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Abstract. Given topologically equivalent germs of holomorphic foliations F and F 0, under
some hypothesis, we construct topological equivalences extending to some regions of the divisor
after resolution of singularities. As an application we study the topological invariance of the
projective holonomy representation.
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1. Introduction

Let h W .C2; 0/ 7! .C2; 0/ denote a topological equivalence between two germs
F and F 0 of holomorphic foliations with isolated singularity at 0 2 C2, i.e., h
is an orientation preserving homeomorphism mapping leaves of F onto leaves of
F 0. Cerveau and Sad in [24] pose the following problem: Assuming F is a non-
dicritical generalized curve, it is true that the projective holonomy groups of F and
F 0 are topologically conjugated? Also in [24] the authors give a positive answer
for a generic class of foliations F and assuming that h is a topologically trivial
deformation. A stronger result is obtained by Marín in [12] under the assumption of
complex hyperbolicity of the singularities of F after a single blow up and removing
the topological triviality of h. In [16], by using a notion of extended holonomy,
the authors give a positive answer under the assumption that all singularities of F

after a single blow up are non-degenerate and have exactly two separatrices. In
a recent work ([15]), D. Marín and J.-F. Mattei give a global monodromy notion
which allows to solve the problem for Generic General Type foliations. Following
[15], a non-dicritical generalized curve F is of General Type if after resolution all
singularities in the strict transform of F are linearizable or resonant. Such F is of
Generic General Type if “some” irreducible components of the exceptional divisor
have a non-solvable holonomy group (see genericity condition (G) in [15]). When
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the resolution of F does not have nodal singularities the genericity condition (G)
is equivalent to the existence of a single divisor component having a non-solvable
holonomy group, in this case the topological equivalence h is transversely conformal
([18]) and the principal result of [15] shows that the projective holonomy of each
irreducible component of the exceptional divisor is a topological invariant. In the
present work, given topologically equivalent germs of foliations F and F 0 and under
some additional hypothesis, we construct topological equivalences extending to some
regions of the divisor after the resolution of singularities of F and F 0. We give the
precise statement of this construction in Theorem 7. When F is a non-dicritical
generalized curve, it is known that F 0 is also a generalized curve and the resolutions
of F and F 0 are isomorphic ([3]), although h does not extend necessarily to the
divisor after resolution. In this case Theorem 7 gives the following result.

Theorem 1. Let h be a topological equivalence between two non-dicritical general-
ized curves F and F 0 with isolated singularity at 0 2 C2. Then we may construct
a topological equivalence Nh between F and F 0 which, after resolution, extends as
a homeomorphism to a neighborhood of each linearizable or resonant singularity of
F which is not a corner1.

As a direct application we obtain:

Corollary 2. Let F be a non-dicritical generalized curve whose reduction of sin-
gularities is achieved after a single blow up. Assume that after resolution the strict
transform of F has a linearizable or resonant singularity. Then the projective holon-
omy representation of F is a topological invariant.

If F is of general type, as was pointed out to me by the referee, we can combine
Theorem 1 with the results of [13] and [14] to prove the topological invariance of
the projective holonomy of some exceptional divisor components without using the
transverse rigidity hypothesis assumed in [15].

Corollary 3. Let F be singularity of general type. LetD be an irreducible component
of the exceptional divisor in the resolution of F such thatD meets the strict transform
of the separatrix curve of F . Then the projective holonomy representation ofD is a
topological invariant.

Also as a corollary of Theorem 1 we obtain the following extension result.

Corollary 4. Let F be a singularity of general type whose reduction of singularities
is achieved after a single blow up. Then, if F and F 0 are topologically equivalent,
the strict transforms of F and F 0 after resolution are also topologically equivalent.

1A corner is a singular point of the exceptional divisor.
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Following [15], a nodal separatrix of F is an irreducible separatrix whose strict
transform in the resolution of F meets the exceptional divisor at a nodal singular
point. Is worth to notice as a corollary of Proposition 13 that the nodal separatrices
of general type foliations are topological invariants:

Corollary 5. Let F be a singularity of general type and let h be a topological
equivalence between F and F 0. Let S be a nodal separatrix of F . Then h.S/ is a
nodal separatrix of F 0 and the Camacho–Sad indices along the strict transforms of
S and h.S/ coincide.

This corollary allows us to remove the N -conjugacy hypothesis assumed in [15].
As a corollary of the proof of Theorem 7, we may replace the linearizing-resonant

hypothesis by the assumption that the holonomy group of F is non-solvable to prove
the following result, which is a particular case of the results obtained in [15].

Corollary 6. Let F be a non-dicritical generalized curve whose reduction of singu-
larities is achieved after a single blow up. Assume that the holonomy group of F is
non-solvable. Suppose that F 0 is topologically equivalent to F by a homeomorphism
which preserves the orientation of the leaves. Then we may construct a topological
equivalence Nh between F and F 0 such that, after resolution, we have that

(1) Nh extends to the divisor as a homeomorphism,

(2) Nh preserves the Hopf fibration,

(3) Nh is holomorphic close to each singularity whose eigenvalue is not a real positive
number, and

(4) if p is a singularity of the strict transform of F with eigenvalue � 2 RCnQC,

then the eigenvalue � remains invariant by Nh.
In particular, the analytic type of all the singularities after resolution are invariants.2

The paper is organized as follows. In Section 2 we state Theorem 7 and prove
Theorem 1. In Section 3 we prove Corollaries 2, 3 and 4. In Section 4 we make a first
construction in order to prove Theorem 7. In Section 5 we proof a topological lemma.
In Section 6 we divide the proof of Theorem 7 in two cases and in next section we
prove the theorem in the first case: when the singularity is a node. In the remaining
sections we prove Theorem 7 in the non-nodal case.

2. The extension theorem

Let F be a holomorphic foliation on the open set U � C2 with isolated singularity
at 0 2 C2. Let � W M 7! C2 be the composition of a finite sequence of blow ups.

2Remember that the eigenvalue � determines the analytic type of a singularity, provided that � 2 RCnQC.
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We only consider blow ups at singular points of F or some strict transform of F .
The divisor E D ��1.0/ is an union of projective lines with normal crossings such
that � W MnE 7! C2nf0g is an isomorphism. Let S be an irreducible separatrix of
F through 0 2 C2. It is possible to order the sequence of blow ups composing �
and realize first all the blow ups involving points of S or some strict transform of S ,
that is, we may write � as composition of blow ups � D �1 B � � � B �n such that for
some k 2 f1; : : : ; ng we have the following:

(1) �1 is the projection associated to the blow up at 0 2 C2.

(2) For all j 2 f2; : : : ; kg the map �j is the projection associated to the blow up at
the point pj with �1 B � � � B �j �1.pj / D 0 and such that pj is contained in the
strict transform of S by �1 B � � � B �j �1.

(3) If j > k, then �j is the projection associated to a blow up in a point outside the
strict transform of S by �1 B � � � B �j �1.

It is easy to see that the number k depends only on� andS . Let us denote k D k�.S/.
Consider another holomorphic foliation F 0 with isolated singularity at 0 2 C2. Let
� 0 W M 0 7! C2 be finite a composition of blow ups and let E 0 D ��1.0/. Let zF and
zF 0 denote the strict transforms of F and F 0 by � and � 0 respectively. Consider a

topological equivalence h W U 7! U 0 between F and F 0. We know that h lifts to a
homeomorphism

Qh D � 0�1
h� W ��1.U /nE 7! � 0�1

.U 0/nE 0

which takes leaves of zF to leaves of zF 0 and such that Qh.w/ ! E 0 as w ! E.
Conversely, ifW andW 0 are neighborhoods ofE andE 0 respectively and Nh W W nE 7!
W 0nE 0 is a homeomorphism taking leaves of zF to leaves of zF 0 and such that Nh.w/ !
E 0 as w ! E, then Nh induces a topological equivalence between F and F 0. Thus,
by simplicity, we will say that any such Nh is a topological equivalence between F

and F 0. Moreover, when no confusion arises we will often denote zF and zF 0 simply
by F and F 0 respectively.

We recall that a singularity p of a holomorphic foliation is called reduced if it is
generated in local coordinates by a vector field of the form

�1x.1C � � � / @
@x

C �2y.1C � � � / @
@y

,

where �2 ¤ 0 and � D �1=�2 is not a rational positive number. The singularity
is non-degenerate when �1 � �2 ¤ 0 and is called resonant if �1=�2 is a rational
(non-positive) number. The number � D �1=�2 (or ��1) is called the eigenvalue of
the singularity.

Theorem 7. Let h be a topological equivalence between two holomorphic foliations
F and F 0 with isolated singularity at 0 2 C2. Let � W M 7! C2 and � 0 W M 0 7! C2
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be finite compositions of blow ups. Let S be an irreducible separatrix of F . Set
S 0 D h.S/ and let zS and zS 0 denote the strict transforms of S and S 0 by � and � 0
respectively. Letp and p0 be the intersections of zS and zS 0 with its respective divisors.
Let .t; x/ and .t 0; x0/ be holomorphic coordinates at p and p0 respectively. Suppose
that the following conditions hold:

(1) The foliations are not degenerate at p and p0.
(2) The exceptional divisors are given by fx D 0g and fx0 D 0g and they are

invariant by the strict transforms of F and F 0 respectively.

(3) zS and zS 0are given by ft D 0g and ft 0 D 0g respectively.

(4) k�.S/ D k� 0.S 0/.
Then, given " > 0 we may construct a topological equivalence Nh between F and F 0
such that, for some numbers a; b; a0; b0 2 .0; "/, we have

(1) Nh maps fjt j � a; 0 < jxj � bg into fjt 0j � a0; 0 < jx0j � b0g,
(2) Nh maps fjt j D a; 0 < jxj � bg into fjt 0j D a0; 0 < jx0j � b0g,
(3) close to the divisor and outside

fjt j � "; jxj < "g [ h�1.jt 0j � "; jx0j < "/
we have Nh D h.

Moreover, if p is linearizable or resonant, the following additional properties hold:

(4) Nh extends as a topological equivalence to fjt j � a; jxj � bg,
(5) Nh.fjt j � a; x D 0g/ D fjt 0j � a0; x0 D 0g and Nh.0; 0/ D .0; 0/,

(6) Nh maps each disc †u D ft D u; jxj � bg, juj D a, into a disc †u0 D ft D
u0; jxj � bg, ju0j D a0.

Given a germ of holomorphic singular foliation F , we know by Seidenberg’s
desingularization Theorem that after a suitable finite sequence of blow ups, all the
singularities of the strict transform of F are reduced. If F is dicritical (infinitely
many separatrix), after some suitable additional blow ups we arrive to the following
situation:

(1) The separatrices of F have became smooth, disjoint and transverse to the divisor.

(2) No separatrix passes through a corner.

(3) The singularities appearing in the blow-up are reduced an lie in invariant pro-
jective lines.

In this case the foliation F is said to be desingularized.

Definition 8 ([3]). A germ of holomorphic foliation F with isolated singularity at
0 2 C2 is called a generalized curve if after resolution all its singularities are non-
degenerate.
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Theorem. ([3]) If F is a generalized curve and F 0 is topologically equivalent to F

at 0 2 C2, then F 0 is also a generalized curve and both F and F 0 have isomorphic
desingularizations.

Proof of Theorem 1. Let � W M 7! C2 and � 0 W M 0 7! C2 be the minimal resolu-
tions of F and F 0. Let p1; : : : ; pn be the linearizable or resonant singularities of
the strict transform of F which are not corners. There are holomorphic coordinates
.t; x/ in a neighborhood of p1 ' .0; 0/ such that

(1) the exceptional divisor is given by fx D 0g,

(2) zS D ft D 0g is the strict transform of an irreducible separatrix S of F .

The set S 0 D h.S/ is a separatrix (irreducible) of F 0 and its strict transform zS 0
by � 0 intersects the exceptional divisor at a singularity p0

1. It is easily verified,
since the resolutions of F and F 0 are isomorphic, that k�.S/ D k� 0.S 0/. Let us
apply Theorem 7 to construct a topological equivalence h1 between F and F 0 which
extends as a homeomorphism to a neighborhood V1 of p1. In the same way, we have
a singularity p0

2 in the desingularization of F 0 associated to p2. We apply again
Theorem 7 to obtain a topological equivalence h2 between F and F 0 which extends
to a neighborhood V2 of p2 and such that close to the divisor and out of

fjt j � "; jxj < "g [ h�1.jt 0j � "; jx0j < "/
we have h2 D h1, where .t; x/ and .t 0; x0/ are holomorphic coordinates at p2 and
p0

2 respectively. If " > 0 is taken small enough such that V1 and h1.V1/ are disjoint
of fjt j � "; jxj < "g and fjt 0j � "; jx0j < "g respectively, we have h2 D h1 on V1.
Then h2 actually extends as a homeomorphism to neighborhoods of both p1 and p2.
Repeating this argument a finite number of times we finish the proof. �

3. Projective holonomy representation

Consider now a foliation F such that after a single blow up � W �C2 7! C2 of the
origin the exceptional divisor D D ��1.0/ is invariant by the strict transform zF of
F by � , that is, D� D DnSing. zF / is a leaf of zF . Let q be a point in D� and
† a small complex disc passing through q and transverse to zF . For any loop � in
D� based on q there is an holonomy map HF .�/ W .†; q/ 7! .†; q/ which only
depends on the homotopy class of � in the fundamental group � D �1.D

�/. The
mapHF W � 7! Diff.†; q/ is known as the projective holonomy representation of F .
Identifying .†; q/ ' .C; 0/ the image of HF defines up to conjugation a subgroup
of Diff.C; 0/ which is known as the holonomy group of F .

Definition 9. The representations H W � 7! Diff.C; 0/ and H 0 W � 0 7! Diff.C; 0/
are topologically conjugated if there exist an isomorphism ' W � 7! � 0 and a germ of
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homeomorphism h W .C; 0/ 7! .C; 0/ such that H 0 B '.�/ D h BH.�/ B h�1 for all
� 2 � .

