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On the number of finite subgroups of a lattice
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Abstract. We show that the number of conjugacy classes of maximal finite subgroups of a
lattice in a semisimple Lie group is linearly bounded by the covolume of the lattice. Moreover,
for higher rank groups, we show that this number grows sublinearly with covolume. We obtain
similar results for isotropy subgroups in lattices. Geometrically, this yields volume bounds for
the number of strata in the natural stratification of a finite-volume locally symmetric orbifold.
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1. Introduction

Several families of infinite groups share the property that they have finitely many
conjugacy classes of finite subgroups (henceforth, the finiteness property). In the
realm of linear groups this was first proven by Jordan for GLn.Z/. Using their
reduction theory, Borel and Harish-Chandra generalized Jordan’s theorem and proved
the finiteness property holds for arithmetic groups of the form G.Z/, where G is a
linear algebraic group defined over Q [6]. This result was extended by Grunewald and
Platonov to general arithmetic groups, as well as to their finite extensions [15]. Other
families of groups known to enjoy this property are Aut.Fn/, Out.Fn/ (cf. [10]),
mapping class groups (cf. [8]), word hyperbolic groups, and CAT(0) groups (cf. [9]).

For a family of groups that has the finiteness property, it is natural to seek asymp-
totic bounds for the number of conjugacy classes of finite subgroups. For example,
if � is a group with the finiteness property and �n < � is a sequence of finite-index
subgroups, then by elementary group theory

F.�n/ � F.�/ � Œ� W �n�;

where F.�/ is the number of conjugacy classes of finite subgroups. We generalize
this “linear” bound to a family of lattices in a given semisimple Lie group. Naturally,
the index of a group is replaced by its covolume. For reasons that will be made clear
later, we only bound the number of conjugacy classes of maximal finite subgroups.
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Theorem 1.1. Let G be a connected semisimple Lie group with finite center and
without compact factors. For a lattice � < G, denote by f .�/ the number of
conjugacy classes of maximal finite subgroups in � . Then

f .�/ � c � vol.G=�/

with a constant c D c.G/.

In particular, this theorem establishes the finiteness property for lattices in these
semisimple Lie groups. We remark that if G is simple, mere finiteness already follows
from the aforementioned results, unless � is a non-unform lattice in SO.d; 1/ (d � 3)
or SU.d; 1/. Indeed, if G has higher rank, or is Sp.d; 1/ or F �20

4 , every lattice is
arithmetic. If G D SO.2; 1/, or G has rank one and � is a uniform lattice, then � is
word hyperbolic.

In some cases, we can make a stronger statement on the asymptotic growth of the
number of conjugacy classes of maximal finite subgroups.

Theorem 1.2. Let G be as inTheorem 1.1, and assume moreover that R-rank.G/ � 2

and G has Kazhdan’s property (T). If �n is a sequence of pairwise non-conjugate
irreducible lattices in G, then

lim
n

f .�n/

vol.G=�n/
D 0:

The statement of the theorem does not hold for G D SO.d; 1/ (d � 2). Indeed,
in Section 5 we exhibit a sequence of lattices �n < G such that vol.G=�n/ ! 1
and

lim inf
n

f .�n/

vol.G=�n/
> 0:

The asymptotic behavior for lattices in other rank-one groups, as well as that for
irreducible lattices in products of rank-one groups, remains unsettled.

The proof of Theorem 1.1 is based on an analysis of the action of � on the as-
sociated symmetric space X D KnG. Each finite subgroup of � fixes a connected
complete totally geodesic submanifold of X . This establishes a one-to-one corre-
spondence between totally geodesic submanifolds fixed by some finite subgroup, and
isotropy subgroups of � . In this correspondence, maximal finite subgroups corre-
spond to minimal fixed submanifolds. The geometric equivalent of Theorem 1.1 is
stated in Section 4 and is proved by non-positive curvature techniques.

From the geometric point of view, we can extend this result. The quotient orbifold
M D X=� has a natural stratification whose strata are the sets

MŒH� D fx 2 M j Œ� Qx� D ŒH �g;
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where H < � is a finite subgroup, � Qx is the stabilizer in � of a lift of x, and brackets
represent conjugacy classes. In this setting, a conjugacy class of a maximal finite
subgroup corresponds to a stratum that does not contain any other stratum in its
closure. The number of strata equals the number of conjugacy classes of isotropy
subgroups in � . In Section 6 we prove the following extension of Theorems 1.1 and
1.2, which we state here in its geometric form.

Theorem 1.3. Let X be a global symmetric space of non-compact type. Let M D
X=� be an X -orbifold. Denote by s.M/ the number of strata in the natural orbifold
stratification of M . Then

s.M/ � c � vol.M/

with a constant c D c.X/. If the rank of X is at least 2, and Isom.X/ has property (T),
then for any sequence Mn of irreducible X -orbifolds that are pairwise non-isometric
we have

lim
n!1

s.Mn/

vol.Mn/
D 0:

Lastly, we remark on the related problems of bounding the size of maximal finite
subgroups, and the number of conjugacy classes of torsion elements in � . A bound on
the former, combined with a bound on the number of conjugacy classes of maximal
finite subgroups, would yield a bound (perhaps not optimal) on the latter. We were
unable to achieve such bounds with the tools used in this work. In fact, in SL2.R/

the Gauss-Bonnet formula shows that there are arbitrarily large finite subgroups in
lattices of bounded covolume. However, if � < G is an arithmetic lattice and H < �

is a finite subgroup, then by [3]

jH j � c1.log vol.G=�//c2 ;

where c1, c2 are constants that depend on G alone�.
Unfortunately, this does not prove that the number of conjugacy classes of torsion

elements in a lattice in a higher rank simple Lie group grows sublinearly with volume,
a statement that we conjecture to be true.

Acknowledgments. Preliminary results of this work were achieved during the au-
thor’s Ph.D. work at the Hebrew University of Jerusalem. I would like thank my
advisor, Tsachik Gelander, for his continuous support, and his encouragement to
extend and generalize the scope of these results. I would also like to thank Misha
Belolipetsky, Martin Bridson, Alex Furman, and Alex Lubotzky for stimulating con-
versations.

�This follows by combining the inequalities 4.3, 4.5, and 4.6 of [3]. In [3], these inequalities are proved for
standard lattices in SO.n; 1/. In a private communication, Mikhail Belolipetsky reassured me that they hold in
full generality, i.e. for arithmetic lattices in a semisimple algebraic group.
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2. Generalities

We review some facts regarding isometries of Riemannian globally symmetric spaces.
Let X be a Riemannian globally symmetric space with non-positive sectional curva-
ture. We will always assume that the metric is rescaled so that �1 � K � 0.

2.1. The isometry group Isom.X/ is a Lie group without center, with finitely many
connected components. Its identity component can be realized as the connected
component of the real points of a linear algebraic group.

