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A Sato–Tate law for GL.3/
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Abstract. We consider statistical properties of Hecke eigenvalues Aj .p; 1/ for fixed p as �j

runs through a basis of Hecke–Maaß cusp forms for the group SL3.Z/. We show that almost
all of them satisfy the Ramanujan conjecture at p and that their distribution is governed by the
Sato–Tate law.
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1. Introduction

Given an elliptic curve E over Q and a prime p of good reduction, one can write
cos �p WD .p C 1 � #E.Fp//=2

p
p which defines (by Hasse’s bound) an angle

�p 2 Œ0; ��. It is an interesting problem to study the statistical behaviour of �p as
p varies (or as E varies in some natural family and p is kept fixed). The Sato–Tate
conjecture states that for E without complex multiplication one has the “semicircle
distribution”

log P

P

X
p6P

p prime

f .2 cos �p/ ! 1

2�

Z 2

�2

f .x/
p

4 � x2dx; P ! 1;

for any continuous function f on Œ�2; 2�. More generally, given a (non-dihedral)
holomorphic Hecke cusp form F 2 Sk.N /, its normalized Hecke eigenvalues �.p/

are bounded by 2 in absolute value, and one expects the same distribution as p varies,
that is,

log P

P

X
p6P

p prime

f .�.p// ! 1

2�

Z 2

�2

f .x/
p

4 � x2 dx; P ! 1: (1)
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This is now a theorem of Barnet-Lamb, Geraghty, Harris and Taylor [BGHT]. The
analogous question for Maaß forms, however, is still wide open.

In this article we are interested in the statistical properties of Hecke eigenvalues
Aj .p; 1/ for fixed p as �j runs through a basis of Hecke–Maaß cusp forms for the
group SL3.Z/. In particular, we show below in Theorems 1–3 that almost all of the
Aj .p; 1/ satisfy the Ramanujan conjecture at p and that their distribution is governed
by the appropriate Sato–Tate law on GL.3/. Before we give a more precise description
of these results, we review a bit more closely the “classical” case of Hecke–Maaß
cusp forms for SL2.Z/.

1.1. The rank one case. Let fuj g run through an orthonormal basis of Hecke–Maaß
cusp forms for the modular group SL2.Z/. We denote their n-th Hecke eigenvalue by
�j .n/ and their Laplace eigenvalue by �j D 1=4 C t2

j > 1=4. By Weyl’s law there
are

� 1

12
T 2 (2)

linearly independent such eigenforms with eigenvalue �j 6 T 2. One may investigate
the statistical properties of �j .p/ (for p prime) either for fixed j as p varies, or for
fixed p as j varies. Here we take the latter point of view. The Ramanujan–Petersson
conjecture predicts j�j .p/j 6 2. In contrast to the holomorphic case, this is not
known for Maaß forms, the best approximation being the Kim–Sarnak bound

j�j .p/j 6 p7=64 C p�7=64; (3)

but one can hope that the expected bound j�j .p/j 6 2 cannot be violated too often.
Using the Selberg trace formula, Sarnak ([Sar], Theorem 1), proved1

1

T 2
#f�j 6 T 2 W j�j .p/j > ˛g � T

� 2 log ˛=2
log p (4)

for any prime p and any constant ˛ > 2, with an absolute implicit constant. This
gives a power saving for any fixed ˛ > 2 and any fixed p, but also if p is tending
to infinity and ˛ is at least a small power of p. It should be viewed as a density
theorem (analogous to bounding the density of zeros of the Riemann zeta-function
off the critical line): the more the Ramanujan conjecture is violated, the fewer such
Maaß forms exist. Often one can obtain stronger density theorems if one uses the
Kuznetsov formula instead of the Selberg trace formula, see e.g. Chapter 11.4 of
[Iw2]. In particular, one can improve (4) essentially by a factor 4:

Proposition 1. For a prime p, ˛ > 2, T > p and " > 0 one has

1

T 2
#f�j 6 T 2 W j�j .p/j > ˛g �" T

� 8 log ˛=2
log p C"

where the implied constant depends on " at most.

1His original exponent is log ˛=2

log p
instead of 2 log ˛=2

log p
, but in his bound (3.6) the factors 2k should be 22k

which produces the stronger result (4).
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In particular, this recovers the Selberg bound �j .p/ � p1=4C" (whereas (4) gives
only �j .p/ � p), since for sufficiently large p and T the proposition implies

#f�j 6 T 2 W j�j .p/j > p1=4C"g < 1:

The Sato–Tate conjecture in the version for Hecke–Maaß cusp forms predicts (1),
but a proof seems currently out of reach. However, Sarnak proved the following
complementary version for a fixed prime p ([Sar], Theorem 1.2):

12

T 2

X
�j 6T 2

f .�j .p// ! 1

2�

Z 2

�2

f .x/
p

4 � x2
p C 1

p C 2 C 1
p

� x2
dx; T ! 1:

(5)
Note that if p tends to infinity, this approaches the semicircle distribution.