Proof of Corollary 2. Let p be a linearizable or resonant singularity of F after res-
olution. By Theorem 1 we have a topological equivalence h between F and F 0
extending to a neighborhood of p. Moreover, by the last property given by Theo-
rem 7 there is a regular point q in the divisor and a disc † through q transverse to F

such that h.†/ is contained in a disc †0 through q0 D h.q/ transverse to F 0. At this
point we can follow the proof given in [12]. �

Proof of Corollary 3. Let F 0 be a foliation topologically equivalent to F and let D0
be the irreducible component of the exceptional divisor corresponding to D in the
resolution of F 0. By Theorem 1 there is a topological equivalence h between F

and F 0 conjugating transverse sections † and †0 to D and D0 respectively. We can
apply Theorem A of [14] to obtain a new homeomorphism g (not longer foliated)
conjugating the separatrices S and S 0 of F and F 0 extending to the exceptional
divisor and inducing the same action thatf on�1.U nS/ ! �1.U

0nS 0/, whereU and
U 0 are suitable neighborhoods of the singularities constructed by foliated assembly
according to Definition 2.1.1 of [13]. Moreover, there are no topological obstructions
to have g D f on †. Consider � W D gjD W D ! D0 and its action in homotopy
level �� W �1.D

�/ ! �1.D
0�/, where D� and D0� are obtained from D and D0

by removing the singularities. Consider a loop � 2 �1.D
�/ and its corresponding

holonomy map h. For p 2 †� WD †nD we consider a path ˇ contained in the leaf
L of F passing through p D ˇ.0/ and realizing the holonomy map h, that is, ˇ is
mapped onto � by the Hopf fibration associated to D and ˇ.1/ D h.p/. Consider a
path � contained in †� joining h.p/ and p. Then the loop f .ˇ�/ is homotopic to
g.ˇ�/ which is contained in a tubular neighborhood W 0 of D0. According to [13]
we can choose W 0 such that it is 1-F 0-connected in U 0� (see Theorems 2.1.2 and
3.2.1 of [13]). Since f D g on† we deduce that f .ˇ/ � L0 WD f .L/ is homotopic
to g.ˇ/ � W 0 with fixed endpoints. By the foliated 1-connexity of W 0 in U 0� we
obtain a path ˇ0 � L0 \W 0 which is homotopic to f .ˇ/ in L0 and to g.ˇ/ in U 0�.
Let � 0 W W 0 ! D0 be the Hopf fibration associated toD0. Then we see that � 0.ˇ0/ is
homotopic to ��.�/ inD0�. Hence f .h.p// D f .ˇ/.1/ D ˇ0.1/ D h0.f .p// where
h0 is the holonomy map associated to the loop ��.�/ 2 �1.D

0�/. Consequently
f B h B f �1 D h0. �

Proof of Corollary 4. By Theorem 1 we have a topological equivalence h between
F and F 0 which extends as a homeomorphism and preserves the Hopf fibration near
the singularities.The holonomy representations are topologically conjugated by an
isomorphism induced by a homeomorphism � W D ! D which coincides with h near
the singularities. By a lifting path argument using � we can redefine h outside some
neighborhoods of the singularities to obtain a topological equivalence Nh extending to
the divisor. �
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4. A preliminary isotopy

As a first step in order to prove Theorem 7, we will prove the following:

Theorem 10. Let h be a topological equivalence between two holomorphic foliations
F and F 0 with isolated singularity at 0 2 C2. Let � W M 7! C2 and � 0 W M 0 7! C2

be finite compositions of blow ups. Let S be an irreducible separatrix of F . Denote
S 0 D h.S/ and let zS and zS 0 be the strict transforms of S and S 0 by � and � 0
respectively. Letp andp0 the intersections of zS and zS 0 with the respective exceptional
divisors. Let .t; x/ and .t 0; x0/ be holomorphic coordinates in the neighborhoodsV of
p ' .0; 0/ and V 0 of p0 ' .0; 0/, respectively. Suppose that the following conditions
hold:

(1) The exceptional divisors are given by fx D 0g and fx0 D 0g and are invariant
by (the strict transforms) F and F 0 respectively.

(2) zS and zS 0 are given by ft D 0g and ft 0 D 0g.
Then given " > 0 there is b 2 .0; "/ and a topological equivalence Nh between F and
F 0 with the following properties:

(1) Nh is defined in a neighborhood of the set f.0; x/ W 0 < jxj � bg, which is mapped
into f.0; x0/ W 0 < jx0j < "g.

(2) There exists ı > 0 such that for all r in a neighborhood of b, the set fjt j <
ı; jxj D rg is mapped by Nh into a set of type fjx0j D r 0g with r 0 2 .0; "/.

(3) For jzj close to b the set fjt j < ı; x D zg is mapped into a set of type fx0 D cteg.
(4) Close to the divisor we have Nh D h.

Proof. Let C0 and C1 be the circles f.0; x/ W jxj D r0g and f.0; x/ W jxj D r1g in
V , where 0 < r0 < r1 < ". The curves C0 and C1 are contained in the separatrix
ft D 0g � V . Fix a0 and b0 in C0, with a0 ¤ b0. It is possible to modify
the homeomorphism h in such way, on some neighborhoods of a0 and b0, the new
homeomorphism, still denoted by h, maps the sets fx D cteg into the sets fx0 D cteg.
Take a circle C 0

1 in the separatrix ft 0 D 0g � V 0 containing h.C0/ in its interior, that
is, C 0

1 D f.0; x0/ W jx0j D r 0
1g with jx0j < r 0

1 whenever .0; x0/ 2 h.C0/. By taking r1
small enough we may assume r 0

1 < ". Let A be a segment of ratio with endpoints a0

and a1 2 C1. Thus A connect C0 and C1 and Anfa0; a1g is contained in the annulus
bounded by C0 and C1. In the same way, let B be a segment of ratio, disjoint of A,
with endpoints b0 and b1 2 C1. Consider the usual orientations of C0 and C1 an
take a diffeomorphism � W C1 7! C 0

1 such that h.C0/ and �.C1/ are homologous in
f.0; x0/ W x0 ¤ 0g. Take injective maps ˛ W A 7! ft 0 D 0g and ˇ W B 7! ft 0 D 0g such
that

(1) ˛.a0/ D h.a0/, ˛.a1/ D �.a1/,

(2) ˇ.b0/ D h.b0/, ˇ.b1/ D �.b1/,
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(3) ˛.A/ \ ˇ.B/ D ;,

(4) ˛.Anfa0; a1g/ and ˇ.Bnfb0; b1g/ are contained in the annulus bounded by
h.C0/ and C 0

1.

Let � be the annulus bounded by C0 and C1 in ft D 0g. We have �nfA;Bg D D[ zD,
whereD and zD are simply connected domains. The boundary ofD is a Jordan curve
which is the union of the curves A, C0, B and C1, where C0 and C1 are segments of
C0 and C1 respectively. Let � be the projection .t; x/ ! .0; x/. Let Lx denote the
leaf of F passing through x 2 ��1.a0/. If† is a small enough neighborhood (a disc)
of a0 in ��1.a0/, for all x 2 † there is a domain Dx in Lx such that x 2 Dx and
� W xDx 7! xD is a diffeomorphism (D is a lifting). The domainDx in Lx is bounded
by a Jordan curve, which is the union of the paths Ax D ��1.A/, C0x D ��1.C0/,
Bx D ��1.B/ and C1x D ��1.C1/. Define g W @D 7! ft 0 D 0g as

g D

8̂̂
<̂
ˆ̂̂:

˛ on A;

ˇ on B;

h on C0;

� on C1.

It is easy to see that g is continuous and injective. Denote also by � the projection
.t 0; x0/ ! .0; x0/. Observe that the Jordan curve g.@D/ in ft 0 D 0g does not link
the point .0; 0/. Therefore there is a lifting of g.@D/ to any leaf close enough to the
separatrix. Then, if † is small enough, there is a Jordan curve QJx in the leaf passing
through h.x/ such that � W QJx 7! g.@D/ is a homeomorphism. Therefore we have
that the map fx W @Dx 7! QJx defined by� Bfx D gB� is a homeomorphism. Observe
that, on C0x , we have that � Bh is arbitrarily close to hB� when x 2 † is close to a0.
Then, since � B fx D g B � D h B � on C0x , we have that � B h is arbitrarily close
to � B fx . Hence, since fx.x/ D h.x/ when x is close to a0, we have that fx.y/ is
arbitrarily close to h.y/ for all y 2 C0x . Recall that, on neighborhoods Ua and Ub

of a0 and b0 respectively, we have that h takes fibres x D cte to fibres x0 D cte,
that is, h B � D � B h. Then, on .Ua [ Ub/ \ C0x , we have that � B fx D � B h.
Thus, since fx.y/ is close to h.y/ and they are in the same leaf, we conclude that
fx.y/ D h.y/ for all y 2 .Ua [ Ub/ \ C0x (whenever x is close to a0). Then the
function hx W @Dx 7! V 0, defined as hx D h on C0x and hx D fx on @DxnC0x , is
continuous and its image is contained in a leaf.

Assertion. If x is close enough to a0, the map hx is injective.

Proof. Clearly hx is injective on C0x and @DxnC0x separately. Then it is sufficient
to prove that hx.C0x/ and hx.@DxnC0x/ are disjoint. Let Ix D C0xn.Ua \Ub/ and
I D C0n.Ua \ Ub/. If x is close to a0, we have that � B h is arbitrarily close to
hB� D gB� , on Ix � C0x . Then the set� Bh.Ix/ is arbitrarily close to gB�.Ix/. On
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the other hand, observe that, when x is close to a0, the set gB�.Ix/ is arbitrarily close
to the setg.I /. Then, whenx is close toa0, the set�Bh.Ix/ is arbitrarily close tog.I /.
Thus, since I is compact and disjoint of the closure of @DnC0, we have that � Bh.Ix/

is disjoint of g.@DnC0/ D � B fx.@DxnC0x/. Therefore h.Ix/ D hx.Ix/ is disjoint
of fx.@DxnC0x/. On the other hand, hx.C0x \.Ua [Ub// D h.C0x \.Ua [Ub// D
fx.C0x \ .Ua [ Ub// and is therefore disjoint of fx.@DxnC0x/.

The Jordan curve hx.@Dx/ is the boundary of a simply connected domain D0
x in

the leave passing through x. It follows from the construction that hx depends contin-
uously on x. Then, by Lemma11 below we have that hx extends to a homeomorphism
hx W xDx 7! xD0

x , which depends continuously on x. The homeomorphism hx has the
following properties:

(1) hx D h on C0x ,

(2) � B hx D ˛ B � on Ax ,

(3) � B hx D ˇ B � on Bx ,

(4) � B hx D � B � on C1x .

The domain zD is bounded by the union of the paths A, zC0, B and zC1, where zC0

and zC1 are segments of C0 and C1 respectively. For x 2 †, let zDx be the lifting

of zD to the leaf passing through x, that is, � W xzDx 7! xzD is a diffeomorphism. Let
QAx D ��1.A/, zC0x D ��1. zC0/, zBx D ��1.B/ and zC1x D ��1. zC1/. Analogously,

reducing† if necessary, for all x 2 † we construct the map Qhx W xzDx 7! V 0 such that

(1) Qhx is a homeomorphism onto its image,

(2) zD0
x D Qhx. zDx/ is contained in the leaf passing through h.x/,

(3) Qhx D h on zC0x ,

(4) � B Qhx D ˛ B � on QAx ,

(5) � B Qhx D ˇ B � on zBx ,

(6) � B Qhx D � B � on zC1x .

By reducing†we may assume thatDx and zDx are contained in V and that hx and Qhx

are defined for all x 2 x†. Let D D S
x2x†Dx and zD D S

x2x† zDx . Let f W D 7! V 0
and Qf W zD 7! V 0 be defined by f D hx on Dx and Qf D Qhx on zDx . Clearly f and
Qf are continuous and it is easy to see that

f D Qf on D \ zD : (4.1)

In fact, if z 2 D \ zD , then �.z/ is contained in A or B . Suppose that �.z/ 2 B .
Then z 2 Bx D zB Qx for some x; Qx. Then it suffices to show that f .w/ D Qf .w/
for all w 2 Bx D zB Qx , that is, hx.w/ D Qh Qx.w/ for all w 2 Bx D zB Qx . But
� B hx.w/ D ˇ B �.w/ D � B Qh Qx.w/ for all w 2 Bx , then, since B is an interval, it
suffices to show that hx.w/ D Qh Qx.w/ for some w 2 Bx D zB Qx . Let w0 2 Bx be the
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point such that �.w0/ 2 C0. Then w0 2 C0x \ zC0 Qx and we have by definition that
hx.w0/ D Qh Qx.w0/ D h.w0/.

It is easy to see that D [ zD contains a set of type f.t; x/ W jt j � Nı; r0 � jxj � r1g
for Nı > 0. Let W be a neighborhood of the divisor E such that

(1) h is defined on SW nE,

(2) W \ V D f.t; x/ 2 V W jxj < r0g,

(3) h.SW nE/ does not intersect the set f.t 0; x0/ 2 V 0 W jx0j � r 0
1g.

Define the map Nh on .W [ D [ zD/nE as Nh D h onW nE, Nh D f on D and Nh D Qf
on zD . It follows from (4.1) and conditions (1), (2), (3) above that Nh is a topological
equivalence between F and F 0 and maps the set f0 < jt j � Nı; jxj D r1g into
fjx0j D r 0

1g in V 0. Moreover Nhmaps the subsets fx D cteg of f0 < jt j � ı; jxj D r1g
into the subsets fx0 D cteg of fjx0j D r 0

1g. Finally, by a lifting path argument we
finish the proof of Theorem 10. �

Lemma 11. Let ft W @D 7! C be an injective map for all t and suppose that ft

depends continuously on t . Let Ut be the interior domain of ft .@D/. Then there
exists a continuous family of homeomorphisms Nft W xD 7! xUx extending ft , that is,
such that Nft D ft on @D for all t .

5. Homological compatibility

In this section we prove Theorem 12, which shows that some homological data is
preserved by the equivalence h. This result has been previously obtained in the
case of an orientation preserving homeomorphism in [15] (Theorem 6.2.1) using
Theorem 3.16 of [14].

Theorem 12. Let S and S 0 be irreducible analytic curves with isolated singularity
at 0 2 C2. Let h W U 7! U 0 be a topological equivalence between S and S 0, that
is, h is an orientation preserving homeomorphism such that h.S \ U/ D S 0 \ U 0,
h.0/ D 0. Let � W M 7! C2 and � 0 W M 0 7! C2 be finite compositions of blow ups
such that k�.S/ D k� 0.S 0/. Let zS and zS 0 be the strict transforms of S and S 0 by �
and � 0 respectively. Let p and p0 be the intersections of zS and zS 0 with its respective
divisors and take holomorphic coordinates .t; x/ and .t 0; x0/ at p and p0 respectively
such that

(1) zS and zS 0 are given by ft D 0g and ft 0 D 0g,
(2) the exceptional divisors are given by fx D 0g and fx0 D 0g respectively.