For g 2 Isom.X/, we define the displacement function

dg W X ! R�0; dg.x/ D d.gx; x/:

The minimal displacement set of g is defined by

Min.g/ D fx 2 X W dg.x/ D inf dgg:
An element g 2 Isom.X/ is semisimple if Min.g/ is non-empty. If a semisimple
element fixes a point in X it is elliptic. Otherwise, it is hyperbolic. In either case,
Min.g/ is a connected complete totally geodesic submanifold, and is thus a globally
symmetric space [16], IV, §7. If Min.g/ is empty, g is parabolic. If g is a hyperbolic
isometry and dg is constant, then g is called a Clifford isometry. We note that
g 2 Isom.X/B is a semisimple isometry if and only if it is a semisimple element in
the linear algebraic sense. If g ¤ 1 is a unipotent element in the linear algebraic
sense, then it is parabolic (for the converse to be true, it is necessary that inf dg D 0).

If A is a set of commuting semisimple isometries then
T

˛2A Min.˛/ is non-empty.
We remark that if � is a group acting by isometries on X , we will call elements

of � hyperbolic, elliptic, or parabolic according to the classification of the isometry
by which they act.

2.2. The displacement function dg is convex in the sense that t 7! dg.c.t// is a
convex function for every geodesic c. Consequentially, the sub-level sets of dg are
convex sets.

If C is a convex subset of X and x 2 X , there is a unique point �C .x/ 2 C –
the projection of x to C – which is closest to x. If C is invariant under an isometry
g, then dg.�C .x// � dg.x/. This follows from the fact that the projection does not
increase distances. Consequentially, if x 62 C and c W Œ0; 1/ ! X is a geodesic ray
with c.0/ D �C .x/ and c.t0/ D x, then dg.c.t// is non-decreasing.

2.3. Let � be a countable group acting properly by isometries on X . By [23],
a non-trivial Clifford isometry acts by a translation on the Euclidean factor of X ,
and trivially on the complementary factor. From this, it follows that the set T of
Clifford isometries in � forms a normal, finitely generated, free abelian subgroup.
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If k D rkR T , then there is an isometric splitting X ' X1 � X2 with X2 ' Rk ,
such that every non-trivial element of T acts trivially on X1 and as a translation on
X2. Also, the action of T on X2 is cocompact. We shall call this decomposition the
Clifford splitting� of X with respect to � . Note that this need not coincide with the
de Rham decomposition, because X1 may contain a Euclidean factor.

Every element � 2 � preserves the Clifford splitting, and can be written as
.�1; �2/ with �i 2 Isom.Xi /. We denote by pi the projection of � to Isom.Xi /, and
set �i D pi .�/ (i D 1; 2).

Proposition 2.1. �1 acts properly on X1.

Proof. Suppose in contradiction that �
.n/
1 2 �1 is a sequence such that �

.n/
1 ! 1

but �
.n/
1 x1 converges for some x1 2 X1.

There are elements �
.n/
2 2 �2 such that � .n/ D .�

.n/
1 ; �

.n/
2 / 2 � . Fix any

x2 2 X2. Since T acts trivially on X1 and cocompactly on X2, by multiplying the
� .n/ by elements of T , we may assume d.�

.n/
2 x2; x2/ < K, where K is some constant

that depends on T . Passing to a subsequence we have that �
.n/
2 x2 converges, and thus

� .n/.x1; x2/ converges. This contradicts to properness of the action of � . �

The kernel of the projection p1 projects to a subgroup � 0
2 of �2 that acts properly

on X2. Note that T injects into � 0
2, and thus � 0

2 acts cocompactly on X2.
As we have remarked, the Euclidean factor of the Clifford decomposition may be

smaller than the Euclidean factor of the de Rham decomposition. However, if X=�

has finite volume, then the decompositions coincide [12], Theorem I. In this case, the
statement of Proposition 2.1 follows from [12], Corollary F.

2.4. For a group of isometries � , x 2 X , and " > 0, we denote

�".x/ D h� 2 � W d� .x/ < "i:
Recall the classical Margulis Lemma:

Theorem 2.2 ([21], Chapter 4). Let X be a globally symmetric space of non-positive
curvature. There are constants " > 0 and m 2 N (depending on X ) such that for
every discrete group � < Isom.X/ and every x 2 X , �".x/ contains a normal
nilpotent subgroup N of index at most m. Moreover, N is the intersection of �".x/

with a connected nilpotent group in Isom.X/.

We will need a slightly stronger version of this theorem. Namely, we want the
constants " and m to depend only on the dimension of X (with our standing assumption

�This splitting can be regarded as a special case of Gromov’s essa-vol decomposition, with a D 1, cf. [5],
§12.
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on curvature bounds). To this end, we first observe that if the metric is rescaled by
some factor, then the constant " can be rescaled by the same factor, and m is can be left
unaltered. Therefore, if the constants of the Margulis Lemma are given for a space
with minimal curvature exactly �1, then they will be adequate for any rescaling of
this space with curvature �1 � K � 0. Next, recall that a complete simply connected
symmetric space of non-positive curvature admits a decomposition into a product of
a Euclidean factor and irreducible symmetric spaces of non-compact type. By the
classification of É. Cartan, there are – up to isometry and rescaling of the metric
– only finitely many symmetric spaces of non-compact type of a given dimension
[16], Chapter X. Therefore, in each dimension we need only consider finitely many
spaces with metric rescaled so that the minimal curvature is �1. It follows that for
d 2 N, we may choose " and m such that the statement of the theorem holds with
these constants for every space of dimension � d .

We state two important consequences of the fact that the nilpotent subgroup N

stipulated in Theorem 2.2 is contained in a connected nilpotent linear group. By
a theorem of Lie, a connected linear solvable Lie group can be conjugated to a
subgroup of upper triangular matrices. Hence, the commutator subgroup of such
group consists of unipotent elements. We claim that if N contains a parabolic element,
then it contains a central parabolic element. If N is abelian there is nothing to prove.
Otherwise, the elements of the k � 1-iterated commutator, where k is the nilpotency
rank of N , are central and parabolic. Similar considerations are made in [13].

Moreover, the semisimple elements in N consist of an abelian subgroup [7], §10.
In particular, if H is a finite subgroup of Isom.X/, then it has a normal abelian
subgroup of index no more than m.

2.5. If � is an element in a discrete group for which the Margulis Lemma holds,
then � i is in the corresponding normal nilpotent subgroup, for some i � m. With the
purpose of relating properties of � i to those of � , we make the following definition.

Definition 2.3. A semisimple isometry g 2 Isom.X/ is stable if C.gi / D C.g/ for
every i D 1; : : : ; m, where m D m.X/ is the constant of the Margulis Lemma. Here,
C.g/ is the centralizer of g in Isom.X/.

We remark that dependence on the constant of the Margulis Lemma introduces
ambiguity to this definition. However, since it is an auxiliary notion, we will tolerate
this. Moreover, we will later fix the space X , and consider subspaces of it. The
constant of the Margulis Lemma will be set once and for all, and stability of isometries
of a subspace Y of X will be defined using this constant.

Since C.g/ acts transitively on Min.g/, stability of g also implies that Min.gi / D
Min.g/ for i D 1; : : : ; m. A slightly weaker notion of stability was introduced by
Gromov [5], §12; in his definition, the latter equality is the defining property.
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It is easy to see that translations on a Euclidean space are stable (in fact, if g 2
Isom.Rn/ is a translation then C.gi / D C.g/ for every i � 1). This implies that
in the general setting Clifford isometries are stable. Indeed, an isometry commutes
with a Clifford isometry if and only if their actions on the Euclidean factor commute.