This type of question has received much attention. In the context of holomorphic
cusp forms for large weight k, this type of equidistribution result (along with appli-
cations) has been discussed in [Se], [CDF], [Ro], [Golu], [MS]. The analogue of (5)
for the upper half space modulo the group SL2.O/ (where O is the ring of integers of
an imaginary quadratic field of class number one) was established in [IR]. The case
of Siegel modular forms of degree 2 and large weight k is treated in detail in the paper
[KST], see in particular their Theorem 1.6. A far-reaching generalization to auto-
morphic forms of cohomological type has recently been obtained in the monumental
work [ST], partly based on [Sh] and [Sau].

The asymptotic (5) is an application of the Selberg trace formula. It is interesting
to see what the Kuznetsov formula gives in this situation. The difference here is that
the Kuznetsov formula naturally considers a harmonic average, i.e. an average over
Hecke eigenvalues, weighted by the L2-norm of the underlying cusp form which is
proportional to L.1; sym2uj /. Interestingly, this slightly different counting procedure
produces the semicircle distribution “on the nose” 2:

Proposition 2. Let f be a compactly supported continuous function and let p be a
prime. Then

12

T 2

X
�j 6T 2

f .�j .p//
�.2/

L.1; sym2uj /
! 1

2�

Z 2

�2

f .x/
p

4 � x2 dx

as T ! 1.

A weighted version of this result for general congruence subgroups was proved
in [KL]. As a preparation for the GL.3/ case, we include a short independent proof
of Proposition 2.

2see the discussion after Theorem 1.2 in [KST] for interesting remarks about the difference of the trace
formula and the relative trace formula in the case of the group Sp4.
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1.2. The rank two case. We now turn to the main topic of this paper, namely the
statistical distribution of Hecke eigenvalues on GL.3/. This seems to be completely
new and has not been investigated. The central tool here is a usable version of the
Kuznetsov formula on GL.3/ as developed in [Bl] and [Bu1], [Bu2]. Combining both
works, we will present other useful versions of independent interest, and we refer in
particular to the nicely packaged Theorem 5 below.

Let f�j g run through an orthonormal basis of Hecke–Maaß cusp forms for the
group SL3.Z/ with Hecke eigenvalues Aj .n; 1/ and general Fourier coefficients
Aj .n; m/. In other words, �j lives on the quotient SL3.Z/nH3 where H3 is the
“generalized upper half plane” consisting of upper triangular matrices with right
lower entry 1, a 5-dimensional space. We refer to [Gold] for an introduction to the
relevant notation and theory. Each �j is an eigenfunction of two differential oper-

ators, and it comes with two spectral parameters �
.j /
1 , �

.j /
2 (sometimes we drop the

superscript if it is clear from the context) that we normalize to have real part 0 if �j

is tempered. Then the Laplacian eigenvalue is

�j D 1 � 3�2
1 � 3�1�2 � 3�2

2 :

The Weyl law for SL3.Z/nH3 (see [Mi2]) tells us that there are

� 18 vol.SL3.Z/nH3/

	.7=2/.4�/5=2

�
Tp

3

�5

D �.3/

120�3
p

3
T 5

Hecke–Maaß eigenfunctions �j with �j 6 T 2. (We use the Haar measure and the
GL.3/ Laplacian given in [Gold]. Note that these differ from the normalizations
producing the standard Weyl law; see [SW].) Note, however, that even though the
Selberg eigenvalue conjecture for SL3.Z/ is known [Mi1] (that is, the Laplacian
eigenvalue of each �j is > 1), this does not imply the Ramanujan conjecture at 1,
i.e. that the two spectral parameters are purely imaginary.

The Hecke eigenvalues Aj .p; 1/ are the sum of the three Satake parameters

˛
.j /
1 .p/, ˛

.j /
2 .p/, ˛

.j /
3 .p/. The Ramanujan conjecture predicts that they are of abso-

lute value 1, in particular jAj .p; 1/j 6 3 for a prime p, but this is unknown. Again
one may ask how often this is violated.

Theorem 1. For a prime p, ˛ > 3, T > p and " > 0 one has

1

T 5
#f�j 6 T 2 W jAj .p; 1/j > ˛g �" T

� 3 log ˛=3
log p C"

where the implied constant depends on " at most.

At the archimedean place, a corresponding density result was proved in Theo-
rem 2 of [Bl]. Unlike in the GL.2/ situation, Theorem 1 does not immediately tell us
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something about the individual Satake parameters, and in particular we cannot imme-
diately conclude that the Ramanujan conjecture is violated “not too often”. However,
a modification of the argument gives the following:

Theorem 2. Fix a prime p, let ı > 0 and let T be sufficiently large (in terms of p

and ı). Then there is 
 > 0 (depending on ı and p) such that

1

T 5
#
°
�j 6 T 2 W max¹j˛.j /

1 .p/j; j˛.j /
2 .p/j; j˛.j /

3 .p/jº > 1 C ı
±

� T ��:

Informally speaking, this shows that the Ramanujan conjecture at p is satisfied
for almost all Hecke–Maaß cusp forms.

