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Knots in lattice homology
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Abstract. Assume that �v0
is a tree with vertex set Vert.�v0

/ D fv0; v1; : : : ; vng, and with
an integral framing (weight) attached to each vertex except v0. Assume furthermore that the
intersection matrix of G D �v0

� fv0g is negative definite. We define a filtration on the chain
complex computing the lattice homology ofG and show how to use this information in computing
lattice homology groups of a negative definite graph we get by attaching some framing to v0.
As a simple application we produce new families of graphs which have arbitrarily many bad
vertices for which the lattice homology groups are isomorphic to the corresponding Heegaard
Floer homology groups.
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1. Introduction

It is an eminent problem in low dimensional topology to find simple computational
schemes for the recently defined invariants (e.g. Heegaard Floer and Monopole Floer
homologies) of 3- and 4-manifolds. In particular, the minus-version HF� of Heegaard
Floer homology is of central importance. In [8] a computational scheme for the HF�
groups was presented, which is rather hard to implement in practice. This result
was preceded by a more practical way of determining these invariants for those 3-
manifolds which can be presented as boundary of a plumbing of spheres along a
negative definite tree which has at most one “bad” vertex [21]. The idea of [21] was
subsequently extended by Némethi [9], and in [10] a new invariant, lattice homology
was proposed. It has been conjectured that lattice homology determines the Heegaard
Floer groups when the underlying 3-manifold is given by a negative definite plumbing
of spheres along a tree. Common features have been verified for both invariants. (For
example, both theories satisfy a surgery exact triangle; see [19] for the Heegaard Floer
setting, and [2], [12] for lattice homology.) Moreover, there is a spectral sequence
which connects the two invariants. (See [17].) For further related results see [11],
[13].
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In the present work we extend these similarities by introducing filtrations on lat-
tice homologies induced by vertices, mimicking the ideas of knot Floer homologies
developed in the Heegaard Floer context in [22], [26]. This information then can
be conveniently used to determine the lattice homology of the graph when the dis-
tinguished vertex is equipped with some framing; this is analogous to the surgery
formulae in Heegaard Floer theory, cf. [24].

In more concrete terms, suppose that�v0
is a given tree (or forest), with each vertex

v in Vert.�v0
/ � v0 equipped with a framing (or weight) mv 2 Z. Let G denote the

tree (or forest) we get by deleting v0 and the edges emanating from it. Suppose thatG
is negative definite. We will define the master complex MCF1.�v0

/ of �v0
, which

is a filtration on the chain complex defining the lattice homology ofG equipped with
a specific map, and will show

Theorem 1.1. The master complex MCF1.�v0
/ determines the lattice homology of

all negative definite framed trees (or forests) we get from �v0
by attaching framings

to v0.

By identifying the filtered chain homotopy type of the resulting master complex
with the knot Floer homology of the corresponding knot in the plumbed 3-manifold,
this method allows us to show that certain graphs have identical lattice and Heegaard
Floer homologies. Recall that for a negative definite tree (or forest) G on the vertex
set Vert.G/, the vertex v 2 Vert.G/ is a bad vertex ifmvCdv > 0, wheremv denotes
the framing attached to v while dv is the valency or degree of v (the number of edges
emanating from v). A vertex is good if it is not bad, that is, mv C dv � 0. Now a
connected sum formula for knot lattice homology (given in Subsection 4.1) enables
us to extend the identification of lattice homology with Heegaard Floer homology
to new families of graphs, including some with arbitrarily many bad vertices. As an
example, we show

Theorem 1.2. Consider the plumbing graph of Figure 1 on 3nC 1 vertices, with the
framing of v0 an integer at most �6n� 1. Then the lattice homology of the graph is
isomorphic to the Heegaard Floer homology HF� of the 3-manifold defined by the
plumbing.

Remark 1.3. Notice that the graph of Figure 1 on 3n C 1 vertices (after we attach
a framing �m � �6n � 1 to the central vertex v0) has n bad vertices. The case of
n D 2 in the theorem was already proved by Némethi, cf. Example 4.4.1 of [10], see
also [13] for related results. For a more general result along similar lines, see [18].

The paper is organized as follows. In Section 2 we review the basics of lattice
homology for negative definite graphs. In Sections 3 and 4 we introduce the knot
filtration on the lattice chain complex of the background graph, describe the master
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Figure 1. The plumbing graph of the n-fold connected sum of the (right-handed) trefoil
knot in S 3. The valency of the central vertex v0 is assumed to be n 2 N, and each edge
emanating from v0 connects it to a vertex with framing .�1/. Furthermore these .�1/-vertices
are connected to a .�2/- and a .�3/-framed leaf of the graph. Regarding v0 as a circle in
the plumbed 3-manifold defined by the rest of the graph, it can be identified with the n-fold
connected sum of the trefoil knot in S3.

complex and verify the connected sum formula. In Section 5 we show how to apply
this information to determine the lattice homology of graphs we get by attaching
various framings to the distinguished point v0. In particular, we prove Theorem 1.1.
In Section 6 we determine the knot filtration in one specific example, and verify
Theorem 1.2.

Notation. Suppose that� is a tree (or forest), andG is the same graph equipped with
framings, i.e., we attach integers to the vertices of � . The plumbing of disk bundles
over spheres defined byG will be denoted byXG , and its boundary 3-manifold is YG .
LetMG denote the incidence matrix associated toG (with framings in the diagonal).
This matrix presents the intersection form ofXG in the basis provided by the vertices
of the plumbing graph.

Suppose that �v0
is a plumbing tree (or forest) with a distinguished vertex v0

which is left unframed (but all other vertices of �v0
are framed). Let G denote the

plumbing graph we get by deleting the vertex v0 (and all the edges adjacent to it).
We will always assume that the plumbing trees/forests we work with are negative
definite.

Remark 1.4. We can regard the unknot defined by v0 in the plumbing picture as a
(not necessarily trivial) knot in the plumbed 3-manifold YG .
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program ADT and by the Institute for Advanced Study. ZSz was supported by NSF
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of the authors’ activities within CAST, a Research Network Program of the European
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2. Review of lattice homology

Lattice homology was introduced by Némethi in [10] (cf. also [11], [12], [13]). In this
section we review the basic notions and concepts of this theory. Our main purpose is
to set up notations which will be used in the rest of the paper.

Following [10], for a given negative definite plumbing treeGwe define a Z-graded
combinatorial chain complex .CF1.G/; @/ (and then a subcomplex .CF�.G/; @/ of
it), which is a module over the ring of Laurent polynomials F ŒU�1; U � (and over the
polynomial ring F ŒU �, respectively), where F D Z=2Z.

Define Char.G/ as the set of characteristic cohomology elements ofH 2.XG I Z/,
that is,

Char.G/ D fK W H2.XG I Z/ ! Z j for all x 2 H2.XG I Z/ W K.x/ � x �x mod 2g:
The lattice chain complex CF1.G/ is freely generated over F ŒU�1; U � by the

product Char.G/ � P .Vert.G//, that is, by elements ŒK;E� where K 2 Char.G/ �
H 2.XG I Z/ and E � Vert.G/. We introduce a Z-grading on this complex, called
the ı-grading, which is defined on the generator ŒK;E� as the number of elements in
E. To define the boundary map of the chain complex, we proceed as follows. Given
a subset I � E, we define the G-weight f .ŒK; I �/ as the quantity

2f .ŒK; I �/ D
� X
v2I

K.v/
�

C
� X
v2I

v
�

�
� X
v2I

v
�
: (2.1)

Remark 2.1. Using the fact that G is negative definite, the integer f .ŒK; I �/ can be
easily shown to be equal to

1

8

��
K C

X
v2I

2v�
�2 �K2

�
;

where v� 2 H 2.XG ; YG I Z/ denotes the Poincaré dual of the class v 2 H2.XG I Z/
corresponding to the vertex v 2 Vert.G/. This form of f .K; I / immediately implies,
for example, the following useful identity: if I � E then

f .ŒK; I �/ � f
�h

�K �
X
u2E

2u�; E � I
i�

D f .ŒK;E�/: (2.2)

We define the minimal G-weight g.ŒK;E�/ of ŒK;E� by the formula

g.ŒK;E�/ D minff .ŒK; I �/ j I � Eg:
The quantities Av.ŒK;E�/ and Bv.ŒK;E�/ are defined as follows:

Av.ŒK;E�/ D g.ŒK;E � v�/ and Bv.ŒK;E�/ D minff .ŒK; I �/ j v 2 I � Eg:
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A simple argument shows that

Bv.ŒK;E�/ D
�
K.v/C v2

2

�
C g.ŒK C 2v�; E � v�/: (2.3)

It follows trivially from the definition that

minfAv.ŒK;E�/; Bv.ŒK;E�/g D g.ŒK;E�/:

Consider

avŒK;E� D Av.ŒK;E�/ � g.ŒK;E�/ and bvŒK;E� D Bv.ŒK;E�/ � g.ŒK;E�/:
and define the boundary map @ W CF1.G/ ! CF1.G/ by the formula

@ŒK;E� D
X
v2E

U avŒK;E� ˝ ŒK;E � v�C
X
v2E

U bvŒK;E� ˝ ŒK C 2v�; E � v�;

on a generator ŒK;E� and extend this map U -equivariantly to the terms U j ˝ ŒK;E�

and then linearly to CF1.G/. Notice that avŒK;E�, bvŒK;E� are both nonnegative
integers, and minfavŒK;E�; bvŒK;E�g D 0 follows directly form the definitions. It
is obvious that the boundary map decreases the ı-grading by one. Furthermore, it is
a simple exercise to show that

Lemma 2.2. The map @ is a boundary map, that is, @2 D 0.