For other semisimple isometries, we have the following “stabilization” lemma,
proved in Lemma 1.4 of [13] (cf. [5], §12.5 and [20], Proposition 2.5).

Lemma 2.4. There is a constant M D M.X/ such that for every g 2 Isom.X/ there
exists i � M such that gi is stable.

As we have observed, for a given d 2 N, it is possible to choose the constants
of the Margulis Lemma so that they will be adequate for all symmetric spaces of
dimension � d . The same reasoning shows that in the previous lemma, it is possible
to choose a constant M that will suit all spaces of dimension � d .

Lemma 2.5. Let ˛ 2 � be a stable isometry. If min d˛ < " (the constant of the
Margulis Lemma) then ˛ commutes with every Clifford isometry in � .

Proof. Let X D X1 �X2 be the Clifford splitting with respect to � . Let R� W X ! X

be the map that acts trivially on X1, and by the homothety x 7! �x on X2. Note
that R� conjugates � to a group of isometries of X . Moreover, if ˇ is a Clifford
translation then the displacement of R�ˇR�1

�
is � times the displacement of ˇ.

Let x 2 Min.˛/ and let ˇ 2 � be a Clifford isometry. By conjugating by
R� with � > 0 sufficiently small, we may assume that dˇ .x/ < ". Let N be
the normal nilpotent subgroup of �".x/, with index i � m. Since ˛i ; ˇi 2 N are
semisimple, they commute. Thus ˇi 2 C.˛i / D C.˛/ by stability of ˛, and therefore
˛ 2 C.ˇi / D C.ˇ/ by stability of ˇ. �

2.6. Let � be a group acting properly (but possibly not faithfully) on X . For
x 2 X , we denote d�.x/ D inf d� .x/, where � ranges over all elements of � that
act non-trivially on X . The ı-thick part of X=� is defined as

.X=�/�ı D fx 2 X=� W d�. Qx/ � ıg
where Qx is any lift of x to X . We denote vol�ı.X=�/ D vol..X=�/�ı/. If X is a
point, we set vol.X/ D 1 and vol�ı.X=�/ D 1 for every ı > 0.

In the presence of a Euclidean factor, one cannot hope to relate any property of � to
the volume of X=�; indeed, by conjugating � by a homothety of the Euclidean factor,
the volume of the quotient can be made arbitrarily small. The following definition
aims at overcoming this difficulty.

Definition 2.6. Let X ' X1 � X2 (X2 ' Rk) be the Clifford decomposition with
respect to � . Let �1 be the projection of � to Isom.X1/. We define volnc.X=�/ D
vol.X1=�1/ (for “no Clifford volume”) and volnc

�ı.X=�/ D vol�ı.X1=�1/.
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The following proposition lets us estimate the volume of the thick part of a space
by a discrete set.

Proposition 2.7. Let Y be a totally geodesic submanifold of X , and let � be a group
acting properly on Y . There exists a constant c D c.X; ı/ such that the following
holds. If N is a ı-discrete set in .Y=�/�ı (i.e. every two points in N are at distance
� ı) then

jN j � c � vol� ı
2
.Y=�/:

Furthermore, if N is a maximal ı-discrete set then

jN j � c�1 � vol�ı.Y=�/:

The proof is standard and uses two ideas. First, that balls of radius ı=4 around
points of N are disjoint in .Y=�/�ı=2, and are injective images of balls in Y . Sec-
ond, that the volume of injected balls can be bounded from below by the volume of
Euclidean balls with the same radius. Similarly, if N is maximal then the (metric)
balls of radius 2ı around points of N cover .Y=�/�ı , and the volume of these balls
can be bounded from above by the Bishop–Gromov theorem.

3. Fixed submanifolds

In this section, X is a Riemannian globally symmetric space of non-positive sectional
curvature, with �1 � K � 0. The constants " and m are the constant of the Margulis
Lemma.

3.1. Submanifolds fixed by maximal finite subgroups. By a theorem of Kazhdan
and Margulis [17], a finite volume locally symmetric manifold of non-compact type
has a point where the injectivity radius is greater than some constant that depends
only on the universal cover. We develop a variation on this result.

Let M D X=� be an orbifold, and let H < � be a finite group. If we restrict
ourselves to points on Fix.H/, it does not make any sense to seek a point with d� > 0.
The best one can hope for is that the only elements that translate by less than some
constant are those of H . Of course, even this cannot be expected if there happens to
be a hyperbolic element that acts by a small translation on Fix.H/. Assuming this
does not happen, we have the following.

Proposition 3.1. Assume � is a group acting properly by isometries on X , such that
vol��.X=�/ < 1 for every � > 0. Let ı < ". Then for every maximal finite
subgroup H < � , either there is a hyperbolic element � 2 � with Min.�/ � Fix.H/

and min d� � ı, or there exists a point x 2 Fix.H/ such that �ı=2m.x/ D H .
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Several lemmata will proceed the proof of this proposition. In what follows we
set S D Fix.H/ and denote by �S the stabilizer of S in � .

Lemma 3.2. S=�S is a manifold and the map S=�S ! X=� is an embedding.

Proof. First, we show that every elliptic element in �S acts trivially on S , proving
that S=�S is a manifold. If � 2 �S is elliptic then it fixes some point x 2 S . The
stabilizer of x is a finite group containing H and � , hence by maximality � 2 H .
Therefore, � acts trivially on S .

Next, we prove that the map S=�S ! X=� is an embedding. To prove that it is
injective, let x 2 S and assume �x 2 S for � 2 � . On one hand, H � ��x because
�x 2 S . On the other hand, �H��1 � ��x��1 D ��x . Since H is maximal, there
is equality in both cases. Thus � normalizes H and it keeps S D Fix.H/ invariant,
hence � 2 �S .

To complete the proof, let xn be a sequence in S and assume that �nxn converges
to y 2 S for some sequence �n 2 � . We show that �n 2 �S for sufficiently large n.

Fix ı > 0 such that �ı.y/ D H (it exists because y 2 S , and � acts properly).
For sufficiently large n, d.�nxn; y/ < ı=2, hence �nH��1

n � �ı.y/ D H , and
maximality implies equality. Then �n normalizes H and hence stabilizes S . �

We will need the following elementary lemma from §12 of [5]:

Lemma 3.3. For every ı > 0 and k 2 N there exists 0 < � < ı, such that following
holds. For every x 2 X , if �ı.x/ is finite of size at most k, then there exists a point
y 2 X such that d.x; y/ < ı=4 and d�.y/ > �.

The constant � depends on ı, k, and the space X . But here again, it can be chosen
to accommodate for all spaces of dimension � dim.X/.

For a point x 2 X , let �.x/ D inf� d� .x/ where � ranges over all non-elliptic
elements in � . Note that if x 2 S then �.x/ is at most d�S

.x/ (w.r.t. the action of
�S on S ).

To study the behavior of � at points of S , it is useful to define the notion of
quasi-thickness which was introduced and studied in [20].

Definition 3.4. Let M D X=� be an orbifold. For ı > 0 and k 2 N, the .ı; k/-
quasi-thick part of M is defined as

M�ı;k D fx 2 X W j�ı.x/j � kg=�:

We will need the following simple fact.