Next we turn to an analogue of Proposition 2, the Sato–Tate distribution. It is
easiest to describe the Sato–Tate distribution in terms of the Satake parameters. We
parametrize the circle as eit , 0 6 t < 2� , and write ˛1.p/ D eit1 , ˛2.p/ D eit2 ,
˛3.p/ D e�i.t1Ct2/. The Sato–Tate measure is then given by [Sar]

d˛.t1; t2/ WD 1

24�2
jeit1 � eit2 j2jeit1 � e�i.t1Ct2/j2jeit2 � e�i.t1Ct2/j2dt1 dt2: (6)

Let W be the group of 6 maps S1 � S1 ! S1 � S1 generated by .eit1 ; eit2/ 7!
.eit2 ; eit1/ and .eit1 ; eit2/ 7! .eit1 ; e�i.t1Ct2//. Then the map

ˆ W .S1 � S1/=W ! C; .eit1 ; eit2/ 7! eit1 C eit2 C e�i.t1Ct2/;

is injective and hence bijective onto its image R that is the region inside the disc of
radius 3 that is surrounded by the curve 2eit C e�2it , t 2 Œ0; 2��.

2

3

1

2

323 1

3

21

1

Figure 1. The region R � C where the Sato–Tate measure is supported.

For functions on S1 � S1 that are symmetric under W we will not distinguish
between the function and its projection onto .S1 �S1/=W . We now define a measure
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d�.z/ on R as the push-forward of (6), i.e.Z
R

f .z/ d�.z/ WD
Z

S1�S1

.f B ˆ/.t1; t2/ d˛.t1; t2/: (7)

With this notation we have

Theorem 3. Let f be a compactly supported continuous function, and let p be a
prime. Then

1

c1T 5

X
�j 6T 2

f .Aj .p; 1//

res
sD1

L.s; �j � N�j /
!
Z

R

f .z/ d�.z/

as T ! 1, where c1 D p
3=.240�5/.

We remark that a lot of technical work in this paper is devoted to the treatment of
the exact shape of the sum over all eigenforms with eigenvalue �j 6 T 2, as opposed
to a weighted and re-normalized count of the shape�X

j

hT .�
.j /
1 ; �

.j /
2 /

res
sD1

L.s; �j � N�j /

��1X
j

f .Aj .p; 1//hT .�
.j /
1 ; �

.j /
2 /

res
sD1

L.s; �j � N�j /

for some sufficiently nice test function hT with support roughly on �j 6 T 2. We
believe that the corresponding results and techniques are of independent interest.

2. Proofs in the rank 1 case

Let l; k 2 N. We use the Hecke recurrence relation �j .p/�j .pl/ D �j .plC1/ C
�j .pl�1/ to write

�j .p/k D
kX

lD0

˛l;k�j .pl/

for certain integers ˛l;k . It follows trivially by induction that

kX
lD0

j˛l;kj 6 2k : (8)

The Hecke relation can be expressed in terms of Chebychev polynomials which
readily leads to the following integral representation ([CDF], Lemma 3):

˛l;k D 1

2�

Z 2

�2

xkUl.x=2/
p

4 � x2dx
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where Ul.x/ is the usual Chebyshev polynomial of the second kind. In particular

˛0;k D 1

2�

Z 2

�2

xk
p

4 � x2dx: (9)

The numbers ˛0;2k are known to be the Catalan numbers, but we do not need this
information.

Next we prepare for an application of the Kuznetsov formula which is usually given
in terms of Fourier coefficients �j .n/ of L2-normalized eigenforms. The coefficients
�j .n/ are proportional to the Hecke eigenvalues �j .n/, and we need to compute the
proportionality constant. Let uj be a Hecke–Maaß cusp form with Fourier expansion

uj .x C iy/ D y1=2
X
n6D0

�j .n/e.nx/Kitj .2�jnjy/ (10)

as in [Ku], (2.10). By a standard Rankin–Selberg unfolding argument we can compute
its norm: for <s > 1 we have

hjuj j2; E.:; s/i D
Z 1

0

X
n6D0

j�j .n/j2Kitj .2�jnjy/2ys dy

y

D 2

.2�/s

X
n>0

j�j .n/j2
ns

Z 1

0

Kitj .y/2ys dy

y

D 2

.2�/s

X
n>0

j�j .n/j2
ns

p
�	. s

2
/	. s

2
� i tj /	. s

2
C i tj /

4	.1Cs
2

/

by [GR], 6.576.4. Comparing residues at s D 1 on both sides, we find

kuj k2 D �

3
� 2

2�
� L.1; sym2uj /

�.2/
� �	.1

2
� i tj /	.1

2
C i tj /

4
D L.1; sym2uj /

2 cosh.�tj /
:

Hence

�j .n/ D �j .n/.2 cosh.�tj //1=2p
L.1; sym2uj /

: (11)

A standard application of the Kuznetsov formula gives the following:

Lemma 1. For m; n 2 N, T > 1 and " > 0 we have

X
j

�j .n/�j .m/
�.2/

L.1; sym2uj /
e�tj =T D ımDn

T 2

6
C O"

�
T .mnT /" C .mn/1=4C"

�
:
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Proof. We use a pre-Kuznetsov formula3 [Ku], Theorem 2, with the test function