Take a; b; a0; b0 > 0 such that

(1) the set fjt j � a; 0 < jxj � bg is contained in the domain of definition of h,
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(2) h.f.0; x/ W 0 < jxj � bg/ � f.0; x0/ W 0 < jx0j < b0g,
(3) h.fjt j � a; jxj D bg/ � fjt 0j < a0; 0 < jx0j < b0g.

Let t 00; x0
0 2 C with 0 < jt 00j � a0 and 0 < jx0

0j � b0 and define the paths
˛; ˇ W Œ0; 1� 7! M , ˛0; ˇ0 W Œ0; 1� 7! M 0 by ˛.s/ D .ae2�is; b/, ˇ.s/ D .a; be2�is/,
˛0.s/ D .t 00e2�is; x0

0/, ˇ
0.s/ D .t 00; x0

0e
2�is/. Then, in the first homology group of

T 0 D f0 < jt 0j � a0; 0 < jx0j � b0g we have

Œh.˛/� D 	Œ˛0� and Œh.ˇ/� D 	Œˇ0�;

where 	 D 1 or �1 according to h preserves or reverses the natural orientations of
S and S 0.

Proof. For some integers m, n we have

h.ˇ/ D mˇ0 C n˛0 in H1.T
0/. (5.1)

Let ˇ0 and ˇ0
0 be the paths defined by ˇ0 D .0; be2�is/, ˇ0

0 D .0; b0e2�is/, s 2 Œ0; 1�.
If Q D fjt j � a; 0 < jxj � bg and Q0 D fjt 0j � a0; 0 < jx0j � b0g it is easy to
see that ˇ D ˇ0 in H1.Q/, ˇ0 D ˇ0

0 in H1.Q
0/ and h.ˇ0/ D 	ˇ0

0 in H1.Q
0/.

Then h.ˇ/ D 	ˇ0 in H1.Q
0/. On the other hand it follows from equation (5.1) that

h.ˇ/ D mˇ0 in H1.Q
0/, hence m D 	. Then we have

h.ˇ/ D 	ˇ0 C n˛0 in H1.T
0/. (5.2)

Take neighborhoods W and W 0 of the divisors E D ��1.0/ and E 0 D � 0�1.0/

respectively, with the following properties:

(1) W contains the set fjt j � a; jxj � bg,

(2) W \ ft D 0g is homeomorphic to a disc,

(3) h.W \ ft D 0g/ � ft 0 D 0g,

(4) h.W nE/ D W 0nE,

(5) �.W / and � 0.W 0/ are homeomorphic to balls.

Let S0 D �.W \ ft D 0g/ and S 0
0 D � B h.W \ ft D 0g/. Since �.W / is

homeomorphic to C2 and S0 is closed in �.W / and homeomorphic to C, we have by
Alexander’s duality that H1.�.W /nS0/ ' Z. Then, since W0 D W n.E [ ft D 0g/
is homeomorphic to �.W /nS0, we haveH1.W0/ ' Z and it is easy to see that ˛ is a
generator of this group. In the same way, ifW 0

0 D W 0n.E 0 [ft 0 D 0g/ and we assume
x0

0 small enough3 we have that ˛0 is a generator of the group H1.W
0

0/ ' Z. Since
h preserves orientation it follows from the topological invariance of the intersection
number (see [7] p. 200) that

h.˛/ D 	˛0 in H1.W
0

0/. (5.3)

3Without loss of generality we may suppose x0
0 arbitrarily small.
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Then, if ˇ D k˛ (k 2 Z) in H1.W0/, we obtain:

h.ˇ/ D k	˛0 in H1.W
0

0/: (5.4)

Since S and S 0 have isomorphic reductions and k�.S/ D k� 0.S 0/ we also have

ˇ0 D k˛0 in H1.W
0

0/. (5.5)

We may assume x0
0 small such that ˇ0 and ˛0 are contained in a set of type T 0

� D f0 <
jt 0j � a0; 0 < jx0j � "g with T 0

� � W 0
0. Then it is easy to see that we may write

equation (5.2) in H1.T
0
� ) and therefore in H1.W

0
0/, that is,

h.ˇ/ D 	ˇ0 C n˛0 in H1.W
0

0/.

Then, by using equations (5.4) and (5.5) we obtain n D 0. On the other hand, let

h.˛/ D q˛0 C rˇ0 in H1.T
0/

with q; r 2 Z. Then, since ˛0 is homologous to zero in Q0 we obtain

h.˛/ D rˇ0 in H1.Q
0/. (5.6)

Clearly ˛ is homologous to zero in fjt j � a; jxj D bg and hence, since h.fjt j �
a; jxj D bg/ is contained inQ0, we deduce that h.˛/ D 0 inH1.Q

0/. It follows from
equation (5.6) that r D 0 and thus h.˛/ D q˛0 in H1.T

0/. As before, we may write
this equation in H1.W

0
0/, that is, h.˛/ D q˛0 in H1.W

0
0/. Finally, it follows from

equation (5.3) that q D 	. �

6. Topological invariance of nodal separatrices

The following proposition allows us to divide the proof of Theorem 7 in two cases:

(1) The singularities p and p0 are nodes with equal (positive irrational) eigenvalue.

(2) The singularities p and p0 are non-nodal.

Proposition 13. Under the conditions of Theorem 7, we have that p is a nodal
singularity if and only p0 is a nodal singularity. In this case the eigenvalues of p and
p0 are equal.

Proof. Suppose that p has a real irrational positive eigenvalue. We know that in
this case p is linearizable. Then the holonomy associated to zS is linearizable. Let
q 2 zSnfpg and † a disc through q transverse to F . Let � � zSnfpg be a simply
loop based on q and let g W .†; q/ 7! .†; q/ its holonomy map. We know that
h.†/ is a continuous disc transverse to F 0 through the point q0 D h.q/. By a local
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deformation of h we may assume that †0 D h.†/ is a complex disc transverse to
F 0 and clearly h W .†; q/ 7! .†0; q0/ is a topological conjugation between g and
the holonomy g0 W .†0; q0/ 7! .†0; q0/ associated to the loop h.�/ in zS 0nfp0g. But
g is linearizable and this property is a topological invariant in Diff.C; 0/, then the
holonomy associated to zS 0 is also linearizable, hence the singularityp0 is linearizable.
Consider holomorphic coordinates .t; x/ and .t 0; x0/ at p and p0 respectively such
that

(1) p andp0 are generated by the holomorphic vector fields�t @
@t

Cx @
@x

and�0t 0 @
@t 0 C

x0 @
@x0 respectively,

(2) the exceptional divisors are given by fx D 0g and fx0 D 0g respectively,

(3) zS and zS 0 are given by ft D 0g and ft 0 D 0g respectively.

By Theorem 10 we may assume that

(1) there are numbers r; r 0; ı; ı0 > 0 such that the set fjt j < ı; jxj D rg is mapped
by h into fjt 0j < ı0; jx0j D r 0g, and

(2) if jzj D r , the set fjt j < ı; x D zg is mapped by h into a set of type fx0 D cteg.

Take .a; b/; .a0; b0/ 2 C2 such that jbj D r , jaj < ı and h.a; b/ D .a0; b0/. Define
the paths ˇ0.s/ D .0; be2�is/; s 2 Œ0; 1� and ˇ0

0.s/ D .0; b0e2�is/; s 2 Œ0; 1� in
zS and zS 0 respectively. The holonomy maps associated to ˇ0 and ˇ0

0 computed in
† D f.t; b/ W jt j < ıg and †0 D f.t 0; b0/ W jt 0j < ı0g are given by t 7! e2�i�t and
t 0 7! e2�i�0

t 0 respectively. Suppose first that h preserves the orientation of the leaves.
Then h.ˇ0/ is homotopic to ˇ0

0 and therefore h W † 7! †0 is a topological conjugation
between the maps t 7! e2�i�t and t 0 7! e2�i�0

t 0. Then, since je2�i�j D 1 we have
by the topological invariance of the rotation number that

e2�i�0 D e2�i�: (6.1)

Since the holonomy maps are irrational rotations, the orbits of the points .a; b/ and
.a0; b0/ are dense in the circles C D f.t; b/ W jt j D jajg � † and C D f.t 0; b0/ W
jt 0j D ja0jg � †0 respectively. Therefore h maps C onto C 0 and it is easy to prove
that hjC W C ! C 0 is a given by

hjC .t; b/ D ..a0=a/t; b0/ for all .t; b/ 2 C: (6.2)

Let f�g D � � Œ�� and define the paths �.s/ D .ae2�if�g.1�s/; b/; s 2 Œ0; 1� and
� 0.s/ D .a0e2�if�0g.1�s/; b0/; s 2 Œ0; 1� in† and†0 respectively. From (6.1) we have
f�g D f�0g and from (6.2) we obtain h.�.s// D � 0.s/ for all s 2 Œ0; 1�. Define in M
the path �.s/ D .ae2�i�s; be2�is/, s 2 Œ0; 1�. This path is a segment of orbit of the
1-foliation induced by F in fjt j < ı; jxj D rg. The orbits of this foliation are mapped
by h into orbits of the 1-foliation induced by F 0 in fjt 0j < ı0; jx0j D r 0g. It is easy to
see that h.�/ is a positive reparametrization of the path � 0.s/ D .a0e2�i�0s; b0e2�is/,



Vol. 89 (2014) Constructing equivalences and projective holonomy 645

s 2 Œ0; 1� inM 0. It follows that h.� � �/ is a positive reparametrization of � 0 � � 0 and
therefore

h.� � �/ D � 0 � � 0 in H1.T
0/, (6.3)

where T 0 D f0 < jt 0j � ja0j; 0 < jx0j � jb0jg. Define the paths ˛; ˇ W Œ0; 1� 7!
M , ˛0; ˇ0 W Œ0; 1� 7! M 0 by ˛.s/ D .ae2�is; b/, ˇ.s/ D .a; be2�is/, ˛0.s/ D
.a0e2�is; b0/, ˇ0.s/ D .a0; b0e2�is/. If T D f0 < jt j � jaj; 0 < jxj � jbjg, it
is easy to see that � � � D Œ��˛ C ˇ and � 0 � � 0 D Œ�0�˛0 C ˇ0 in the groups H1.T /

and H1.T
0/ respectively. Then from equation (6.3) we obtain

h.� � �/ D Œ�0�˛0 C ˇ0 in H1.T
0/: (6.4)

On the other hand, it follows from Theorem 12 that h.� � �/ D Œ��˛0 C ˇ0 in
H1.T

0/, so equation (6.4) gives Œ��˛0 C ˇ0 D Œ�0�˛0 C ˇ0. Thus Œ�� D Œ�0� and
therefore � D �0. Suppose now that h reverses the orientation of the leaves. In this
case h W † 7! †0 reverses orientation and is a topological conjugation between the
holonomy map associated to ˇ0 and the inverse of the holonomy map associated to
ˇ0

0. Therefore h.t; b/ D ..a0= Na/Nt; b0/ for all .t; b/ 2 C and we obtain as before
that f�g D f�0g. By redefining now � 0.s/ D .a0e�2�if�0g.1�s/; b0/; s 2 Œ0; 1� and
� 0.s/ D .a0e�2�if�0g.1�s/; b0/; s 2 Œ0; 1� we obtain again that h.� � �/ is a positive
reparametrization of � 0 � � 0 and we may also write equation (6.3). As before � � � D
Œ��˛Cˇ inH1.T / but in this case we have � 0�� 0 D �Œ�0�˛0�ˇ0 inH1.T

0/. It follows
from Theorem 12 that h.� ��/ D �Œ��˛0 �ˇ0, so we have �Œ��˛0 �ˇ0 D �Œ�0�˛0 �ˇ0
and we obtain again � D �0. �

7. Proof of Theorem 7 in the nodal case

This section is completely devoted to prove Theorem 7 when p and p0 are nodal
singularities. Since the proof is slightly too long, the proof contains a series of
intermediary propositions (14 to 25). We also use some lemmas which are enounced
at the end of the section.

Let � be the eigenvalue of p and p0. There are coordinates .t; x/ at p and .t 0; x0/
at p0 such that the following holds:

(1) The foliations are locally generated by the vector fields t @
@t

C �x @
@x

and t
0@
@t 0 C

�x0 @
@x0 respectively.

(2) The exceptional divisors E and E 0 are given by fx D 0g and fx0 D 0g respec-
tively.

Let B and B 0 be closed balls in the coordinates .t; x/ and .t 0; x0/ centered at p and
p0 respectively. Each leaf of F jB other than the separatrices ft D 0g and fx D 0g is
dense in a 3-submanifold which separates the ball B in two connected components.
Each of those connected components contains a separatrix. Let B� D f.t; x/ 2 B W
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x ¤ 0g and B 0� D f.t 0; x0/ 2 B 0 W x0 ¤ 0g and let H and H 0 be denote the space of
leaves of F jB�

and F 0jB0
�

respectively.

Proposition 14. Consider L 2 H and assume that there is an open ball B centered
at p such that h.L \ B/ is contained in a leaf L0 2 H 0. Then there is a ball B 0
centered at p0 such that h�1.L0 \ B 0/ is contained in L.

Proof. Since the set @B\ NL is compact and disjoint of the divisor, we may take a ball
B 0 centered at p0 such that h�1.B 0/ is disjoint of @B \ NL. If w is contained in L\B
we have h.w/ 2 L0. Thus, if w ! p, then h.w/ tends to the divisor an we have
necessarily that h.w/ 7! p0. Therefore we may take w 2 L \ B with h.w/ 2 B 0.
Consider any point z 2 L0 \ B 0. Let C � L0 \ B 0 be a set connecting h.w/ to z.
Since h�1.B 0/ is disjoint of @B\ NL, the set h�1.C / is contained in QLn@B , where QL is
the leaf of F containing L. Observe that L\B is a connected component of QLn@B .
Then, since the connected set h�1.C / � QLn@B contains the point w 2 L \ B we
have h�1.C / � L \ B , hence h�1.z/ 2 L. �

Define A as the set of the leaves L 2 H for which there is an open ball B
centered at p such that h.L \ B/ is contained in a leaf L0 2 H 0 denoted by h�.L/.
By Proposition 14, h�.A/ is contained in the set A0 of the leaves L0 2 H 0 for which
there is an open ballB 0 centered atp0 such thath�1.L0\B 0/ is contained in a leaf in H .
By applying the proposition in the other direction we conclude that h�.A/ D A0 and
h� is a bijection. Clearly A and A0 are non-empty since they contain the separatrices
ft D 0g and ft 0 D 0g respectively.