Claim. If vol��.M/ < 1 for every � > 0, then M�ı;k is compact for every ı > 0

and k 2 N.
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Proof. Let ı > 0 and k 2 N. Let x 2 M�ı;k and fix a lift Qx 2 X . By Lemma 3.3,
there is some � < ı such that the ball of radius ı=2 around Qx contains a ball of radius
�=4 that injects to the �

2
-thick part of M (the displacement function is 2-Lipschitz).

If M�ı;k is not compact, then there is a sequence of points xi in M�ı;k such
that d.xi ; xj / > ı for i ¤ j . Then the balls of radius ı=2 around these points are
disjoint, and the intersection of each of these balls with M� �

2
contains an injected

ball of radius �=4. Since these disjoint injected balls all have the same volume, this
contradicts the assumption that M� �

2
has finite volume. �

Lemma 3.5. For every a > 0, the image of the set C D fx 2 S j �.x/ � ag in X=�

is compact.

Proof. We may assume that a is smaller than " of the Margulis Lemma. Let x 2 X=�

be a point with preimage Qx 2 C . Let N be the normal nilpotent subgroup of �a=2m. Qx/.
Since its index is bounded by m, it can be generated by words of length at most 2m in
the generators of �a=2m. Qx/�. Hence, N is generated by elements � with d� .x/ < a.
Since �. Qx/ � a, these generators must be elliptic, and therefore they commute. It
follows that N is finite, hence so is �a=2m. Qx/. Therefore, �a=2m. Qx/ D H by the
maximality of the latter. It follows that x is in the . a

2m
; jH j/-quasi-thick part of M ,

which is compact.
Since C is closed and �S -invariant, its image in S=�S is closed. Hence, by

Lemma 3.2 its image in X=� is closed, and the claim follows. �

Proof of Proposition 3.1. Suppose that there are no hyperbolic elements � 2 � with
min d� � ı and Min.�/ � S .

It follows from Lemma 3.5 that there exists a point y 2 S where � attains its
maximum on S . Let us denote by #�.x/ the number of elements � 2 � for which
d� .x/ D �.x/. We can assume y is chosen such that #�.y/ is minimal (among points
in S where � is maximal).

We claim that �.y/ � ı. Let us first show that this will prove the proposition.
Indeed, we have observed in the proof of Lemma 3.5 that if �.y/ � ı then �ı=2m.y/

is finite, hence equal to H by maximality.
Now suppose contrarily that �.y/ < ı. Let � D �.y/, and let † be the set of

non-elliptic elements � with d� .y/ D �. Let 	 D hH; †i and let N be the normal
nilpotent subgroup of 	.

There are two cases. First, let us assume that † contains a parabolic element. Then
N contains parabolic elements, and therefore contains a central parabolic element
�1 2 N . Since N has finite index in 	, �1 has finitely many conjugates, say,
�1; : : : ; �k . Define D.x/ D P

i d�i
.x/. Then for every a > 0, C D D�1.Œ0; a�/ is

closed, convex, and 	-invariant. For sufficiently small a, y 62 C . Let z 2 C be the
projection of y onto C , and let c W Œ0; 1/ ! X be a geodesic ray with c.0/ D z and

�For a proof of this, see the proof of Lemma 2.2 in [20].
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c.t0/ D y. Every � 2 	 keeps C invariant, hence d� is non-decreasing along c. Also,
since H fixes y and keeps C invariant, it also fixes z, and hence fixes c pointwise.
We claim that for some � 2 †, d� is strictly increasing along c. If d� Bc is not strictly
increasing, then it is locally constant at some point, and since d� B c is analytic, this
implies that d� is constant along c. Since this is true for the generators of 	, d� B c

is bounded and thus constant for every � 2 	. This would imply that D is constant
along c and thus y 2 C , which is a contradiction.

We have shown that for t > t0, d� .c.t// � � for all � 2 †, and d� .c.t// > �

for at least one � 2 †. We may choose t1 > t0 sufficiently small, such that for every
� 2 � , d� .c.t1// > � whenever d� .c.t0// > �.

Therefore, �.c.t1// � �, and if �.c.t1// D � then #�.c.t1// � #�.y/ � 1. This
is a contradiction to the choice of y.

Now, suppose † does not contain a parabolic element, hence it consists of hyper-
bolic elements. Let i be the index of N in 	. Then the elements � i , � 2 †, are
hyperbolic and thus commute. It follows that C D T

�2	 Min.� i / is non-empty,
and it is closed, convex and 	-invariant. Let z 2 C be the projection of y to C .
Then, as before, z 2 S . By our assumption, there are no hyperbolic elements � with
Min.�/ � S and min d� � ı. Therefore, C \S is properly contained in S . As in the
previous case, we take a geodesic ray in S which starts at z and is perpendicular to C at
z. Along this geodesic, d� is non-decreasing for every � 2 	, and is strictly increasing
for at least one � 2 †. This leads to contradiction, as in the previous case. �

3.2. Stable singular submanifolds. We now formulate a proposition which is key
to the inductive reasoning needed for the proof of the main theorem. This proposition
is an analogy to Gromov’s Theorem 12.11 in [5], and parts of its proof follow along
the lines of his proof.

Let A 	 � be a set of stable semisimple isometries. If Y D T
˛2A Min.˛/ is

non-empty then it is a connected complete totally geodesic submanifold of X . If,
furthermore, min d˛ < " for every ˛ 2 A, we call Y a stable singular submanifold.
Two submanifolds Y1; Y2 are called non-conjugate if Y2 ¤ �Y1 for all 1 ¤ � 2 � .

Note that if A defines a stable singular submanifold Y then the elements of A

commute. Indeed, if ˛1; ˛2 2 A then ˛1; ˛2 2 �".y/ for some y 2 Y . If N is the
normal nilpotent subgroup of �".y/, then ˛i

1; ˛i
2 2 N for some i � m. It follows

that ˛i
1 and ˛i

2 commute, hence by stability so do ˛1 and ˛2.
For a submanifold Y we denote by �Y the stabilizer of Y in � .

Proposition 3.6. Let W be a connected complete totally geodesic submanifold of
X , and let � be a group acting properly by isometries on W . Let † be a set of
non-conjugate stable singular proper submanifolds in W . For every "1 > 0 there are
constants "2 D "2."1; X/ and c D c."1; X/ such that

X

Y 2†

volnc�"1
.Y=�Y / � c � volnc�"2

.W=�/: (1)
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Proof. The proof is by induction on the dimension of W . Clearly, the claim is true
for submanifolds of dimension 0 because there are no proper submanifolds.

For Y 2 † we denote †Y D fZ 2 † W Z ¨ Y g. Let Z 2 †Y and denote
by AY , AZ the (maximal) set of stable elements such that Y D T

˛2AY
Min.˛/ and

Z D T
˛2AZ

Min.˛/. Then AY ¨ AZ . Fix some z 2 Z. The elements of AZ

commute, from which we deduce that every element of AZ keeps Y invariant. Thus,
Z can be considered a stable submanifold of Y with respect to �Y .