�.x/ D sinh.i=.2T //

�
x exp

�
ix cosh.i=.2T //

�
as in [DI], (7.2). As shown in Lemma 8 of [DI], the pre-Kuznetsov formula is valid
for this function. Combining (7.10), (7.11), (7.14) in [DI] with (11) and trivial bounds
for the Eisenstein spectrum, we obtain

2
X

j

�j .n/�j .m/

L.1; sym2uj /
.e�tj =T C O.e�tj // C O".T .mnT /"/

D ımDn

2T 2

�2
C O

�
1 C

X
c>1

jS.m; n; c/j
c

min
�p

mn

c
;

�p
mn

c

�1=2��
:

The lemma follows from Weil’s bound jS.n; m; c/j �" c1=2C".n; m; c/1=2. �

We are now ready to prove Propositions 1 and 2. Recall that L.1; sym2uj / �" t"
j

(see e.g. [Iw1], Theorem 2, or [Iw2], Theorem 8.3). Let k 2 N. By positivity, (8)
and the upper bound contained in Lemma 1 we have

X
�j 6T 2

�j .p/2k �" T "
X

j

�j .p/2k

L.1; sym2uj /
e�tj =T

D T "

2kX
lD0

˛l;2k

X
j

�j .pl/

L.1; sym2uj /
e�tj =T

�" 22k.T 2 C pk=2/1C":

We choose k WD b4 log T= log pc > 4, and Proposition 1 follows.

For the proof of Proposition 2 we use Lemma 1 to compute

12

T 2

X
j

�j .p/k �.2/

L.1; sym2uj /
e�p

�j =T

D
kX

lD0

˛l;k

12

T 2

X
j

�j .pl/
�.2/

L.1; sym2uj /
e�tj =T C Ok;p;".T

�1C"/

D 2˛0;k C Ok;p;".T
�1C"/:

3The corresponding Lemma 6 in [DI] would do the same job, but it is wrongly normalized; in view of the
formula �.1=2 C it/�.1=2 � it/ D �= cosh.�t/, the Whittaker function on p. 52 of [DI] should have an
extra factor �1=2.
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Writing for the moment

A.t/ D
X

p
�j 6t

�j .p/k �.2/

L.1; sym2uj /
;

we have shown

12ı2

Z 1

0

e�ıvdA.v/ ! 2˛0;k; ı ! 0:

By a standard Tauberian theorem ([Te], Theorem II.7.5) and (9) we find for fixed k

and p,

12

T 2

X
�j 6T 2

�j .p/k �.2/

L.1; sym2uj /
D 12

T 2
A.T / ! 2˛0;k

	.3/
D 1

2�

Z 2

�2

xk
p

4 � x2dx

as T ! 1. Therefore Theorem 2 holds for power functions and hence for polyno-
mials. Since polynomial functions are dense in the space of continuous, compactly
supported functions, the proof of Theorem 2 is complete.

3. Combinatorics of Hecke eigenvalues

We compile some results on the Fourier coefficients A.m; n/, see e.g. Section 6 in
[Gold], Chapters 4 & 9 in [Bum] or [HM]. First we recall that A.m; n/ D A.n; m/.
A basic (but not trivial) approximation to the Ramanujan conjecture (Jacquet–Shalika
bounds) is

Aj .n; m/ �" .nm/1=2C": (12)

Better bounds are available (due to Luo–Rudnick–Sarnak), but we do not need them.
We have the Hecke relations ([Gold], Theorem 6.4.11)

A.n; 1/A.m1; m2/ D
X

d0d1d2Dn
d1jm1; d2jm2

A

�
m1d0

d1

;
m2d1

d2

�
;

A.1; n/A.m1; m2/ D
X

d0d1d2Dn
d1jm1; d2jm2

A

�
m1d2

d1

;
m2d0

d2

�
:

(13)

Given two integers l , k, we can write

jA.pl ; 1/j2k D .A.pl ; 1/A.1; pl//k D
X

rCs62lk

˛r;s;l;kA.pr ; ps/
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for certain integers ˛r;s;l;k . All we need is the bound

X
rCs62lk

j˛r;s;l;kj 6 3.pl/2k D
�

.l C 1/.l C 2/

2

�2k

(14)

which follows by induction from (13). The Hecke eigenvalues A.p; 1/ are the sum
of the Satake parameters ˛1.p/; ˛2.p/; ˛3.p/, and one can express A.pr ; ps/ as a
symmetric function in ˛1.p/, ˛2.p/, ˛3.p/ by Schur polynomials [Gold], 7.4.14:

A.pr ; ps/ D ˛1.p/rCsC2.˛2.p/rC1 � ˛3.p/rC1/

.˛2.p/ � ˛1.p//.˛3.p/ � ˛2.p//.˛1.p/ � ˛3.p//

C ˛2.p/rCsC2.˛3.p/rC1 � ˛1.p/rC1/

.˛2.p/ � ˛1.p//.˛3.p/ � ˛2.p//.˛1.p/ � ˛3.p//

C ˛3.p/rCsC2.˛1.p/rC1 � ˛2.p/rC1/

.˛2.p/ � ˛1.p//.˛3.p/ � ˛2.p//.˛1.p/ � ˛3.p//

DW Qr;s.˛1.p/; ˛2.p/; ˛3.p//;

