PO.1; n C 1/, a connected open
subset� � Sn on which� acts freely properly discontinuously, and a conformal
diffeomorphism  W N ! �=� .

(2) There exists a subgroup � 0 � � with ƒ.� 0/ ¨ ƒ.�/ such that � 0 acts freely
properly discontinuously on �.� 0/, and a conformal diffeomorphism ' W L !
M.� 0/.

(3) Let us call s0 W �=� 0 ! �=� the natural covering map, and let us define the
closed subsets ƒ0 and ƒ0

ess in M.� 0/ as the quotients .@� n ƒ.� 0// = � 0 and
.ƒ.�/nƒ.� 0// = � 0. Then the conformal diffeomorphism ' can be chosen such
that '.ƒ/ D ƒ0, '.ƒess/ D ƒ0

ess, and the following diagram commutes:

L nƒ
s

��

' �� M.� 0/ nƒ0

s0

��
N

 �� �=� .

We will apply this theorem to get a full description of punctured essential singu-
larities on compact manifolds in Theorem 7.1.

1.4. Organization of the paper. As we already mentioned it, the tools used in this
paper are of geometric nature. Especially, the proofs heavily rely on the interpretation
of conformal structures (in dimension � 3) in terms of Cartan geometries. The
necessary background on this topic, as well as the first technical results, are introduced
in Section 2. They allow to begin the study of conformal singularities in Section 3. The
main point is to understand the behavior of the 2-jet of a conformal immersion in the
neighborhood of the singular set, as explained in Section 3.1. Theorem 1.1 is proved
in Sections 3.2, and 3.3 contains another extension result for conformal embeddings,
namely Theorem 3.7. In Section 3.4, we show that thin essential singular sets only
occur on conformally flat manifolds, an important step toward Theorem 1.3.

Section 4 reviews some basic results about conformally flat structures. The reader
familiar with this material may skip it, except maybe for Section 4.1 which gives more
details about essential singularities of Kleinian types, and Section 4.3 which deals with
the notion of Cauchy completion for conformally flat structures. This preparatory
work allows to complete the proofs of Theorems 1.3 and 1.4 in Sections 5 and 6
respectively. We conclude the paper with Section 7, which provides a full description
of punctured essential singularities on compact Riemannian manifolds.
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2. Conformal structures and Cartan connections

Let .L; g/ be a Riemannian manifold of dimension n � 3. Let OL be the bundle of
2-jets of orthogonal frames on L, and �L W OL ! L the bundle map. The bundle OL
is a P -principal bundle over L, where P is the conformal group of the Euclidean
space Rn. The group P is a semi-direct product .R�C � O.n// Ë Rn, where the
factor R�C corresponds to homothetic transformations of positive ratio, O.n/ is the
group of linear orthogonal transformations, and Rn is identified with the subgroup of
translations. Let Sn be the n-dimensional sphere, andG WD PO.1; nC1/ the Möbius
group, namely the group of conformal transformations of the sphere. The group P is
realized as the subgroup of G fixing a point � 2 Sn. We denote by g WD o.1; nC 1/

the Lie algebra of the Möbius group, and by p � o.1; nC 1/ the Lie algebra of P .

2.1. Canonical Cartan connection associated to a conformal structure. Good
references for the material presented in this section are Chapter IV of [Ko] and
Chapter 7 of [Sh].

It is a fundamental fact, known since Elie Cartan, that under the assumption n � 3,
the conformal class Œg� defines on the bundle OL a unique normal Cartan connection
!L with values in o.1; nC 1/. The connection !L is a 1-form on OL with values in
the Lie algebra o.1; nC 1/, and satisfying the following properties:

(1) For every Ox 2 OL, !LOx W T Ox OL ! o.1; nC1/ is an isomorphism of vector spaces.

(2) For every X 2 p, the vector field yX on OL defined by yX. Ox/ WD d
dt jtD0 Ox:etX ,

where Y 7! eY denotes the exponential map on PO.1; n C 1/, satisfies
!L. yX/ D X .

(3) For every p 2 P , if Rp denotes the right action by p on OL, then .Rp/�!L D
Ad p�1!L.

The normality condition is put on the curvature of the connection to ensure uniqueness.
The reader will find a precise statement of this condition in [Ko], Theorem 4.2, p. 135,
or [Sh], Proposition 3.1, p. 285. The triple .L; OL;!L/will be referred to as the normal
Cartan bundle associated to the conformal structure .L; g/. For the conformally
flat model Sn D PO.1; n C 1/=P , the normal Cartan bundle is the Möbius group
G D PO.1; nC 1/, and the Cartan connection is the Maurer–Cartan form !G .

Let us observe that if .L; g/ and .N; h/ are two connected n-dimensional Rieman-
nian manifolds, n � 3, and if s W .L; g/ ! .N; h/ is a smooth immersion, then s lifts
to an immersion Os between the bundles of 2-jets of frames ofL andN respectively. If
moreover s is conformal, Os maps 2-jets of orthogonal frames to 2-jets of orthogonal
frames. This yields a bundle map Os W OL ! yN lifting s. The 1-form Os�

!N is a Car-
tan connection on OL, with values in o.1; nC 1/. Because !N is the normal Cartan
connection associated to Œh�, and because the normality condition is tensorial on the
curvature of the connection, we get that Os�

!N also satisfies the normality condition.
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By uniqueness of the normal Cartan connection, one must have Os�
!N D !L. We

say that the lift Os is a geometric immersion from . OL;!L/ to . yN;!N /.

2.2. Exponential map. On the bundle OL, the Cartan connection !L yields an ex-
ponential map in the following way. The data of u in o.1; nC 1/ defines naturally a
!L-constant vector field yU on OL by the relation !L. yU/ D u. We call �tu the local
flow generated on OL by the field yU . At each Ox 2 OL, let W Ox � o.1; nC1/ be the set of
vectors u such that �tu is defined for t 2 Œ0; 1� at Ox. Then one defines the exponential
map at Ox as follows:

exp. Ox; u/ WD �1u: Ox for all u 2 W Ox :

Using the equivariance properties of the Cartan connection listed above, one shows
easily the following important equivariance property for the exponential map

exp. Ox; u/:p�1 D exp. Ox:p�1; .Ad p/:u/ (1)

for every u 2 W Ox; p 2 P:

2.3. Injectivity radius. The Lie algebra o.1; nC 1/ splits as a sum

n� ˚ R ˚ o.n/˚ nC

where p D R ˚ o.n/˚ nC is the Lie algebra of P . The algebra corresponding to the
factor R is a Cartan subalgebra. The two abelian n-dimensional subalgebras n� and
nC are the root spaces. They are left invariant by the adjoint action of R ˚ o.n/. A
detailed description of this material can be found in [Sh], Chapter 7. As we saw, the
group P is a semi-direct product P D .R�C � O.n// Ë Rn. We put on o.1; n C 1/

a scalar product h ; i which is Ad O.n/-invariant, and denote by k:k the norm it
induces on o.1; n C 1/. For every � > 0, we will denote Bn�.�/ (resp. xBn�.�//

the open (resp. closed) ball of center 0 and radius � in n�, for the norm k:k. The
map u 7! exp. Ox; u/ is a diffeomorphism from a sufficiently small neighborhood of
0 2 o.1; nC 1/ onto its image. Notice also that because .!LOx /

�1.n�/ is transverse to
T Ox.��1

L .x// D .!LOx /
�1.p/, the map u 7! �L B exp. Ox; u/ is a diffeomorphism from

a sufficiently small neighborhood of 0 in n� onto its image. We can then define the
injectivity radius at Ox as

injL. Ox/ WD inff� > 0 j u 7! �L B exp. Ox; u/ defines an embedding on Bn�.�/g:

By the above remarks, injL. Ox/ > 0, and actually injL. Ox/ is bounded from below on
compact subsets of OL.
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2.4. Conformalballs, conformal cones. We stick to the notations introduced above.
Let Sn� be the unit sphere of n�, with respect to the norm k:k. Let F be a subset of
Sn� . In n�, we define the cone over F of radius � > 0 as

C.F ; �/ D fv 2 n� j v D tw; t 2 Œ0; ��; w 2 F g:
For x 2 L, Ox 2 OL in the fiber of x, 0 < � < injL. Ox/, and F � Sn� , we can define:

– B Ox.�/ WD �L B exp. Ox;Bn�.�//, a conformal ball at x;

– C Ox.F ; �/ WD �L B exp. Ox;C.F ; �//, a conformal cone with vertex x.

In the model space, namely the standard n-sphere Sn D PO.1; nC 1/=P , we will
simply consider conformal cones with vertex �, defined by

C.F ; �/ WD �G B expG.C.F ; �//;

where �G W PO.1; nC 1/ ! Sn is the bundle map and expG is the exponential map
in G D PO.1; nC 1/.

Of course, a conformal immersion s W L ! N maps conformal balls/cones of L
to conformal balls/cones of N . Indeed, it is straightforward to check the relation

s.C Oxk
.F ; �// D COs. Oxk/.F ; �/: (2)

2.5. Dynamics of Möbius maps on conformal cones of S n

Lemma 2.1. Let .pk/ be a sequence of P tending to infinity. Then, considering a
subsequence of .pk/ if necessary, we are in one of the following cases:

(1) For every ball B � Sn� (for the metric induced by k:k) with nonzero radius,
there exists B 0 � B a subball with nonzero radius and a real r > 0 such that
for every 0 < � � r , pk :C.B 0; �/ ! � for the Hausdorff topology as k ! 1.

(2) There exists a sequence .lk/ of P converging to l1 such that lkpk stays in the
factor R�C of P D .R�C � O.n// Ë Rn, and .Ad lkpk/.u/ D 1

�k
u for every

u 2 n�, with limk!1 �k D 0. In particular, for every ball B � Sn� with
nonzero radius, pk :C.B; �k/ ! l�11 :C.B; 1/ for the Hausdorff topology as
k ! 1.

Proof. We keep the notation introduced in Section 2, especially Sections 2.2 and 2.4.
In particular, recall the splitting

o.1; nC 1/ D g D n� ˚ R ˚ o.n/˚ nC;

where p corresponds to R ˚ o.n/˚ nC.
We introduce the map 	 W n� ! Sn defined by u 7! expG.u/:�. It is a diffeomor-

phism between n� and the sphere minus a point o. Precomposing the stereographic
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projection with vertex � with a suitable element ofP , one gets a conformal diffeomor-
phism j W Sn n f�g ! Rn mapping the point o to the origin. The map j intertwines
the action of P on Sn n f�g and the affine action of .R�C � O.n// Ë Rn on Rn. In
the following, we will thus write the elements of P in the affine form �AC T , with
� 2 R�C, A 2 O.n/, and T 2 Rn.