By induction, we may assume that there are constants "0
2 and c0 such that (1) holds

for submanifolds with dimension lower than dim.W /. Hence, considering the action
of �Y on Y , X

Z2†Y

volnc�"1
.Z=�Z;Y / � c0 � volnc

�"0

2
.Y=�Y /;

where �Z;Y D �Y \ �Z .
Note that from the fact that �Z;Y < �Z it is not hard to deduce that

volnc�"1
.Z=�Z/ � volnc�"1

.Z=�Z;Y /:

The important point is that every element of AY keeps Z invariant, so it commutes with
every Clifford isometry in �Z (by Lemma 2.5). Therefore, every Clifford isometry
in �Z keeps Y invariant. It follows that Z has the same Clifford splitting w.r.t �Z or
�Z;Y .

Let †0 � † be the set of stable submanifolds which are maximal in † with respect
to inclusion. Then we have
X

Y 2†

volnc�"1
.Y=�Y / �

X

Z2†0

X

Z�Y 2†

volnc�"1
.Y=�Y /

�
X

Z2†0

volnc�"1
.Z=�Z/ C

X

Z2†0

c0 volnc
�"0

2
.Z=�Z/ � .c0 C 1/

X

Z2†0

volnc
�"0

2
.Z=�Z/

(here we assume "0
2 < "1). Our problem is thus reduced to the case of maximal stable

submanifolds.
We will henceforth assume that † is a set of maximal stable proper submanifolds,

and prove that there exist "2 and c for which (1) holds. We may assume that "1 < ".

Let W ' W1 � Rd be the Clifford splitting of W with respect to � . Suppose Y is
a maximal stable submanifold, and AY is the set of stable elements ˛ with min d˛ < "

such that
T

˛2AY
Min.˛/ D Y . By maximality, Min ˛ D Y for every ˛ 2 AY .

By Lemma 2.5, every element in AY commutes with the Clifford transformations
in � . Hence, every Clifford isometry of W keeps Y invariant, and therefore restricts
to a Clifford isometry of Y . Therefore, the Clifford splitting of Y (with respect to
�Y ) can be made compatible with that of W; it can be written as Y D Y1 � Rk � Rd ,
with Y1 � Rk 	 W1. Since we are only interested in the projections of isometries to
W1 and to Y1, we may simply assume d D 0.



Vol. 89 (2014) On the number of finite subgroups of a lattice 771

Every ˇ 2 �Y can be written in the form ˇ D .ˇ1; ˇ2/ with ˇ1 2 Isom.Y1/ and
ˇ2 2 Isom.Rk/. Denote by p1 the projection of �Y to Isom.Y1/. Recall that p1.�Y /

acts properly on Y1.
We will now describe a procedure that associates to a point in the "1-thick part of

Y1=p1.�Y / a point in the "2-thick part of W=� ("2 will be defined in this process).
Let y0 2 Y1 be a point with dp1.�Y /.y

0/ � "1. Let y D .y0; 0/ 2 Y1 � Rk D Y .
Let c W Œ0; 1/ ! W be a geodesic ray with c.0/ D y and c0.0/ ? Y . For every
˛ 2 AY , ˛ keeps Y invariant, and d˛ B c has a unique minimum at 0. Hence, by
convexity d˛ B c is monotone increasing and unbounded. Fix z D c.t0/, t0 > 0 such
that d˛.z/ � "=2 for all ˛ 2 AY , and d˛.z/ D "=2 for some ˛ 2 AY . We henceforth
fix ˛ to be the latter.

We proceed to find a constant "4 for which �"4
.z/ is finite and bounded. Fix

"3 D "1=2mM . Suppose that dˇ .z/ < "3 for some ˇ 2 � . By Lemma 2.4,
ˇj is m-stable for some j < M . Since dˇj .y/ < ", ˇj and ˛ commute. It
follows that ˇj keeps Y D Min.˛/ invariant. Since y is the projection of z to Y ,
dˇj .y/ � dˇj .z/ � jdˇ .z/ < M"3 < "1.

Let us turn our attention to the projections of ˇj . On one hand, d
ˇ

j
1

.y0/ < "1,

so by our hypotheses ˇ
j
1 must fix Y1 pointwise. Therefore, ˇj is in the kernel of

the projection � ! �2. Recall that the action of this kernel on Y2 is proper and
cocompact. Hence, by the Bieberbach theorem ([21], §4), ˇ

jk
2 is either trivial or

a translation for some k � m. Therefore, ˇjk is either trivial or acts as a Clifford
translation on Y . The latter is impossible; indeed, it would imply that Min.ˇjk/ � Y ,
and by maximality of Y , Min.ˇjk/ D Y (recall that we are assuming there are no
Clifford translations on W ). But this would imply that ˇjk 2 AY and contradicts
the choice of z, because dˇjk .z/ < mM"3 < "=2. Thus, the order of ˇ is bounded
by mM .

Now let "4 D "3=2m. Let N be the normal nilpotent subgroup of �"4
.z/. Then

N is generated by elements that translate z by less than 2m"4 D "3. It follows that
N is generated by elliptic elements whose order is bounded by mM . Therefore, N

is abelian, and its exponent is bounded by .mM/Š. Since N is an abelian subgroup
of SO.n/, it can be generated by a set of n elements, hence j�"4

.z/j � m.mMŠ/n.
Now, by Lemma 3.3 there is a positive constant "2 < "4 such that if j�"4

.z/j �
m.mMŠ/n then there exists a point w 2 W with d.z; w/ < "4=4 such that d�.w/ >

"2. The point w is the point associated to y0. Note that

d˛.w/ � d˛.z/ C 2 � "4

4
< ": (2)

Now let † D fY 1; : : : ; Y sg be a set of maximal stable proper submanifolds of
W . For each i , choose a maximal set of points fy0

i;1; : : : ; y0
i;ti

g in Y i that projects to

an "1-discrete set in the "1-thick part of Y i
1 =p1.�Y i /. To each point y0

i;j we attach
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a point wi;j 2 W by the procedure described above. We have seen that these points
project to the "2-thick part of W=� . Let us denote the projection of wi;j by Nwi;j . The
set of Nwi;j ’s is not necessarily "2-discrete. However, we claim that for every point
Nwi;j , there are at most 2n �1 points Nwk;l for which d. Nwi;j ; Nwk;l/ < "2. If this is true,

we can find in f Nwi;j g a subset of size bjf Nwi;j gj=2nc which is "2-discrete. Using the
volume estimates of Proposition 2.7, this will complete the proof. We turn to prove
this final claim.

First, we show that if that if d. Nwi;j ; Nwi;k/ < 2"2 then j D k. Indeed, if this
inequality holds, we may assume that the points are chosen such that d.wi;j ; wi;k/ <

2"2. By the construction, it follows that

d.y0
i;1; y0

i;2/ � d.yi;1; yi;2/ < 2"2 C 2 � "4

4
< "1;

which is only possible if j D k.
Next, suppose there is a point Nwi;j for which there are 2n other points of distance

< "2. Then each two such points are at distance < 2"2. By the preceding paragraph,
the points correspond to different submanifolds, and we may thus renumber the
indices so that d. Nw1;1; Nwi;1/ < "2 for i D 2; : : : ; 2n C 1. Also, we may assume
that d.w1;1; wi;1/ < "2.