(15)

say. By a simple brute force computation one checks thatZ
S1�S1

Qr;s.eit1 ; eit2 ; e�i.t1Ct2// d˛.t1; t2/ D ırDsD0: (16)

(Note that the denominator of (15) combines nicely with the measure (6).) The Satake
parameters satisfy ˛1.p/˛2.p/˛3.p/ D 1 as well as the unitarity condition

f˛1.p/; ˛2.p/; ˛3.p/g D ˚
1=˛1.p/; 1=˛2.p/; 1=˛3.p/

�
:

This equality of sets implies that if the Ramanujan conjecture at p is violated, that is,
if not all three parameters have absolute value 1, then we must have

f˛1.p/; ˛2.p/; ˛3.p/g D f�e�it ; ��1e�it ; e2itg (17)

for some � > 1 and some t 2 R. Combining this with (15) with r D l , s D 0, we
see that in this case

jA.pl ; 1/j > �2Cl.1 � 1=�/ � 4�

2.� C 1/2
: (18)

Remark. Equation (16) is a special case of the orthogonality relation (also verified
by direct computation)

hQr;s; QQr;Qsi
WD
Z

S1�S1

Qr;s.eit1 ; eit2 ; e�i.t1Ct2//QQr;Qs.eit1 ; eit2 ; e�i.t1Ct2//d˛.t1; t2/ D ırDQr
sDQs

:
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In particular, the Schur polynomials Qr;s for r; s 2 N0 form an orthonormal basis
of the space .S1 � S1/=W , and every smooth function f on .S1 � S1/=W has a
Fourier expansion

f .t1; t2/ D
X

r;s>0

hf; Qr;siQr;s.eit1 ; eit2 ; e�i.t1Ct2//:

4. The Kuznetsov formula for GL.3/

We write the Fourier expansion of a Hecke–Maaß cusp form for SL3.Z/ as

�.z/ D
1X

m1D1

X
m2 6D0

A.m1; m2/

jm1m2j
X

�2U2nSL2.Z/

W sgn.m2/
�1;�2

�� jm1m2j
m1

1

� �
�

1

�
z
�

with U2 D ˚�
1 x

1

� j x 2 Z
�

and W�̇1;�2
.z/ D e.x1 ˙ x2/W�1;�2

.y1; y2/ for z D�
1 x2 x3

1 x1
1

� �
y1y2

y1

1

�
where

W�1;�2
.y1; y2/

D 8y1y2

�
y1

y2

��1��2
2

�
Z 1

0

K 3
2 �0

.2�y2

p
1 C 1=u2/K 3

2 �0
.2�y2

p
1 C u2/u

3
2 .�1��2/ du

u

with
�0 D �1 C �2

is the completed Whittaker function4. As mentioned in the introduction, we do not
know if �1, �2 are purely imaginary, but if the Ramanujan conjecture is violated, then
it follows by unitarity that

.�1; �2; �0/ D .2�=3; ��=3 C i�; �=3 � i�/ or .�=3 C i�; �=3 � i�; 2�=3/ (19)

for 0 < j�j < 1=2 and � 2 R, cf. e.g. (2.8) in [Bl]. This is the archimedean analogue
of (17).

Again we can compute the norm of � by Rankin–Selberg theory and Stade’s
formula [Sta]:Z 1

0

Z 1

0

jW�1;�2
.y1; y2/j2.y2

1y2/s dy1 dy2

.y1y2/3
D 	.s=2/3

Q2
j D0 	.

sC3�j

2
/	.

s�3�j

2
/

4�3s	.3s=2/

4This is the standard definition of the completed Whittaker function as in [Gold], p. 154. Note that the leading
constant in [Gold], (6.1.3), should be 8 instead of 4.
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(as an equality of meromorphic functions in s). Note that by (19) this holds even in
the non-tempered case. Let

E.z; sI 1/ D 1

2

X
�2P nSL3.Z/

det.�z/s

with P D
n� � � �� � �

0 0 1

�o
� SL3.Z/ be the maximal parabolic Eisenstein series. As in

Section 3 of [Fr] or [Gold], p. 227–229, we unfold the Eisenstein series:

h�; �E.:; Ns; 1/i D 1

2

Z
P nh3

j�.z/j2.y2
1y2/sdx1 dx2 dx3

dy1 dy2

.y1y2/3
:

Let F denote a fundamental domain for
°�

1 f
1 e

1

�
j e; f 2 Z

±
nh3. Then P nh3

is in 2-to-1 correspondence with
˚�

�
1

� j � 2 GL2.Z/
� nF . Inserting the Fourier

expansion of one factor and unfolding once again, we obtain

h�; �E.:; Ns; 1/i D
1X

m1D1

1X
m2D1

jA�.m1; m2/j2
jm1m2j2

�
Z 1

�1

Z 1

�1
jW�1;�2

.m1y1; jm2jy2/j2.y2
1y2/s dy1 dy2

.y1y2/3

D L.s; � � N�/

�.3s/

Z 1

�1

Z 1

�1
jW�1;�2

.y1; y2/j2.y2
1y2/s dy1 dy2

.y1y2/3

for <s > 1. Comparing residues at both sides, we find with Stade’s formula that

1

�.3/
res
sD1

L.s; � � N�/
�

2

2Y
j D0

cos
�

3

2
��j

��1

D k�k2 res
sD1

E.:; Ns; 1/ D 2�

3�.3/
k�k2;