Let us denote by ' the map j B	. It is a diffeomorphism from n� nf0g to Rnnf0g.
For a suitable choice of the .Ad O.n//- invariant scalar product h ; i (see Section 2.3),
' maps Sn� onto the Euclidean unit sphere. It is then not hard to check that every
conformal cone C.B; �/, with � removed, is mapped by j to the set

zC.B; �/ D ˚
x D tu 2 Rn j t 2 �

1
�

I 1�
; u 2 '.B/�:

Let x 2 Rn, and u 2 Rn of Euclidean norm 1. Then we define the half-line Œx; u/
as the set

Œx; u/ WD fx C tu 2 Rn j t 2 RCg:
The following lemma, the proof of which is left to the reader, gives a sufficient

condition for a sequence of half-lines to leave every compact subset of Rn. The
notation k:k stands for the Euclidean norm on Rn.

Lemma 2.2. Let Œxk; vk/ be a sequence of half-lines in Rn. Assume that whenever
v1 is a cluster value of .vk/, then �v1 is not a cluster value of xkkxkk . Assume
moreover that xk leaves every compact subset of Rn. Then Œxk; vk/ leaves every
compact subset of Rn.

We can now begin the proof of Lemma 2.1. Let us consider an unbounded se-
quence .pk/ in P . Thanks to the chart j , we see P as the conformal group of Rn.
Then the sequence .pk/ can be written as

pk W x 7! �kAkx C 
kuk;

where �k 2 R�C, 
k 2 RC, Ak 2 O.n/, and kukk D 1. Now, looking at a

subsequence if necessary, we assume that �k , 
k , �k

�k
all have limits in R�C [ fC1g,

uk ! u1, andAk ! A1 in O.n/. The conclusions of Lemma 2.1 won’t be affected
if we replace pk by .Ak/�1:pk so that we may assume pk D �kId C 
kuk .

� First case: 
k tends to a 2 RC. Let lk be the translation of vector �
kuk .
Clearly, lk ! l1 in P , where l1 is the translation of vector �au1, and lkpk
is just the homothetic transformation x 7! �kx, hence is in the factor R�C of
P . It follows immediately that .Ad lkpk/.u/ D 1

�k
u for every u 2 n�: Since

.pk/ is unbounded, we can assume after taking a subsequence that �k ! 1 or
�k ! 0.

If �k ! 1, then for every � > 0, .Ad lkpk/.C.B; �// ! 0n� as k ! 1.
Applying the map 	, one gets

lkpk :C.B; �/ ! �
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and we are in the first case of Lemma 2.1.

If �k ! 0, we are in the second case of Lemma 2.1. Applying the map 	 to the
equality .Ad lkpk/.C.B; �k// D C.B; 1/, we get

lkpk :C.B; �k/ D C.B; 1/ for every k 2 N;

hence

pk :C.B; �k/ ! l�11 :C.B; 1/:

� Second case: 
k ! 1 and �k

�k
! 0. Let B 0 � B be a closed subball

with nonzero radius such that �u1 62 '.B 0/. Let us consider � > 0 and a
sequence of half-lines Œ 1

�
vk; vk/ in zC.B 0; �/. Here .vk/ is a sequence of '.B 0/.

We observe that pk :Œ
1
�
vk; vk/ D Œxk; vk/, where xk D �k

�
vk C 
kuk . Now,

xkkxkk D
�k
�k

1
�
vkCuk

k �k
�k

1
�
vkCukk so that the only cluster value of xkkxkk is u1. We infer that

if v1 is a cluster value of .vk/, then �v1 cannot be a cluster value of xkkxkk .

Writing xk D 
k.
�k

��k
vk C uk/, we check that xk ! 1. Lemma 2.2 ensures

that pk :Œ
1
�
vk; vk/ ! 1. Since it is true for every sequence Œ 1

�
vk; vk/, we get

pk : zC.B 0; �/ ! 1. Hence pk :C.B 0; �/ ! � and we are in the first case of
Lemma 2.1.

� Third case: 
k ! 1 and �k

�k
! b1, with b1 2 R�C. We choose B 0 � B a

closed subball with nonzero radius such that '.B 0/\�'.B 0/ D ; and '.B 0/\
fu1I �u1g D ;. For such a choice of B 0, there exist an open neighborhood
W of '.B 0/ in the Euclidean unit sphere and ˇ, � two positive reals such that

inf
.v;w/2'.B0/�W

kv C wk � ˇ (3)

and xCz
kxCzk 2 W for every x 2 '.B 0/ and every z 2 Rn with kzk � �:

Let us put r D b1�
2

. For� � r , let us consider a sequence of half-lines Œ 1
�
vk; vk/

in zC.B 0; �/, where vk 2 '.B 0/. We observe that pk :Œ
1
�
vk; vk/ D Œxk; vk/,

where xk D �k

�
vkC
kuk . Now, xkkxkk D vkC �k�

�k
uk

kvkC �k�

�k
ukk , and for k large enough,

j�k�
�k

j � 2�
b1

� � so that (3) implies

k xk

kxkk C vkk � ˇ:

It follows that if v1 is a cluster value of .vk/, then �v1 cannot be a cluster
value of xkkxkk . Moreover, because �u1 62 '.B 0/, 0 is not a cluster value of
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. �k

�k�
vk C uk/. Writing xk D 
k.

�k

�k�
vk C uk/, we see that .xk/ tends to

infinity. We conclude thanks to Lemma 2.2 that pk :Œ
1
�
vk; vk/ ! 1. Since it is

true for every sequence .vk/ of '.B 0/, we get pk : zC.B 0; �/ ! 1, and we are
in the first case of Lemma 2.1.

� Fourth case: 
k ! 1 and �k

�k
! 1. Let B 0 � B be a closed subball

with nonzero radius such that '.B 0/ \ �'.B 0/ D ;. Let us consider � >

0, and Œ 1
�
vk; vk/ a sequence of half-lines in zC.B 0; �/. For each integer k,

pk :Œ
1
�
vk; vk/ D Œxk; vk/, with xk D 
k.

�k

��k
vkCuk/. It is clear that xk ! 1.

The cluster values of xkkxkk D
1
�
vkC �k

�k
uk

k 1
�
vkC �k

�k
ukk are those of .vk/, hence are contained

in '.B 0/. We use once more Lemma 2.2 and conclude

pk : zC.B 0; �/ ! 1:

We are again in the first case of Lemma 2.1. �

2.6. Degeneration of conformal cones. We consider now a Riemannian manifold
.L; g/ of dimension n � 3. Our aim is to understand how the “shape” of a sequence
of conformal cones C Ozk

.F ; �/ evolves, as Ozk leaves every compact subset in OL. The
answer is partly contained in the lemma below.

Lemma 2.3. Let .L; g/ be a Riemannian manifold of dimension � 3 and . OL;!L/
the normal Cartan bundle associated to the conformal structure of g. Let .zk/ be
a sequence of L converging to z1 2 L. Let . Ozk/ and . Oz0

k/ be two lifts of .zk/ in
OL. We assume that Ozk converges in OL, while Oz0

k D Ozk :pk for a sequence .pk/ of
P tending to infinity. Assume that infk2N.injL. Oz0

k// > 0. Then for every 0 < � <

infk2N.injL. Ozk/; injL. Oz0
k//, and every F � Sn� such that pk :C.F ; �/ ! �, as

k ! 1, for the Hausdorff topology on Sn, we must have C Oz0

k
.F ; �/ ! z1 for the

Hausdorff topology on L.

Proof. This lemma is a particular case of Lemma 7 in [Fr1] (see also [Fr2], Corol-
lary 3.3), and the reader will find a complete proof there. The proof involves the
notion of development of curves, that we don’t introduce here. The upshot is that
a conformal cone is a union of conformal geodesics, namely curves of the form
t 7! �L B exp. Ox; tu/, for u 2 n�. A point Ox in the fiber of x being chosen, one
can develop any conformal geodesic passing through x into the sphere Sn, and thus
any conformal cone can be developed. For instance, in the situation of Lemma 2.3,
the developmental of C Oz0

k
.F ; �/ with respect to Ozk is pk :C.F ; �/. Now, the lemma

follows from the fact that conformal geodesics developing on short curves in Sn are
themselves short ([Fr2], Lemma 3.1), and that conformal geodesics of Sn which are
Hausdorff-close to � must be short ([Fr2], Proposition 3.2). �
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3. Extension results

We consider .L; g/ and .N; h/ two connected n-dimensional Riemannian manifolds,
n � 3. Letƒ ¨ L be a closed subset such that Hn�1.ƒ/ D 0, and s W L nƒ ! N a
conformal immersion. We denote by .L; OL;!L/ and .N; yN;!N / the normal Cartan
bundles associated to the respective conformal structures, as introduced in Section 2.1.
If yƒ D ��1

L .ƒ/ is the inverse image of ƒ in OL, then . OL n yƒ;!L/ is the normal
Cartan bundle of .L n ƒ; g/. As we saw in 2.1, we can lift s to a bundle map
Os W . OL n yƒ;!L/ ! . yN;!N / satisfying Os�

!N D !L.

3.1. Holonomy sequences at a boundary point. Let us consider x1 2 ƒwhich is
not a pole for s. It means that there exists .xk/ a sequence ofLnƒwhich converges to
x1, and such that s.xk/ converges to y1 2 N . We will actually get more information
working in the bundle OL n yƒ. Let Ox1 2 yƒ in the fiber above x1, and let . Oxk/ be a
sequence of OL n yƒ projecting on .xk/ and converging to Ox1. The point is that Os. Oxk/
may not converge in yN , but there always exists a sequence .pk/ such that Os. Oxk/:p�1

k

does converge to a point Oy1 2 yN in the fiber of y1.

Definition 3.1 (holonomy sequence at x1). A sequence .pk/ as above will be called
a holonomy sequence at x1 (associated to .xk/).

Let us stress the fact that a holonomy sequence involves the choice of a sequence
.xk/ tending to x1 such that s.xk/ converges in N . In particular, the concept of
holonomy sequence only makes sense when x1 2 ƒrem [ ƒess. The holonomy
sequence .pk/ just encodes the behavior of the 2-jets of s along the sequence .xk/. If
we already know for instance that s is the restriction of a conformal immersion fromL

toN , then the sequence .pk/ can be chosen constant to the identity. The projection of
.pk/ on the factor R�C �O.n/ � .R�C �O.n//ËRn represents the sequence of tangent
maps Dxk

s, read in local trivializations of the bundle of orthonormal frames. The
study of the holonomy sequence will be, as we shall see, a major tool in understanding
the dynamical behavior of s along .xk/. In particular, we will see that for thin singular
sets ƒ, removable singularities are characterized by bounded holonomy sequences,
while essential ones appear together with unbounded holonomy sequences.