Proof. The proof boils down to matching the exponents of the U -factors in front of
various terms in @2ŒK;E� for a given generator ŒK;E�. This idea leads us to four
equations to check. One of them, for example, relates the two U -powers in front of
the two appearances ŒK;E � v1 � v2� in @2ŒK;E�. We claim that

av1
ŒK;E�C av2

ŒK;E � v1� D av2
ŒK;E�C av1

ŒK;E � v2� (2.4)

holds, therefore (over F ) the two terms cancel each other. Writing out the definitions
of the terms in (2.4) we get

g.ŒK;E � v1�/ � g.ŒK;E�/C g.ŒK;E � v1 � v2�/ � g.ŒK;E � v1�/
D g.ŒK;E � v2�/ � g.ŒK;E�/C g.ŒK;E � v1 � v2�/ � g.ŒK;E � v2�/;

which trivially holds. The remaining three cases to check are:

av1
ŒK;E�C bv2

ŒK;E � v1� D bv2
ŒK;E�C av1

ŒK C 2v�
2 ; E � v2�;

bv1
ŒK;E�C av2

ŒK C 2v�
1 ; E � v1� D av2

ŒK;E�C bv1
ŒK;E � v2�; (2.5)

and finally

bv1
ŒK;E�C bv2

ŒK C 2v�
1 ; E � v1� D bv2

ŒK;E�C bv1
ŒK C 2v�

2 ; E � v2�:
Using the definition of Bv given in (2.3), the equations reduce to similar equalities
as in the first case. �



788 P. Ozsváth, A. I. Stipsicz and Z. Szabó CMH

Remark 2.3. In [10] the theory is set up over Z; for simplicity in the present paper
we use the coefficients from the field F D Z=2Z of two elements.

2.1. Connected sums. Suppose that the plumbing forest G is the union of G1 and
G2, with no edges connecting any vertex of G1 to any vertex of G2. (In other words,
G1 and G2 are both unions of components of G.) It is a simple topological fact that
in this case YG decomposes as the connected sum of the two 3-manifolds YG1

and
YG2

. Correspondingly, the F ŒU�1; U �-module CF1.G/ decomposes as the tensor
product

CF1.G/ Š CF1.G1/˝FŒU�1;U � CF1.G2/; (2.6)

and the definition of the boundary map @ shows that this decomposition holds on the
chain complex level as well.

2.2. Spinc structures and the J -map. Define an equivalence relation for the gen-
erators of the chain complex CF1.G/ as follows: we say that ŒK;E� and ŒK 0; E 0�
are equivalent if K �K 0 2 2H 2.XG ; YG I Z/. Since the boundary map respects this
equivalence relation, the chain complex splits according to this relation.

It is easy to see that (since XG is simply-connected) a characteristic cohomology
class K 2 H 2.XG I Z/ uniquely determines a spinc structure on XG . By restricting
this structure to the boundary 3-manifold YG we conclude that K naturally induces
a spinc structure sK on YG . Two classes K, K 0 induce the same spinc structure
on YG if and only if they are equivalent in the above sense (that is, K � K 0 2
2H 2.XG ; YG I Z/). Therefore the splitting of the chain complex CF1.G/ described
above is parametrized by the spinc structures of YG :

CF1.G/ D
X

s2Spinc.YG/

CF1.G; s/;

where CF1.G; s/ is spanned by those pairs ŒK;E� for which sK D s.
Consider now the map

J ŒK;E� D � �K �
X
v2E

2v�; E
�
;

and extend it U -equivariantly (and linearly) to CF1.G/. Obviously J provides an
involution on CF1.G/, and a simple calculation shows the following:

Lemma 2.4. The J -map is a chain map, that is, J B @ D @ B J .

Proof. The two compositions can be easily determined as

.J B @/ŒK;E� D
X
v2E

�
U avŒK;E� ˝

h
�K �

X
u2E�v

2u�; E � v
i�

C
X
v2E

�
U bvŒK;E� ˝

h
�K �

X
u2E

2u�; E � v
i�
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and

.@ B J /ŒK;E� D
X
v2E

�
U avŒ�K�P

u2E 2u�;E� ˝ Œ�K �
X
u2E

2u�; E � v�
�

C
X
v2E

�
U bvŒ�K�P

u2E 2u�;E� ˝
h

�K �
X

u2E�v
2u�; E � v

i�
:

The fact that J is a chain map, then follows from the two identities

avŒK;E� D bv

h
�K �

X
u2E

2u�; E
i

and av

h
�K �

X
u2E

2u�; E
i

D bvŒK;E�:

(2.7)
In turn, these identities easily follow from the identity of (2.2), concluding the proof
of the lemma. �

The J -map obviously respects the splitting of CF1.G/ according to spinc struc-
tures. In fact, the spinc structures represented by K and �K are ’conjugate’ to
each other as spinc structures on YG (cf. [19]), inducing the spinc structures s; Ns 2
Spinc.YG/, respectively. The J -map therefore is just the manifestation of the conju-
gation involution of spinc structures on the chain complex level. Indeed, J provides
an isomorphism between the two subcomplexes CF1.G; s/ and CF1.G; Ns/.

2.3. Gradings. The lattice chain complex CF1.G/ admits a Maslov grading: for
a generator ŒK;E� and j 2 Z define gr.U j ˝ ŒK;E�/ by the formula

gr.U j ˝ ŒK;E�/ D �2j C 2g.ŒK;E�/C jEj C 1
4
.K2 C jVert.G/j/:

Recall that K2 is defined as the square of nK divided by n2, where nK 2
H 2.XG ; YG I Z/, hence it admits a cup square. (Here we use the fact that G is
negative definite, hence detMG ¤ 0, so the restriction of any cohomology class
from XG to its boundary YG is torsion.) The grading gr.U j ˝ ŒK;E�/ is a rational
number (rather than an integer).

Lemma 2.5. The boundary map decreases the Maslov grading by one.

Proof. We proceed separately for the two types of components of the boundary map.
After obvious simplifications we get that

gr.U j ˝ ŒK;E�/ � gr.U j � U avŒK;E� ˝ ŒK;E � v�/
D 2g.ŒK;E�/C jEj C 2avŒK;E� � 2g.ŒK;E � v�/ � jE � vj;

which, according to the definition of avŒK;E�, is equal to 1. Similarly,

gr.U j ˝ ŒK;E�/ � gr.U j � U bvŒK;E� ˝ ŒK C 2v�; E � v�/ D 1

follows from the same simplifications and Equation (2.3). �
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It is not hard to see that the J -map preserves the Maslov grading. Indeed,

gr.ŒK;E�/ � gr.J ŒK;E�/

D gr.ŒK;E�/ � gr
�h

�K �
X
v2E

2v�; E
i�

D 2g.ŒK;E�/ � 2g
�h

�K �
X
v2E

2v�; E
i�

C 1
4

�
K2 �

�
�K �

X
v2E

2v�
�2�

:

Using the identity of (2.2) and the alternative definition of f .K;E/, it follows that
the above difference is equal to zero.

Recall that the cardinality jEj for a generator ŒK;E� of CF�.G/ gives the ı-
grading, which decomposes each CF�.G; s/ as

CF�.G; s/ D Ln
kD0 CF�

k .G; s/;

where n D jVert.G/j. It is easy to see that the differential @ decreases ı-grading by
one.

2.4. Definition of the lattice homology. We define the lattice homology groups
as follows. Consider .CF1.G/; @/, and let .CF�.G/; @/ denote the subcomplex
generated by those generators U j ˝ ŒK;E� for which j � 0 (and equipped with the
differential restricted to the subspace). Setting U D 0 in this subcomplex we get the
complex .bCF.G/; O@/. Obviously all these chain complexes split according to spinc

structures and admit a Maslov grading, ı-grading and a J -map.

Definition 2.6. Define the lattice homology HF1.G/ as the homology of the chain
complex .CF1.G/; @/. The homology of the subcomplex CF�.G/ (with the bound-
ary map @ restricted to it) will be denoted by HF�.G/, while the homology of
.bCF.G/; O@/ is bHF.G/.

Since the chain complex CF�.G/ (and similarly, CF1.G/ and bCF.G/) splits
according to spinc structures, so does its homology, giving the decomposition

HF�.G/ D L
s2Spinc.YG/

HF�.G; s/:

The ı-grading then decomposes HF�.G; s/ further as

HF�.G; s/ D Ln
kD0 HF�

k .G; s/;

where n D jVert.G/j. The Maslov grading provides an additional Q-grading on
HF�.G; s/, but we reserve the subscript HF�

k .G; s/ for the ı-grading.
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Remark 2.7. The embedding i W CF�.G/ ! CF1.G/ can be used to define a
quotient complex CFC.G/ (with the differential inherited from this construction)
which fits into the short exact sequence

0 ! CF�.G/ ! CF1.G/ ! CFC.G/ ! 0:

The homology of this quotient complex will be denoted by HFC.G/. The same
splittings as before (according to spinc structures, the ı-grading and Maslov grading)
apply to this theory is well. The short exact sequence above then induces a long exact
sequence on the various homologies.

In a similar manner, CF�.G/ and bCF.G/ can be also connected by a short exact
sequence:

0 ! CF�.G/ U! CF�.G/ ! bCF.G/ ! 0;

where the first map is multiplication by U . This short exact sequence then induces a
long exact sequence on homologies connecting HF�.G/ and bHF.G/:

� � � ! HF�
q .G/

U! HF�
q .G/ ! bHFq.G/ ! HF�

q�1 ! � � � :

The homology group HF�.G/ is obviously an F ŒU �-module. In the next result
we describe an algebraic property these particular modules satisfy.

Theorem 2.8 (Némethi, [10]). Suppose that G is a negative definite plumbing tree
and s is a spinc structure onYG . Then the homology HF�.G; s/ is a finitely generated
F ŒU �-module of the form

HF�.G; s/ D F ŒU �˚
M
i

Ai ;

where the modules Ai are cyclic modules of the form F ŒU �=.U n/. Furthermore the
F ŒU �-factor is in HF�

0 .G; s/. �

Corollary 2.9. The F ŒU�1; U �-module HF1.G; s/ D HF1
0 .G; s/ is isomorphic to

F ŒU�1; U �.

Proof. By the Universal Coefficient Theorem we get that there is a short exact se-
quence

0 ! HF�
q .G; s/˝FŒU � F ŒU�1; U � ! HF1

q .G; s/

! Tor.HF�
q�1.G; s/;F ŒU�1; U �/ ! 0:

Since
Tor.F ŒU �;F ŒU�1; U �/ D Tor.F ŒU �=.U n/;F ŒU�1; U �/ D 0
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and
.F ŒU �=.U n//˝FŒU � F ŒU�1; U � D 0;

while F ŒU �˝FŒU � F ŒU�1; U � D F ŒU�1; U �, the claim obviously follows. By The-
orem 2.8 the single F ŒU �-factor is in HF�

0 .G; s/, hence we get that HF1.G; s/ D
HF1

0 .G; s/. �

Definition 2.10. Let
HF�

red.G; s/ 	 HF�.G; s/
denote the kernel of the map i� W HF�.G; s/ ! HF1.G; s/ induced by the embed-
ding i W CF�.G; s/ ! CF1.G; s/. This group is finite dimensional as a vector space
over F and is called the reduced lattice homology of .G; s/.