By our construction and (2), there are stable elements ˛i (1 � i � 2n C 1)
such that d˛i

.w1;1/ < ". Hence, by their stability, these elements commute, and the
submanifolds Yi D Min.˛i / have a non-empty intersection. Moreover, at the point of
intersection the submanifolds intersect orthogonally (see proof in [5] for additional
details). There is a one-to-one correspondence between these subspaces and their
tangent space at the point of intersection, and the tangent subspaces are orthogonal,
as well. Hence, there is an orthogonal basis of the tangent space, such that the tangent
space to each of the Yi ’s is spanned by vectors of this basis. Hence, there are at most 2n

such spaces (D the number of subsets of the basis). This contradicts our assumption
that Y1; : : : ; YnC1 are distinct subspaces. �

4. Proof of Theorems 1.1 and 1.2

First, we make a reduction of Theorem 1.1 to the case where G has trivial center.
Suppose the theorem holds for groups without center, and let G be a connected
semisimple Lie group with finite center Z. Denote by � the projection of G to the
adjoint group G0 D G=Z.

Let � < G be a lattice. Since Z is finite, every maximal finite subgroup in �

contains � \Z. It is easy to check that this implies that f .�/ D f .�.�//. Therefore,

f .�/ D f .�.�// � c � vol.G0=�.�// � c � vol.G=�/;

where c D c.G0/.
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Assume now that G has trivial center. Let K be a maximal compact subgroup. The
associated symmetric space X D KnG is of non-compact type, and we may assume
that the metric is normalized to meet the curvature bounds. There exists a constant
D D D.G/ such that vol.X=�/ D D � vol.G=�/. Since X does not have Euclidean
factors, volnc��.X=�/ � vol.X=�/. Therefore, Theorem 1.1 follows directly from
the following.

Theorem 4.1. Let X be a global symmetric space of non-positive curvature. For a
group � acting properly by isometries on X , denote by f .�/ the number of conjugacy
classes of maximal finite subgroups of � . Then there exist constants � D �.X/ and
c D c.X/ such that f .�/ � c � volnc��.X=�/.

Proof. Throughout the proof, " and m are the constants of the Margulis Lemma, and
M is the constant of Lemma 2.4. We choose all constants so that these lemmas hold
for any symmetric space of dimension � dim.X/.

We will prove by induction that for every d � dim.X/ there are constants �d , cd

such that if Y is a connected complete totally geodesic submanifold of X of dimension
� d , and � is a group acting properly on Y then f .�/ � cd � volnc��d

.Y=�/.
If dim.Y / D 0, and � acts properly on Y , then � is finite, and therefore f .�/ D 1.

We may fix c0 D 1 and �0 to be any positive number.
Suppose now that �i exist for i D 0; : : : ; d � 1, and let us prove that �d exists.

Let Y be a connected complete totally geodesic submanifold of X of dimension d ,
and let � be a group of isometries acting properly on Y .

Step 1. Let us first assume that � contains Clifford isometries. Let T � � be the
subgroup of Clifford isometries, and let Y D Y1 � Y2, Y2 ' Rk (k � 1) be the
Clifford splitting with respect to � . Denote by �i the projection of � to Isom.Yi /,
i D 1; 2. Recall that �1 acts properly on Y1, and that the subgroup T is contained in
the kernel of the projection � ! �1 and acts cocompactly on Y2.

Our goal is to show that a maximal finite subgroup of � has a bounded number
of possible projections to �1 and �2, up to conjugation in � . Then we will show
that this yields the appropriate bound on the number of conjugacy classes of maximal
finite subgroups in � .

For a finite subgroup H1 in �1, define �.H1/ D p�1
1 .H1/ and �2.H1/ D

p2.�.H1//. Since the restriction of p2 to �.H1/ has finite kernel, �2.H1/ acts
properly on Y2. Moreover, T is contained in �.H1/ and injects into �2.H1/, and
therefore �2.H1/ acts cocompactly on Y2.

We claim that f .�2.H1// is bounded by a constant D that depends only on
dim.X/. This follows immediately from the fact that, up to isometry, there are
finitely many crystallographic groups of every dimension [4].

Now let fH .1/
1 ; : : : ; H

.1/
r g be a maximal collection of non-conjugate maximal

finite subgroups in �1. For every 1 � i � r , let fH .2/
i;1 ; : : : ; H

.2/
i;si

g be a maximal
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collection of non-conjugate maximal finite subgroups of �2.H
.1/
i /. By the induction

hypothesis, r D f .�1/ � volnc��d�1
.Y1=�1/ D volnc��d�1

.Y=�/ (the latter equation
being the definition of volnc). Also, si � D for every i .

Let H < � be a maximal finite subgroup. By conjugating in � we may assume
that the projection of H to �1 is contained in H

.1/
i for some i . Furthermore, by

conjugating by an element of �.H
.1/
i / we may assume that H projects into H

.2/
i;j

for some 1 � j � si . Note that this conjugation does not change the projection of
H to �1. Our claim will be proved if we show that there is a single maximal finite
subgroup with such projections.

To this end, let y1 2 Y1; y2 2 Y2 be points fixed by H
.1/
i , H

.2/
i;j , respectively. If

K1, K2 are two maximal finite subgroups of � which both project into H
.1/
i , H

.2/
i;j ,

then they both fix .y1; y2/. But by maximality, they are both equal to the stabilizer
of this point in � .

We conclude that
f .�/ � D � volnc��d�1

.Y=�/: (3)

Step 2. We henceforth assume � does not contain Clifford isometries.
Let † be a maximal set of non-conjugate stable singular proper submanifolds of

Y . For Z 2 †, denote by �Z the stabilizer of Z in � , by �1
Z the fixator (pointwise

stabilizer) of Z in � , and by fZ the number of non-conjugate maximal finite subgroups
of � that are contained in �Z .

Observe that if H is a maximal finite subgroup of � that keeps Z invariant, then
it fixes some point z 2 Z. By maximality, H D �z , and therefore H contains
�1

Z . Therefore, maximal finite subgroups that are contained in �Z are in a natural
one-to-one correspondence with maximal finite subgroups of �Z=�1

Z . Moreover,
this correspondence respects conjugation by elements of �Z .

It follows that fZ � f .�Z=�1
Z/ � volnc��d�1

.Z=�Z/, by the induction hypoth-
esis. By Proposition 3.6, we have

X

Z2†

fZ �
X

Z2†

volnc��d�1
.Z=�Z/ � E1 � volnc

�ı1
.Z=�Z/; (4)

with ı1 D ı1.�d�1/, E1 D E1.�d�1/.
It remains to bound the number of non-conjugate maximal finite subgroups that

do not stabilize any stable singular proper submanifold.

Step 3. Let H be a set of non-conjugate maximal finite subgroup of � that do not
stabilize any stable singular proper submanifold. Let H 2 H , and let y 2 Fix.H/.
By maximality, H D �y .