3.2. Characterization of removable points by holonomy, and proof of Theo-
rem 1.1. Our aim now is to characterize the removable and essential singular points
in terms of holonomy sequences. This will be done in several steps, leading to The-
orem 3.6 at the end of the section, which clearly implies Theorem 1.1.

We will first need a technical lemma saying that it is possible to include “thick”
conformal cones in the complement of closed sets of .n� 1/-dimensional Hausdorff
measure zero.
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Lemma 3.2. Let .L; g/ be a Riemannian manifold of dimension n � 3. Let ƒ � L

be a closed subset such that Hn�1.ƒ/ D 0. For every x 2 L nƒ, every Ox 2 OL in the
fiber of x, and every 0 < � < injL. Ox/, there exists a dense Gı -set U Ox � Sn� such
that C Ox.U Ox; �/ � L nƒ.

Proof. Let yƒ be the inverse image of ƒ by the bundle map �L W OL ! L. Let us call
F the subset of xBn�.�/ such that exp. Ox; F / D exp. Ox; xBn�.�//\ yƒ. By assumption,
this set F has .n � 1/-dimensional Hausdorff measure zero. Let m0 be an integer
such that 1

m0
� �. For every m � m0, we call �m W u 7! u

kuk the radial projection

from Am D xBn�.�/ n Bn�. 1
m
/ to Sn� . This is a Lipschitz map, which is moreover

closed. Hence, the set�m.F \Am/ is a closed subset of Sn� , the .n�1/-dimensional
Hausdorff measure of which is zero. In particular, its complement Um is open and
dense in Sn� . Thus

T
m�m0

Um is a dense Gı -set of Sn� that we call U Ox . It is now
clear by construction that C Ox.U Ox; �/ � L nƒ. �

Let us now give a sufficient condition, in terms of holonomy sequences, for a
singular point to be removable.

Proposition 3.3. Let .L; g/ and .N; h/ be two connected n-dimensional Riemannian
manifolds, n � 3. Let ƒ � L be a closed subset such that Hn�1.ƒ/ D 0, and
s W L nƒ ! N a conformal immersion. Let x1 be a point of ƒrem [ƒess. If there
is a holonomy sequence of s at x1 which is bounded in P , then here exists Ux1

an open subset of L containing x1 such that s extends to a conformal immersion
sx1

W Ux1
[ .L nƒ/ ! N . In particular x1 2 ƒrem.

Proof. Our hypothesis is that there is Ox1 2 OL in the fiber of x1, a sequence
. Oxk/ in OL n yƒ converging to Ox1, and a bounded sequence .pk/ in P such that
Os. Oxk/:p�1

k
is converging in yN . Considering subsequences, we may assume that

.pk/ has a limit p1 2 P . Because Os. Oxk :p�1
k
/ D Os. Oxk/:p�1

k
, we can assume, re-

placing Ox1 by Ox1:p�11 and . Oxk/ by . Oxk :p�1
k
/, that Oyk WD Os. Oxk/ is converging to

Oy1 2 yN . Because . Oyk/ stays in a compact subset of yN , we can find k0 � 0, and
0 < � < min.injL. Oxk0

/; injN . Oyk0
//, such that B Oxk0

.�/ and B Oyk0
.�/ contain x1

and y1 respectively.
Lemma 3.2 yields a dense Gı set U � Sn� such that Cxk0

.U; �/ � L nƒ. Let
us define s0

x1
W B Oxk0

.�/ ! N by the formula

s0
x1
.�L B exp. Oxk0

; u// WD �N B exp. Oyk0
; u/ for all u 2 Bn�.�/:

This is a smooth diffeomorphism from B Oxk0
.�/ onto its image. On the other hand,

because Os is a lift of s satisfying Os�!N D !L, we get for every u 2 C.U; �/,

s.�L B exp. Oxk0
; u// D �N B exp.Os. Oxk0

/; u/ D �N B exp. Oyk0
; u/:
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In other words, s and s0
x1

coincide on Cxk0
.U; �/, which is dense in B Oxk0

.�/ nƒ,

hence they coincide on B Oxk0
.�/ n ƒ. But because Hn�1.ƒ/ D 0, B Oxk0

.�/ n ƒ is
dense in B Oxk0

.�/. As a consequence s0
x1

is a conformal immersion on B Oxk0
.�/.

Finally, the map sx1
W B Oxk0

.�/ [ .L nƒ/ ! N defined by s0
x1

on B Oxk0
.�/, and s

on L nƒ is well defined, and is a smooth conformal immersion extending s. �

In the same way, we have the following sufficient condition for a singular point
to be essential.

Proposition 3.4. Let .L; g/ and .N; h/ be two connected n-dimensional Riemannian
manifolds, n � 3. Let ƒ � L be a closed subset such that Hn�1.ƒ/ D 0, and
s W L nƒ ! N a conformal immersion. Let x1 be a point of ƒrem [ƒess. If there
is a holonomy sequence of s at x1 which is unbounded in P , then x1 2 ƒess.

Proof. The key step for proving the proposition will be the following technical lemma,
which will also be useful later on in other proofs. The lemma says that the existence
of an unbounded holonomy sequence at x1 provides some non-equicontinuity phe-
nomena which forbid x1 to be in ƒrem.

Lemma 3.5. Let x1 be a point of ƒrem [ ƒess. Assume that .xk/ is a sequence
of L n ƒ converging to x1, such that s.xk/ converges to y1 2 N . If .pk/ is an
unbounded holonomy sequence of s at x1 associated to .xk/, then:

(1) There exists a sequence .lk/ of P converging to l1 such that lkpk stays in the
factor R�C of P D .R�C � O.n// Ë Rn, and .Ad lkpk/.u/ D 1

�k
u for every

u 2 n�, with limk!1 �k D 0.

(2) If t0 > 0, and � W Œ0; t0Œ! L n ƒ is a smooth curve satisfying �.tk/ D xk for
some sequence .tk/ of Œ0; t0Œ converging to t0. Then, there exists .t 0

k
/ a sequence

of Œ0; t0Œ tending to t0 such that �.t 0
k
/ converges to x1, and s.�.t 0

k
// converges

to y01 2 N , with y01 6D y1.

Proof. By hypothesis, there exist Ox1 2 OL in the fiber of x1, Oy1 2 yN in the fiber of
y1, . Oxk/ a sequence of OL n yƒ converging to Ox1, and an unbounded sequence .pk/
in P such that Os. Oxk/:p�1

k
converges to Oy1 2 yN .

To show the first point of the lemma, we have to check that .pk/ does not satisfy
the first point of Lemma 2.1. Assume, for a contradiction, that it is the case. We
get a ball B � Sn� with nonzero radius, and � > 0 such that pk :C.B; �/ ! �.
We can assume 0 < �0 < infk�0 injL. Oxk/. Lemma 3.2 implies the existence of a
dense Gı -set U � B such that for every k � 0, the cone C Oxk

.U; �0/ is contained
in L n ƒ. Because injN .Os. Oxk// D injL. Oxk/ is bounded from below by a positive
number independent of k, and because pk :C.U; �/ ! �, we can apply Lemma 2.3
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for zk WD s.xk/, Oz0
k WD Os. Oxk/, and Ozk WD Os. Oxk/:p�1

k
. Together with relation (2), this

yields

s.C Oxk
.U; �0// ! y1 as k ! 1: (4)

This is actually impossible. Indeed, because �0 < infk�0 injL. Oxk/, we get that for
every k � 0, the map u 7! �L B exp. Oxk; u/ is a diffeomorphism from Bn�.�0/ onto
its image. We deduce that any conformal cone C Oxk

.B; �0/ has nonempty interior,
and actually, all the sets C Oxk

.B; �0/ contain a common open subset U � L for
k � k0 large enough. Then, for every k � 0, Uk WD U \ C Oxk

.U; �0/ is a dense
Gı -set of U n ƒ, and the same is true for U1 D T

k�k0
Uk . From relation (4), we

get s.U1/ D y1, which contradicts the fact that s is an immersion, hence locally
injective on U nƒ.

We now prove the second point of the lemma. By assumption xk D �.tk/ for
some smooth � W Œ0; t0Œ! L nƒ. The first point of the lemma tells us that replacing
.tk/ by a subsequence if necessary (which amounts to consider a subsequence of
. Oxk/, and the corresponding subsequence of .pk/), and replacing Oyk by Oyk :l�1k for
a sequence .lk/ of P tending to l1, we may assume that the sequence .pk/ satisfies
.Ad pk/.u/ D 1

�k
u for every u 2 n� with limk!1 �k D 0.

We choose 0 < r0 <
1
2

mink2N[f1g.injL. Oxk/; injN . Oyk// so that for every k 2
N [ f1g, the maps 'k W u 7! �L B exp. Oxk; u/ and  k W u 7! �N B exp. Oyk; u/ are
well defined, and are diffeomorphisms from Bn�.2r0/ to open subsets Uk and Vk of
L and N respectively. For every k � 0, we define Fk WD '�1

k
.Uk \ƒ/.

Lemma 3.2 ensures the existence of a dense Gı -set U � Sn� such that for every
k � 0, C�.tk/.U; 2r0/ � L nƒ. For k � k0 big enough, we will have 2�kr0 < 2r0,
and then, Lemma 3.2 amounts to say that C.U; 2�kr0/ � Bn�.2�kr0/ n Fk . Then,
from relation (1), we infer that for every u 2 C.U; 2�kr0/

Os.exp. Oxk; u//:p�1
k D exp

�
Oyk;

1

�k
u

�
: (5)

Observing that for each k, C.U; 2�kr0/ is dense in Bn�.2�kr0/ n Fk , we deduce
that formula (5) holds actually for every u 2 Bn�.2�kr0/ n Fk .

As �k ! 0, the sequence of conformal balls B Oxk
.2�kr0/ D 'k.Bn�.2�kr0//

tends to x1 for the Hausdorff topology on L. This means that choosing k0 � 0

large enough, we are sure that for k � k0, �.Œ0; t0Œ/ is not contained in B Oxk
.2�kr0/.