2.5. Examples. We conclude this section by working out a simple example which
will be useful in our later discussions.

Example 2.11. Suppose that the tree G has a single vertex v with framing �1. The
chain complex CF1.G/ is generated over F ŒU�1; U � by the elements

fŒ2nC 1; fvg�; Œ2nC 1; ;� j n 2 Zg;
where a characteristic vector onG is denoted by its value 2nC1 on v. The boundary
map on Œ2nC 1;;� D Œ2nC 1� is given by @Œ2nC 1� D 0 and by

@Œ2nC 1; fvg� D
´
Œ2nC 1�C U n ˝ Œ2n � 1� if n � 0,

U�n ˝ Œ2nC 1�C Œ2n � 1� if n < 0.

These formulae also describe the chain complexes CF�.G/ and bCF.G/ (generated
over F ŒU � and over F ). Let us consider the map F from CF1.G/ to the subcomplex
F ŒU�1; U �hŒ�1�i 	 CF1.G/ generated by the element Œ�1�, defined as

F.Œ2nC 1;E�/ D
´
0 if E D ¹vº;
U

1
2n.nC1/ ˝ Œ�1� if E D ;.

This map provides a chain homotopy equivalence between CF1.G/ and F ŒU�1; U �
(the latter equipped with the differential @ D 0), as shown by the chain homotopy

H.Œ2nC 1;E�/ D

8̂<
:̂
0 if E D ¹vº or n D �1,Pn
iD0 U si ˝ Œ2.n � i/C 1; v� if E D ; and n � 0;P�n�2
iD0 U ri ˝ Œ2.nC i C 1/C 1; v� if E D ; and n < �1;

where s0 D 0 and si D si�1 C bvŒ2.n� i � 1/� 1; v� D 1
2
i.2nC 1� i/, r0 D 0 and

ri D ri�1 C avŒ2.nC i/C 1; v� D �1
2
i.2nC 1C i/. In conclusion, the homology
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HF1.G/ (and similarly HF�.G/ and bHF.G/) is generated by the class of Œ�1�
over F ŒU�1; U � (and over F ŒU � and F , respectively). In particular, HF�

i .G/ D 0

for i > 0.

Recall that for the disjoint union G D G1 [ G2 of two trees/forests the chain
complex of G (and therefore the lattice homology of G) splits as the tensor product
of the lattice homologies ofG1 andG2 (over the coefficient ring of the chosen theory).
As a quick corollary we get

Corollary 2.12. Suppose that G D G1 [G2 where G2 is the graph encountered in
Example 2.11. Then HF�.G/ Š HF�.G1/. (Similar statements hold for the other
versions of the theory.)

Proof. By the connected sum formula (Equation (2.6)), and by the computation in
Example 2.11 we get that

HF�.G/ Š HF�.G1/˝FŒU � HF�.G2/ Š HF�.G1/˝FŒU � F ŒU � Š HF�.G1/;

verifying the statement. �

3. The knot filtration on lattice homology

Denote the vertices of the tree �v0
by V D Vert.�v0

/ D fv0; v1; : : : ; vng. Assume
that each vj with j > 0 is equipped with a framing mj 2 Z, but leave the vertex v0
unframed. In the following we will assume thatG D �v0

�v0 is negative definite. The
reason for this assumption is that for more general graphs lattice homology provides
groups isomorphic to the corresponding Heegaard Floer homology groups only after
completion; in particular after allowing infinite sums in the chain complex. For such
elements, however, the definition of any filtration requires more care. To avoid these
technical difficulties, here we restrict ourselves to the negative definite case.

For a framing m0 2 Z on v0 denote the framed graph we get from �v0
by

Gv0
D Gv0

.m0/. (We will always assume that m0 is chosen in such a way that
Gv0

.m0/ is also negative definite.) Let † 2 H2.XGv0
I Q/ be a homology class

satisfying

† D v0 C
nX

jD1
aj � vj .where aj 2 Q/; and vj �† D 0 .for all j > 0/: (3.1)

Notice that since G D �v0
� v0 is assumed to be negative definite, the class †

exists and is unique. In the next two sections we will follow the convention that
characteristic classes on G and subsets of V � fv0g will be denoted by K and E
respectively, while the characteristic classes onGv0

and subsets of V will be denoted
by L and H , respectively.
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Lemma 3.1. Let us fix a generator ŒK;E� 2 Char.G/ � P .V � v0/ of the lattice
chain complex CF1.G/ of G. There is a unique element L D LŒK;E� 2 Char.Gv0

/

with the properties that for HE D E [ fv0g,

� LjG D K, and

� av0
ŒL;HE � D bv0

ŒL;HE � D 0.

Proof. The equality av0
ŒL;HE � D bv0

ŒL;HE � is, by definition, equivalent to
Av0

.ŒL;HE �/ D Bv0
.ŒL;HE �/. By its definition Av0

.ŒL;HE �/ D g.ŒK;E�/ is in-
dependent ofL.v0/ (and of the framingm0 D v20 of v0), while sinceK.vj / D L.vj /

for j > 0, by Equation (2.3)

2Bv0
.ŒL;HE �/ D L.v0/C v20 C 2g.ŒK C 2v�

0 ; E�/:

The identity 2Av0
.ŒL;HE �/ D 2Bv0

.ŒL;HE �/ then uniquely specifies L.v0/:

L.v0/ D �v20 C 2g.ŒK;E�/ � 2g.ŒK C 2v�
0 ; E�/

D �v20 C min
I�E

� X
v2I

K.v/C
� X
v2I

v
�2�

� min
I�E

� X
v2I

K.v/C
� X
v2I

v
�2 C 2v0 �

� X
v2I

v
��
:

SinceK is characteristic, both minima are even, and thereforeL.v0/ � v20 .mod 2/,
implying that L is also characteristic. �

Definition 3.2. We define the Alexander grading A.ŒK;E�/ of a generator ŒK;E� of
CF1.G/ by the formula

A.ŒK;E�/ D 1
2
.L.†/C†2/ 2 Q;

where L D LŒK;E� is the extension ofK found in Lemma 3.1 and † is the (rational)
homology element inH�.XGv0

I Q/ associated to v0 in Equation (3.1). (In the above
formula we regard L 2 H 2.XGv0

I Z/ as a cohomology class with rational coeffi-
cients.) Notice that since vj � † D 0 for all j > 0, the above expression is equal to
1
2
.L.†/C v0 �†/. We extend this grading to expressions of the form U j ˝ ŒK;E�

with j 2 Z by
A.U j ˝ ŒK;E�/ D �j C A.ŒK;E�/:

In the definition above we fixed a framingm0 on v0, and it is easy to see that both
the values of L.v0/ and of †2 D v0 �† depend on this choice.

Lemma 3.3. The value A.ŒK;E�/ is independent of the choice of the framing
m0 D v20 of v0.
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Proof. By the identities of Lemma 3.1 it is readily visible that L.v0/ (and hence
L.†/) changes by �1 if v20 is replaced by v20 C 1. Since †2 changes exactly as v20
does, the sumL.v0/C†2 (and hence 1

2
.L.†/C†2/) does not depend on the chosen

framing v20 on v0. �

Since † is not an integral homology class, there is no reason to expect that
A.ŒK;E�/ is an integer in general. On the other hand, it is easy to see that if K;K 0
represent the same spinc structure then A.ŒK;E�/ � A.ŒK 0; E 0�/ is an integer: if
K 0 D K C 2y� (with y 2 H2.XG I Z/) then

A.ŒK;E�/ � A.ŒK 0; E 0�/ D 1
2
.LŒK;E� � LŒK0;E 0�/.v0/ 2 Z

since y �† D 0 and both LŒK;E� and LŒK0;E 0� are characteristic cohomology classes.

Definition 3.4. For each spinc structure s of G there is a rational number is 2 Œ0; 1/
with the property that mod 1 the Alexander grading A.ŒK;E�/ for a pair ŒK;E� with
sK D s is congruent to is.

Remark 3.5. For a rational homology sphere Y and a knot K � Y the Alexander
grading defined in Heegaard Floer homology is generally not an integer. On the
other hand, for a fixed spinc structure s all generators representing s have Alexander
gradings which differ by integers. Therefore the mod 1 residue of the Alexander
grading of a generator is an invariant of the spinc structure, giving rise to a similar
rational number in Œ0; 1/ in Heegaard Floer homology as is defined above in the lattice
homology context.

Definition 3.6. The Alexander grading A of generators naturally defines a filtration
fFig on the chain complex CF1.G/ (which we will still denote by A and will call
the Alexander filtration) as follows: an element x 2 CF1.G/ is in Fi if every
component of x (when written in the F -basis U j ˝ ŒK;E�) has Alexander grading
at most i . Intersecting the above filtration with the subcomplex CF�.G/ we get
the Alexander filtration A on CF�.G/. Similarly, the definition provides Alexander
filtrations on the chain complexes bCF.G/ and CFC.G/.

Equipped with the Alexander filtration, now .CF1.G/; @/ is a filtered chain
complex, as the next lemma shows.

Lemma 3.7. The chain complex CF1.G/ (and similarly, CF�.G/ and bCF.G/)
equipped with the Alexander filtration A is a filtered chain complex, that is, if x 2 Fi
then @x 2 Fi .

Proof. We need to show that for a generator ŒK;E� the inequality A.@ŒK;E�/ �
A.ŒK;E�/ holds. Recall that @ŒK;E� is the sum of two types of elements. In the
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following we will deal with these two types separately, and verify a slightly stronger
statement for these components.