Proposition 15. If L 2 H is close to the separatrix ft D 0g then L 2 A.

Proof. Denote ft D 0g and ft 0 D 0g by S and S 0 respectively. Let B 0 be a ball
centered at p0 with xB 0 � B 0 and take a ball B centered at p such that h.B/4 does
not meet some neighborhood 
 of the compact set S 0 \ @B 0. Fix z0 2 S \ B with
h.z0/ 2 B 0 and assume z close enough to z0 such that h.z/ 2 B 0. Let Lz 2 H

and L0
z 2 H 0 be the leaves through z and h.z/ respectively. By assuming h.z/ close

enough to h.z0/ 2 S 0 we have that xL0
z \ @B 0 � 
. Then h.Lz \ B/ � h.B/ is

disjoint of xL0
z \ @B 0 and we have h.Lz \ B/ � F 0n@B 0, where F 0 is the leaf of

F 0 through h.z/. Observe that L0
z \ B 0 is a connected component of F 0n@B 0. Then

h.Lz \ B/ is connected and intersects (at least in h.z/) the connected component
L0

z \ B 0 of F 0n@B 0, hence h.Lz \ B/ � L0
z \ B 0 and therefore Lz 2 A. �

Proposition 16. If L 2 A, there is an open ball B such that h. NL \ B/ is contained
in h�.L/. Therefore any leaf contained in NL is an element of A.

4We denote by h.A/ the set h.A \ dom.h/).
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Proof. Let B be an open ball centered at p such that h.L \ B/ is contained in a
leaf L0 2 H 0. Let z 2 NL \ B and zn 2 L with zn ! z. Since B is open we
may assume that zn 2 B for all n 2 N. Then h.zn/ 2 L0 for all n 2 N and we
have h.z/ D lim h.zn/ 2 xL0. Thus, if L1 2 H is contained in NLnfpg we have
h.L1 \ B/ � h. NL\ B/ � xL0 � T 0 and, since h.L1/ is a connected subset of a leaf
of F , we conclude that h.L1/ is contained in a leaf in H 0. �

Proposition 17. Let L 2 A and L0 D h�.L/. There is a ball B centered at p
such that the connected component of Bn NL intersecting ft D 0g is contained in the
connected component of B 0n xL0 intersecting ft 0 D 0g.
Proof. As in Proposition 16 we may find a ball B 0 centered at p such that

h�1.B 0 \ xL0/ � NL: (7.1)

Let V 0 be the connected component of B 0n xL0 intersecting ft 0 D 0g. Take a neigh-
borhood W 0 of the divisor E 0 such that

(1) W 0 \ xL0 � B 0,
(2) if
 is the connected component ofW 0n xL0 intersecting ft 0 D 0g, then
 � V 0.

It follows from (7.1) and (1) above that

h�1.W 0 \ xL0/ � NL: (7.2)

LetB be a ball centered atp such thath.B/ � W 0. LetV be the connected component
ofBn NL intersecting ft D 0g. Then h.V / � W is connected and it follows from (7.2)
that h.V / � W 0n xL0. Then, since h.V / is connected and intersects ft 0 D 0g, we have
m h.V / � 
. Thus, it follows from (2) that h.V / � V 0. �

If F;L 2 H are not separatrices, we will write F > L orL < F to means that F
and the separatrix ft D 0g are contained in the same connected component of Bn NL.

Proposition 18. If F > L and L 2 A, then F 2 A and h�.F / > h�.L/.

Proof. Let B a ball centered at p given by Proposition 17 and let V and V 0 be as in
the proof of this proposition. Since F > L, then F \B � V and by Proposition 17
we have h.F \ B/ � V 0 � B 0. It is easy to see that this implies F 2 A and
h�.F / > h�.L/. �

Proposition 19. At least one of the equalities A D H or A0 D H 0 holds.

Proof. Assume by contradiction that A ¤ H and A0 ¤ H 0. As a first step we will
prove that there exists L 2 H (not a separatrix) such that

F > L ) F 2 A and F < L ) F … A. (7.3)
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The closure of a leafL 2 H is contained in a set of type jxj=jt j� D r 2 .0;C1�. We
denote r D r.L/. It is easy to see that F > L is equivalent to r.F / > r.L/. Then
(r.F / > r.L/,L 2 A) impliesF 2 A and therefore we deduce that r.A/ � .0;C1�

is an interval. Since A ¤ H we see that � WD inf.r.A// > 0. Now, if we takeL 2 H

such that r.L/ D � it is easy to see that (7.3) holds.
Now we continue with the proof of Proposition 19. Suppose first that L … A and

take L0 2 H 0nA0. Let B 0 be a ball centered at p0 with xB 0 � B 0. Since L is not the
separatrix ft D 0g, there is a neighborhood W 0 of the divisor E 0 such that

(1) W 0 \ xL0 � B 0,

(2) if V 0is the connected component ofW 0n xL0 intersecting ft 0 D 0g, then V 0 � B 0.
Let B be a ball centered at p such that h. xB/ � W 0 and let V be the connected
component ofBn NL intersecting ft D 0g. Let z 2 V andF 2 H be the leaf containing
z. Clearly F is contained in the connected component of Bn NL intersecting ft D 0g,
hence F > L and therefore F 2 A, by (7.3). Then h�.F / 2 A0 and we have
h�.F / \ xL0 D ;, otherwise L0 � h�.F / and Proposition 16 implies L0 2 A0,
which is a contradiction. Therefore z … xL0 and it follows that h.V / \ xL0 D ;, that
is h.V / � W 0n xL0. Therefore, since h.V / is connected and intersects ft 0 D 0g, we
deduce from (2) that h.V / � V 0 � B 0. Thus, sinceL\B � xV , we have h.L\B/ �
h. xV / � h.V / � xB 0 � B 0, henceL 2 A, which is a contradiction. Suppose now that
L 2 A and letL0 D h�.L/. LetB 0 a ball centered at p0 with xB 0 � B 0 and take a ball
B centered atp such thath.L\B/ � L0\B 0. Since @B 0\ xL0 is compact and far of the
divisor, we may assumeB small enough such that h.B/ is disjoint of a neighborhood

 of xL0 \ @B 0. Choose a point z0 2 L \ B . Thus, since h.L \ B/ � L0 \ B 0, we
have h.z0/ 2 L0 \ B 0. It is easy to see that we may find a point z arbitrarily close
to z0 such that the leaf F 2 H through z satisfies F < L and therefore F … A.
Since h.z0/ 2 B 0 we may assume h.z/ 2 B 0. Let F 0 2 H 0 be the leaf through
h.z/. Again by taking h.z/ close enough to h.z0/ 2 L0 we may also assume that and
xF 0 \ @B 0 � 
. Let zF 0 be the leaf of F 0 containing F 0 and observe that F 0 \ B 0 is

a connected component of zF 0n@B 0. Since h.F \ B/ � h.B/ and xF 0 \ @B 0 � 


we have that h.F \ B/ is disjoint of xF 0 \ @B 0. Then h.F \ B/ � zF 0n@B 0. Thus,
since h.F \B/ is connected and intersect (at least in h.z/) the connected component
F 0 \B 0 of zF 0n@B 0, we deduce that h.F \B/ � F 0 \B 0. But this means thatF 2 A,
which is a contradiction. �

Given L0
0 2 H 0 we will find a neighborhood W 0 D W 0.L0

0/ of the divisor E 0
with the following property:

If L0 > L0
0 and F 0 is a leaf of F 0jW 0 intersecting L0; then F 0 � L0: (7.4)

Suppose firstW 0 is any neighborhood ofE 0 and let F 0 be a leaf of F j0W 0 intersecting
L0 > L0

0. IfF 0 is not contained inL0, thenF 0 intersects the boundary @L0 D L0 \@B
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of L0. But it is easy to see that the union of the sets f@L0gL0>L0
0

is contained in a
compact set K disjoint of the divisor E 0. Then it suffices to take W 0 disjoint of K.

Proposition 20. Let B be a ball centered at p andW a neighborhood of the divisor
E such that B � W and h.W / � W 0. Given z 2 BnE, let Lz 2 A be the leaf
through z and let Fz be the leaf of F jW containing Lz \ B . Then, if h�.Lz/ > L

0
0,

we have h.Fz/ � h�.Lz/.

Proof. It follows from the definition of h.Fz/ that h.Fz/\h�.Lz/ ¤ ;. Then, since
h�.Lz/ > L

0
0, the property 7.4 implies that the leaf F 0

z of F 0jW 0 containing h.Fz/ is
a subset of h�.Lz/. Therefore h.Fz/ � h�.Lz/. �

Now, by global considerations we prove the following.

Proposition 21. Both equalities A D H and A0 D H 0 hold. Thus h� is a bijection
between H and H 0.

Proof. By Proposition 19 we may assume that A D H . Suppose by contradiction
that A0 ¤ H 0. Fix L0

0 2 H 0nA0 and let W 0, W , B , Lz and Fz as in Proposition 20.

Claim 22. For all z 2 BnE the set SFz intersects the divisor only at p.

Let z 2 BnE. Since h�.Lz/ 2 A and L0
0 … A0 we deduce from Propositions 16

and 18 that h�.Lz/ > L
0
0. Then Proposition 20 implies that h.Fz/ � h�.Lz/. Now,

suppose that wn 2 Fz tends to the divisor as n ! 1. Then h.wn/ 2 h�.Lz/ tends
to the divisor and therefore h.wn/ tends to p0. Since h�.Lz/ 2 A0, if h.wn/ is close
enough to p0 we have necessarily wn 2 Lz , hence wn tends to p. Thus Claim 22 is
proved.

By a suitable finite composition of blow ups we construct a map Q� W zM ! M

such that the strict transform of F by Q� has only reduced singularities. Since p is
yet a reduced singularity we may assume that Q� does not involve any blow up at p.
Thus we may locally identify the spaces zM andM at the points Q��1.p/ ' p. Let zF
denote the strict transform of F restricted to the set �W D Q��1.W /. For all z 2 BnE
the leaf Fz of F jW defines a leaf zFz of zF . Let zE D Q��1.E/ and D � zE be the
projective line containing p.

Claim 23. Any singularity q ¤ p of zF in D has a real negative eigenvalue.5

Let .t; x/ be holomorphic coordinates at q and a; b > 0 such that

(1) q ' .0; 0/ and D is given by fx D 0g,

5This a consequence of the contradiction hypothesis A0 ¤ H 0.
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(2) the set T D fjt j � a; jxj � bg is contained in �W and q is the unique singularity
in T ,

(3) any point in R D fjt j D a; 0 < jxj < bg belongs to zFz for some z 2 BnE.

Let w be any point in R, let L be the leaf of zF jT through w, and z 2 B such

that zFz contains w. We have by (2) that L � zFz . Then NL � xzFz and, since p … T , it
follows from Claim 22 that NL \D D ;. Thus Claim 23 is a direct consequence of
Lemma 28 below.

Suppose that D1 is a projective line in zE intersecting D. Observe that the union
of the zFz contains a neighborhood of any regular point inD. Then, since by Claim 23
the singularity at D \D1 has a real negative eigenvalue, there is a neighborhood U
of this singularity such that

U n.D [D1/ �
[

z2BnE

zFz :

Let †1 � U nD be a disc transverse to D1. Then, if q1 ¤ q is a singularity in D1,
there are coordinates at q1 satisfying the conditions (1), (2) and (3) in the proof of
Claim 23 with q1 andD1 instead of q andD. Thus we may prove that all singularities
in D1 have eigenvalue in R<0. If we continue with this argument along the divisor
zE we conclude that all the singularities of zF other than p have eigenvalue in R<0.

Let zS � zM be the strict transform of the union of the separatrices of F in .C2; 0/.
Since all singularity other than p has eigenvalue in R<0, there exists a neighborhood
z
 of zE such that the union of the zFz contains the set z
n. zE [ zS/. Then

zS [
[

z2BnE

zFz

contains the set z
n zE and therefore

G D h. zS/ [ h
� [ zFz

�
[E 0

is a neighborhood of the divisor E 0. But this is a contradiction because it follows
from Proposition 20 that h.

S zFz/ is contained in
S
h�.Lz/ � B 0 and clearly h. zS/[

B 0 [E 0 is not a neighborhood of E 0. Proposition 21 is proved. �

At this point we have a correspondence between the leaves in H with the leaves in
H 0. Moreover, given corresponding leavesL 2 H andL0 2 H 0 we have h.L\B/ �
L0 for a small enough ball B centered at p. Let F and F 0 be the leaves of F

and F 0 containing L and L0 respectively. The map hjF maps the pair .F;L \ B/

onto the pair .F 0; h.L \ B//. From the topological structure of nodal singularities
and using the fact h.L \ B/ � L0 we can prove that the pairs .F;L \ B/ and
.F 0; h.L\B// are homeomorphic to .F;L/ and .F 0; L0/. This allows us to construct
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a new homeomorphismhF W F 7! F 0 mapping .F;L/onto .F 0; L0/. In the remainder
of the proof we construct the maps hF depending continuously on F and such that
hF D h outside B. We make this construction in such way the total homeomorphisms
obtained extends to the divisor in a neighborhood of the nodal singularity.

Naturally we may assume that the sets fjt j � 1; jxj � 1g and fjt 0j � 1; jx0j � 1g
are contained in the balls B and B 0 respectively. Take b 2 .0; 1/ and consider
w D .1; b/ 2 B. Let Lw 2 H be the leaf through w. If b is taken small enough,
h�.Lw/ intersects fjt 0j D 1; jx0j � 1g in a set of type fjt 0j D 1; jx0j D b0g for some
b0 2 .0; 1/. SetT D f0 < jt j � 1; 0 < jxj � bg, T 0 D f0 < jt 0j � 1; 0 < jx0j � b0g,
R D fjt j D 1; jxj � bg, R0 D fjt 0j D 1; jx0j � b0g, R� D fjt j D 1; 0 < jxj � bg
and R0� D fjt 0j D 1; 0 < jx0j � b0g.