We claim that there is no hyperbolic element ˛ 2 � with Min.˛/ � Fix.H/

and d˛.y/ < "=M (recall, M is the constant of Lemma 2.4). Suppose ˛ is such an
element. Then for some j � M , ˛j is stable, and d˛j .y/ < ". The elements in
f�˛j ��1 j � 2 H g are all stable and contained in �".y/, hence they commute. It



Vol. 89 (2014) On the number of finite subgroups of a lattice 775

follows that Z D T
�2H Min.�˛j ��1/ is non-empty, and it is an H -invariant stable

singular submanifold. By our assumption, there are no Clifford isometries in � , so
Z is a proper submanifold. But this contradicts our assumption on H .

Now, by Proposition 3.1 we may replace y with a point y 2 Fix.H/ such that
�"=2mM .y/ D H .

Following the same reasoning, every element ˛ 2 H has order bounded by M ;
otherwise,

T
�2H Min.�˛j ��1/ would be a non-empty H -invariant stable singular

proper submanifold, for some j � M . By identifying H with a subgroup of SO.n/,
we see that its normal abelian subgroup is generated by at most n elements. Since
the index of this subgroup is a most m, we deduce that jH j � M nm.

By Lemma 3.3 there is a positive constant ı2 < "=8 such that if

j�"=2mM .y/j � M nm

then there is a point z 2 Y with d.x; y/ < "=8 such that d�.y/ > ı2. We denote this
point zH .

We claim that the set of points fzH W H 2 Hg projects to a ı2-discrete set in the
ı2-thick part of Y=� . By the choice of zH , the projection is indeed in the ı2-thick
part. It remains to show discreteness. To this end, let H1; H2 2 H , let y1, y2 be
the corresponding fixed points, and let z1, z2 be the points obtained for each group.
Suppose, in contradiction, that the projections of z1, z2 are not ı2-separated. By
replacing H2 by a conjugate, we may assume d.z1; z2/ < ı2. This implies that

d.y1; y2/ � ı2 C 2 � "=8 < "=2:

Consequentially, H1 D �y1
� �".y2/ D H2, hence H1 D H2, a contradiction. By

the volume estimate of 2.7,

jH j � E2 � vol�ı2=2.Y=�/ D E2 � volnc
�ı2=2.Y=�/; (5)

where E2 is a constant depending on X .

Step 4. Take cd D max.D; E1 C E2; cd�1/ and �d D min.ı1; ı2=2; �d�1/. It
follows easily from (3), (4), and (5) that

f .�/ � cd � volnc��d
.Y=�/: �

Proof of Theorem 1.2. Assume G has R-rank at least 2, and Kazhdan’s property (T).
In this case, we have the following result

Theorem 4.2. Suppsose that �n is a sequence of irreducible lattices in G such that
vol.G=�n/ ! 1. Then for every R > 0,

lim
n

vol�R.X=�n/

vol.X=�n/
D 0:
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This is Corollary 4.8 of [1] (a version for simple groups appears as Corollary 2.5
of [2]). We note that by Wang’s finiteness theorem (see [22], 8.1), if the �n are
pairwise non-conjugate then indeed vol.G=�n/ ! 1.

We now reflect on the proof of Theorem 4.1. The basic technique of the proof is,
essentially, to bound the size of certain sets by assigning to each element of the set a
point in the ı-thick part of X=� (for some ı > 0 which is smaller than "), and making
sure these points are ı-discrete. This is done in two places. The first, is in step 2 of
the proof, and relies on Proposition 3.6. The second is done directly in step 3. (Note
that we are restricting our attention to the proof of the last step of the induction, i.e.
d D dim.X/.) If we look closer into the proofs of the proposition and of step 3, we
see that in both cases the points in the ı-thick part are contained in the "

2
-thin part of

X=� . In fact, this is crucial to the proof of ı-discreteness. Therefore, we also have
a bound

f .�/ � c0 � vol�".X=�/

(of course, this bound does not lend itself to induction, and is therefore not highlighted
in the proof of the theorem). The proof is completed by appealing to Theorem 4.2.

�

5. A construction in SO.d; 1/

5.1. We first describe a general setting that assures that a group contains a sequence
of subgroups of finite index for which the number of non-conjugate maximal finite
subgroups grows linearly with index. Later, we will construct lattices in SO.d; 1/B
that realize this setting.

Proposition 5.1. Let ˆ be a countable group with a finite subgroup H . Assume that
there is an epimorphism ' W ˆ ! Z such that the normalizer of H is contained in
ker '. Let ˆn be the kernel of the composition

ˆ
'�! Z ! Z=nZ:

Then there are n non-conjugate subgroups of ˆn that are all conjugate to H in ˆ.

Proof. Fix some t 2 '�1.1/. Consider the subgroups Hi D t iHt�i , i � 0. Since
they are finite, they are all contained in ker ', hence in ˆn, for all n.

We claim that H0; : : : ; Hn�1 are non-conjugate in ˆn. Indeed, if Hi , Hj (0 �
i; j < n) are conjugate then t�j gt i normalizes H for some g 2 ˆn. By our
assumption on H and the definition of ˆn, j �i D '.g/ 
 0 .mod n/, and therefore
i D j . �

In our application, ˆ will be a lattice. As the covolume of ˆn is proportional
to n D Œˆ W ˆn�, the number of non-conjugate finite subgroups constructed in the
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previous proposition grows linearly with the covolume of ˆn. We also remark that
if we start with a maximal finite subgroup H , the construction yields non-conjugate
maximal subgroups.

5.2. Now, we construct an appropriate lattice in G D SO.d; 1/B, the connected
component of SO.d; 1/. The starting point of our construction is the result of Mill-
son [18] concerning the positivity of the first Betti number of certain congruence
subgroups in standard arithmetic lattices of G.

Let X D f.x1; : : : ; xdC1/ j x2
1 C� � �Cx2

d
�x2

dC1
D �1; xdC1 > 0g be the upper

sheet of the hyperboloid, induced with a metric from the Minkowski space. This is a
model for the d -dimensional real hyperbolic space. The linear action of G on RdC1

induces an isometric action on X .
Let q be a prime, and let Q.X1; X2; : : : ; XdC1/ D X2

1 C � � � C X2
d

� p
qX2

dC1

be a quadratic form. Let O be the ring of integers of QŒ
p

q�. Clearly, SO.Q; R/ is
conjugate to SO.d; 1/, and we denote by � the corresponding conjugate of SO.Q; O/

in SO.d; 1/, intersected with SO.d; 1/B. Then � is a lattice in G. For an ideal p in
O, let �.p/ D f� 2 � j � 
 I mod pg. We will fix a certain p shortly, and denote
	 D �.p/.

Denote by Y the hyperplane f.x1; : : : ; xdC1/ 2 X j x1 D 0g. Let 	Y the
subgroup of isometries in 	 stabilizing Y (in Millson’s work, this is described as
the group of isometries commuting with the reflection around Y ). For almost all
p, 	 is torsion-free, and it is shown that for p deep enough, Y=	Y embeds as a
non-separating oriented hyperplane in X=	. We fix such an ideal p. Note that 	 is
normal in � .

As explained in [18], the homology class carried by Y=	Y is non-trivial, and its
Poincaré dual yields an epimorphism 
 W 	 ! Z.