Let us first consider the component of the boundary of the shape of U avŒK;E� ˝
ŒK;E � v� for some v 2 E. We claim that in this case

A.ŒK;E�/ � A.U avŒK;E� ˝ ŒK;E � v�/ D avŒK C 2v�
0 ; E� (3.2)

holds, obviously implying that the Alexander grading of this boundary component
is not greater than that of ŒK;E�. To verify the identity of (3.2), write † as v0 CPn
jD1 aj � vj , and note that twice the left-hand side of Equation (3.2) is equal to

K
� nX
jD1

aj � vj
�

C LŒK;E�.v0/C†2 C 2g.ŒK;E � v�/ � 2g.ŒK;E�/

�K
� nX
jD1

aj � vj
�

� LŒK;E�v�.v0/ �†2;

which, after the simple cancellations and the extensions found in Lemma 3.1, is equal
to

2g.ŒK;E�/ � 2g.ŒK C 2v�
0 ; E�/C 2g.ŒK;E � v�/

� 2g.ŒK;E�/ � 2g.ŒK;E � v�/C 2g.ŒK C 2v�
0 ; E � v�:

After further cancellations, this expression gives 2avŒK C 2v�
0 ; E�, verifying Equa-

tion (3.2). Since av � 0, Equation (3.2) concludes the argument in this case.
Next we compare the Alexander grading of the termU bvŒK;E�˝ ŒKC2v�; E�v�

to A.ŒK;E�/. Now we claim that

A.ŒK;E�/ � A.U bvŒK;E� ˝ ŒK C 2v�; E � v�/ D bvŒK C 2v�
0 ; E�: (3.3)

As before, after substituting the defining formulae into the terms of twice the left-hand
side of (3.3) we get

K
� nX
jD1

aj � vj
�

C LŒK;E�.v0/C†2 C 2BvŒK;E� � 2g.ŒK;E�/

� .K C 2v�/
� nX
jD1

aj � vj
�

� LŒKC2v�;E�v�.v0/ �†2:

From the fact that v�.†/ D 0 we get that 2v�.
Pn
jD1 aj � vj / D �2v � v0, hence by

considering the form of Bv given in (2.3) we get that this term is equal to

2g.ŒK;E�/ � 2g.ŒK C 2v�
0 ; E�/C 2g.ŒK C 2v�; E � v�/CK.v/C v2 C 2v � v0

� 2g.ŒK;E�/ � 2g.ŒK C 2v�; E � v�/C 2g.ŒK C 2v� C 2v�
0 ; E � v�/;
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and this expression is obviously equal to 2bvŒKC2v�
0 ; E�. Once again, since bv � 0,

the statement of the lemma follows. �

Definition 3.8. We define the filtered chain complex .CF1.G/; @; A/ (and similarly
.CF�.G/; @; A/ and .bCF.G/; @; A/) the filtered lattice chain complex of the vertex
v0 in the graph �v0

.

Remark 3.9. Recall that the chain complex CF�.G/ splits according to the spinc

structures of the 3-manifold YG . By intersecting the Alexander filtration with the
subcomplexes CF�.G; s/ for every spinc structure s, we get a splitting of the filtered
chain complex according to spinc structures as well. The same remark applies to the
CF1 and bCF theories.

Definition 3.10. The knot lattice homology HFK�.�v0
/ (respectively HFK1.�v0

/,
1HFK.�v0

/) of v0 in the graph �v0
is defined as the homology of the graded object

associated to the filtered chain complex .CF�.G/; @; A/ (and of .CF1.G/; @; A/,
.bCF.G/; O@;A/, respectively). As before, the groups HFK�.�v0

/ (and similarly
HFK1.�v0

/ and 1HFK.�v0
/) split according to the spinc structures of YG , giving

rise to the groups HFK�.�v0
; s/ for s 2 Spinc.YG/.

Let us fix a spinc structure s onYG . The group HFK�.�v0
; s/ then splits according

to the Alexander gradings as L
a HFK�.�v0

; s; a/;

and the components HFK�.�v0
; s; a/ are further graded by the absolute ı-grading

(originating from the cardinality of the setE for a generator ŒK;E�) and by the Maslov
grading.

The relation between the Alexander filtration and the J -map is given by the fol-
lowing formula:

Lemma 3.11. A.J ŒK;E�// D �A.ŒK � 2v�
0 ; E�/.

Proof. Recall that J ŒK;E� D Œ�K � P
v2E 2v�; E�. With the extension L of

�K � P
v2E 2v� given by Lemma 3.1, and with the choice v20 D 0 we have that

2A.J ŒK;E�/ D
�

�K �
X
v2E

2v�
�
.† � v0/C L.v0/C†2:

Since v�.†/ D 0, by the definition of L.v0/ and the identity of Remark 2.1 this
expression is equal to

�K.† � v0/C 2v0 �
� X
v2E

v
�

C†2 C 2gŒK;E�

� 2f ŒK;E� � 2gŒK � 2v�
0 ; E�C 2f ŒK � 2v�

0 ; E�:
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With the same argument the identity

2A.ŒK � 2v�
0 ; E�/ D K.† � v0/ � 2v�

0 .† � v0/C L0.v0/C†2

D K.† � v0/ �†2 C 2gŒK � 2v�
0 ; E� � 2gŒK;E�

follows (since v0 � † D †2 and v20 D 0). Now the identity of the lemma follows
from the observation that f ŒK;E� � f ŒK � 2v�

0 ; E� � v0 � .Pv2E v/ D 0. �

A variant of the J -map, adapted to the distinguished vertex v0 2 �v0
(and to the

filtration given by v0) is given as follows. Define Jv0
W CF1.G/ ! CF1.G/ by

the formula
ŒK;E� 7!

h
�K �

X
u2E

2u� � 2v�
0 ; E

i
;

on a generator ŒK;E� and extendU -equivariantly and linearly to CF1.G/. It is easy
to see that J 2v0

D Id. The result of the previous lemma can be restated as

A.Jv0
ŒK;E�/ D �AŒK;E�:

For the next statement recall from Definition 3.4 the quantity is associated to a spinc

structure s on G.

Lemma 3.12. The map sending the generator ŒK;E� 2 CF1.G; s/ to

U is�A.ŒK;E�/Jv0
ŒK;E�

is a chain map.

Proof. We show first that the application of the above map to U avŒK;E�˝ ŒK;E � v�
for some v 2 E is equal to

U is�A.ŒK;E�/ �U bvŒ�K�P
u2E 2u��2v�

0
;E� ˝

h
�K �

X
u2E

2u� � 2v�
0 C 2v�; E � v

i
:

The identification of Jv0
.U avŒK;E�˝ ŒK;E�/with the above term easily follows from

the observation that

avŒK;E�Cis�A.ŒK;E�v�/ D is�A.ŒK;E�/Cbv
h
�K�

X
u2E

2u��2v�
0 ; E

i
: (3.4)

Equation (3.4), however, is a direct consequence of the equality

bv

h
�K �

X
u2E

2u� � 2v�
0 ; E

i
D avŒK C 2v�

0 ; E�

and the definitions of the terms describing the Alexander gradings. A similar com-
putation shows the identity for the other type of boundary components (involving the
terms of the shape U bvŒK;E� ˝ ŒK C 2v�; E � v�), concluding the proof. �
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Examples 3.13. Two examples of the filtered chain complexes associated to certain
graphs can be determined as follows. Since both examples describe the unknot in
S3, it is not surprising that the filtered chain complexes are filtered chain homotopy
equivalent. (These examples will be used in later arguments.)

� Consider first the graph �v0
with two vertices fv0; vg, connected by a single

edge, and with .�1/ as the framing of v. The chain complex of G D �v0
� v0

has been determined in Example 2.11. A straightforward calculation shows that
A.Œ2nC 1�/ D nC 1 and

A.Œ2nC 1; fvg�/ D
´
nC 1 if n � 0,

n if n < 0.

This formula then describes the Alexander filtration on CF�.G/. (Recall that
A.U i ˝ ŒK;E�/ D �j CA.ŒK;E�/.) It is easy to see that the chain homotopy
encountered in Example 2.11 respects the Alexander filtration, hence the filtered
lattice chain complex .CF1.G/; A/ is filtered chain homotopic to F ŒU�1; U �,
generated by the element g in filtration level 0. In conclusion, 1HFK.�v0

/

and HFK�.�v0
/ are both generated by the element Œ�1� (over F and F ŒU �,

respectively), and the Alexander and Maslov gradings of the generator are both
equal to 0.

� In the second example consider the graph � 0
v0

on the same two vertices fv0; vg,
now with no edges at all. (That is, � 0

v0
is given from �v0

by erasing the single
edge of �v0

.) The background graphG (and hence the chain complex CF�.G/)
is obviously the same as in the first example, but the Alexander grading A0 is
much simpler now: A0.Œ2nC 1�/ D A0.Œ2nC 1; fvg�/ D 0 for all n 2 Z. Once
again, the chain homotopy of Example 2.11 is a filtered chain homotopy, hence
we can apply it to determine the filtered lattice chain complex of� 0

v0
, concluding

that .CF1.G/; A0/ is filtered chain homotopic to F ŒU�1; U �with the generator
in Alexander grading 0. Once again HFK�.� 0

v0
/ is generated by Œ�1�.

In conclusion, the filtered chain complexes of the two examples are filtered chain
homotopic to each other. The filtered homotopy between the two examples is not a
surprise: the two filtered chain complexes are associated to the unknot U in S3 and
both constructions are motivated by the construction of CFK�.U /.

4. The master complex and the connected sum formula

As we will see in the next section, the filtered chain complexes defined in the previous
section (together with certain maps, to be discussed below) contain all the relevant
information we need for calculating the lattice homologies of graphs we get by attach-
ing various framings to v0. The Alexander filtration A on CF1.G/ can be enhanced
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to a double filtration by considering the double grading

U j ˝ ŒK;E� 7! .�j; A.U j ˝ ŒK;E�//: (4.1)

In fact, this doubly filtered chain complex determines (and is determined by) the
filtered chain complex .CF�.G/; A/. Notice that multiplication by U decreases
Maslov grading by 2, �j by 1 and Alexander grading by 1.

In describing the further structures we need, it is slightly more convenient to
work with CF1.G/, and therefore we will consider the doubly filtered chain com-
plex above. In the following we will find it convenient to equip CF1.G/ with the
following map.