Proposition 24. There exists a homeomorphism onto its image f W R� 7! T such
that the following holds:

(1) If z 2 L 2 H , then f .z/ 2 L and h.f .z// 2 h�.L/.

(2) h.f .R�// � T 0.

Proof. Consider the real flow (tangent to the foliation) �s.t; x/ D .te�s; xe��s/.
Given z D .t; x/ 2 R�, we have �s.z/ ! p as s ! C1 and clearly �s.z/, s � 0

is contained in a leaf L 2 H . By Proposition 21 we have L 2 A and therefore for
s big enough we have that h.�s.z// is contained in a leaf L0 2 H 0. Since h.�s.z//

tends to the divisor and xL0 meets the divisor only at p we deduce that h.�s.z// ! p0
when s ! C1. Then we may define

�0.z/ D inff� � 0 W h.�s.z// 2 T 0 for all s > �g:
Let us prove that �0 W R� 7! Œ0;C1� is upper semi-continuous. Suppose on the
contrary that there is a sequence .zn/n2N of points in R� with zn ! z 2 R� and
such that �0.zn/ � �0.z/ C 2" for some " > 0. Then for all n 2 N we find
sn > �0.z/C " such that h.�sn.zn// … T 0. Suppose first that fsng is bounded. Then
by passing to a subsequence if necessary we may assume sn ! s � �0.z/ C ", so
that h.�sn.zn// ! h.�s.z//, but this is a contradiction because h.�sn.zn// … T 0
for all n 2 N and s > �0.z/ implies h.�s.z// 2 T 0. Otherwise, again by passing
a subsequence we may suppose sn ! C1. Then �sn.zn/ ! p and therefore
h.�sn.zn// tends to the divisor. Let Ln 2 H be the leaf through zn. Since zn ! z

there is L 2 H such that Ln > L for all n 2 N. Let V and V 0 be as in the proof of
Proposition 17. Thus, for n big enough we have �sn.zn/ 2 V and, by Proposition 17,
h.�sn.zn// 2 V 0. Then, since h.�sn.zn// tends to the divisor, we conclude that
h.�sn.zn// ! p0, a contradiction since h.�sn.zn// … T 0 for all n 2 N. Now, by
Lemma 29 below there exists a continuous function � W R� 7! RC such that � > �0.
Then h.��.z/.z// 2 T for all z 2 R� and we finally define f .z/ D ��.z/.z/. �
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Proposition 25. There exists a homeomorphism H W R 7! R0 with the following
properties:

(1) H.f.t; x/ 2 R W t D ug/ D f.t 0; x0/ 2 R0 W t 0 D ug for all u.

(2) If z 2 L 2 H , thenH.z/ 2 h�.L/.

Proof. Let †� D f.1; x/ W 0 < jxj � bg and †0� D f.1; x0/ W 0 < jx0j � b0g. By
Proposition 24 the set D D h B f .†�/ is contained in T 0. Fix Nz 2 D and � Nz � T 0
a path in the leaf through Nz with � Nz.0/ D Nz and � Nz.1/ 2 †0�. Given z 2 D , choose
a path ˛z � D joining z with Nz. Denote by � the projection .t 0; x0/ 7! t 0 and let
�z W Œ0; 1� 7! T 0 be the path in the leaf through z which is the lifting by the fibration
t 0 D cte of the curve �.˛z � � Nz/. Then �z.1/ is a point in†0�. Suppose that Q̨z � D

is another path joining z with z0. Then Q̨z � ˛�1
z � D is the image by h of a closed

path � in f .†�/. Since f .†�/ is homotopic to †� in T we have that � does not
link the separatrix ft D 0g. Thus, it follows from Theorem 12 that Q̨z � ˛�1

z does
not link ft 0 D 0g. Then the paths �.˛z � � Nz/ and �. Q̨z � � Nz/ are homotopic in
f.t 0; 0/ W t 0 ¤ 0g and therefore the point �z.1/ 2 †0� does not depend on the path
˛z . Thus g.z/ D �z.1/ defines a map g W D 7! †0�. It is not difficult to prove that g
is injective6. Define H W †� 7! †0� by H D g B h B f . Then H is injective and it
follows from Proposition 24 that H.w/ 2 h�.L/ 2 H 0 whenever w 2 L 2 H . Let
w 2 † and Lw 2 H the leaf through w. If w is close to .1; 0/ 2 †, then Lw is close
to fx D 0g. In this case, we know that h�.Lw/ is close to fx0 D 0g. Therefore, since
H.w/ 2 h�.Lw/, we have that H.w/ ! .1; 0/ 2 †0 as w ! .1; 0/ 2 †. Then by
settingH.1; 0/ D .1; 0/we extendH as a homeomorphism of† D f.1; x/ W jxj � bg
onto its image in †0 D f.1; x0/ W jx0j � b0g. Let r W † 7! † and r 0 W †0 7! †0 be
the holonomy maps associated to positively oriented circles around .0; 0/ in fx D 0g
and fx0 D 0g respectively. Let us prove thatH conjugates the maps r and r 0� , where
	 D 1 or �1 according to h preserves or reverses the orientation of the leaves. Let
w 2 † and � � R be the path in the leaf through w joining it with r.w/. Take any
path  � † joining r.w/ with w. Let ˛ and ˛0 as in Theorem 12. Then � �  is
homologous to ˛ in ft ¤ 0g and therefore f .� � / is homologous to ˛ in ft ¤ 0g.
Suppose first that h preserves the orientation of the leaves. Then by Theorem 12
we have that h B f .� � / is homologous to ˛0 in ft 0 ¤ 0g. Parametrize the path
h B f ./ � D by zt , t 2 Œ0; 1�, z0 D h B f .r.w//, z1 D h B f .w/. For all t 2 Œ0; 1�
we may construct the path �zt

as above, depending continuously on t 2 Œ0; 1�. The
path �zt

is contained in a leaf and �zt
.1/ D g.zt /. The map G W Œ0; 1� � Œ0; 1� 7! T 0

defined by G.t; s/ D �zt
.s/ is continuous and maps the boundary of the square onto

h B f ./ � �z1
� .g B h B f .//�1 � ��1

z0
:

Then this path is homotopically trivial in ft 0 ¤ 0g, so that �z0
� h B f .� � /��1

z0

6We make a complete proof in a similar situation in Subsection 10.1.
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is homologous to

# D �z0
� h B f .�/ � ��1

z1
� g B h B f ./

in ft 0 ¤ 0g. Then # is homologous to ˛0 in ft 0 ¤ 0g. Observe that # has the part
�z0

�hBf .�/���1
z1

contained in a leaf and the part gBhBf ./ contained in†0. Then,
since path �z0

�hBf .�/���1
z1

joins the pointH.w/withH.r.w//, we conclude that
H.r.w// D r 0 BH.w/. If h reverses the orientation of the leaves the proof follows
as above but in this case we have that # is homologous to �˛0 in ft 0 ¤ 0g, so that
H.r.w// D r 0�1 BH.w/.

Recall that w 2 f.1; x/ W jxj D bg implies that h�.Lw/ \ †0 is contained in
f.1; x0/ W jx0j D b0g. Then H.x†/ intersects f.1; x0/ W jx0j D b0g and, since H.x†/
is invariant by the irrational rotation r 0, we deduce that H.x†/ D x†0. Now, since
the 1-foliations induced in R and R0 are suspensions of r and r 0 respectively, it is
easy to extend H to a homeomorphism H W R 7! R0 satisfying the assertions of the
proposition. �

Define the function g W R 7! T by g.t; x/ D �1.t; x/ D .te�1; xe��/. This map
is a homeomorphism between R and zR D f.t; x/ W jt j D e�1; jxj � be��g.

Lemma 26. Let f; g W R� ! T be homeomorphisms onto is image. Suppose that
f .z/ and g.z/ are contained in the leaf trough z for all z 2 R�. Let Vf and Vg be the
closures inT of the connected components of T nf .R�/ and T ng.R�/ containingR�,
where T is the union of leavesL 2 H meetingR�. Then there exists a leaf preserving
homeomorphism ˆ W Vf 7! Vg such that ˆjR�

D id and ˆ.f .z// D g.z/ for all
z 2 R�.

Proof. Given z 2 R�, let Lf
z and Lg

z be the leaves of F jVf
and F jVg

through z.

The interiors of Lf
z and Lg

z are conformally equivalent to the unit disc and we may
consider the Poincaré metric on Lf

z and Lg
z . Let �f

z W R 7! L
f
z be the geodesic in

L
f
z with �f

z .�1/ D z and �f
z .C1/ D f .z/ and set I f

z D �
f
z .R˙1/. Define

analogously �g
z W R 7! L

g
z and I g

z . Let ˆz W I f
z 7! I

g
z be the homeomorphism such

that ˆz.�
f
z .s// D �

g
z .s/ for all s 2 R. Define ˆ W Vf 7! Vg by ˆj

I
f
z

D ˆz for all
z 2 R�. It is not difficult to see that ˆ is a leaf preserving homeomorphism. �

If f is given by Proposition 24 and g is the map defined above, Lemma 26
gives us a leaf preserving homeomorphism ˆ W Vf 7! Vg such that ˆjR�

D id and
ˆ.f .z// D g.z/ for all z 2 R�. Take a neighborhoodW of the divisorE containing
fjt j � 1; jxj � bg and setW� D W n.fjt j � 1g[E/,Wf D W�[Vf andWg D W�[
Vg . Since ˆjR�

D id we may continuously extend ˆ to Wf by setting ˆjW�
D id.

Then ˆ W Wf 7! Wg is a leaf preserving homeomorphism. Define f 0 W R0� 7! T 0 by
f 0 D h B f BH�1 and g0 W R0 7! T 0 by g0.t 0; x0/ D �1.t 0; x0/ D .t 0e�1; x0e��/. By
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Proposition 24 we may apply Lemma 26 to f 0 and g0 to obtain a homeomorphism
ˆ0 W Vf 0 7! Vg0 such that ˆ0jR0

�
D id and ˆ0.f 0.z0// D g0.z0/ for all z0 2 R0�. Set

W 0 D h.W /,W 0� D W 0nfjt 0j � 1g,W 0
f 0 D W 0�[Vf 0 andW 0

g0 D W 0�[Vg0 and extend
ˆ0 to a leaf preserving homeomorphism ˆ0 W W 0

f 0 7! W 0
g0 . Then it is easy to see that

the homeomorphism Nh D ˆ0 B h B ˆ�1 is a topological equivalence between F jWg

and F 0jW 0
g0

. Set zR� D g.R�/ D f.t; x/ W jt j D e�1; 0 < jxj � be��g and observe

that Nhj zR�
D g0 BH B g�1. Then Nh extends to zR and maps this set homeomorphically

onto zR0 D f.t;0 x0/ W jt 0j D e�1; jx0j � b0e��g. Now we apply Lemma 27 below to
extend Nh to fjt j � e�1; jxj � be��g as a topological equivalence and this finishes
the proof of Theorem 7 in the nodal case.

Lemma 27. Let F be the foliation in C2 generated by the holomorphic vector field
t @

@t
C �x @

@x
, where � is an irrational positive number. Let a; b; a0; b0 > 0 and

h W fjt j D a; jxj � bg 7! fjt j D a0; jxj � b0g a homeomorphism such that

(1) h is a topological equivalence between the 1-foliations induced by F in fjt j D
a; jxj � bg and fjt j D a0; jxj � b0g,

(2) h is expressed as h.t; x/ D .h1.t/; h2.t; x//.

Then h extends as a topological equivalence between fjt j � a; jxj � bg and fjt j �
a0; jxj � b0g.

Proof. 7 Clearly h maps the disc f.a; x/ W jxj � bg onto the disc f.h1.a/; x/ W
jxj � b0g and h conjugates the holonomies .a; x/ 7! .a; e2�i�x/ and .h1.a/; x/ 7!
.h1.a/; e

2�i�x/ defined on these discs. Since � is irrational it is easy to see that h
maps the circle � D f.a; x/ W jxj D bg onto the circle � 0 D f.h1.a/; x/ W jxj D b0g
and there is � 2 C� such that h.a; x/ D .h1.a/; �x/ for all x 2 C with jxj D b.
Since for any ˛; ˇ 2 C� the map .t; x/ 7! .˛t; ˇx/ is a global auto-conjugation
of F , by composing h with a suitable such map if necessary we may assume that
a D b D a0 D b0 D h1.a/ D � D 1. Then h.1; x/ D .1; x/ for all x 2 C
with jxj D 1. Clearly the map h1 is a homeomorphism of the circle fjt j D 1g onto
itself. Since the map .t; x/ 7! .Nt; x/ is a global auto-conjugation of F , we may
assume that h1 preserves orientation. Then there is an increasing homeomorphism
� W Œ0; 1� ! Œ0; 1� such that h1.e

2�is/ D e2�i�.s/ for all s 2 Œ0; 1�. The orbits
of the 1-foliation induced by F on f.t; x/ W jt j D jxj D 1g are parametrized by
.e2�is; e2�i�sz/, s 2 R, jzj D 1. Observe that h maps each circle f.e2�is; x/ W
jxj D 1g onto the circle f.e2�i�.s/; x/ W jxj D 1g. Moreover h conjugates the 1-
foliation on f.t; x/ W jt j D jxj D 1g with itself and h.1; z/ D .1; z/ if jzj D 1. Then
it is easy to see that

h.e2�is; e2�i�sz/ D .e2�i�.s/; e2�i��.s/z/;

7We may also find a proof of this lemma in [5].
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for s 2 Œ0; 1�, jzj D 1. Let �t W Œ0; 1� ! Œ0; 1�, t 2 Œ1=2; 1� be a continuous family of
homeomorphism such that �1=2 D id and �1 D �. For 1=2 � r � 1, jzj D 1 and
s 2 Œ0; 1/ define

h.re2�is; e2�i�sz/ D .re2�i�r .s/; e2�i��r .s/z/:

It is not difficult to see that this extends de conjugation h to the set f.t; x/ W 1 � jt j �
1=2; jxj D 1g. Moreover, if jt j D 1=2 and jxj D 1 we have h.t; x/ D .t; x/ and
we can extend h to the set f.t; x/ W jt j � 1=2; jxj D 1g as the identity map. Then
the extended h is an auto-conjugation of the 1-foliation defined by F on @.D � D/.
Finally, since the singularity at 0 2 C2 is in the Poincaré domain, topologically the
foliation F on the bidisc D �D is a “cone” generated by the 1-foliation on @.D �D/.
Then it is easy to extend h to the interior of the bidisc. �

Lemma 28. Let F be a holomorphic foliation on a neighborhood of the set T D
fjt j � a; jxj � bg with an isolated singularity at 0 2 C2. Suppose that

(1) the singularity at 0 2 C2 is reduced andD D fx D 0g is a separatrix, and

(2) if L is the leaf of F jT passing through a point in R D fjt j D a; 0 < jxj < bg,
then NL \D D ;.