(20)
see Corollary 2.5 of [Fr] and observe that his definition of the Eisenstein series differs
from ours by a factor 2 (the index of SL3.Z/ in GL3.Z/). We conclude that the
orthonormalized Fourier coefficients are given by

A.m1; m2/

 
4
Q2

j D0 cos.3��j =2/

3 res
sD1

L.s; � � N�/

!1=2

: (21)

(Note that by (20) the product of the cosines is a positive real number.) It is known
([Li], Theorem 2, or [Br], Corollary 2) that

res
sD1

L.s; � � N�/ �" .1 C j�1j C j�2j/": (22)
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Theorem 4. Let n1, n2, m1, m2 be positive integers and write P D n1n2m1m2. Let
T > 1. Then there is a non-negative function hT and a constant c > 0 satisfying
hT � 1 on the set f.�1; �2/ j c 6 =�1; =�2 6 T; j<�1j; j<�2j 6 1=2g such thatX

j

Aj .n1; m1/Aj .n2; m2/hT .�
.j /
1 ; �

.j /
2 /

res
sD1

L.s; �j � N�j /
�" .T 5CT 2P 1=2CT 3P 7=64CP 5=3/1C":

Proof. This is Theorem 5 of [Bl], where we invoke [Bl], Lemma 1, as well as [Bl],
Theorem 1, to estimate the main term on the right-hand side of [Bl], Theorem 5. �

Theorem 4 suffices for the proof of Theorems 1 and 2. For the proof of Theorem 3
we need a more precise, but less uniform version. Its proof that we postpone to the
end of the paper features a completely explicit version of the Kuznetsov formula
(Theorem 6).

Theorem 5. Let n1; n2; m1; m2 2 Z n f0g, P D m1m2n1n2 and T > 1. ThenX
j

Aj .n1; m1/Aj .n2; m2/

res
sD1

L.s; �j � N�j /
e��j =T 2 D ıjn1jDjm1j

jn2jDjm2j
c2T 5 C O"

�
.P T 37=8/1C"

�
where c2 D p

3=.27�9=2/.

The error term is not optimized. In order to keep the argument as simple as
possible we only tried to obtain explicit polynomial dependence on P and a nontrivial
exponent in T . The best possible error term in this situation is O.T 3/ coming from
the Eisenstein contribution. Theorem 5 is a direct GL.3/-analogue of [IK], (16.56).

5. Proofs in the rank 2 case

The proofs of Theorems 1 and 2 are very similar to the proof of Proposition 1. Let
l , k be two integers. Combining (22), (14) and Theorem 4 (with 10T instead of T ),
we obtainX

�j 6T 2

jAj .pl ; 1/j2k

�" T "
X

j

jAj .pl ; 1/j2kh10T .�
.j /
1 ; �

.j /
2 /

res
sD1

L.s; �j � N�j /

D T "
X

rCs62lk

˛r;s;k;l

X
j

Aj .pr ; ps/h10T .�
.j /
1 ; �

.j /
2 /

res
sD1

L.s; �j � N�j /

�" T "

�
.l C 1/.l C 2/

2

�2k

.T 5 C T 2plk C T 3p7lk=32 C p10lk=3/1C"

(23)



908 V. Blomer, J. Buttcane and N. Raulf CMH

where the implied constant depends only on ". Choosing k D b.3=2/ log T= log pc
and l D 1 gives X

�j 6T 2

jAj .p; 1/j2k �" 32kT 5C";

and Theorem 1 follows easily:

1

T 5
#f�j 6 T 2 W jAj .p; 1/j > ˛g 6 ˛�2k

T 5

X
�j 6T 2

jAj .p; 1/j2k

�"

�˛

3

��2k

T " � T
� 3 log ˛=3

log p C"
:

In order to prove Theorem 2 we consider cusp forms �j with

maxfj˛.j /
1 .p/j; j˛.j /

2 .p/j; j˛.j /
3 .p/jg > 1 C ı:

By (17) and (18) the Hecke eigenvalues of such a form satisfy

jAj .pl ; 1/j > .1 C ı/1Clı � 4.1 C ı/

2ı2
> .l C 1/.l C 2/ (24)

for some sufficiently large l D l.ı/. For T sufficiently large in terms of ı and p we
choose k D b 3 log T

2l log p
c > 1. From (24) and (23) we conclude

1

T 5
#f�j 6 T 2 W maxfj˛.j /

1 .p/j; j˛.j /
2 .p/j; j˛.j /

3 .p/jg > 1 C ıg

� 1

T 5

X
�j 6T 2

jAj .pl ; 1/j2k

..l C 1/.l C 2//2k
�"

T "

22k

and Theorem 2 follows with 
 < 3
l log p

.
Finally we prove Theorem 3 analogously to Proposition 2. Let r , s be fixed

integers and p a fixed prime. By Theorem 5 we have

1

c2T 5

X
j

Aj .pr ; ps/

res
sD1

L.s; �j � N�j /
e��j =T 2 ! ırDsD0

as T ! 1, and hence by the same Tauberian argument as in the proof of Proposition 2
we conclude