Definition 4.1. The map N W CF1.G/ ! CF1.G/ is defined by the formula

N.U j ˝ ŒK;E�/ D U isK
�AŒK;E�Cj ˝ ŒK C 2v�

0 ; E�: (4.2)

Notice that N does not preserve the spinc structure of a given element. Indeed,
if sv0

denotes the spinc structure we get by twisting s with v�
0 (and hence we get

c1.sv�
0
/ D c1.s/ C 2v�

0 ), then N maps CF1.G; s/ to CF1.G; sv0
/. By choosing

another rational number r (with r � isK mod 1) instead of isK in the above formula,
we get only multiples of N (multiplied by appropriate monomials of U ).

Lemma 4.2. The map N is a chain map, and provides an isomorphism between the
chain complex CF1.G; s/ and CF1.G; sv�

0
/.

Proof. The fact that N is a chain map follows from the identities

avŒK;E� � A.ŒK;E � v�/ D avŒK C 2v�
0 ; E� � A.ŒK;E�/ (4.3)

and

bvŒK;E� � A.ŒK C 2v�; E � v�/ D bvŒK C 2v�
0 ; E� � A.ŒK;E�/: (4.4)

These identities follow easily from the definitions of the terms. To show thatN is an
isomorphism, let the spinc structure s�v�

0
be denoted by t and consider the map

M.U j ˝ ŒK;E�/ D UA.ŒK�2v�
0
;E�/Cj�it ˝ ŒK � 2v�

0 ; E�:

M is also a chain map (as the identities similar to (4.3) and (4.4) show), and M and
N are inverse maps. It follows therefore that N is an isomorphism between chain
complexes. �

Notice that N can be written as the composition of the J -map with the map
U is�A.ŒK;E�/Jv0

ŒK;E� considered in Lemma 3.12.
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Definition 4.3. Suppose that for i D 1; 2 the triples .Ci ; Ai ; ji / are doubly filtered
chain complexes andNi W Ci ! Ci are given maps. Then the map f W C1 ! C2 is an
equivalence of these structures if f is a (doubly) filtered chain homotopy equivalence
commuting with Ni , that is, f BN1 D N2 B f .

With this definition at hand, now we can define the master complex of �v0
as

follows.

Definition 4.4. Suppose that �v0
is given. Consider CF1.G/ with the double fil-

tration .�j; A/ as above, together with the map N defined in Definition 4.1. The
equivalence class of the resulting structure is the master complex of �v0

.

As a simple example, a model for the master complex for each of the two cases
in Example 3.13 can be easily determined: regarding the map U j ˝ ŒK;E� 7!
.�j; A.U j˝ŒK;E�// as a map into the plane, (a representative of) the master complex
will have a Z2 term for each coordinate .i; i/, and all other terms (and all differentials)
are zero. In addition, the map N in this model is equal to the identity. (Note that in
this case the background 3-manifold is diffeomorphic to S3, hence admits a unique
spinc structure.) In short, the master complex for both cases in Example 3.13 is
F ŒU�1; U �, with the Alexander grading of U j being equal to j and with N D id .

Obviously, by fixing a spinc structure s 2 Spinc.YG/ we can consider the part
MCF1.�v0

; s/ of the master complex generated by those elements U j ˝ ŒK;E�

which satisfy the constraint sK D s. As we noted earlier, N maps components of the
master complex corresponding to various spinc structures into each other.

4.1. The connected sum formula. Suppose that �v0
and � 0

w0
are two graphs with

distinguished vertices v0; w0. Their connected sum is defined in the following:

Definition 4.5. Let �v0
and � 0

w0
be two graphs with distinguished vertices v0 and

w0. Their connected sum is the graph obtained by taking the disjoint union of�v0
and

� 0
w0

, and then identifying the distinguished vertices v0 D w0. The resulting graph

�.v0Dw0/ D �v0
#.v0Dw0/ �

0
w0

(which will be a tree/forest provided both �v0
and � 0

w0
were trees/forests) has a

distinguished vertex v0 D w0.

Remark 4.6. Notice that this construction gives the connected sum of the two knots
specified by v0 and w0 in the two 3-manifolds YG and YG0 .

Recall that for the disjoint graphsG D �v0
�v0 andG0 D � 0

w0
�w0 the chain com-

plex CF1.G[G0/ of their connected sum is simply the tensor product of CF1.G/
and CF1.G0/ (over F ŒU�1; U �). We will denote the Alexander grading/filtration on
CF1.G/ by Av0

and on CF1.G0/ by Aw0
.
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Theorem 4.7. For the Alexander gradingA# of the generator ŒK1; E1�˝ ŒK2; E2� 2
CF1.G [ G0/ induced by the distinguished vertex v0 D w0 in �.v0Dw0/ we have
that

A#.ŒK1; E1�˝ ŒK2; E2�/ D Av0
.ŒK1; E1�/C Aw0

.ŒK2; E2�/:

Proof. For simplicity fix v20 D w20 D 0 and consider †v0
and †w0

on the respective
sides of the connected sum. By the calculation from Lemma 3.1 it follows that for
the extensions Li of Ki over the distinguished points v0; w0, and extension L over
v0 D w0 we have

LE1[E2
.v0 D w0/ D .L1/E1

.v0/C .L2/E2
.w0/:

Since †2v0Dw0
D .†v0

C†w0
/2 D †2v0

C†2w0
, the above equality shows that both

terms of the defining equation of the Alexander grading are additive, concluding the
result. �

As a corollary, we can now show that

Theorem 4.8. The master complexes of �v0
and � 0

w0
determine the master complex

of the connected sum �.v0Dw0/.

Proof. As we saw above, the chain complexes for �v0
and � 0

w0
determine the chain

complex of�.v0Dw0/ by taking their tensor product. This identity immediately shows
that the j -filtration on the result is determined by the j -filtrations on the components.
The content of Theorem 4.7 is that the Alexander filtration on the connected sum is
also determined by the Alexander filtrations of the pieces. Finally, the mapN is built
from the maps J and Jv0

, which simply add for the connected sum, implying the
result. A minor adjustment is needed in the last step: if is and is0 are the rational
numbers determined by Definition 3.4 for the spinc structures s and s0, then for s # s0
we take either their sum (if it is in Œ0; 1/) or is C is0 � 1. �

As a simple application of this formula, consider a graph �v0
and associate to it

two further graphs as follows. Both graphs are obtained by adding a further element
e to Vert.�v0

/, equipped with the framing .�1/. We can proceed in the following
two ways:

(1) Construct �C
v0

by adding an edge connecting e and v0 to �v0
.

(2) Define �dv0
by simply adding e (with the fixed framing .�1/) without adding

any extra edge.

For a pictorial presentation of the two graphs, see Figure 2. It is easy to see that �C
v0

is the connected sum of �v0
and the first example in 3.13, while �dv0

is the connected
sum of �v0

and the second example of 3.13. Since the master complexes of the two
graphs of Example 3.13 coincide, we conclude that
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Corollary 4.9. The master complexes MCF1.�C
v0
/ and MCF1.�dv0

/ are equal.
In fact, both master complexes are equal to MCF1.�v0

/.

Proof. Both master complexes are the tensor product (over F ŒU�1; U �) of the master
complex of �v0

and of F ŒU�1; U �, concluding the argument. �

...

...

...

v e v e
0 0

...

...

... ...

...
...

...

Figure 2. The two graphs �C

v0
(on the left) and �d

v0
(on the right) derived from a given

graph �v0
. The framing of e is .�1/ in both cases, and v0 is the distinguished vertex (hence

admits no framing and is denoted by a hollow circle) in both graphs.

5. Surgery along knots

A formula for computing the lattice homology for the graph Gv0
(we get from �v0

by attaching appropriate framing to v0) can be derived from the knowledge of the
master complex of �v0

, according to the following result:

Theorem 5.1. The master complex MCF1.�v0
/ of �v0

determines the lattice ho-
mology of the result of the graph obtained by marking v0 with any integer n 2 Z, for
which the resulting graph is negative definite.

In order to verify this result, first we describe the chain complex computing lattice
homology as a mapping cone of related objects. As before, consider the tree �v0

in
which each vertex except v0 is equipped with a framing. The plumbing graph G is
then given by deleting v0 from �v0

. Let Gv0
D Gv0

.n/ denote the plumbing graph
we get from �v0

by attaching the framing n 2 Z to v0. Suppose that for the chosen n
the graphGv0

is negative definite. Our immediate aim is to present the chain complex
CF�.Gv0

/ as a mapping cone of related objects. These related objects then will be
reinterpreted in terms of the master complex MCF1.�v0

/.
Consider the two-step filtration on CF�.Gv0

/ where the filtration level of U j ˝
ŒL;H� is 1 or 0 according to whether v0 is in H or v0 is not in H . Denoting the
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elements with filtration at most 0 by B, we get a short exact sequence

0 �! B �! CF�.Gv0
/ �! D �! 0:

Explicitly, B is generated (over F ŒU �) by pairs ŒL;H�with v0 62 H , while a nontrivial
element in D can be represented by (linear combinations of) termsU j˝ŒL;H�where
v0 2 H . Indeed, the quotient complex D can be identified with the complex .T ; @T /,
where T is generated over F ŒU � by those elements ŒL;H� of Char.G/ � P .V / for
which v0 2 H , and

@T ŒL;H� D
X

v2H�v0

U avŒL;H�˝ ŒL;H �v�C
X

v2H�v0

U bvŒL;H�˝ ŒLC2v�;H �v�:

Notice that there are two obvious maps @1; @2 W T ! B: For a generator ŒL;H� of T
(with v0 2 H ) consider

@1ŒL;H� D U av0
ŒL;H�˝ŒL;H�v0�; @2ŒL;H� D U bv0

ŒL;H�˝ŒLC2v�
0 ;H�v0�:

(5.1)
It follows from @2 D 0 that both maps @1; @2 W T ! B are chain maps. It is easy to
see that

Lemma 5.2. The mapping cone of .T ;B; @1 C @2/ is chain homotopy equivalent to
the chain complex CF�.Gv0

.n/// computing the lattice homology HF�.Gv0
.n// of

the result of n-surgery on v0. �

Next we identify the above terms using the Alexander filtration on CF1.G/
induced by v0. We will use the class † characterized in Equation (3.1).

Definition 5.3. Consider the subcomplexBi � B � CF�.Gv0
/ generated by ŒL;H�

where 1
2
.L.†/ C †2/ D i 2 Q. (Recall that since ŒL;H� is in B, the set H does

not contain v0. Also, as before, we regard L 2 H 2.XGv0
I Z/ as a cohomology class

with rational coefficients.) Since v�
j .†/ D vj � † D 0 for all j ¤ 0, it follows that

Bi is, indeed, a subcomplex of B for any rational i , and obviously
L
i2QBi D B.