Then the singularity at 0 2 C2 has a real negative eigenvalue.

Proof. By condition (2) we see that 0 2 C2 could not be neither a hyperbolic neither
a nodal singularity. It remains to prove that 0 2 C2 is not a saddle node. Suppose
that 0 2 C2 is a saddle node and assume first that D is the strong separatrix. By
the Flower Theorem is easy to see that a leaf L through a point p 2 R close enough
to D is such that NL contains D, which contradicts property (2). Suppose now that
D is the weak separatrix. By the topological structure (see for example [9]) of the
saddle node we may find a leaf L through a point in R such that L intersects the set
f0 < jt j < a; jxj D bg at a point q close enough to the strong separatrix ft D 0g
in such way (as above) NL contains the strong separatrix. Then NL contains 0 2 C2,
which contradicts property (2). �

Lemma 29. If �0 W R 7! R is upper semi-continuous, there exists a continuous
function � W R 7! R such that � > �0.

Proof. It is easy to prove. �

8. Topological structure of a non-nodal simply singularity

Let F be a holomorphic foliation with an isolated singularity at 0 2 C2 of eigenvalue
� … RC

0 . Let .x; y/ be coordinates such that fx D 0g and fy D 0g are the separatrices
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of the singularity. We may find a holomorphic vector field Z generating F such that

Z D �1x.1C � � � / @
@x

C �2y.1C � � � / @
@y
;

where re.�1/ > 0 > re.�2/. Thus, in a neighborhood U of 0 2 C2 we have
Z D xA @

@x
C yB @

@y
with re.A/ > 0 > re.B/. Let � be the real flow associated

to Z and let a; b > 0 be such that P D fjxj � a; jyj � bg � U . Let z be any
point in T D P nfxy D 0g. Write �.t; z/ D .x.t/; y.t// and put g.t/ D jx.t/j2. A
straightforward computation shows that

g0.t/ D 2jx.t/j2refA.t/g > 0;
hence the function jx.t/j is strictly increasing. Analogously we may prove that the
function jy.t/j is strictly decreasing. Thus, since z D .x0; y0/ with jx0j � a and
jy0j � b we have that the orbit of z intersects the set fjxj � a; jyj D bg at exactly one
point w. Therefore we have z D �.s; w/ with 0 � s � �.w/, where �.w/ � 0 is the
unique real number such that �.�.w/;w/ is contained in the set fjxj D a; jyj � bg.
Since Z is transverse to fjxj D a; jyj � bg, we have that � depends continuously
on w. Moreover observe that Z is transverse to the sets fjxj D cte ¤ 0g and
fjyj D cte ¤ 0g.

Lemma 30. Let b1 2 .0; b/ and let I and J be open intervals such that NI � .0; a/

and NJ � .0; b1/. Then there exists ı > 0 and a map g such that

(1) g is a homeomorphism between Q D f.x; y/ W jxj � a; 0 < jyj � bg and
Qnf.0; y/ W jyj � b1g,

(2) g preserve the leaves of F ,

(3) g D id on f.x; y/ W .jxj � a/.jyj � b/ D 0g,
(4) for all r 2 NI we have that g maps fjxj D r; 0 < jyj < ıg into a set of type

fjyj D r 0g with r 0 2 NJ .

Proof. Let R D f.x; y/ W 0 < jxj � ı; jyj D bg with 0 < ı < a. Take functions
˛ W Œ5; 6� 7! R and ˇ W Œ0; 3� 7! R such that

(1) ˛ is strictly increasing with ˛.Œ5; 6�/ D NI ,

(2) ˇ is strictly decreasing with ˇ.0/ D b, ˇ.1/ D b1 and ˇ.Œ2; 3�/ D NJ .

It is easy to see that for ı small enough the orbit of any z 2 xR intersects each
set fjyj D ˇ.s/g. Since the flow is transverse to the sets fjyj D ˇ.s/g, we have
continuous functions �s W xR 7! RC such that �.�s.z/; z/ 2 fjyj D ˇ.s/g for all
z 2 R, s 2 Œ0; 3�. Make �.t; z/ D .x.t/; y.t// and observe that

(1) jy.�3.z//j D ˇ.3/ > 0 and jx.�.z//j D a > 0,
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(2) jx.�3.z//j ! 0 and jy.�.z//j ! 0 as jzj ! 0.

Therefore by reducing ı we may assume that

jy.�3.z//j � jx.�3.z//j > 0 > jy.�.z//j � jx.�.z//j:
Then, since jy.t/j � jx.t/j is strictly decreasing we have a continuous function
�4 W R 7! RC defined by �.�4.z/; z/ 2 fjxj D jyjg. By reducing ı if necessary
we have jx.�4.z//j < ˛.5/ and we also obtain continuous functions �s W R 7! RC
such that �.�s.z/; z/ 2 fjxj D ˛.s/g for all z 2 R, s 2 Œ5; 6�. Observe that �3 < �4

and �4.z/ ! 1 as z ! fx D 0g. We define �4.z/ D 1 if z 2 xR \ fx D 0g and
construct a continuous family of functions �s W xR 7! RC, s 2 .3; 4/ such that

(1) �s < �s0 for all s; s0 2 Œ3; 4�, s < s0,
(2) �s.z/ ! �3.z/ as s ! 3 for all z 2 xR,

(3) �s.z/ ! �4.z/ as s ! 4 for all z 2 xR.

We extend the family �s by making

�s D .5 � s/�4 C .s � 4/�5 if s 2 Œ4; 5�;
�s D .7 � s/�6 C .s � 6/�7 if s 2 Œ6; 7�;

where �7 D � . It is easy to see that �s < �s0 for all s; s0 2 Œ0; 7�, s < s0. Take an
increasing homeomorphism f W Œ0; 7� 7! Œ0; 7� such f .Œ5; 6�/ D Œ2; 3�, f .Œ0; 4�/ D
Œ0; 1�. We write w D �.�s.z/; z/, z 2 xR, and define �.w/ D �f .s/.z/ � �s.z/.
Take a continuous function � W Œ0; ı� 7! Œ0; 1� such that � D 1 on Œ0; ı=2� and � D 0

near of ı. Define now g.w/ D �.�.jzj/�.w/;w/. The map g is defined on V D
f�.�s.z/; z/ W z 2 xR; z 2 dom.�s/g and may be extended to Q by making g D id
on Qn xV . It is not difficult to see that g satisfies the assertions of the lemma.

Lemma 31. Given a1 with a > a1 > 0, there exists a map g such that

(1) g is a homeomorphism between P nf.x; 0/ W jxj � a1g and P nf0g,
(2) g preserve the leaves of F ,

(3) g maps f.x; 0/ W a1 < jxj � ag onto f.x; 0/ W 0 < jxj � ag with g.x; 0/ !
.0; 0/ as jxj ! a1,

(4) g D id on f.x; y/ W jxj D a or jyj D bg,

Proof. Let R D f.x; y/ W 0 < jyj � ı; jxj D ag with 0 < ı < b. Now, we denote
by � the real flow associated to �Z. As in the proof of Lemma 30, for ı small enough
we may construct a continuous family of functions �s W xR 7! R [ fC1g, s 2 Œ0; 3�
such that

(1) �0 D 0,
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(2) �s < �s0 for all s; s0 2 Œ0; 3�, s < s0,
(3) for all s 2 .0; 2/ the function �s take values in RC,

(4) �2.z/ 2 fjxj D jyjg for all z 2 R,

(5) �3.z/ 2 f2jxj D jyjg for all z 2 R.

Take an increasing homeomorphism f W Œ0; 3� 7! Œ0; 3� such f .Œ0; 1�/ D Œ0; 2�. As
before, we write w D �.�s.z/; z/, z 2 xR and define g.w/ D �.�.jzj/�.w/;w/,
where �.w/ D �f .s/.z/ � �s.z/ and � W Œ0; ı� 7! Œ0; 1� is such that � D 1 on Œ0; ı=2�
and � D 0 near of ı. The map g is defined on V D f�.�s.z/; z/ W z 2 xR; z 2
dom.�s/g and may be extended to P nf.x; 0/ W jxj � a1g by making g D id on P n xV .
Then g satisfies the assertions of the lemma.

9. Proof of first part of Theorem 7 in the non-nodal case

In this section we prove the first part of Theorem 7, that is: Given " > 0 we con-
struct a topological equivalence Nh between F and F 0 such that, for some numbers
a; b; a0; b0 2 .0; "/, we have

(1) Nh maps fjt j � a; 0 < jxj � bg into fjt 0j � a0; 0 < jx0j � b0g,

(2) Nh maps fjt j D a; 0 < jxj � bg into fjt 0j D a0; 0 < jx0j � b0g,

(3) close to the divisor and outside

fjt j � "; jxj < "g [ h�1.jt 0j � "; jx0j < "/
we have Nh D h.

Actually we will prove the following stronger version of item (2) above:

(20) For some a1 2 .0; a/; a0
1 2 .0; a0/, the sets fjt j D r; 0 < jxj � bgr2Œa1;a� are

mapped by Nh into the sets fjt 0j D r 0; 0 < jx0j � b0gr 02Œa0
1

;a0�

It follows from Theorem 10 that there is a topological equivalence Qh such that for
some a; a0; b 2 .0; "/ we have the following:

(1) For all s in a neighborhood of b, the set fjt j < a; jxj D sg is mapped by Qh into
the set fjt 0j < a0; jx0j D ˇ.s/g, where ˇ is an increasing continuous function.

(2) Close to the divisor we have Qh D h.

Take b1 < b and an open interval J in the domain of definition of ˇ such that
NJ � .0; b1/. Let b0 D ˇ.b/, b0

1 D ˇ.b1/, J 0 D ˇ.J / and take open intervals I
and I 0 such that I � .0; a/, xI 0 � .0; a0/. Clearly we may assume a, a0, b, b0 be
small enough such that fjt j � a; jxj � bg and fjt 0j � a0; jx0j � b0g are contained in
neighborhoods as in Section 8. Thus, by Lemma 30 there exist homeomorphisms g
and g0 and numbers ı; ı0 > 0 such that
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(1) g maps Q D fjt j � a; 0 < jxj � bg onto Qnf0g � Œ0; b1�,

(2) g0 maps Q0 D fjt 0j � a0; 0 < jx0j � b0g onto Q0nf0g � Œ0; b0
1�,

(3) g and g0 are leaf preserving and are equal to the identity on f.t; x/ 2 Q W
.jt j�a/.jxj�b/ D 0g and f.t 0; x0/ 2 Q0 W .jt 0j�a0/.jx0j�b0/ D 0g respectively,

(4) g maps the sets fjt j D s; 0 < jxj � ıgs2 NI , into the sets fjxj D sgs2 NJ ,

(5) g0 maps the sets fjt 0j D s; 0 < jx0j � ı0gs2 xI 0 into the sets fjx0j D sgs2 xJ 0 .

Outside the exceptional divisor we may extend g and g0 as the identity map. Clearly
g and g0 are topological equivalences of F with itself and F 0 with itself respectively.
Then Nh D g0�1 B Qh B g is a topological equivalence between F and F and it is not
difficult to see that, if ı is taken small enough, the following properties hold:

(1) The sets fjt j D s; 0 < jxj < ıgs2 NI are mapped by Nh into the sets fjt 0j D s; 0 <

jx0j < b0gs02 xI 0 .

(2) Close to the divisor and out of

fjt j � "; jxj < "g [ h�1.jt 0j � "; jx0j < "/
we have Nh D h.

Let b0 D b0 and take a 2 I , a0 2 I be such that fjt 0j D a0; 0 < jx0j < b0g contains
Nh.jt j D a; 0 < jxj < ı/.
Assertion. There exists Nı > 0 such that fjt 0j D a0; 0 < jx0j < Nıg is contained in
Nh.jt j D a; 0 < jxj < ı/.

Take Nı > 0 such that for all .t 0; x0/ 2 Nh.jt j D a; jxj D ı/we have jx0j > Nı. Since
Nh is a homeomorphisms, the set X D Nh.jt j D a; 0 < jxj < ı/ \ fjt 0j D a0; 0 <
jx0j < Nıg is open in fjt 0j D a0; 0 < jx0j < Nıg. Obviously the setX is non-empty, then
it suffices to show thatX is closed in fjt 0j D a0; 0 < jx0j < Nıg. Let .tk; xk/ 2 fjt j D
a; 0 < jxj < ıg be such that Nh.tk; xk/ tends to a point q in fjt 0j D a0; 0 < jx0j < Nıg.
We may assume that .tk; xk/ ! .t0; x0/. Clearly x0 ¤ 0 because q is not a point
in the divisor fx0 D 0g. Then .t0; x0/ 2 fjt j D a; 0 < jxj � ıg. By the choice
of Nı and the injectivity of Nh we have that .t0; x0/ 2 fjt j D a; 0 < jxj < ıg. Then
q D Nh.t0; x0/ 2 X and X is therefore closed in fjt 0j D a0; 0 < jx0j < Nıg. Assertion
is proved.

Take b 2 .0; ı/ small enough such that

A D Nh.fjt j < a; 0 < jxj � bg/
intersects B D fjt 0j � a0; jxj � b0g in a set contained in fjt 0j � a0; jxj < Nıg. Then

A \ @B � fjt 0j D a0; 0 < jxj < Nıg:
But fjt 0j D a0; 0 < jxj < Nıg is contained in the set Nh.jt j D a; 0 < jxj < ı/, which
is disjoint of A, since Nh is injective. Then A \ @B D ;. Finally, for complete the
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proof we show that A is contained in B . The set A is connected and it intersects the
separatrix ft 0 D 0; jx0j < b0g � B . Then A 6� B implies A \ @B ¤ ;, which is a
contradiction.