Denote by H < � the group of isometries stabilizing Y and fixing the point
.0; : : : ; 0; 1/ 2 Y . Note that H is not trivial; it contains, for example, the diagonal
matrices with �1 in two of the first d entries, and 1 on the rest. Moreover, by
considering all the matrices of this form, we see that .0; : : : ; 0; 1/ is the unique fixed
point of H .

Since H normalizes 	, it acts by isometries on X=	. Furthermore, since H

stabilizes Y it normalizes 	Y and stabilizes Y=	Y . It follows that H fixes the
homology class of Y=	Y and its Poincaré dual. In other words, 
.h�h�1/ D 
.�/

for all � 2 	 and h 2 H . By the following lemma, whose proof is left to the reader,
we can extend 
 to H Ë 	.

Lemma 5.2. Let 	 < � be a subgroup, and H < � a finite subgroup contained
in the normalizer of 	. A homomorphism 
 W 	 ! Z can be extended to H	 iff

.h�h�1/ D 
.�/ for all � 2 	 and h 2 H .


�H	 is a subgroup because H normalizes 	. If H \ 	 D f1g then it is equal to H Ë 	.
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We will denote the extension of 
 to H Ë 	 by Q
. To use Proposition 5.1 (with
H Ë	 as the group ˆ), we must show that the normalizer of H in H Ë	 is contained
in ker Q
. Since H � ker Q
, it suffices to show that H is self-normalizing in H Ë 	.
To this end, suppose � 2 	 normalizes H . Then � must fix the unique fixed point of
H , but since 	 is torsion-free this forces � to be 1.

Finally, observe that H is a maximal finite subgroup in H Ë 	. Indeed, if
g 2 H Ë 	, g 62 H , then there exists 1 ¤ � 2 	 such that g��1 2 H . Therefore,
the group generated by H and g contains � , and is therefore infinite.

6. Isotropy subgroups

Theorem 1.1 does not provide a bound on the number of conjugacy classes of non-
maximal finite subgroups (or torsion elements) in � , because we have no effective
bound on the size of finite subgroups of � . However, we will now show that there
is an effective bound on the number of non-conjugate isotropy subgroups in � , i.e.
subgroups that are stabilizers of points in X . It is easy to see that a stabilizer of the
submanifold Y of X is a stabilizer of some (but not every) point in Y . Hence there
is a one-to-one correspondence between isotropy subgroups and fixed submanifolds.

Let us begin by proving a lemma regarding linear groups.

Definition 6.1. Let T be a subset of GLn.C/. A set of vectors B in Cn splits T , if
B contains a basis of eigenvectors for every t 2 T .

If H < GLn.C/ is an abelian group consisting of semisimple elements then there
is a set vectors of size n that splits H . This is a restatement of the fact that the
elements of H can be simultaneously diagonalized. If H is finite but not abelian,
there is generally no uniform bound (depending only on n) on the size of a splitting
set. Indeed, the minimal splitting set for a dihedral group D2m realized in the standard
way as a subgroup of GL2.C/ is 2m. Nonetheless, in this example, there is a cyclic
subgroup of index 2, and all other elements (of order 2) constitute one or two conjugacy
classes. Thus, if one considers splitting “up-to-conjugacy”, the size of a minimal
splitting set is 4 or 6. We make generalize this phenomenon:

Lemma 6.2. There exists a function f .n/ such that for every finite group G of
GLn.C/ there exists a set B such that GB splits G and jBj < f .n/.

Remark. Saying that GB splits G is equivalent to saying that B splits a set of
representatives of the conjugacy classes in G.

Proof. By a theorem of Jordan [11], 36.13, there is a normal abelian subgroup A C G

such that ŒG W A� < j.n/, where j is a function of n alone. It therefore suffices to
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prove that for any coset gA there is a set of vectors C such that GC splits gA, and
jC j is bounded by a constant that depends only on n.

Let gA be a coset of A in G. Set H D hA; gi. Assume first that H acts
irreducibly on Cn. Since A is abelian, C WD CA.g/ � Z.H/, and by Schur’s lemma,
Z.H/ < Z.GLn.C//.

Let
K D ŒA; g�1� D fŒa; g�1� W a 2 Ag:

It is straightforward to check that K is a subgroup of A because A is normal and
abelian. Moreover, the map a 7! Œa; g�1� is a homomorphism of A onto K with kernel
C . Note that K � SLn.C/, and hence K \ C � Z.SLn.C//. Thus, jK \ C j � n.
We conclude that

jKC j D jKjjC j
jK \ C j � jKjjC j

n
D jAj

n
;

hence the index of KC in A is at most n.
Choose representatives a1; : : : ; as (s � n) for the cosets of KC in A. For each i ,

choose a basis of eigenvectors for gai , and let C be the union of these bases. Clearly,
jC j � n2. We claim that HC , and moreover AC , splits gA. To this end, let y 2 gA.
For some i , y 2 gaiKC and write y D gai Œa; g�1�c (Œa; g�1� 2 K, c 2 C ). Then

y D cgaia.g�1a�1g/ D cg.g�1a�1g/aia D ca�1gaia:

Since C splits gai , AC splits a�1gaia, and since c is a scalar matrix, it also splits y.
In the general case, decompose Cn to H -irreducible subspaces V1; : : : ; Vr . In

each subspace Vi , we take a set Ci such that ACi splits the restriction of gA to Vi ,
and that jCi j � dim.Vi /

2. Now C D S
Ci has the required properties: AC splits

gA and jC j � P
dim.Vi /

2 � n2. �

Remark. The proof shows in fact that we may take a set B such that jBj < f .n/

and AB already (rather than GB) is a splitting set.

Corollary 6.3. Let G be a finite subgroup of GLn.C/. Then the number of G-orbits
in the set of fixed subspaces fFix.g/ W g 2 Gg is bounded by a function of n.

Corollary 6.4. Let X be a global symmetric space of non-compact type, and � a
discrete subgroup of Isom.X/. Denote by i.�/ the number of conjugacy classes of
isotropy subgroups in � . There is a constant c0 D c0.X/ such that

i.�/ � c0 � f .�/:

Proof. The claim will follow if we show that there is a uniform bound on the number
of isotropy subgroups contained in a maximal finite subgroup of � .

Let H < � be a maximal finite subgroup, and let x 2 Fix.H/. We may identify
H as a subgroup of SO.n/ (n D dim.X/) through the action of H on Tx.X/, the
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tangent bundle at x. We note that by replacing the action of H on X by an action on
Tx.X/, the set of isotropy subgroups in H is unchanged. Since conjugacy classes of
isotropy subgroups correspond to H -orbits of fixed subspaces, the assertion follows
at once from the previous corollary. �

Corollary 6.5 (Theorem 1.3 of the introduction). Let X be a symmetric space X of
non-compact type. Let M D X=� be an X -orbifold. Denote by s.M/ the number
of strata in the natural orbifold stratification of M . Then

s.M/ � c � vol.M/;

with a constant c D c.X/. If the rank of X is at least 2 and Isom.X/ has property (T),
then for any sequence Mn of irreducible X -orbifolds that are pairwise non-isometric
we have

lim
n!1

s.Mn/

vol.Mn/
D 0:

Proof. Strata correspond to conjugacy classes of isotropy subgroups. Hence, this
follows immediately from Corollary 6.4, and Theorems 1.1 and 1.2. �
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