Proposition 5.4. There is an isomorphism ' W Bi ! BiC1.

Proof. Define the map ' by sending a generator ŒL;H� of Bi to ŒL0;H � where

L0.vj / D
´
L.v0/C 2 if j D 0,

L.vj / if j ¤ 0.

Since v0 62 H , it follows that f .ŒL;H�/ D f .ŒL0;H �/ (where f is defined in Equa-
tion (2.1)), hence the resulting map is an isomorphism between the chain complexes
Bi and BiC1. �
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Proposition 5.5. The sum B D L
0�i<1Bi is isomorphic to CF�.G/.

Proof. Consider the mapF 0 W B ! CF�.G/ induced by the forgetful mapF 0 defined
as ŒL;H� 7! ŒLjG ;H �. It is easy to see that (since H does not contain v0) the map
F 0 is a chain map. Indeed, F 0 is an isomorphism: one needs to check only that every
element ŒLjG ;H � admits a unique lift to ŒL;H� 2 Bi with 0 � i < 1. The condition
1
2
.L.†/C†2/ D 1

2
L.v0/C 1

2
.LjG/.†�v0/C 1

2
†2 2 Œ0; 1/ uniquely characterizes

the value of 1
2
L.v0/ by the fact that L.v0/ � v20 mod 2. �

Remark 5.6. Obviously, the same argument shows that for any r 2 Q the sumL
r�i<rC1Bi is isomorphic to CF�.G/.

The above statement admits a spinc-refined version as follows. Notice first that
if we fix a spinc structure t on the 3-manifold YGv0

we get after the surgery, and also
fix i , then there is a unique spinc structure s on YG induced by .t; i/. Indeed, if the
cohomology class L satisfies sL D t and 1

2
.L.†/ C †2/ D i , and L0 is another

representative of t, then

L0 D LC
nX
iD0

2niv
�
i :

In order for L0 to be also in Bi , however, the coefficient n0 of v�
0 in the above sum

must be equal to zero, henceLjG andL0jG represent the same spinc structure on YG .
We will denote this restriction by .t; i/jG . Then the above isomorphism F 0 provides

Lemma 5.7. Let Bi .t/ be the subcomplex of Bi generated by those pairs for which
L represents the spinc structure t. The map F 0 provides an isomorphism between
Bi .t/ and CF�.G; .t; i/jG/.
Proof. By the above discussion it is clear that F 0 maps Bi .t/ to CF�.G; .t; i/jG/.
The map is injective, hence to show the isomorphism we only need to verify that F 0
is onto. Obviously L.†/C†2 D 2i and LjG D K determines L.v0/, and it is not
hard to see that for the resulting cohomology class sL D t. �

In conclusion, the complexes B, Bi .t/ and B D L
i2Œ0;1/Bi can be recovered

from CF�.G/, and hence from the master complex.
The complex T also admits a decomposition into

L
i2Q Ti where the generator

ŒL;H� with v0 2 H belongs to Ti if 1
2
.L.†/C†2/ D i 2 Q. Notice that the map

@1 defined in (5.1) maps Ti intoBi � B, while when we apply @2 to Ti , we get a map
pointing to BiCv�

0
.†/ � B.

Recall that in the definitions of Bi and Ti we used the fixed framing attached to
the vertex v0. In the following we show that the result will be actually independent
of this choice. To formulate the result, suppose that for the fixed framing v20 D n the
complex B D B.n/ splits as

L
i Bi .n/ (and similarly, T D T .n/ splits as

L
i Ti .n/).
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Lemma 5.8. The chain complexes Bi .n/ and Bi .n C 1/ (and similarly Ti .n/ and
Ti .nC 1/) are isomorphic.

Proof. Consider the map t W Bi .n/ ! Bi .nC 1/ which sends the generator ŒL;H�
to ŒL0;H � where L0.vj / D L.vj / for all j > 0 and L0.v0/ D L.v0/ � 1. Notice
that by changing the framing on v0 from n to n C 1 we increase †2 by 1. Since
L0.†/ D L.†/ � 1, and the above map t is invertible, the claim follows. Since the
function f we used in the definition of the boundary map takes the same value for
ŒL;H� as for ŒL0;H �, the map t is, indeed, a chain map between the chain complexes.
The reasoning for the map t 0 W Ti .n/ ! Ti .nC 1/ is similar. �

Our next goal is to reformulate T (and its splitting as
L
i2Q Ti ) in terms of

the master complex MCF1.�v0
/. As before, recall that for a spinc structure t on

YGv0
and i we have a restricted spinc structure s D .t; i/jG on YG . Consider the

subcomplex Si .s/ D Si ..t; i/jG/ � CF1.G; s/ generated by the elements

fU j ˝ ŒK;E� 2 CF�.G; s/ j �j � 0;A.U j ˝ ŒK;E�/ � ig:

Lemma 5.9. For a spinc structure t the chain complex Ti .t/ and the subcomplex
Si ..t; i/jG/ are isomorphic as chain complexes.

Proof. Define the map F D F t
i W Ti .t/ ! Si ..t; i/jG/ on the generator ŒL;H� by

the formula
F.ŒL;H�/ D U av0

ŒL;H� ˝ ŒLjG ;H � v0�:
The exponent ofU in this expression is obviously nonnegative and the spinc structure
of the image is equal to .t; i/jG . Therefore, in order to show that F.ŒL;H�/ 2
Si ..t; i/jG/, we need only to verify that

A.F.ŒL;H�// � i D 1
2
.L.†/C†2/: (5.2)

In fact, we claim that

1

2
.L.†/C†2/ � A.U av0

.ŒL;H�/ ˝ ŒLjG ;H � v0�/ D bv0
ŒL;H�: (5.3)

By substituting the definitions of the various terms in the left hand side of this equation
(after multiplying it by 2), and applying the obvious simplifications we get

L.v0/C 2g.ŒL;H � v0� � 2g.ŒL;H�/C v20

� 2g.ŒLjG ;H � v0�/C 2g.ŒLjG C 2v�
0 ;H � v0�/:

Since g.ŒLjG ;H � v0�/ D g.ŒL;H � v0�/, this expression is clearly equal to
2bv0

ŒL;H�, concluding the argument. Sincebv0
ŒL;H� is nonnegative, Equation (5.3)

immediately implies Inequality (5.2).
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Finally, a simple argument shows that F is a chain map: The two necessary
identities

av0
ŒL;H�C avŒLjG ;H � v0� D avŒL;H�C av0

ŒL;H � v�
and

av0
ŒL;H�C bvŒLjG ;H � v0� D bvŒL;H�C av0

ŒLC 2v�;H � v�
are reformulations of Equations (2.4) and (2.5) (together with the observation that
f .LjG ; I / D f .L; I / once v0 62 I ).

Next we show that F is an isomorphism. For ŒK;E� on G there is a unique
extension ŒL;H� on Gv0

with ŒLjG ;H � v0� D ŒK;E� and 1
2
.L.†/ C †2/ D i ,

hence the injectivity ofF easily follows. To show thatF is onto, fix an elementU j ˝
ŒK;E� 2 Si ..t; i/jG/ and consider ŒL;H� 2 Ti .t/ with F.ŒL;H�/ D U av0

ŒL;H� ˝
ŒK;E�. If av0

ŒL;H� D 0 then U j ˝ ŒL;H� maps to U j ˝ ŒK;E� under F . In
case av0

ŒL;H� > 0 then bv0
ŒL;H� D 0 and so by the identity of (5.3) we get

that A.U av0
ŒL;H� ˝ ŒK;E�/ D i . Therefore A.U j ˝ ŒK;E�/ � i implies that

j � av0
ŒL;H�, hence U j�av0

ŒL;H� ˝ ŒL;H� is in Ti .t/ and maps under F to
U j ˝ ŒK;E�, concluding the proof. �

The subcomplexes of T admit a certain symmetry, induced by the J -map.

Lemma 5.10. The J -map induces an isomorphism Ji between the chain complexes
Ti and T�i . This isomorphism intertwines the maps @1 and @2; more precisely @2 on
Ti is equal to J�1

i B @1 B Ji (and @1 on Ti is equal to J�1
i B @2 B Ji ).

Proof. Recall the definition J ŒL;H� D Œ�L � P
v2H 2v�;H � of the J -map on the

chain complex CF�.Gv0
/. Applying it to the complex Ti , we claim that we get a

chain complex isomorphism Ji W Ti ! T�i : from the fact .�L� P
v2H 2v�/.†/ D

�L.†/�2v0 �† (since v0 2 H and for all other vi we have that vi �† D 0) together
with the observation that †2 D v0 �†, it follows that

1

2
..�L �

X
v2H

2v�/.†/C†2/ D 1

2
.�L.†/ �†2/ D �1

2
.L.†/C†2/:

This equation shows that Ji maps Ti to T�i . The claim @2 D J�1
i B @1 B Ji (where

@2 is taken on Ti while @1 on T�i ) then simply follows from the identities of (2.7) in
Lemma 2.4. �

The same idea as above shows that

Lemma 5.11. The restriction of J to Bi provides an isomorphism Bi ! B�iCv�
0
.†/

of chain complexes.
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Proof. Indeed, if v0 62 H , then .�L � P
v2H 2v�/.†/ D �L.†/, hence

1

2

�
.�L �

X
v2H

2v�
�
.†/C†2

�
D 1

2
.�L.†/C†2/ D �1

2
.L.†/C†2/C†2;

and †2 D v�
0 .†/. �

Next we identify the two maps @1 and @2 of the mapping cone .T ;B; @1 C @2/ in
the filtered lattice chain complex context. Notice that Si .s/ is naturally a subcomplex
of CF�.G; s/; let the inclusion Si .s/ � CF�.G; s/ be denoted by �1. It is obvious
from the definitions that for the maps F 0, F of Proposition 5.5 and Lemma 5.9

F 0.@1ŒL;H�/ D �1.F.ŒL;H�//:

The subcomplex Si .s/ admits a further natural embedding into the complex Vi .s/
which is generated by the elements fU j ˝ ŒK;E� j A.U j ˝ ŒK;E�/ � ig in
CF1.G; s/. (Vi .s/ is the subcomplex of CF1.G; s/ when we regard this latter
as an F ŒU �-module.) Recall that sv0

denotes the spinc structure we get from s by
twisting it with v�

0 .