In particular, for every k � k0, there exists uk 2 n� with kukk D r0�k , and
t 0
k

2 Œ0; t0Œ such that 'k.uk/ D �.t 0
k
/. Considering a subsequence, we may assume

that .uk

�k
/ converges to v1. Because �.Œ0; t0Œ/ is contained in L nƒ, we have uk 2

Bn�.2�kr0/ nFk for every k � k0. Formula (5) then holds, and projecting onL and
N , we get

s.'k.uk// D  k

�
uk

�k

�
:
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Making k ! 1 yields
lim
k!1

s.�.t 0k// D  1.v1/:

Because kv1k D r0 and  1 is a diffeomorphism from Bn�.2r0/ onto its image, we
get that y01 D  1.v1/ is different from y1 D  1.0/. Finally, because �.t 0

k
/ tends

to x1, and �.Œ0; t0Œ/ � L nƒ, we see that the only cluster value of .t 0
k
/ in Œ0; t0� is

t0. Hence t 0
k

! t0, as desired. �

We can now prove Proposition 3.4. Our hypothesis is that x1 2 ƒrem [ ƒess

admits an unbounded holonomy sequence. This holonomy sequence is associated
to some sequence .xk/ of L n ƒ converging to x1. Let � W Œ0; 1Œ! L n ƒ be a
smooth curve such that �.1 � 1

k
/ D xk for every k � 1, where xk WD �L. Oxk/. The

second point of Lemma 3.5 ensures the existence of a sequence .t 0
k
/ tending to 1 such

that �.t 0
k
/ tends to x1, and s.�.t 0

k
// tends to y01 6D y1. This forbids x1 to be in

ƒrem, and we deduce that the existence of an unbounded holonomy sequence implies
x1 2 ƒess. �

Let us collect the results of this section into a single statement.

Theorem 3.6. Let .L; g/ and .N; h/ be two connected n-dimensional Riemannian
manifolds, n � 3. Let ƒ � L be a closed subset such that Hn�1.ƒ/ D 0, and
s W L nƒ ! N a conformal immersion. Let x1 be a point of ƒess [ƒrem. Then the
following statements are equivalent:

(1) The point x1 is in ƒrem.

(2) There exists Ux1
an open subset of L containing x1 such that s extends to a

conformal immersion sx1
W Ux1

[ .L nƒ/ ! N .

(3) There is a holonomy sequence of s at x1 which is bounded in P .

(4) All the holonomy sequences of s at x1 are bounded in P .

Proof. It is obvious that point .2/ implies point .1/, and that point .4/ implies point
.3/. Proposition 3.3 shows that .3/ implies .2/. Proposition 3.4 shows that .1/ implies
.4/. �

3.3. An extension theorem for conformal embeddings. In view of Theorem 3.6,
we will get interesting extension results when the setƒess is empty. As the following
theorem shows, this is actually the case as soon as the map s is injective (compare
with the result proved in [V2] for quasiconformal maps).

Theorem 3.7. Let .L; g/ and .N; h/ be two connected n-dimensional Riemannian
manifolds, n � 3. Let ƒ � L be a closed subset such that Hn�1.ƒ/ D 0, and
s W L nƒ ! N a conformal embedding. Then:
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(1) The set ƒess is empty and s extends to a conformal embedding

s0 W L nƒpole ! N:

(2) When L is compact, then s0 W L nƒpole ! N is a conformal diffeomorphism.

(3) When both L and N are compact, ƒpole is empty so that .L; g/ and .N; h/ are
conformally diffeomorphic.

Assuming that L is a compact manifold, Theorem 3.7 classifies, all possible con-
formal embeddings of the Riemannian manifold .Lnƒ; g/ into Riemannian manifolds
of the same dimension. It also gives a uniqueness result for the conformal compact-
ification of .L nƒ; g/: the only compact Riemannian manifold in which .L nƒ; g/
can be embedded as an open subset is .L; g/.

The end of this section is devoted to the proof of Theorem 3.7. The first step
is to show that near an essential singular point, a conformal immersion is highly
noninjective. To formalize this, it is convenient to use the notion of cluster set. If x1
is a point of the singular set ƒ, the cluster set of x1 is defined as

Clust.x1/ WD fy 2 N j 9 .xk/ a sequence in L nƒ; xk ! x1; and s.xk/ ! yg:
The following proposition identifies the cluster set of an essential singular point.

Proposition 3.8. Let .L; g/ and .N; h/ be two connected n-dimensional Riemannian
manifolds, n � 3. Let ƒ � L be a closed subset such that Hn�1.ƒ/ D 0, and
s W L n ƒ ! N a conformal immersion. Assume that ƒess is not empty. Then for
every x1 2 ƒess, Clust.x1/ D N . In particular, for every neighborhood U of x1
in L, s.U nƒ/ is a dense open subset of N .

Proposition 3.8 will be improved later, since we will deduce from Theorem 1.3 that
if x1 2 ƒess, and ifU is a neighborhood of x1 inL, we actually have s.U nƒ/ D N

(see Corollary 5.5).

Proof. Let y1 2 Clust.x1/. Let us pick Ox1 in the fiber of x1, . Oxk/ a sequence
of OL n yƒ converging to Ox1, and .pk/ a sequence of P such that Oyk WD Os. Oxk/:p�1

k

tends to a point Oy1 in the fiber above y1. By Theorem 3.6, the sequence .pk/ is
unbounded, and the first point of Lemma 3.5 ensures that considering subsequences,
we may assume that .pk/ is contained in the factor R�C of P D .R�C � O.n// Ë Rn.
Moreover, always by Lemma 3.5, there exists .�k/ a sequence of R�C converging to
0 such that for every 
 > 0,

.Ad pk/:Bn�.
�k/ D Bn�.
/: (6)

If 
 is chosen smaller than mink2N[f1g.injL. Oxk/; injN . Oyk//, the maps u 7! �N B
exp. Oyk; u/ and u 7! �L B exp. Oxk; u/ are well defined and diffeomorphisms from
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Bn�.
�k/ on their images for every k 2 N [f1g. Lemma 3.2 implies the existence
of a dense Gı -set U � Sn� such that C Oxk

.U; 
�k/ � L n ƒ for every k � 0.
Relations (1) and (6) then yield

s.C Oxk
.U; 
�k// D C Oyk

.U; 
/:

In particular, one has s.C Oxk
.U; 
�k// ! C Oy

1
.U; 
/ as k ! 1. We infer that

C Oy
1
.U; 
/ � Clust.x1/, and finally B Oy

1
.
/ � Clust.x1/ because Clust.x1/ is

a closed set. SinceB Oy
1
.
/ is a neighborhood of y1, we just showed that Clust.x1/

is an open set. We assumed that N is connected so that we get Clust.x1/ D N .
In particular, for every neighborhood U of x1 in L, we must have s.U nƒ/ D N ,
hence s.U nƒ/ is a dense open subset of N . �

We can now prove the first point of Theorem 3.7. Proposition 3.8 above ensures
that if s W L n ƒ ! N admits essential singular points, then s cannot be injective.
We infer that ƒess is empty and ƒ D ƒrem [ ƒpole. By Theorem 1.1, we know
that L n ƒpole is an open subset of L, and that s extends to a conformal immersion
s0 W L nƒpole ! N . Actually s0 is injective, hence an embedding. Indeed, if s0 is not
injective, we can find two disjoint open sets U and V in L nƒpole such that s0 maps
U and V diffeomorphically on the same open set W . Because s0.U \ .L nƒ// and
s0.U \ .L nƒ// are two dense open subsets of W , they intersect, contradicting the
injectivity of s on L nƒ.

Let us proceed with the second point of Theorem 3.7. Assuming thatL is compact,
the definition of poles implies that the immersion s0 W Lnƒpole ! N is a proper map.
By connectedness of N , it has to be onto. Finally s0 is a conformal diffeomorphism
between .L nƒpole; g/ and .N; h/.

If moreover N is also assumed to be compact, then ƒpole is empty, and we get
that .L; g/ and .N; h/ are conformally diffeomorphic. This shows the third point of
the theorem.

3.4. Essential singular points imply conformal flatness. We are now going to
make an important step toward Theorem 1.3, proving that the existence of thin essen-
tial singular sets is only possible on conformally flat manifolds. Thus, generically, by
Theorem 1.1, if a thin singular set contains no poles (for instance if N is compact),
it is always possible to extend a conformal immersion across it. In the following, by
conformal curvature on a Riemannian manifold, we will mean the Weyl curvature
tensor when the dimension is � 4, and the Cotton tensor when the dimension is 3
(see [AG], p. 131).

Proposition 3.9. Let .L; g/ and .N; h/ be two connected n-dimensional Riemannian
manifolds, n � 3. Let ƒ � L be a closed subset such that Hn�1.ƒ/ D 0, and
s W L n ƒ ! N a conformal immersion. Assume that ƒess is not empty. Then for
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every x1 2 ƒess, and every y1 in Clust.x1/, the conformal curvature vanishes at
y1. In particular, the manifolds .L; g/ and .N; h/ are both conformally flat.

Proof. We pick y1 2 Clust.x1/, and we consider Ox1, Oxk , Oyk , Oy1, pk , 
 and
U as at the begining of the proof of Proposition 3.8. On OL, there is, associated
to the normal Cartan connection !L, a curvature function 
 (we don’t give details
here, and refer the reader to [Sh], Chapters 5.3 and 7). This is a map 
 W OL !
Hom.ƒ2.o.1; nC 1/ =p/;p/, satisfying the equivariance relation:


 Ox.v; w/ D .Ad p�1/:
 Ox:p�1..Ad p/:v; .Ad p/:w/: (7)

The vanishing of the Cartan curvature 
 at Ox implies the vanishing of 
 on the fiber of
Ox. It thus makes sense to say that 
 vanishes at a point x 2 L, and this is equivalent
to the vanishing of the conformal curvature at x (see Chapter 7 of [Sh]). Hence, to
get the lemma, it is enough to show that 
 vanishes at y1.

For convenience, we will see 
 as a map from OL to Hom.ƒ2.n�/;p/. Then,
relation (7) still holds, provided p 2 R�C � O.n/ � P . Now, since Os satisfies
Os�!N D !L, we have for every v;w 2 n�, and every k 2 N


 Oxk
.v; w/ D 
Os. Oxk/

.v; w/:

By relation (7), we also get


Os. Oxk/.v; w/ D .Ad p�1
k /:
 Oyk

..Ad pk/:v; .Ad pk/:w/:

Recall that Ad p�1
k

(resp. Ad pk) acts trivially on R ˚ o.n/, and by multiplication

by 1
�k

on nC (resp. n�). Writing 
.1/Oyk
.v; w/ and 
.2/Oyk

.v; w/ for the components of


 Oyk
.v; w/ on R ˚ o.n/ and nC respectively, the last two equalities yield


 Oxk
.v; w/ D 1

�2
k



.1/

Oyk
.v; w/C 1

�3
k



.2/

Oyk
.v; w/:

Since �k ! 0, making k ! 1 gives 
 Oy
1
.v; w/ D 0, and finally 
 Oy

1
D 0. The

conformal curvature vanishes on Clust.x1/, and by Proposition 3.8, Clust.x1/ D N

so that .N; h/ is conformally flat. The manifold .L nƒ; g/ is mapped into .N; h/ by
a conformal immersion, hence .L nƒ; g/ is itself conformally flat. Finally, because
Hn�1.ƒ/ D 0, L n ƒ is dense in L, and we get that .L; g/ is also conformally
flat. �

4. Background on conformally flat manifolds

By Proposition 3.9, conformal singularities s W L nƒ ! N such that Hn�1.ƒ/ D 0

and ƒess 6D ; only occur when L and N are conformally flat. To go further and
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prove Theorem 1.3, we will need basic notions about conformally flat manifolds that
we gather in this section. Good general references on the subject are [Go], [M],
Section 3, and [Th], Chapter 3, p. 139. All manifolds in the sequel are still assumed
to have dimension � 3.