10. The-linearizing/resonant case

Let Nh be the homeomorphism constructed in Section 9. By simplicity we denote Nh also
by h. Let G be the foliation of dimension 1 induced inR0 D fjt 0j D a0; 0 < jx0j < b0g
by F 0. Let � be the flow associated to G such that if z D .t 0;�/ 2 R0, then
�.s; z/ D .e2�ist 0;�/. For ı 2 .0; b/ let D D D.ı/ D f.a; x/ W 0 < jxj < ıg and
D D D.ı/ D h.D/. Let† D f.a0; x0/ W jx0j < b0g. It is in the proof of the following
Proposition where the linearizing-resonant hypothesis is used. This proposition is the
key to redressing the transverse sections †u D ft D u; jxj � bg in the proof of the
second part of Theorem 7. By Œc; d � we denote the closed interval with endpoints c
and d , even if c > d .

Proposition 32. If ı is small enough, there exists a continuous function � W D 7! R
such that

(1) �.t; z/ 2 R0 and f .z/ D �.�.z/; z/ 2 † for all z 2 D , t 2 Œ0; �.z/�,
(2) f W D 7! † is a homeomorphism onto its image,

(3) f .D/ D 
nfog, where o D .a0; 0/ 2 † and 
 � † is a topological disc
containing o,

(4) f .z/ ! o as z 2 D tends to the divisor fx0 D 0g.

It is easy to see that there exists z0 2 D and s0 2 R such that �.s0;z0/ 2 †

and �.s; z0/ 2 R0 for all s 2 Œ0; s0�. Let z be any point in D . Take any path
� W Œ0; 1� 7! D with �.0/ D z0 and �.1/ D z. If z0 D .t0;�/, we may write
�.s/ D .e2�i	.s/t0;�/, where � W Œ0; 1� 7! R is continuous and �.0/ D 0. We define
�.z/ D s0 � �.1/. Let � 0 W Œ0; 1� 7! D be another path joining z0 and z and let
� 0 W Œ0; 1� 7! R be the corresponding function. It is easy to see that � 0.1/ � �.1/ is
the linking number between the path ��1 B � 0 and the vertical ft D 0g and therefore
equal to zero, by Theorem 12. Thus � is well defined and it is easy to see that it is
a continuous function. Take Qı > 0 be such that T 0 D fjt 0j D a0; 0 < jx0j < Qıg is
contained in h.fjt j D a; 0 < jxj < bg/. We divide the proof of Proposition 32 in
three cases.

10.1. Proof of Proposition 32 when the holonomy is a rotation. In this case we
may take ı small enough such that for all z 2 D , all the orbit of G passing through z
is contained in T 0. Therefore �.t; z/ 2 R0 for all z 2 D and for all t 2 Œ0; �.z/�. It
follows from the construction of � that f .z/ D �.�.z/; z/ 2 †. We shall prove that
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f is injective. Suppose that f .z/ D f .z0/. Let � W Œ0; 1� 7! D be a curve joining z
and z0. Let s 2 Œ0; 1� and let ˛ and ˇ be the paths �..1� s/�.z/; z/ and �.s�.z0/; z0/
respectively. Let � be the closed path��ˇ�˛. For t 2 Œ0; 1�we define�t ,˛t andˇt by
the expressions�.t� B�.s/; �.s//, �..1�sCts/�.z/; z/ and�..sCt .1�s//�.z0/; z0/
respectively. It is easy to see that �t � ˇt � ˛t define a homotopy between � and a
path contained in †. Then � does not link the separatrix ft 0 D 0g and therefore, by
Theorem 12, the path h�1.�/ does not link ft 0 D 0g. Observe that the path h�1.�/

has the part h�1.�/ contained inD. On the other hand, h�1.ˇ�˛/ is a path contained
in a leaf of the foliation F restricted to f0 < jt j � a; 0 < jxj � bg. Since h�1.ˇ�˛/
joins h�1.z/ and h�1.z0/ (points in D) we have that h�1.z/ D g.h�1.z0//, where g
is the holonomy map associated to the projection of h�1.�/ in fx D 0g. Then, since
h�1.�/ does not link ft D 0g, we have that g D id, hence z D z0. Let O.z/ be the
orbit of G passing through z. We know that O.z/ tends to fx0 D 0g as z tends to
fx0 D 0g. It follows that f .z/ ! o as z tends to fx0 D 0g. Topologically, we may
identify D with Dnf0g. Then we extend the function f to D by making f .0/ D o.
This extension is a homeomorphism and 
 D f .D/ is therefore homeomorphic to a
disc. This finishes the proof in this case.

10.2. Proof of Proposition 32 when the holonomy is hyperbolic. Given z 2 D

take a complex disc †z passing through z and transverse to F 0. In a neighborhood
Uz of z is well defined a leaf preserving projection �z W Uz 7! †z . It is not difficult to
prove, since D is a continuous transversal to F , that in a small neighborhood �z of
z in D the restriction �z W �z 7! †z is a homeomorphism onto its image. The charts
f�zgz2D define a natural complex structure on D . Then D , since it is homeomorphic
to an annulus, it is analytically equivalent to an annulus fz 2 C W 0 � r < jzj � 1g
for some r � 0. The holonomy map of the separatrix x D 0 is a contractive function
g W D 7! D. Consider the map g0 D h B g B h�1 W D 7! D . Clearly g0 W D 7! D

is not trivial at homology level and is holomorphic, because it is continuous and leaf
preserving. Then, since g0 is not an isomorphism, it follows from the annulus theorem
(see [19], p. 211) that r D 0 and D is therefore analytically equivalent to a punctured
disc.

By using linearizing coordinates we may assume that the foliation G extends to the
set f.t 0; x0/ W jt 0j D a0; x0 2 Cg and is the suspension of a hyperbolic automorphism
of C. Then we have a map f W D 7! f.a0; x/ W x 2 Cg defined by f .z/ D
�.�.z/; z/. Observe that f is holomorphic, because it is a continuous leaf preserving
map. Identifying D with Dnf0g, we have by the Riemann Extension Theorem that
f extends to a holomorphic map f W D 7! C, f .0/ D 0. Since G is the suspension
of an hyperbolic automorphism of C, there exists a set zR � T 0 such that

(1) zR contains all segment of orbit with endpoints in zR,

(2) zR contains the set f.t 0; x0/ W jt 0j D a0; jxj < �g for some � > 0.

Since f .0/ D 0, by reducing D if necessary we may assume that D and f .D/ are
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contained in zR. It is not difficult to see that the proof of the injectivity of f given
in Case 1 also works in this case. Then f maps D homeomorphically into C and
therefore 
 D f .D/ is a topological disc. This finishes the proof in the hyperbolic
case.

10.3. Proof of Proposition 32 when the holonomy is resonant non-linearizable.
In this case the foliations near the singularities p and p0 are generated by vector fields
of the form t @

@t
C �x.1 C � � � / @

@x
and t 0 @

@t 0 C �0x0.1 C � � � / @
@x0 with �; �0 2 Q<0.

Let  and  0 be the real flows associated to these vector fields respectively. Given
z D .a; x/ 2 D, there is a unique s.z/ 2 R such that  .s.z/; z/ 2 fjxj D bg.
Let �z be the path  .s; z/, s 2 Œ0; s.z/� and define �.z/ D  .s.z/; z/. For all
w 2 f0 < jt 0j < a0; 0 < jx0j � b0g define �.w/ as the intersection of the orbit of w
by the flow  0 with R0. As in Section 4 we may construct a topological equivalence
Nh such that

(1) Nh is defined in a neighborhood of the set f.0; x/ W 0 < jxj � bg,

(2) fjt j � a; jxj � bg \ dom. Nh/g is mapped by Nh into fjt 0j � a0; jx0j � b0g,

(3) For � > 0 small enough and for all � 2 S1 � C, Nh maps the set fjt j � �; x D
�bg into the set fjt 0j < a; x0 D �b0g,

(4) close to the divisor we have Nh D h.

If ı is small enough we have �z � dom. Nh/ and Nh.�z/ � fjt 0j � a0; jx0j � b0g. The
path �. Nh.�z// is contained in a orbit of the flow � and is homotopic in this orbit to
a path of the form �.s; Nh.z//, s 2 Œ0; �z� for some �z 2 R such that �.�z; Nh.z// D
�. Nh.�.z//. By (4) we may assume that Nh.z/ D h.z/ for all z 2 D. Then�.s; w/ 2 R0
for all w 2 D , s 2 Œ0; �1.w/�, where �1.w/ D �h�1.w/. Let D1 D f�.�1.w/; w/ W
w 2 Dg. We will prove that there is a continuous function �2 W D1 7! R such that
�.s; w/ 2 R0 and �.�2.w/; w/ 2 † for all w 2 D1, s 2 Œ0; �2.w/�. Since D1 does
not link the vertical ft 0 D 0g there exists a continuous function � W D1 7! R such
that w D .a0e2�i	.w/;�/ for all w 2 D1.

Assertion. The function � is bounded.

Given � 2 S1 let I
 D f.t; �b/ W t 2 .0; �1�g, where �1 2 .0; �/ and � is as in
item (3) above. Let U
 D f.t; �b/ W jt j < �g and U 0


 D f.t 0; �b0/ W jt 0j < ag and

observe that NhjU�
W U
 7! U 0


 conjugates the holonomies of the separatrices ft D 0g
and ft 0 D 0g computed on U
 and U 0


 respectively. Therefore, if r
 > 0 and �
 are
continuous real functions such that

Nh.�/ D .r
.�/e
2�i	�.�/; �b0/ (10.1)

for all � 2 I
, it follows from Lemma 33 that �
.I
/ has finite diameter M
 2 R.
Observe that, since the orbits of the flow  0 are contained in the sets ft 0=jt 0j D cteg,
we have

� Nh.�/ D �.r
.�/e
2�i	�.�/; �b0/ D .a0e2�i	�.�/;�/: (10.2)
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Moreover, the orbits of passing through a point of
S
I
 are all contained in f.t; x/ W

t 2 R>0g, then these orbits intersects f.t; x/ W jt j D a; jxj < bg at points inD. Thus,
by taking �1 small enough we may assume that

S
I
 is contained in �.D/. Then

� Nh.�/ 2 D1 for all � 2 I
 and therefore � Nh.�/ D .a0e2�i	.� Nh.�//;�/. It follows
from equation (10.2) that there is some integer n
 such that �.� Nh.�// D �
.�/Cn


for all � 2 I
. This implies that the diameter of �.� Nh.I
// is equal to M
. We may
take ı1 2 .0; ı/ small enough such that

(1) I
 intersects the set K D �.f.a; x/ W ı1 � jxj � ıg/ for all � 2 S1,

(2) �.f.a; x/ W 0 < jxj � ı1g/ is contained in
S
I
.

Then �.D1/ � �� Nh.K/ [ S
�� Nh.I
/ and each �� Nh.I
/ intersects the compact

set �� Nh.K/. Thus, it suffices to show that fM
 W � 2 S1g is bounded. Suppose
by contradiction that there is a sequence f�kg � S1 with M
k

! 1 and �k !
N� 2 S1. Since Nh is a topological equivalence, for large k there are holonomy maps
fk W f.t; �kb/ W jt j � �1g 7! U N
 and gk W Nh.U N
/ 7! U 0


k
such that

(1) Nh.z/ D gk B Nh B fk.z/ for all z 2 f.t; �kb/ W jt j � �1g,

(2) fk and gk tends to the identity as k ! 1.

We can parametrize Nh.fk.I
k
// by .rk.�/e2�i	k.�/; N�b0/, � 2 I
k

, where rk > 0 and
�k are real continuous functions. If k is large enough we have that fk.I
k

/ is C 1-
close to I N
 and Lemma 33 below implies that the image of �k has diameter bounded
by some constant C independent of k. For k large we may write gk.w; N�b0/ D
.wck.w/e

2�i#k.w/; �kb
0/, where ck > 0 and #k are real continuous functions with

jj#kjj < 1. Then for all � 2 I
k
,

Nh.�/ D gk B Nh B fk.�/

D gk.rk.�/e
2�i	k.�/; N�b0/

D .rk.�/e
2�i	k.�/ck.�/e2�i#k.�/; �kb

0/
D .rkcke

2�i.	k.�/C#k.�//; �kb
0/:

On the other hand, we have from equation (10.1) that Nh.�/ D .r
k
.�/e2�i	�k

.�/; �kb
0/

for all � 2 I
k
. Therefore we have �
k

.�/ D �k.�/ C #k.�/ C nk for all � 2 I
k

for some nk 2 Z. It follows that M
k
� C C 2 for all k big enough, which is a

contradiction. Assertion is proved.
Define �2.w/ D ��.w/ for all w 2 D1 and let M > 0 be such that jj� jj � M .

Now, keeping � invariable we can reduce ı in order to have �.s; w/ 2 T 0 for all
w 2 D1, s 2 Œ0; �2.w/�. Clearly we have �.�2.w/; w/ 2 † for all w 2 D1. The
injectivity of f follows as before, so Proposition 32 is proved.

Lemma 33. Let h map D D fz 2 C W jzj � rg homeomorphically into C with
h.0/ D 0. Suppose further that h is a topologically conjugation between two germs
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f; g W .C; 0/ 7! .C; 0/ of biholomorphism with resonant fixed point at 0 2 C. Given
a simply path � W Œ0; 1� 7! D with �.0/ D 0, take a real continuous function � such
that h.�.t// D jh.�.t//je2�i	.t/ and define d.�/ 2 R [ f1g as the diameter of
�.Œ0; 1�/ � R. Then there is a constant C > 0 such that d.�/ � C for all � whose
image is contained in the complement of ftu W t > 0g for some u 2 C�.

Proof. Let D� D Dnf0g, B D exp�1.D�/ and B 0 D exp�1.h.D�/. The homeo-
morphism h may be lifted to a homeomorphism H W B 7! B 0 such that h B exp D
exp BH . It is easy to see that any � satisfying the hypothesis of the lemma may be
lifted by exp into the set T D B \ f0 < im.z/ < 4�g Then it is sufficient to show
that there is some constant k > 0 such that H.T / is contained in fjim.z/j � kg.
Suppose that there is some path � satisfying the hypothesis of the lemma and such
that d.�/ < 1. Then we may find two lifting �1 and �2 of � in B such that the set
T is contained in the closed regionK bounded by �1 and �2 in B . Since d.�/ < 1
there is k > 0 such that H.�1/ and H.�2/ are contained in fjim.z/j � kg. In this
case it is easy to see thatH.K/ � fjim.z/j � kg and thereforeH.T / is contained in
fjim.z/j � kg. Now we prove the existence of � . By the Flower Theorem (Leau–
Fatou), considering a repelling petal of f , we may find a simply curve� W Œ0; 1� 7! D,
�.0/ D 0 and a disc D0 � D centered at 0 2 C such that the following holds:

(1) The path �..0; 1�/ is contained in the complement of ftu W t > 0g for some
u 2 C�.