Proposition 5.12. The subcomplex Vi .s/ is isomorphic to CF�.G; sv0
/.

Proof. Consider the map U i�isN from Definition 4.1 mapping from CF1.G; s/ to
CF1.G; sv0

/. It is easy to see that this map provides an isomorphism between Vi .s/
and CF�.G; sv0

/, since

j.U i�is ˝N.U k ˝ ŒK;E�// D i C k � A.ŒK;E�/
is nonnegative if and only if i � �k C A.ŒK;E�/ D A.U k ˝ ŒK;E�/. �

Define now �2 W Si .s/ ! CF�.G; sv0
/ as the composition of the embedding

Si .s/ ! Vi .s/ with the map U i�isN . With this definition in place the identity

�2 B F D F 0 B @2
easily follows:

.�2 B F /ŒL;H� D U av0
ŒL;H�Ci�A.ŒLjG ;H�v0�/ ˝ ŒLjG C 2v�

0 ;H � v0�;

.F 0 B @2/ŒL;H� D U bv0
ŒL;H�ŒLC 2v�

0 jG ;H � v0�;
and the two right-hand side terms are equal by the identity of (5.3). Now we are in
the position to turn to the proof of the main result of this section, Theorem 5.1.
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Proof of Theorem 5.1. Fix the framing n of v0 in such a way that Gv0
D Gv0

.n/

is a negative definite plumbing graph. Fix a spinc structure t on YGvo
. Our goal is

now to determine the chain complex CF�.Gv0
; t/ from the master complex of �v0

.
As we discussed earlier in this section, it is sufficient to recover the subcomplexes
Ti .t/, Bi .t/ (for i 2 fq C n � †2 j n 2 Ng for an appropriate q 2 Q) and the maps
@1 W Ti .t/ ! Bi .t/ and @2 W Ti .t/ ! BiCv�

0
.†/.t/.

Identify Ti .t/ with the subcomplex Si ..t; i/jG/ and Bi .t/ with CF�.G; .t; i/jG/
(both as subcomplexes of CF1.G; .t; i/jG/) by the maps F and F 0. As we showed
earlier, the natural embedding of Si ..t; i/jG/ � CF�.G; .t; i/jG/ can play the role
of @1, while the embedding Si ..t; i/jG/ ! Vi ..t; i/jG/ composed with U i�i.t;i/jGN

plays the role of @2 in this model. These subcomplexes and maps are all determined
by CF1.G/, the two filtrations and the map N on it. Since by its definition the
master complex of �v0

equals this collection of data, the theorem is proved. �

5.1. Computation of the master complex. When computing the homology
HF�.Gv0

.n// from .˚Si ;Lk2Z CF�.G/; �1; �2/ we can first take the homolo-
gies H�.Si / and HF�.G/ and consider the maps H�.�1/ and H�.�2/ induced by
�1, �2 on these smaller complexes. This method provides more manageable chain
complexes to work with, but it also loses some information: the resulting homology
will be isomorphic to the homology of the original mapping cone only as a vector
space over F , and not necessarily as a module over the ring F ŒU �. Nevertheless,
sometimes this partial information can be applied very conveniently.

As an example, we show how to recover (in favorable situations, like the one
considered in Section 6 or in [18]) the knot lattice homology 1HFK.�v0

/ from the
homologies ofSi . Let us consider the following iterated mapping cone. First consider
the mapping conesCi of .Si ; SiC1;  i / for i D n; n�1, and then consider the mapping
coneD.n/ of .Cn; Cn�1; .�iC1; �i //. (For a schematic picture of the chain complex,
see Figure 3.) In the next lemma we will still need to use the complexes Si rather
than their homologies.

SnC1

Sn 1
Sn

Sn H .Sn/H .SnC1/

H .Sn 1/H .Sn/

HH

n

nC1

nC1

n   

Figure 3. The iterated mapping cone D.n/ on the Si ’s. The maps are defined as �i ,  i with
appropriate choices of i on the left, and the homomorphisms induced by these maps on the right.
When taking homologies first, we might need to encounter a nontrivial map indicated by the
dashed arrow.
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Lemma 5.13. The homology H�.D.n// is isomorphic to 1HFK.�v0
; n/.

Proof. FactoringSnC1 with the image of n W Sn ! SnC1 we compute the homology
of the horizontal strip in the master complex with A D n C 1 and nonnegative U -
power (i.e., j � 0). Similarly, with the help of  n�1 W Sn�1 ! Sn we get the
homology of the horizontal strip withA D n and nonnegative U -power. The iterated
mapping cone in the statement maps the upper strip into the lower one by multiplying
it by U , localizing the computation to one coordinate with A D n and vanishing
U -power. The homology of this complex is by definition the knot lattice homology
1HFK.�v0

; n/. �

Unfortunately, if we first take the homologies of the complexes Si and then form
the mapping cones in the above discussion, we might get different homology. The
reason is that when taking homologies of the Si we might need to consider a diagonal
map, as indicated by the dashed arrow of Figure 3. Under favorable circumstances (eg.
in Section 6 and in [18]), however, the diagonal map can be determined to be zero, and
in those cases 1HFK.�v0

/ can be computed from the homologies of Si (and the maps
induced by �i ;  i on these homologies). From the knowledge of 1HFK.�v0

; n/ we
can recover the nontrivial groups in the master complex: multiplication byU n simply
translates 1HFK.�v0

/ (located on the y-axis) with the vectors .n; n/ (n 2 Z). In some
special cases appropriate ad hoc arguments help us to reconstruct the differentials
and the map N on the master complex (which do not follow from the computation
of 1HFK.�v0

/), getting MCF1.�v0
/ back from H�.Si / and the maps H�.‰i / and

H�.ˆi /. Such simple calculations are carried out in detail in [18].
Remember also that first taking the homology and then the mapping cone causes

some information loss: the result will coincide with the homology of the mapping
cone as a vector space over F , but not necessarily as an F ŒU �-module. The vector
space underlying the F ŒU �-module HF� is already an interesting invariant of the
graph. The module structure can be reconstructed by considering the mapping cones
with coefficient rings F ŒU �=.U n/ for every n 2 N, cf. [17], Lemma 4.12.

6. An example: the right-handed trefoil knot

In this section we give an explicit computation of the filtered lattice chain complex
(introduced in Section 3) for the right-handed trefoil knot in S3. It is a standard
fact that this knot can be given by the plumbing diagram �v0

of Figure 4. Notice
that in this example the background manifold is diffeomorphic to S3, hence admits
a unique spinc structure, and therefore we do not need to record it. (Related explicit
computations can be found in [13].)

Using the results of [9], [10] first we will determineH�.Ti / andH�.B/when the
framing v20 D �7 is fixed on v0.
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−2 −1 −3

v0

Figure 4. The plumbing tree �v0
describing the right-handed trefoil knot in S 3. Interpreting

the graph as a plumbing tree, the repeated blow-down of the .�1/-, .�2/- and .�3/-framed
vertices turn the circle corresponding to v0 into the right-handed trefoil knot.

Proposition 6.1. Suppose that �v0
is given by the diagram of Figure 4. Then

H�.B/ Š F ŒU �.

Proof. The graph G D �v0
� v0 is negative definite with one bad vertex, hence

the result of [10] (cf. also [9]) applies and shows that the lattice homology of it is
isomorphic to the Heegaard Floer homology of the 3-manifold YG defined by the
plumbing. Since G presents S3 as a 3-manifold and H�.B/ Š HF�.G/, the claim
follows. �

Consequently the lattice homology group HF�.G/ D HF�
0 .G/ Š H�.B/ is

generated by a single element, and it has to be a linear combination of elements of the
form ŒK;E�withE D ; (since the entire homology of a negative definite graph with
at most one bad vertex is supported in this level). The generator has Maslov grading
0, which by the definition of the grading means that 1

4
.K2 C 3/ D 0, i.e., K2 D �3.

There are exactly 8 such cohomology classes on G, and it is easy to verify that these
are all homologous to each other (when thought of as cycles in lattice homology), so
any one of them can represent the generator of HF�.G/ D F ŒU �. By denoting the
vertex of G with framing �i by vi (i D 1; 2; 3), we define the vector K as

.K.v1/;K.v2/;K.v3// D .�1; 0; 1/: (6.1)

Simple calculation shows that K2 D �3, hence ŒK;;� generates HF�.G/. We will
need one further computational fact for the group HF�.G/:

Lemma 6.2. The element ŒK 0;;� 2 CF�.G/ given by .K 0.v1/;K 0.v2/;K 0.v3// D
.1; 0; 1/ is homologous to U ˝ ŒK;;�, where K is given by (6.1) above.

Proof. Consider the element

x D Œ.1; 0; 1/; fv1g�C Œ.�1; 2; 3/; fv3g�C Œ.1; 2;�3/; fv1g�C Œ.�1; 4;�1/; fv2g�:
It is an easy computation to show that @x D Œ.1; 0; 1/;;�CU ˝ Œ.1; 0;�1/;;�. Since
both ŒK;;� and Œ.1; 0;�1/;;� generate HF�.G/, the proof is complete. �
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Before calculating H�.Ti /, we determine the maps H�.@1/;H�.@2/ W H�.Ti / !
H�.B/ on certain elements. To this end, for j 2 Z consider the elements Lj 2
H 2.XGv0

I Z/ (with framing v20 D �7 attached to v0) defined as

.Lj .v1/; Lj .v2/; Lj .v3/; Lj .v0// D .�1; 0; 1; 2j C 1/:

Since † D v0 C 6v1 C 3v2 C 2v3, by the choice v20 D �7 we get †2 D �1. This
implies that 1

2
.Lj .†/C†2/ D j �2, hence the element ŒLj ; fv0g� is in Tj�2. Simple

calculation shows that

av0
ŒLj ; fv0g� D

´
0 if j � 3 � 0,

�.j � 3/ if j � 3 < 0
and

bv0
ŒLj ; fv0g� D

´
j � 3 if j � 3 � 0,

0 if j � 3 < 0.