4.1. Kleinian manifolds and essential singular sets of Kleinian type. One calls
Kleinian group a discrete subgroup � of the Möbius group PO.1; nC 1/ which acts
freely properly and discontinuously on some nonempty open subset � � Sn (we
refer the reader to Chapter 2 of [A], Sections 3.6, 4.6 and 4.7 in [Ka] and Section 5
in [M] for details on the material below).

Given a Kleinian group � , there exists a maximal open set �.�/ � Sn on which
the action of � is proper. This open set �.�/ is called the domain of discontinuity
of � , and its complement in Sn, denoted ƒ.�/, is called the limit set of � . There are
several characterizations of the limit set ƒ.�/, but two of them will be of particular
interest for our purpose. Let us consider any point x 2 �.�/, and denote �:x the
closure of the orbit �:x into Sn. Then the limit set ƒ.�/ coincides with �:x n �:x
(see for instance [A], Lemma 2.2, p. 42).

Another useful characterization is as follows: the limit setƒ.�/ comprises exactly
those points x 2 Sn at which the family f�g�2� fails to be equicontinuous (see [M],
Chapter 5). The group � being assumed to be discrete, we observe that its limit set
is empty if and only if � is finite.

If � � PO.1; nC1/ is a Kleinian group, and� � Sn is a �-invariant open set on
which the action of � is free and properly discontinuous, then the quotient manifold
N WD �=� is naturally endowed with a conformally flat structure, and the covering
map � W � ! N is conformal. Such a quotient �=� is called a Kleinian manifold.
When the action of� is free on�.�/, the Kleinian manifold�.�/=� will be denoted
M.�/. It is then the maximal Kleinian manifold that one can build up thanks to the
group � .

Let us now consider � � PO.1; n C 1/ an infinite Kleinian group, and � an
open subset of Sn on which � acts freely properly discontinuously. Let N WD �=�

be the associated Kleinian manifold. Observe that because we assumed � infinite,
� is a proper open subset of Sn. Denoting by ƒ the complement of � in Sn, the
covering map � W Sn n ƒ ! N yields a conformal singularity. The set ƒ turns out
to be an essential singular set for � . To see this, we first observe that because � acts
freely properly discontinuously on �, we have ƒ.�/ � ƒ. Actually, ƒ.�/ � ƒess.
Indeed, let x1 2 ƒ.�/, and let y and y0 be two distinct points of N . Let z and z0
in � satisfying �.z/ D y and �.z0/ D y0. By the characterization of the limit set
described above, there exist two sequences .�n/ and .� 0

n/ in� such thatxn WD �n:z and
x0
n WD � 0

n:z
0 converge to x1 (actually, we can choose �n D � 0

n). Because �.xn/ D y

while �.x0
n/ D y0, the point x1 is neither removable, nor a pole, hence is an essential

singular point. On the other hand, let us consider x1 2 ƒ which is not a pole. It is
easily checked that there must be a sequence .�n/ in � which is not equicontinuous
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at x1 so that x1 2 ƒ.�/. In particular, x1 is an essential singular point. The
previous discussion shows thatƒess D ƒ.�/ is not empty, andƒ D ƒess

S
ƒpole. In

other words, we have built a conformal singularity � W Sn nƒ ! N with an essential
singular setƒ, which is minimal essential in the sense of Definition 1.2. We say that
such a conformal singularity is of Kleinian type.

4.2. Holonomy coverings. Among conformally flat manifolds, a nice subset com-
prises those who admit conformal immersions into the standard sphere. Such im-
mersions are called developing maps. When it exists, a developing map is essentially
unique.

Fact 4.1. If .M; g/ is a connected conformally flat manifold of dimension n � 3, and
if ı1, ı2 are two conformal immersions fromM to Sn, then there exists an element g
of the Möbius group such that ı2 D g B ı1.

The key point to get the fact above is Liouville’s theorem (see for instance [Sp],
p. 310): a conformal immersion between two connected open subsetsU and V of Sn,
n � 3, is the restriction of a Möbius transformation.

One thus get a Möbius transformation g such that the set where ı2 D g B ı1 is
nonempty and has empty boundary.

Fact 4.1 easily implies that if ı W M ! Sn is a developing map, there exists a
group homomorphism

	 W Conf.M; Œg�/ ! PO.1; nC 1/;

called the holonomy morphism associated to ı such that for every ' 2 Conf.M; Œg�/

ı B ' D 	.'/ B ı: (8)

Let us now consider a conformally flat structure .M; Œg�/. It is a classical result,
which already appears in [Ku] (see also [M], Section 3) that the universal covering
. zM; Œ Qg�/, endowed with the lift Œ Qg� of the conformal structure Œg�, admits a developing
map Qı W zM ! Sn. Let us identify�1.M/with a discrete subgroup� � Conf. zM; Œ Qg�/,
and call � Q� the kernel of the holonomy morphism Q	 W � ! PO.1; n C 1/. The
developing map Qı induces a conformal immersion ı from the quotient manifold M WD
zM =� Q� to Sn. This manifold M is called the holonomy covering of M . It is in some

sense the “smallest” conformal covering of M admitting a conformal immersion to
the sphere. This is the meaning of the following lemma.

Lemma 4.2. Let M be a connected n-dimensional conformally flat Riemannian
manifold, n � 3, and M the holonomy covering of M . Assume that M0 is another
connected n-dimensional conformally flat Riemannian manifold such that:

(1) There exists a conformal immersion ı0 W M0 ! Sn.
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(2) There exists a conformal covering map � W M0 ! M .

Then there exists a conformal covering map from M0 onto M.

Proof. Let us call zM the conformal universal covering of M , and identify �1.M/

with a discrete group � of conformal transformations of zM so thatM is conformally
diffeomorphic to zM =� . Because M0 is a covering ofM , there exists � 0 a subgroup
of � such that M0 is conformally equivalent to zM =� 0. The immersion ı0 lifts to
a conformal immersion Qı0 W zM ! Sn. Let Qı W zM ! Sn be a developing map, and
Q	 W � ! PO.1; nC 1/ the associated holonomy morphism. By Fact 4.1, there exists
g 2 PO.1; nC 1/ such that Qı0 D g B Qı. Now, for every � 2 � 0, one has Qı0 B � D Qı0 so
that g B Qı B � D g B Qı. Finally, we get � 0 � � Q� D Ker Q	. Hence, there is a conformal
covering map from M0 D zM =� 0 onto M D zM =� Q�. �

Lemma 4.3. Let M and N be two connected n-dimensional conformally flat mani-
folds, n � 3. Let N be the holonomy covering ofN . Assume there exists a conformal
immersion ı W M ! Sn. Then any conformal immersion s W M ! N can be lifted to
a conformal immersion � W M ! N .

Proof. Let zM and zN be the conformal universal coverings ofM andN respectively,
and �M W zM ! M , �N W zN ! N the associated covering maps. We denote by �M
and�N the fundamental groups ofM andN , seen as discrete subgroups of conformal
transformations of zM and zN . The conformal immersion ı lifts to a developing map
ıM W zM ! Sn, satisfying ıM B � D ıM for every � 2 �M . We also introduce ıN
a developing map on zN , and denote by 	N W �N ! PO.1; n C 1/ the associated
holonomy morphism. The conformal immersion s lifts to a conformal immersion
Qs W zM ! zN , and there is a morphism 	 W �M ! �N such that for every � 2 �M ,
Qs B � D 	.�/ B Qs. Thanks to Fact 4.1, there exists an element g 2 PO.1; nC 1/ such
that ıN B Qs D g B ıM . For every x 2 zM and every � 2 �M , we have on the one hand

ıN .	.�/:Qs.x// D 	N .	.�//:ıN .Qs.x//
and on the other hand

ıN .	.�/:Qs.x// D ıN .Qs.�:x// D g:ıM .�:x// D g:ıM .x/ D ıN .Qs.x//:
We thus get that 	N .	.�// fixes pointwise an open subset of Sn, hence is the identical
transformation. We conclude that 	.�M / � Ker 	N , hence the map Qs induces a
conformal immersion � W M ! N , where N is the holonomy covering of N . By
construction, � is a lift of s. �

4.3. Cauchy completion of a conformally flat structure. The normal Cartan con-
nection associated to a conformal structure allows to define an abstract notion of
“conformal boundary”, derived from the b-boundary construction introduced in [S2].
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We sketch the construction of this boundary below. More details are available in
Sections 2 and 4 of [Fr3]. Fix once for all a basis X1; : : : ; Xs of the Lie alge-
bra g WD o.1; n C 1/. Given a Riemannian manifold .M; g/, with dim M �
3, let us call .M; yM;!M / the normal Cartan bundle associated to the conformal
structure defined by g. Denote by R the frame field on yM defined by R. Ox/ D
..!MOx /

�1.X1/; : : : ; .!MOx /
�1.Xs//. This determines uniquely a Riemannian metric

	M on yM having the property that R. Ox/ is 	MOx -orthonormal for every Ox 2 yM . The

Riemannian metric 	M defines a distance dM on yM by the formula

dM . Ox; Oy/ D ıM . Ox; Oy/
1C ıM . Ox; Oy/ ;

where

– ıM . Ox; Oy/ is the infimum of the 	M -lengths of piecewise C 1 curves joining Ox
and Oy if Ox and Oy are in the same connected component of yM ,

– ıM . Ox; Oy/ D �2 otherwise.

One can look at the Cauchy completion yMc of the metric space . yM;dM /, and
define the Cauchy boundary @c yM as @c yM WD yMc n yM . Recall that yM is a P -
principal bundle over M , where P is the stabilizer of a point � 2 Sn in the Möbius
group PO.1; n C 1/. Given p 2 P , the right multiplication Rp is Lipschitz with
respect to dM , and the right action of P extends continuously to yMc . The conformal
Cauchy completion of .M; g/ is defined as the quotient space Mc WD yMc =P .