1

c2T 5

X
�j 6T 2

Aj .pr ; ps/

res
sD1

L.s; �j � N�j /
! ırDsD0

	.5
2

C 1/
:

By the Hecke relations we can write Aj .pr ; ps/ D qr;s.Aj .p; 1// where qr;s.z/

is a polynomial in z and Nz. By (15), (16) and the definition (7) of the measure d�,
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Theorem 3 holds for the functions qr;s (restricted to R). Again by the Hecke relations
we can write A.p; 1/kA.1; p/l as a linear combination of the A.pr ; ps/. Hence by
linearity of the integral, Theorem 3 holds for the functions f .z/ D zk Nzl . Since every
continuous function on R can be approximated by polynomials in z and Nz, Theorem 3
follows.

6. The Kuznetsov formula on GL.3/ – continued

6.1. Preliminaries. We introduce some notation. We start with the definition of the

relevant Kloosterman sums for the Weyl elements

w4 D
0@ 1

1

1

1A ; w5 D
0@ 1

1

1

1A ; w6 D
0@ 1

�1

1

1A :

For n1; n2; m1; m2 2 Z n f0g, D1; D2 2 N we define

Sw6
.m1; m2; n1; n2; D1; D2/

WD
XXXX

B1;C1 .mod D1/
B2;C2 .mod D2/

.D1;B1;C1/D.D2;B2;C2/D1
D1C2CB1B2CC1D2�0 .D1D2/

e

�
m1B1 C n1.Y1D2 � Z1B2/

D1

�
� e

�
m2B2 C n2.Y2D1 � Z2B1/

D2

�
where Y1; Y2; Z1; Z2 are chosen such that

Y1B1 C Z1C1 	 1 .mod D1/; Y2B2 C Z2C2 	 1 .mod D2/:

For D1 j D2, we put

Sw5
.m1; m2; n1; n2; D1; D2/

WD
XX

C1 .D1/; C2 .D2/
.C1;D1/D.C2;D2=D1/D1

e

�
n1C1 C m1

SC1C2

D1

�
e

�
m2

SC2

D2=D1

�
:

The right-hand side does not depend on n2, but it is nevertheless convenient to keep
n2 on the left-hand side. For D2 j D1 we put

Sw4
.m1; m2; n1; n2; D1; D2/ WD Sw5

.m2; m1; n2; n1; D2; D1/:
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Many properties of these Kloosterman sums have been derived in [BFG]. Here we
only need to know the upper bounds

Sw6
.m1; m2; n1; n2; D1; D2/

�" .D1D2/1=2C"
�
.D1; D2/.m1m2; ŒD1; D2�/.n1n2; ŒD1; D2�//

�1=2
;

Sw5
.m1; m2; n1; n2; D1; D2/ �" min

��
m1;

D2

D1

�
D2

1 ; .m2; n1; D1/D2

�1C"

;

Sw4
.m1; m2; n1; n2; D1; D2/ �" min

��
m1;

D1

D2

�
D2

2 ; .m1; n2; D2/D1

�1C"

(25)

where Œ :; :� denotes the least common multiple. The last two bounds are due to Larsen
(see [BFG], Appendix), the first bound is essentially due to Stevens (see [Ste], Theo-
rem 5.1). The dependence on m1, m2, n1, n2 has been worked out in [Bu1], p. 39,
by analyzing Stevens’ proof.

Next we define the normalized Fourier coefficients of minimal and maximal
parabolic Eisenstein series. We refer to Section 10 of [Gold] or Section 5 of [Bl]
for more details. For �1; �2 2 iR and m1; m2 2 Z n f0g we define

A�1;�2
.m1; m2/ D jm1j�1C2�2 jm2j2�1C�2��3�2;�3�1

.jm1j; jm2j/
where ��1;�2

.m1; m2/ is the multiplicative function defined by

��1;�2
.pk1 ; pk2/ D p��2k1

ˇ̌̌̌�
1 p�2.k1Ck2C2/ p.�1C�2/.k1Ck2C2/

1 p�2.k1C1/ p.�1C�2/.k1C1/

1 1 1

�ˇ̌̌̌
ˇ̌̌̌�

1 p2�2 p2.�1C�2/

1 p�2 p�1C�2

1 1 1

�ˇ̌̌̌ :

Moreover, for � 2 iR and uj a Hecke–Maaß cusp form for SL2.Z/ with eigenvalues
�j .n/, we define

B	;uj
.1; m/ D

X
d1d2Djmj

�j .d1/d
�	
1 d

2	
2

and extend this definition to all pairs of integers by the Hecke relations

B	;uj
.m; 1/ D B.	;uj /.1; m/ D B	;uj

.1; m/;

B	;uj
.m1; m2/ D

X
d j.m1;m2/

�.d/B	;uj

�m1

d
; 1
�

B	;uj

�
1;

m2

d

�
:

It follows from the Kim–Sarnak bound (3) that

A�1;�2
.m1; m2/; B	;uj

.m1; m2/ � jm1m2j7=64C": (26)
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Up to a normalizing factor proportional to

Q2
j D0 cos.3��j =2/

j�.1 C 3�j /j2 resp.