With notations aj D av0
.ŒLj ; fv0g�/ and bj D bv0

.ŒLj ; fv0g�/ we conclude that
(with the conventions for K and K 0 above, and with the identification of B with
CF�.G/)

@1ŒLj ; fv0g� D U aj ˝K and @2ŒLj ; fv0g� D U bj ˝K 0;

and the latter element (according to Lemma 6.2) is homologous to U bj C1 ˝ K.
This shows that for j � 3 the homology class of H�.Tj�2/ represented by the ele-
ment ŒLj ; fv0g�maps under .@1; @2/ to ..�1; 0; 1/; U j�2˝ .�1; 0; 1// 2 HF�.G/�
HF�.G/. Applying the J -symmetry we can then determine the .@1; @2/-image
of J ŒLj ; fv0g� 2 T2�j (j � 3) as well. (Notice that although J ŒLj ; fv0g� and
ŒL�jC4; fv0g� are both elements of T�.j�2/, they are not necessarily homologous.)
For j D 2 the class ŒL2; fv0g� 2 T0 maps to .U ˝ .�1; 0; 1/; U ˝ .�1; 0; 1//. Now
we are in the position to determine the homologies H�.Ti /, as well as the maps on
them. Notice first that since G represents S3, the Alexander gradings are all integer
valued, hence we have a nontrivial complex Ti for each i 2 Z.

Proposition 6.3. The homology H�.Ti / is isomorphic to F ŒU �.

Proof. Notice first that H�.Ti / cannot have any nontrivial U -torsion: since @1; @2
map to H�.B/ D F ŒU �, such part of the homology stays in the kernel of @1 and
@2, hence would give nontrivial homology in HF�

1 .Gv0
/ (supported in jEj D 1).

This, however, contradicts the fact that for negative definite graphs with at most one
bad vertex we have that HF�

1 .Gv0
/ D 0 [10], [21]. If i > 0 and H�.Ti / is not

cyclic, then (by the J -symmetry) the same applies toH�.T�i /. Consider the surgery
coefficient nwith the property that @2 on Ti and @1 on T�i point to the sameB . Then
H�.Ti /˚H�.T�i / ! H�.B/˚H�.B/˚H�.B/ will have nontrivial kernel, once
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again producing nontrivial elements in HF�
1 .Gv0

.n//, a group which vanishes for any
(negative enough) surgery on v0. Therefore if i ¤ 0, the groupH�.Ti / is cyclic with
trivial U -torsion, consequently isomorphic to F ŒU �. For the same reason, H�.T0/
can have at most two generators, and if it has two generators, then the two maps @1
and @2 have different elements in their kernel. Suppose thatH�.T0/ is not cyclic. In
this case (for the choice v20 D �7) the U D 1 homology can be easily computed and
shown to be zero, contradicting the fact that in the single spinc structure on YGv0

.�7/
this homology is equal to F . This last argument then implies that H�.T0/ D F ŒU �
and concludes the proof of the proposition. �

Now our earlier computations of the maps show that for i > 0 the map @1
maps ŒLiC2; fv0g� 2 Ti into the generator of HF�.G/, hence ŒLiC2; fv0g� gen-
erates H�.Ti /. Furthermore, this reasoning shows that @1 is an isomorphism and
the map @2 W H�.Ti / ! HF�.G/ is multiplication by U i . By the J -symmetry this
computation also determines the maps @1, @2 on all H�.Ti / with i ¤ 0. On T0 the
situation is slightly more complicated: both maps @1, @2 take ŒL2; fv0g� to U -times
the generator of HF�.G/. This can happen in two ways. Either ŒL2; fv0g� generates
H�.T0/ (and the maps @1, @2 are both multiplications by U ), or the cycle ŒL2; fv0g�
is homologous to one of the form U ˝ g, where g can be represented by a sum
of generators (of the form ŒL0; fv0g�), each of Maslov grading two greater than the
Maslov grading of ŒL2; fv0g�. Thus, our aim is to show that there are no generators
in the requisite Maslov grading.

Specifically, we have that

grŒL2; fv0g� D �1;
while

grŒK; fv0g� D 2gŒK; fv0g�C 1C 1
4
.K2 C 4/;

which in turn can be 1 only if K2 D �4 and gŒK; fv0g� D 0; K2 D �4 implies that
K.v0/ � 5, while gŒK; fv0g� D 0 implies that K.v0/ � 7, a contradiction.

We have therefore identified the mapping cone .
L
i H�.Ti /;

L
k2ZH�.B/;

H�.@1 C @2//. For a schematic picture of the maps, see Figure 5.

H (T ) H (T ) H (T )
* * ***

H (B) H (B) H (B)H (B) H (B)
* * **H (B)

**

0 1 2−1−2

1 1 11U U UU UU
2 2

H (T  )H (T  )

Figure 5. The schematic diagram of the homology groups of H�.Ti /, of H�.B/ and the
mapsbetween them. All homologies are isomorphic to F ŒU �, and the maps are all multiplication
by some power of U (as indicated in the diagram). The sequence of homologies continue in
both directions to ˙1.
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We are now ready to describe the master complex of �v0
. We start by determining

the groups on the line j D 0 — equivalently, we compute 1HFK.�v0
/. For this

computation, the formula of Lemma 5.13 turns out to be rather useful. Indeed, since
H�.Ti / D F ŒU �, there is no diagonal map in the mapping cone of Figure 3.

The map H�.‰i / W H�.Ti / ! H�.TiC1/ can be determined from the fact that
composing it with the map H�.TiC1/ ! H�.B/ we get H�.Ti / ! H�.B/. Since
@1 W H�.Ti / ! H�.B/ is an isomorphism for i � 1, so are all the maps H�.‰i /.
Using the same principle for i D 0 (and noticing thatH�.T0/ ! H�.B/ is multipli-
cation by U ) we get that H�.‰0/ is also multiplication by U . Repeating the same
argument it follows thatH�.‰�1/ is an isomorphism, whileH�.‰i / is multiplication
by U for all i � �2. The iterated mapping cone construction of Lemma 5.13 shows
that the group 1HFK.�v0

; n/ vanishes if the two mapsH�.‰n/ andH�.‰n�1/ are the
same, and the group 1HFK.�v0

; n/ is isomorphic to F is the two maps above differ.
(For similar computations see [18].) The computation of the maps H�.‰i / above
shows that

Lemma 6.4. For �v0
given by Figure 4 the knot lattice group 1HFK.�v0

; n/ is iso-
morphic to F for n D �1; 0; 1 and vanishes otherwise. �

Indeed, with the convention used in Equation 6.1, the group 1HFK.�v0
; 1/ can be

represented by
x1 D Œ.�1; 0; 1/;;�;

while the group 1HFK.�v0
;�1/ by

x�1 D Œ.�1; 0;�1/;;�:
It is straightforward to determine the Alexander gradings of these elements, and
requires only a little more work to show that these two generators are not boundaries of
elements of the same Alexander grading. A quick computation gives that the Maslov
grading of x1 is 0, while the Maslov grading of x�1 is �2. Since the homology of the
elements with j D 0 gives F in Maslov grading 0 (as the bHF -invariant of S3), we

conclude that the generator x0 of the group 1HFK.�v0
; 0/ D F must be of Maslov

grading �1. Furthermore, x�1 is one of the components of @x0.
Similarly, since the homology along the lineA D 0 is also F (supported in Maslov

grading 0), it is generated by U�1˝x�1 and therefore there is a nontrivial map from
x0 to U ˝x1. Furthermore, this picture is translated by multiplications by all powers
of U , providing nontrivial maps on the master complex. There is no more nontrivial
map by simple Maslov grading argument. The filtered chain complex CF1.�v0

/

is then described by Figure 6. (By convention, a solid dot symbolizes F , while an
arrow stands for a nontrivial map between the two 1-dimensional vector spaces.)
Furthermore, as the map N is U -equivariant, it is equal to the identity. Comparing
this result with [24] we get that
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A

−j

Figure 6. The schematic diagram of the master complex MCF1.�v0
/. As usual, nontrivial

groups are denoted by dots, while nontrivial maps between them are symbolized by arrows.

Proposition 6.5. The master complex of �v0
determined above is filtered chain

homotopic to the master complex of the right-handed trefoil knot in Heegaard Floer
homology (as it is given in [22]). Consequently the filtered lattice chain complex of
the right-handed trefoil (given by Figure 4) is filtered chain homotopy equivalent to
the filtered knot Floer chain complex of the same knot. �

Remark 6.6. Essentially the same argument extends to the family of graphs f�v0
.n/ j

n 2 Ng we get by modifying the graph �v0
of Figure 4 by attaching a string of .n�1/

vertices, each with framing .�2/ to the .�3/-framed vertex of�v0
. The resulting knot

can be easily shown to be the .2; 2nC 1/ torus knot. A straightforward adaptation of
the argument above provides an identifications of the filtered chain homotopy types of
the master complexes (in lattice homology) of these knots with the master complexes
in knot Floer homology.

As an application, consider the connected sum of n trefoil knots. (For a plumbing
diagram, see Figure 1.)

Proof of Theorem 1.2. According to Proposition 6.5, together with the connected sum
formula for lattice homology and the Künneth formula for knot Floer homology, we
get that the two filtered chain complexes for v0 in Figure 1 (the filtered lattice chain
complex and the knot Floer chain complex) are filtered chain homotopic to each other.
(See Figure 7 for the master complex we get in the n D 2 case.) Equip the vertex
v0 of Figure 1 with framing m0 � �6n � 1. Then the corresponding 3-manifold is
.m0 C 6n/-surgery on the n-fold connected sum of trefoil knots in S3. Since the
master complex determines the chain complex of the surgery in the same manner in
the two theories, the lattice homology of this graph is isomorphic to the Heegaard
Floer homology of the corresponding 3-manifold. �



816 P. Ozsváth, A. I. Stipsicz and Z. Szabó CMH

−j

A

Figure 7. The master complex for the knot T # T (where T is the right-handed trefoil knot).

Remark 6.7. Notice that this graph has exactly n bad vertices, therefore the above
result provides further evidence to the conjectured isomorphism of lattice and Hee-
gaard Floer homologies. (For related results also see [13].) More generally, the
identification of the master complexes of knots in S3 (in fact in any YG which is an
L-space) is given in [18].
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