Let us illustrate the construction in the case of the standard sphere Sn, where the
conformal Cartan bundle is identified with the Lie group G D PO.1; nC 1/, and the
Cartan connection is merely the Maurer–Cartan form !G . The Riemannian metric
	G constructed as above is left-invariant on G so that .G; 	G/ is a homogeneous
Riemannian manifold, hence complete. We infer that Gc D ;, and the conformal
Cauchy boundary of Sn is empty as well.

Generally, the action of P on yMc is very bad behaved near points of @c yM so
that the space Mc may not be Hausdorff. It is thus quite remarkable that Mc is
Hausdorff when .M; g/ admits a conformal immersion in the standard sphere Sn, as
the following proposition shows.

Proposition 4.4. Let M be a n-dimensional conformally flat manifold, n � 3. As-
sume there exists a conformal immersion ı W M ! Sn. Then:

(1) The conformal Cauchy completion Mc is a Hausdorff space, in which M is a
dense open subset.

(2) The conformal immersion ı extends to a continuous map ı W Mc ! Sn.

(3) Every conformal diffeomorphism ' ofM extends to a homeomorphism ofMc .
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Proof. We call 	M and 	G the Riemannian metrics constructed on yM and G as
explained above, using a same basis X1; : : : ; Xs of o.1; n C 1/. The conformal
immersion ı W M ! Sn lifts to an isometric immersion Oı W . yM;	M / ! .G; 	G/.
As a consequence, Oı W . yM;dM / ! .G; dG/ is 1-Lipschitz. Because .G; dG/ is a
complete metric space, Oı extends to a 1-Lipschitz map Oı W . yMc ; dM / ! .G; dG/.
This extended map Oı is still P -equivariant for the (extended) action of P on yMc

and on G. Every conformal diffeomorphism ' 2 Conf.M/ lifts to an isometry O' of
. yM;	M /, hence extends to an isometry, still denoted O' on . yMc ; dM /. The action ofP
is free and proper on yMc because the right action of P onG is free and proper, and Oı
maps yMc continuously and P -equivariantly onG. As a consequence,Mc D yMc =P

is Hausdorff. The map Oı W yMc ! G induces a continuous ı W Mc ! G =P D Sn,
extending ı. Finally, for every ' 2 Conf.M/, the homeomorphism O' W yMc ! yMc

commutes with the right action ofP , hence induces a homeomorphism' W Mc ! Mc .
�

5. Proof of the local classification theorem

In this section, we prove Theorem 1.3. Let s W Lnƒ ! N be a conformal immersion,
whereƒ is an essential singular set satisfying Hn�1.ƒ/ D 0. We assume also that the
singular set is essential and minimal in the sense thatƒ D ƒpole[ƒess, withƒess 6D ;.
As explained in the introduction, because of Theorem 1.1, this hypothesis ƒrem D ;
is harmless. By Proposition 3.9 we know that both L and N are conformally flat
manifolds.

5.1. The target manifold N is Kleinian. We call N the holonomy covering of
N . There is a discrete subgroup � of conformal transformations of N , acting freely
properly discontinuously on N such that N is conformally diffeomorphic to N =� .
Showing thatN is Kleinian amounts to show that N is conformally diffeomorphic to
an open subset of Sn. The upshot of the proof is as follows: we are going to construct
a bigger n-dimensional conformal manifold N 0, in which N embeds conformally
as an open subset, and such that the action of � extends conformally to N 0. The
point is that the extended action of � on N 0 is no longer proper, what forces N 0 to
be conformally equivalent to Sn or the Euclidean space (see Theorem 5.1 below).
Because N embeds conformally into N 0, it is conformally diffeomorphic to an open
subset of the sphere, as desired.

Theorem 5.1 ([Fe], [Sch], [Fr1]). Let .M; g/ be a Riemannian manifold of dimension
n � 2. The three following assertions are equivalent:

(1) The group of conformal transformations Conf.M/ does not act properly onM .



Vol. 89 (2014) Removable and essential singular sets for conformal maps 429

(2) The group of conformal transformations Conf.M/ does not preserve any Rie-
mannian metric g0 in the conformal class Œg�.

(3) The manifold .M; g/ is conformally diffeomorphic to the standard sphere Sn, or
to the Euclidean space Rn.

A version of the theorem for the identity component of the conformal group, and
for compact manifolds, originally appeared in [Ob].

We are now explaining how one can construct a manifold N 0 with the properties
listed above.

In the remaining of this section, we pick x1 2 ƒess, and U a connected neigh-
borhood of x1 in L such that there exists a conformal embedding ' W U ! Sn.
Lemma 4.3 ensures that the conformal immersion s W U nƒ ! N lifts to a conformal
immersion � W U n ƒ ! N . By definition of the holonomy covering, there exists
a conformal immersion ı W N ! Sn. Then the map ı B � B '�1 W '.U n ƒ/ ! Sn

is a conformal immersion from '.U nƒ/ to an open subset of the sphere. Because
Hn�1.ƒ/ D 0, '.U nƒ/ is a connected open subset of Sn and Liouville’s theorem
ensures that ı B � B '�1 is the restriction of a Möbius transformation. In particular, it
is injective and so is � . We thus get that � W U nƒ ! N is a conformal embedding.

In the following, we denote by .N ; yN ; !N / the normal Cartan bundle associated
to the conformal structure on N . As in Section 4.3, we define the Riemannian metric
	N on yN , the associated distance dN , yNc the Cauchy completion of . yN ; dN /, and
Nc the conformal Cauchy completion of N . The distance on yNc is still denoted dN .

Lemma 5.2. The conformal embedding � W U n ƒ ! N extends to a continuous
map � W U ! Nc , which is a homeomorphism from U onto an open subsetW � Nc .
The extended map � sends ƒ \ U into @cN WD Nc n N .

Proof. Let us call yU and yƒ the inverse images of U and ƒ in OL. The conformal
immersion � lifts to an isometric immersion O� W . yU n yƒ; 	L/ ! . yN ; 	N /. Call dU
(resp. dUnƒ) the distance induced by the Riemannian metric 	L on the open set yU
(resp. yU n yƒ). Because yƒ\ yU has .dim. yU/�1/-dimensional Hausdorff measure zero,
we get that dU D dUnƒ (this fact is probably standard; the reader can find a proof
in [Fr3], Lemma 3.3). As a consequence, the map O� W . yU n yƒ; dUnƒ/ ! . yN ; dN /,
which is 1-Lipschitz, is also 1-Lipschitz if we put the metric dU on yU n yƒ. Hence,
it extends to a 1-Lipschitz map O� W . yU ; dU / ! . yNc ; dN /. This map is P -equivariant
on the dense open subset yU n yƒ, hence on yU , and defines an extension of � to a
continuous map � W U ! Nc .

We are now going to show that the map � W U ! Nc is open.
Because � W U nƒ ! N is an embedding, it is open on U nƒ. It is thus enough

to check that whenever x 2 ƒ \ U , and V � U is an open set containing x, the
image �.V / is a neighborhood of z WD �.x/. Let Ox 2 yU be a point in the fiber of x,
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let Oz D O�. Ox/ 2 yNc , and let r > 0 be very small so that B. Ox; r/, the closure of the
ball of radius r for 	L, is compact and contained in yV WD ��1

L .V /. We claim that if

B. Oz; r
5
/ denotes the metric ball centered at Oz and of radius r

5
in . yNc ; dN /, we have

the inclusion B. Oz; r
5
/ � O�.B. Ox; r//, what will be enough to conclude, because the

projections yV ! V and yNc ! Nc are open maps. Let us consider Oz0 2 yNc such
that dN . Oz0

; Oz/ < r
4

. Let us consider . Oxk/ a sequence of yU n yƒ converging to Ox, and

. Oz0
k/ a sequence of yN converging to Oz0. We consider indices k large enough so that

the points Ozk WD O�. Oxk/ and Oz0
k satisfy

dN . Ozk; Oz0
k/ � r

2
and

dU . Oxk; Ox/ < r

5
:

There is a curve ˇk W Œ0; 1� ! yN joining Ozk to Oz0
k , and having 	N -length smaller

than 3r
4

. The key point is that there exist a lift ˛k W Œ0; 1� ! B. Ox; r/ n yƒ such that
˛k.0/ D Oxk and O� B ˛k D ˇk . Let us see why it is true. Let t1 WD supft 2
Œ0; 1�; the lift ˛k exists on Œ0; t Œg. Because O� W . yU n yƒ; 	L/ ! . yN ; 	N / is an iso-
metric immersion, ˛k jŒ0;t1Œ has finite length so that Oy1 WD limt!t1 ˛k.t/ exists.
Moreover, the 	L length of ˛k jŒ0;t1Œ is smaller than 3r

4
, so we get dU . Ox; y1/ < r ,

and Oy1 2 B. Ox; r/. If we prove that Oy1 62 yƒ\B. Ox; r/, we will get that ˛k exists on
Œ0; 1�. As we saw, the immersion � W U nƒ ! N is an embedding, so Theorem 3.7
ensures that all points ofƒ\U are either removable or poles with respect to � . Since
� is a lift of s, any point of ƒ which is removable for � is removable for s, and the
minimality assumption onƒ precisely says that there are no such points. We conclude
that every point of ƒ\U is a pole for � . Hence, if we had Oy1 2 yƒ\B. Ox; r/, then
y�.˛k.t// should leave every compact subset of yN as t ! t1, a contradiction with
ˇk.Œ0; 1�/ � yN .

The end point Ox0
k of ˛k is mapped to Oz0

k by O� . By compactness of B. Ox; r/, we get
a point Ox0 2 B. Ox; r/ such that O�. Ox0

/ D Oz0, what concludes the proof that � W U ! Nc

is open. It remains to check that it is injective to get that � mapsU homeomorphically
onto its imageW . Let us assume for a contradiction that there are x1 6D x2 inU such
that �.x1/ D �.x2/ D y. Because � is open, there are U1 and U2 two disjoint open
subsets ofU such that �.U1/\�.U2/ contains an open setV . Now �.U1nƒ/\V and
�.U2 nƒ/\V being two dense open subsets of V , they must intersect, contradicting
the injectivity of � on U nƒ.