(2) For all z 2 �..0; 1�/ there is some n 2 Z�0 with f Bn.z/ … D0.

Again by the Flower Theorem, considering a attracting petal ofg, we may findu0 2 C,
ju0j D 1 and � > 0 such that for all z 2 ftu0 W 0 < t � �g we have gBn.z/ 2 f .D0/

for all n 2 Z�0. Then, since h conjugates f and g, we deduce that h.�/ does not
intersect ftu0 W 0 < t � �g. Thus h.�/ intersects the ray ftu0 W t > 0g only finitely
many times and therefore d.�/ < 1. �

Remark 34. We conjecture that Lemma 33 is true, in general, when the germs f
and g are non-linearizable. If this would be the case, the theorems of the paper
would be true without the linearizing/resonant hypothesis. The construction of an
extension to a neighborhood of p depends only on the boundedness of the function �
(Subsection 10.3). In particular, the function � is bounded if the homeomorphism in
Lemma 33 is a conformal map, we have this situation for example if the topological
equivalence between the foliations is transversely conformal. In [18] the author shows
some general situations where the topological equivalence is necessarily transversely
conformal, for example if the resolution of F is non-dicritical, has no nodes or
saddle-nodes and has some component of the divisor with non-solvable holonomy
group.
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11. Proof of the second part of Theorem 7 in the non-nodal case

In this section, under the linearizing/resonant hypothesis, we prove the second part
of Theorem 7. We continue with the notation established in Section 10. Denote also
C D fjt j D a; x D 0g, C 0 D fjt 0j D a0; x0 D 0g, R D fjt j D a; 0 < jxj � bg
and �0 D .a; 0/. We have in xR a foliation of dimension 1 induced by F . Recall
the real flow � on xR0 defined in last section. We also denote by � the real flow on
xR such that �.s; z/ D .e2�ist;�/ for z D .t;�/ 2 xR. Choose the orientation of C
given by the flow �. Let � be a oriented circle in R homotopic to C in xR and take a
diffeomorphism g W C 7! C 0, g.�0/ D .a0; 0/ such that g.C / is homotopic to h.�/
in xR0 D fjt 0j D a0; jx0j � b0g. Let Rı0 D f.t 0; x0/ 2 R0 W jt 0j D a0; 0 < jx0j < ı0g
and assume ı0 > 0 be such that

(1) �.s; z/ 2 R0 for all z 2 Rı0 , s 2 Œ�1; 1�,
(2) �.s; z/ 2 fjt j D a; jxj < ıg for all z 2 h�1.Rı0/, s 2 Œ�1; 1�.

Given � 2 C , define #.�/ 2 Œ0; 1/ by � D �.�0; #.�// and let # 0.�/ 2 R be
such that �.s# 0.�/; g.�0//, s 2 Œ0; 1� is a positive reparametrization of the path
g.�.s#.�/; �0//, s 2 Œ0; 1�. Clearly # and # 0 are continuous on Cnf�g and they have
a simply discontinuity at �0. Let � be the projection .t; x/ ! t inR. Given z 2 Rı0 ,
make �.z/ D � B h�1.z/ and let �.z/ 2 R be such that �.�s�.z/; z/, s 2 Œ0; 1� is a
positive reparametrization of h B �.�s#.�.z//; h�1.z//, s 2 Œ0; 1�. From (2) and the
definition of � it is easy to see that �.��.z/; z/ 2 D for all z 2 Rı0 . In Section 10
we found the function � defined on D . Now, we extend � to Rı0 by making:

�.z/ D ��.z/C � B �.��.z/; z/C # 0.�.z//: (11.1)

Assertion. � is continuous and �.s�.z/; z/ 2 R0 for all z 2 Rı0 , s 2 Œ0; 1/.

Let z0 2 D . It is sufficient to show that �.z/ ! �.z0/ whenever z ! z0 2 D

with 1=2 < #.�.z// < 1. If #.�.z// ! 1 we have that �.z/ ! �0, where �0 is such
that �.�s�0; z0/, s 2 Œ0; 1� is a positive reparametrization of h B �.�s; h�1.z0//,
s 2 Œ0; 1�. Then z1 WD �.��0; z0/ D h B �.�1; h�1.z0// 2 D . Let � W Œ0; 1� 7! D

be any path such that �.0/ D z1 and �.1/ D z0. For all t 2 Œ0; 1� define the paths �t

and ˛t by �t .s/ D �.t� B �.s/; �.s// and

˛t .s/ D �..1 � s/t�.z0/C s.t�.z1/ � �0/; z0/

for s 2 Œ0; 1�. The paths ˛t � �t are closed and give a homotopy between ˛0 � �
and ˛1 � �1. By the definition of �0, the path ˛0 is homotopic in R0 to the path
h B �.�s; h�1.z0//, s 2 Œ0; 1�. Then ˛0 � � is homotopic to the path h. Q̨ � Q�/,
where Q̨ is the path �.�s; h�1.z0//, s 2 Œ0; 1� and Q� D h�1 B � . But the path Q̨ � Q�
is homotopic to �C in xR. Then, it follows from the definition of g that ˛0 � �



666 R. Rosas CMH

is homotopic to g.�C/ in xR0. Therefore ˛1 � �1 is homotopic to g.�C/ in xR0.
Observe that, since �1 � †, the path ˛1 � �1 is homotopic in xR0 to the closed path
�..1 � s/�.z0/ C s.�.z1/ � �0/; g.�0//, s 2 Œ0; 1�. Then g.�C/ is homotopic to
�.s.�.z1/ � �.z0/ � �0/; q/, s 2 Œ0; 1�, where q D �.�.z0/; g.�0//. On the other
hand, since #.�.z// ! 1 as z ! z0 with 1=2 < #.�.z// < 1, it follows from
the definition of # 0 that # 0.�.z// ! 	, where 	 (equal to 1 or �1) is such that
�.�s	; g.�0//, s 2 Œ0; 1� is a positive reparametrization of g.�C/ D g B �.�s; �0/,
s 2 Œ0; 1�. Then g.�C/ is homotopic to �.�s	; g.�0// D �.�s	; q/, s 2 Œ0; 1�. It
follows that the paths �.s.�.z1/ � �.z0/ � �0/; q/ and �.�s	; q/ are homotopic in
xR0 and this implies that

	 D ��.z1/C �.z0/C �0:

Thus, if z ! z0 with 1=2 < #.�.z// < 1, we have that �.z/ ! �0, �B�.��.z/; z/ !
� B �.��0; z0/ D �.z1/, # 0.�.z// ! 	 D ��.z1/C �.z0/C �0 and by replacing in
(11.1) we obtain that �.z/ ! �.z0/. Therefore � is continuous. On the other hand it
is easy to see that �.s�.z/; z/ 2 R0 for all z 2 Rı , s 2 Œ0; 1�. The assertion is proved.

Define the map

f W Rı0 7! R0; f .z/ D �.�.z/; z/:

This map f is an extension of the map f W D ! † given by Proposition 32. Given
� D .t� ; 0/ 2 C , let g.�/ D .t 0

�
; 0/ and define the sets

D� D h.f.t� ; x/ W 0 < jxj < ıg/;
†� D f.t 0� ; x0/ W jx0j < b0g:

Observe that f .z/ 2 †� for all z 2 D� \ Rı0 . Moreover, the map f� D
f jD�\Rı0 W D� \Rı0 7! †� may be expressed as f� D g0f0hgh

�1, where g.w/ D
�.�#.�/; w/, g0.w/ D �.# 0.�/; w/ and f0 D f jD\Rı0 . Clearly g and g0 are
diffeomorphisms and by Proposition 32 the map f0 is a homeomorphism. Then f�

is a homeomorphism onto its image and f� .z/ tends to the divisor as z tends to the
divisor. Then we conclude that

(1) f is a homeomorphism onto its image,

(2) f .z/ tends to the divisor as z tends to the divisor,

(3) f maps D� \Rı0 into the vertical †� .

Observe that, for some ı1 > 0, f B h maps each vertical f.t� ; x/ W 0 < jxj < ı1g
into the vertical .t 0

�
; x0/ W 0 < jx0j < b0g.

Now, for some " > 0, ı00 > 0, we will extend f to the set V D f.t 0; x0/ W a0 � " �
jt 0j � a0 C "; 0 < jx0j < ı00g. Take first any ı00 2 .0; ı0/. For " > 0 small enough we
may extend the flow � in the natural way:

(1) � is defined on V ,
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(2) F 0 is invariant by �,

(3) �.s; z/ D .e2�ist 0;�/ whenever z D .t 0;�/.
By reducing " if necessary we have the following property: given z 2 V , there is a
path ˛z W Œ0; 1� 7! f.t; x/ W 0 < jxj < bg such that

(1) ˛z is contained in the leaf of F and ˛z.0/ D h�1.z/,

(2) ˛z.s/ D .tz.s/; xz.z// with t .s/ D .1 � s/tz.0/C sa tz.0/
jtz.0/j ,

that is, ˛z is the lifting to a leaf of a radial segment in fx D 0g such that ˛z.0/ D
h�1.z/ and ˛z.1/ 2 R. Let �z.s/ D hB˛z.s/ D .t 0z.s/; x0

z.s//. There is a continuous
function �z W Œ0; 1� 7! R with �z.0/ D 0 and such that

t 0z.s/ D t 0z.0/
jt 0z.0/j

jt 0z.s/je2�i	z.s/:

Observe that �z.1/ 2 R0 for all z 2 V and we may assume �z.1/ 2 Rı if ı00 is taken
small enough. Then we extend � and f by the expressions

�.z/ D �z.1/C �.�z.1//

and

f .z/ D �.�.z/; z/:

It is easy to see that these functions are continuous. Let Rı00.r/ D fjt 0j D r; 0 <

jx0j < ı00g andR0.r/ D fjt 0j D r; 0 < jx0j < b0g. Let t0 2 C be such that h.f.t0; x/ W
0 < jxj < ı0g/ is contained in R0.r/. We may write t0 D ku0 with k > 0 and
ju0j D a. We know h.f.u0; x/ W 0 < jxj < ı0g/ is mapped by f homeomorphically
into a set f.u0

0; x
0/ W 0 < jx0j < b0g with ju0

0j D a0. It follows from the construction
that, if D.t0;�/ D h.f.t0; x/ W 0 < jxj < �g/ is contained in R0.r/, then D.t0;�/

is mapped by f homeomorphically into †.t0/ D f..rna0/u0
0; x

0/ W 0 < jx0j < b0g.
Then f maps eachRı0.r/ homeomorphically intoR0.r/. Moreover, it is not difficult
to see that

(1) �.s�.z/; z/ 2 R0.r/ for all z 2 Rı0 , s 2 Œ0; 1�,
(2) for all � 2 Œ0; 1� we have that g�.z/ D �.��.z/; z/, maps Rı0.r/ homeomor-

phically into R0.r/,
(3) g� tends to the divisor as z tends to the divisor.

Now, take � W Œa0 � "; a0 C "� 7! Œ0; 1� such that �.a0 � "/ D �.a0 C "/ D 0 and � D 1

on a neighborhood of a0 and define

F.z/ D �.�.r/�.z/; z/ if z 2 Rı0.r/.

It is easy to see that

(1) F preserves the leaves of F ,
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(2) F maps V homeomorphically onto its image,

(3) F D id on Rı0.a0 � "/ [R0
ı0.a

0 C "/,

(4) if � > 0 is small and jt0j is close to a, then F maps each set D.t0; �/ D
h.f.t0; x/ W 0 < jxj < �g/ homeomorphically into a vertical ft 0 D cteg,

(5) F.z/ tends to the divisor as z tends to the divisor.

We may extend F to a topological equivalence of F 0 with itself.
From above we have that Qh D F B h is a topological equivalence between F and

F 0. By reducing b if necessary we may assume that

(1) Qh maps fjt j � a; 0 < jxj � bg into fjt 0j � a0; 0 < jx0j � b0g,

(2) there are numbers a1 2 .0; a/, a0
1 2 .0; a0/ such that Qh extends as a homeomor-

phism to the set f.t; 0/ W a1 � jt j � ag which is mapped onto f.t 0; 0/ W a0
1 �

jt j � a0g.

Let P D fjt j � a;< jxj � bg and P 0 D fjt 0j � a0; 0 < jx0j � b0g. By Lemma 31
there are homeomorphisms g and g0 such that

(1) g maps P nf.t; 0/ W jt j � a1g onto P nf.0; 0/g,

(2) g0 maps P 0nf.t 0; 0/ W jt 0j � a0
1g onto P 0nf.0; 0/g,

(3) g and g0 preserve the leaves of F and F 0 respectively,

(4) g maps f.t; 0/ W a1 < jt j � ag onto f.t; 0/ W 0 < jt j � ag with g.t; 0/ ! .0; 0/

as jt j ! a1,

(5) g0 maps f.t 0; 0/ W a0
1 < jt 0j � a0g onto f.t 0; 0/ W 0 < jt 0j � a0g with g.t 0; 0/ !

.0; 0/ as jt 0j ! a0
1,

(6) g D id and g0 D id on fjt j D a; jxj � bg and fjt 0j D a0; jx0j � b0g respectively.

We may extend g and g0 to topological equivalences of F and F 0 respectively. Then
Nh D g0 B Qh B g�1 is a topological equivalence between F and F 0 and it is easy to see
that Nh extends to P as a leaf preserving homeomorphism.

Proof of Corollary 6. If the projective holonomy is non-solvable, we can construct
a topologically equivalence extending after resolution (see Remark 34). Since the
equivalence is transversely holomorphic, by a well known lifting path argument we
can modify this equivalence near each non-nodal singularity to obtain a topologically
equivalence Nh which is holomorphic near each such singularity. The last statement
of the corollary follows from Proposition 13. �
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