We showed above that all points ofƒ\U are poles for the embedding � W U nƒ !
N , which implies �.ƒ/ � @cN . �

Corollary 5.3. The holonomy covering N is conformally diffeomorphic to an open
subset of Sn, and N is a Kleinian manifold.
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Proof. We saw in Section 4.2 that associated to the conformal immersion ı W N ! Sn,
there is a group homomorphism 	 W � ! PO.1; n C 1/ satisfying the equivariance
relation

ı B � D 	.�/ B ı (9)

for every � 2 � . Proposition 4.4 shows that the action of � extends to an action by
homeomorphisms on Nc , and that ı extends to a continuous map ı W Nc ! Sn. In
particular, by density of N in Nc , the equivariance relation (9) still holds on Nc . Let
us define N 0 WD N [ S

�2� �.W /. It is an open subset of Nc , and in particular it is
Hausdorff by Proposition 4.4. By the previous proposition, the map ı B � W U ! Sn

is continuous and coincides with the restriction of a Möbius transformation on the
dense open set U n ƒ. Hence it is the restriction of a Möbius transformation. In
particular ı W W ! Sn is a homeomorphism onto its image. By relation (9), for every
� 2 � , ı W �.W / ! Sn is a homeomorphism onto its image as well. From those
remarks, we infer that N 0 is a second countable Hausdorff space. The topological
immersion ı W N 0 ! Sn yields an atlas which endows N 0 with a structure of smooth
conformally flat manifold, the conformal structure C on N 0 extending that of N .
The equivariance relation (9), available on N 0, tells that in the charts of this atlas,
the action of � 2 � reads as the restriction of the action of 	.�/ 2 PO.1; nC 1/. In
particular, � acts as a group of smooth conformal transformations of .N 0;C/.

We claim that the group Conf.N 0/ cannot preserve any Riemannian metric g0 on
N 0. Indeed, assuming it is the case, we can consider the function 
 W N 0 ! RC,
which to each z 2 N 0 associates the distance (measured thanks to g0) from z to
the closed set @cN \ N 0. It is continuous and �-invariant. Now, Proposition 3.8
implies that there exists a dense Gı -set G � N such that for every y 2 G , the fiber
s�1fyg accumulates on our point x1 2 ƒess. Because � is a lift of s, we get a
sequence .�k/ of � , and a point z0 2 N such that �k :z0 converges to �.x1/. This is
a contradiction because on the one hand 
.z0/ > 0, and on the other hand 
.�k :z0/
tend to 
.�.x1// D 0 as k ! 1.

The previous claim, together with Theorem 5.1 ensures that .N 0;C/ is confor-
mally equivalent to the standard n-sphere or the Euclidean n-space. We infer that
ı W N ! Sn is injective (Liouville’s theorem), and N is a Kleinian manifold. �

Remark 5.4. Actually, because the manifold N 0 is conformally flat, we just need the
conclusions of Theorem 5.1 for conformally flat manifolds, and this result is actually
much easier to prove than the general case.

5.2. Endof theproof ofTheorem1.3. We keep the notations of Section 5.1. Thanks
to the work done there, we know that the developing map ı W N ! Sn is injective
so that ı is a conformal diffeomorphism between N and a connected open subset
� � Sn. Identifying � with 	.�/, we see � as a Kleinian group in PO.1; nC 1/ and
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get a commutative diagram

N

�N

��

ı �� �

�

��
N

 �� �=� ,

where  is a conformal diffeomorphism. We already noticed that � does not act
properly on N 0 so that � is infinite.

Let us pick x1 2 ƒ, and a connected neighborhood U of x1 in L, which is
conformally diffeomorphic to an open subset of the sphere. By Lemma 4.3, the
conformal immersion s W U n ƒ ! N lifts to a conformal immersion � W U n ƒ !
N . Liouville’s theorem ensures that ' WD ı B � extends to a conformal immersion
' W U ! Sn. Let us call V WD '.U /. On U n ƒ, the relation � B ' D  B s holds
so that ' yields a one-to-one correspondence between points of ƒ \ U which are
essential (resp. poles) for s to points of x� \ V which are essential (resp. poles) for
� . By the discussion of Section 4.1, ' maps U \ ƒ to V \ @�, and U \ ƒess to
V \ƒ.�/. This completes the proof of Theorem 1.3.

5.3. Consequences of the local classification theorem. Because Theorem 1.3 clas-
sifies locally all thin conformal singularities admitting essential points, the study of a
conformal immersion near an essential singular point reduces to understanding what
is going on for singularities of Kleinian type. We can summarize the results in the
following corollary.

Corollary 5.5. Let .L; g/ and .N; h/ be two connected n-dimensional Riemannian
manifolds, n � 3. Let ƒ � L be a closed subset such that Hn�1.ƒ/ D 0. Assume
that s W L nƒ ! N is a conformal immersion. Then:

(1) The set ƒess is closed. If it is nonempty, it is either discrete, or perfect.

(2) If ƒpole is nonempty, its closure in ƒ is the set ƒpole [ƒess.

(3) Assume that ƒ is minimal essential. Then for every x1 2 ƒess and any neigh-
borhood U of x1 in L, s.U nƒ/ D N .

(4) Ifƒ is discrete and contains at least one essential singular point, thenƒpole D ;
and .N; h/ is conformally diffeomorphic to a Euclidean manifold, or a general-
ized Hopf manifold.

We define generalized Hopf manifolds as quotients of Rn n f0g by an infinite
discrete subgroup of conformal transformations. Topologically, those manifolds are
finite quotients of S1 � Sn�1 (see Section 7.2 for a complete description of those
manifolds).
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When the singular set ƒ is reduced to a point, the third and fourth points of the
corollary can be compared to Picard’s theorem about the behavior of a meromorphic
function in the neighborhood of an isolated essential singularity. Let us also mention
that when s W Lnƒ ! N is merely a quasiconformal immersion, and whenƒ D fpg
is an isolated essential singularity, then V. A. Zorich proved in [Zo1] and [Zo2]
that s.U n p/ D N for every neighborhood U , and that up to finite quotient, N
is homeomorphic to a product Rk � Tn�k or S1 � Sn�1. Its proof does not imply
Corollary 5.5 in the conformal framework, though (see also [R2], Theorem 2.1, p. 81,
and [HP] for other generalizations of Picard’s theorem in the quasiregular setting).

Proof of Corollary 5.5

First point. We first explain whyƒess is closed. Let us consider .xk/ a sequence ofƒess

which converges to x1 2 ƒ. From Proposition 3.8, we know that Clust.xk/ D N

for all k 2 N. Hence, if we fix y and y0 two distinct points of N , one can build two
sequences .yk/ and .zk/ in L n ƒ which converge to x1 such that s.yk/ ! y and
s.zk/ ! y0. It follows that x1 2 ƒess. Now, thanks to Theorem 1.1, we extend s
to a conformal immersion s0 W L n .ƒess [ ƒpole/ ! N . Theorem 1.3 implies that
N D �=� , for an infinite Kleinian group � . It is a classical fact that the limit set
ƒ.�/ is either a perfect set, or has at most two points ([A], Theorem 2.3, p. 43). If
we are in the former case, Theorem 1.3 ensures that ƒess is perfect. If ƒ.�/ has one
or two points, then again by Theorem 1.3, all the points of ƒess are isolated.

Second point. Assume thatƒpole is nonempty, and let us show that the closureƒpole

isƒpole [ƒess. By Theorem 1.1, there is no harm assuming thatƒ D ƒpole [ƒess. If
ƒess is empty, the claim is clear. Assume now that ƒess is nonempty. It is enough to
check that every point of ƒess is in the closure of ƒpole. Recall that by Theorem 1.3,
for each x1, there is a neighborhood U of x1 and a commutative diagram

U nƒ
s

��

' �� V n @�
�

��
N

 �� �=� .

Moreover, '.U \ ƒ/ D V \ @� and '.U \ ƒess/ D V \ ƒ.�/. We infer that
@� n ƒ.�/ is nonempty, and we are reduced to show that every point in ƒ.�/ is
accumulated by points in @� n ƒ.�/. But this is clear, because if z 2 @� n ƒ.�/,
we will have �:z � @� nƒ.�/ and �:z D ƒ.�/ [ �:z.

Third point. We assume now that ƒ is minimal essential. We want to show that if
x1 2 ƒess and if U is any neighborhood of x1 in L, then s.U nƒ/ D N . By The-
orem 1.3, the manifold N is Kleinian, conformally diffeomorphic to �=� , for some
infinite discrete � . For any z 2 �, the closure of �:z contains ƒ.�/. In particular,



434 C. Frances CMH

if z1 2 ƒ.�/ and if V is a neighborhood of z1 in Sn, then �.V nƒ.�// D �=� .
Theorem 1.3 implies directly that s.U nƒ/ D N .

Fourth point. Let us assume that ƒ is a discrete set containing at least one essential
singular point. Thanks to Theorem 1.1, we can assume that ƒ D ƒpole [ƒess. The
second point of the corollary implies that in the presence of essential singular points,
ƒpole is not closed as soon as it is nonempty. Because ƒ is discrete, we infer that
ƒpole must be empty. If � is the infinite Kleinian group such that N D �=� , then
ƒ.�/ has one or two points (if not,ƒess would be perfect), and Theorem 1.3 actually
implies that � D Sn n ƒ.�/, otherwise ƒ would contain poles. We infer that if
ƒ.�/ has one point, � is a discrete subgroup of conformal transformations of Rn

acting freely properly discontinuously on Rn. Then, one checks easily that � is a
discrete subgroup of Euclidean motions, and N is a Euclidean manifold. If ƒ.�/
has two points, then N is conformally diffeomorphic to a quotient of Rn n f0g by
an infinite discrete group of conformal transformations, namely N is a generalized
Hopf manifold. �

6. Proof of Theorem 1.4

We are now considering thin essential conformal singular sets on a compact manifold
L. This compactness assumption on L allows us to prove:

Proposition 6.1. Let .L; g/ and .N; h/ be two connected n-dimensional Riemannian
manifolds, n � 3. Let ƒ � L be a closed subset such that Hn�1.ƒ/ D 0, and
s W L nƒ ! N a conformal immersion. If L is compact, andƒ D ƒpole [ƒess, then
s W L nƒ ! N is a covering map onto N .

Proof. Let ˛ W Œ0; 1� ! N be a continuous path, let x0 2 L n ƒ such that s.x0/ D
˛.0/. We want to show the existence of � W Œ0; 1� ! L n ƒ, a lift of ˛ satisfying
�.0/ D x0. If we cannot lift ˛, there exists t1 2 Œ0; 1Œ, and � W Œ0; t1Œ! L n ƒ a
lift of ˛ W Œ0; t1Œ! N such that �.0/ D x0 and �.t/ leaves every compact subset of
L n ƒ as t tends to t1. By compactness of L, for every sequence .tk/ tending to
t1, the set A of cluster values of �.tk/ in L is nonempty and contained in ƒ. Let
x1 be a point of A. Since s.�.tk// tends to ˛.t1/, we get x1 62 ƒpole. Hence we
should have x1 2 ƒess. But this is not possible. Indeed, if x1 2 ƒess, we first
assume, considering a subsequence of .tk/, that �.tk/ tends to x1. Then we use the
second point of Lemma 3.5, and get the existence of a sequence .t 0

k
/ in Œ0; t1Œ, which

converges to t1 such that �.t 0
k
/ converges to x1, and such that s.�.t 0

k
// converges to

y0 2 N , with y0 6D ˛.t1/. This contradicts the fact that � is a lift of ˛jŒ0;t1Œ. �

We are now under the hypotheses of Theorem 1.4: the manifold L is compact
and the singular set is minimal essential, i.e ƒ D ƒess [ƒpole. Moreover, we do the
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assumption Hn�2.ƒ/ D 0. Theorem 1.3 ensures that .L; g/ and .N; h/ are confor-
mally flat, and that N is actually conformally diffeomorphic, via a diffeomorphism
 , to a Kleinian manifold �=� . From Theorem 1.3, we also get that the boundary
@� satisfies Hn�2.@�/ D 0, hence � is simply connected as the following lemma
shows.

Lemma 6.2 ([LV], Theorem 6.13). Let M be a connected, simply connected, n-
dimensional Riemannian manifold, n � 3. Assume that E is a closed subset of M
satisfying Hn�2.E/ D 0. ThenM nE is still simply connected.

Let us call QL the conformal universal covering of L and denote by �L W QL ! L

the associated covering map. We call zƒ the inverse image of ƒ by �L. Observe
that QL n zƒ is simply connected by Lemma 6.2. By Proposition 6.1, our conformal
immersion s W Lnƒ ! N is a covering, hence it lifts to a conformal diffeomorphism
� W QL n zƒ ! �. In particular

� B � D  B s B �L: (10)

Apply Theorem 3.7 to get that ��1 W � ! QL extends to a conformal diffeomor-
phism ��1 W �0 ! QL, where �0 � Sn is an open subset containing �. We denote
again by � W QL ! �0 the inverse map. Observe that �.zƒ/ D �0 \ @�. The map �
induces a homomorphism 	 W �1.L/ ! PO.1; nC 1/ such that for every � 2 �1.L/,
the equivariance relation � B � D 	.�/ B � holds. The group � 0 WD 	.�1.L// is
a discrete subgroup of PO.1; n C 1/ acting freely properly discontinuously on �0.
Let us call � 0 W �0 ! �0=� 0 the conformal covering map. There is a conformal
diffeomorphism ' W L ! �0=� 0 such that

� 0 B � D ' B �L: (11)

Let us check that�0 D �.� 0/. If � 0 is finite, the compactness ofL leads to�0 D Sn.
If � 0 is infinite, one has �0 � �.� 0/, since the action of � 0 is proper on �0. On the
other hand, the compactness of L forces the action of � 0 to be nonequicontinuous
at each point of @�0, yielding the inclusion @�0 � ƒ.� 0/. In any case, we get that
�0 D �.� 0/, as claimed in Theorem 1.4.

For every � 2 �1.L/, relation (10) leads to the identity � B 	.�/ D � on � so
that one has the inclusion � 0 � � . Hence, the identity map of � induces a covering
map s0 W �=� 0 ! �=� , satisfying for every y 2 �

s0 B � 0.y/ D �.y/: (12)

Observe that if we define ƒ0 D � 0.�0 \ @�/, then �=� 0 is merely M.� 0/ n ƒ0.
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Relations (10), (11) and (12) lead to the commutative diagram

L nƒ
s

��

' �� M.� 0/ nƒ0

s0

��
N

 �� �=� .

The diffeomorphism ' maps ƒ to ƒ0 because � maps zƒ to @� \�0. Finally, it
is easily checked that the essential singular points of ƒ0 for s0 are the � 0-images of
the essential singular points of @� \�0 for � , namely the points of @� \�0 which
are in ƒ.�/. This means ƒ.�/ \�0 6D ;, hence ƒ.� 0/ ¨ ƒ.�/.

7. Isolated essential singularities on compact manifolds

Our aim in this section is to understand completely the conformal singularities s W Ln
ƒ ! N , whereN is a compact manifold andƒ is a finite number of essential singular
points. It turns out that very few possibilities arise, and they are listed in Theorem 7.1
below. First of all, let us enumerate some examples.

7.1. Euclidean singularities on the sphere. Let us consider an infinite discrete
subgroup � � .R�C � O.n// Ë Rn, acting freely properly discontinuously on Rn.
One checks that for the action to be free, � must actually be a subgroup of O.n/ËRn.
The quotient manifoldN D Rn =� is then a Euclidean manifold. We see � as acting
conformally on Sn n f�g, fixing �, and consider the covering map s W Sn n f�g ! N .
It is a conformal immersion, and because � is infinite, we haveƒ.�/ D f�g. Hence,
as we already saw, � is an essential singular point for s. A conformal singularity
s W Sn n f�g ! N as described above will be referred to as Euclidean singularity on
the sphere.

7.2. Singularities of Hopf type on the sphere. Let us now fix o a second point
on the sphere Sn, distinct from the point �. There is a conformal diffeomorphism
mapping Sn n foI �g onto Rn n f0g. The group G of conformal transformations of
Rn n f0g is generated by the inversion � W x 7! � x

kxk2 , and the group R�C � O.n/
of linear conformal transformations on Rn. Let us choose an infinite discrete group
� � G acting freely, properly and discontinuously on Rnnf0g. It is not hard to check
that � has a finite index subgroup generated by a linear conformal contraction. As
previously, the quotientN D .Rnnf0g/ = � is called ageneralizedHopfmanifold. The
covering map s W Sn n foI �g ! N is conformal, and because � is infinite, both � and
o are essential punctured singularities. Conformal singularities s W Sn n foI �g ! N

constructed as above will be referred to as singularities of Hopf type on the sphere.
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7.3. Singularities of Hopf type on the projective space. Let us go back to the
previous construction, and assume that our infinite discrete subgroup� � G contains
the inversion �. Then, the subgroup �o � � of transformations fixing individually
the points � and o is normal in � . Let us call No the quotient manifold .Rn n
f0g/ = �o. Because � normalizes �o, and because � acts freely on Rn n f0g, � induces
a conformal involution N� without fixed points on No. The quotient No=hN�i is actually
conformally diffeomorphic toN WD .Rn nf0g/ = � . The quotient of Sn nfoI �g by h�i
is conformally diffeomorphic to RPn with a point � removed. The natural covering
map � W Sn n foI �g ! No induces a conformal immersion s W RPn n f�g ! N , for
which � is an essential singular point. Conformal singularities constructed in this
way will be referred to as singularities of Hopf type on the projective space.

7.4. Classification result. We are now investigating essential singular sets on com-
pact manifolds, comprising only a finite number of points. By Theorem 1.1, and the
fourth point of Corollary 5.5, we just have to focus on the case where all the points
are essential. Then, it turns out that the three kinds of singularities described in the
previous section are the only possible.

Theorem 7.1. Let .L; g/ and .N; h/ be two connected n-dimensional Riemannian
manifolds, n � 3, with L compact. Let ƒ WD fp1; : : : ; pmg be a finite number of
points on L. Assume that s W L n ƒ ! N is a conformal immersion such that each
pi is an essential singular point for s. Then m D 1 or m D 2 and:

(1) Ifm D 1, either there exists a Euclidean singularity on the sphere s0 W Snnf�g !
N 0, a conformal diffeomorphism ' W L ! Sn sending p1 to � and a conformal
diffeomorphism  W N ! N 0 making the diagram

L n fp1g
s

��

' �� Sn n f�g
s0

��
N

 �� N 0

commute.

Or there exists a singularity ofHopf type on the projective space s0 W RPnnf�g !
N 0, a conformal diffeomorphism' W L ! RPn sendingp1 to � and a conformal
diffeomorphism  W N ! N 0 making the diagram

L n fp1g
s

��

' �� RPn n f�g
s0

��
N

 �� N 0

commute.
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(2) Ifm D 2, there exists a singularity of Hopf type on the sphere s0 W Sn n foI �g !
N 0, a conformal diffeomorphism ' W L ! Sn sending fp1Ip2g to foI �g and a
conformal diffeomorphism  W N ! N 0 making the diagram

L n fp1Ip2g
s

��

' �� Sn n foI �g
s0

��
N

 �� N 0

commute.

Proof. We first apply Theorem 1.3 in a neighborhood of any of the pi ’s. We get that
N is conformally diffeomorphic to a Kleinian manifold �=� , where the limit set
ƒ.�/ has one or two points (otherwise ƒess would be a perfect set), and � D �.�/

(otherwise ƒpole would be nonempty).
Assume first that ƒ.�/ is made of a single point �. The group � is a discrete

group of conformal transformations of Sn n f�g, namely Rn, which acts freely prop-
erly discontinuously on Rn. As a consequence, � is a discrete group of Euclidean
motions, andN is conformally diffeomorphic to a Euclidean manifoldN 0 D Rn=� .
Theorem 1.4 makes the structure of L and ƒ explicit: there must be a subgroup
� 0 � � , with ƒ.� 0/ ¨ ƒ.�/, as well as an open subset �0 properly containing
� such that L is conformally diffeomorphic to �0=� 0, and ƒess is obtained as the
quotient .�0 \ƒ.�//=� 0. This implies in particular ƒ.� 0/ D ;, hence � 0 is finite,
and because � 0 acts cocompactly on �0, we must have �0 D Sn. Since the action of
� 0 on Sn must be free, and � 0 fixes �, we infer that � 0 is trivial. We get that m D 1,
L is conformally diffeomorphic to Sn, and we are in the first case of the theorem.

Assume now thatƒ.�/ comprises two points o and �. Applying Theorem 1.4, and
with the same notations as above, we get that � is a discrete group in the conformal
group of Rn n f0g. The limit set of the subgroup � 0 has two points or is empty, but
becauseƒ.� 0/ ¨ ƒ.�/, we are in the second alternative: � 0 is once again finite, and
�0 D Sn. Because � 0 acts freely on Sn, and leaves foI �g invariant, it is either trivial,
or generated by a conformal involution of Sn, without fixed point, and switching o
and �.

It is not hard to check that such a fixed-point free involution switching o and � is
conjugated, in the conformal group of Rn n f0g, to the inversion � W x 7! � x

kxk2 , so if

� 0 is nontrivial, there is no harm in assuming � 0 D h�i. Then m D 1, L conformally
diffeomorphic to RPn, and we are in the second case of the theorem.

Finally, if � 0 is trivial, thenm D 2, L is conformally diffeomorphic to Sn and we
are in the third case of the theorem. �
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