Q2
j D0 cos.3��j =2/

L.1; sym2uj /jL.1 C 3�/j2

the quantities jA�1;�2
.m1; m2/j2 resp. jB	;uj

.m1; m2/j2 are the squares of the Fourier
coefficients of the minimal resp. maximal Eisenstein series in the spectral decompo-
sition, see e.g. Section 5 and Proposition 4 in [Bl].

We have the following formula for the (slightly re-normalized) double Mellin
transform of the Whittaker function [Gold], (6.1.4):

	W�1;�2
.u1; u2/

WD 4

�2

Z 1

0

Z 1

0

W�1;�2
.y1; y2/.�y1/u1�1.�y2/u2�1 dy1 dy2

y1y2

D �
�

u1C2�1C�2
2

�
�
�

u1��1C�2
2

�
�
�

u1��1�2�2
2

�
�
�

u2�2�1��2
2

�
�
�

u2C�1��2
2

�
�
�

u2C�1C2�2
2

�
�
�

u1Cu2
2

� :

For � > 0, y1; y2 2 R and �9=8 < <uj < �1 we define the following auxiliary
functions:

Tw4;
.u1; u2I y1; y2I �1; �2/

D .�jy1j/�u1.�jy2j/�u2

Z 1

0

Z 1

0

W��1;��2
.t1; t2/

t
3Cu1�u2C2

1 t

2Cu1C

2

Z 1

�1

Z 1

�1
e

�
� y1

t1t2

x3

1 C x2
2 C x2

3

C t1
x2x3

1 C x2
2

C t2x2

�

.1 C x2
2/

�1�u1C2u2
2 .1 C x2

2 C x2
3/

�1C2u1�u2
2 dx2dx3

dt1 dt2

.t1t2/3
;

Tw5;
.u1; u2I y1; y2I �1; �2/

D .�jy1j/�u1.�jy2j/�u2

Z 1

0

Z 1

0

W��1;��2
.t1; t2/

t
3Cu2C2

1 t

2Cu2�u1C

2

Z 1

�1

Z 1

�1
e

�
� y2

t1t2

x3

1 C x2
1 C x2

3

C t2
x1x3

1 C x2
1

C t1x1

�

.1 C x2
1/

�1�u2C2u1
2 .1 C x2

1 C x2
3/

�1C2u2�u1
2 dx1dx3

dt1 dt2

.t1t2/3
;
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Tw6;
.u1; u2I y1; y2I �1; �2/

D .�jy1j/�u1.�jy2j/�u2

Z 1

0

Z 1

0

W��1;��2
.t1; t2/t

3Cu2C2

1 t

2Cu1C

2Z 1

�1

Z 1

�1

Z 1

�1
e

�
y1

t2

x2 C x1x3

1 C x2
2 C x2

3

C y2

t1

x1 C x2.x1x2 � x3/

1 C x2
1 C .x1x2 � x3/2

C t1x2 C t2x2

�
.1 C x2

2 C x2
3/

�1C2u1�u2
2 .1 C x2

1 C .x1x2 � x3/2/
�1�u1C2u2

2 dx1dx2dx3

dt1 dt2

.t1t2/3
;

as well as

M
.�1; �2/ D �3
	
�

3C3

2

�
�5	

�
1C


2

�3 2Y
j D0

�3��j

2
tan

��3��j

2

�
	
�1C
C3�j

2

�
	
�1C
�3�j

2

� :
Let �9=8 < c < �1. For w 2 fw4; w5; w6g we define the following integral kernel

Jw;
.y1; y2I �1; �2/

D M
.�1; �2/

�Z
.c/

Z
.c/

	W�1;�2
.u1; u2/Tw;
.u1; u2I y1; y2I �1; �2/

du1 du2

.2�i/2

C 3

Z
.c/

res
u1D�1C2�2

	W�1;�2
.u1; u2/Tw;
.�1 C 2�2; u2I y1; y2I �1; �2/

du2

2�i

C 3

Z
.c/

res
u2D�1��2

	W�1;�2
.u1; u2/Tw;
.u1; �1 � �2I y1; y2I �1; �2/

du1

2�i

C 6 res
u1D�1C2�2
u2D�1��2

	W�1;�2
.u1; u2/Tw;
.�1 C 2�2; �1 � �2I y1; y2I �1; �2/

�
:

For better comparison with [Bu2], we recall that the Langlands parameters �1, �2,
�3 are related to the spectral parameters �0, �1, �2 by

�1 D 2�1 C �2; �2 D ��1 C �2; �3 D ��1 � 2�2;

�1 D .�1 � �2/=3; �2 D .�2 � �3/=3; �0 D .�1 � �3/=3:
(27)

Then the functions Jw;�.y/ in [Bu2] are related to the above defined function
Jw;
.y1; y2I �1; �2/ by

Jw;
.y1; y2I �1; �2/

D 4�3C3
	
�

3C3

2

�
kadj.�1; �2/	.1C


2
/3
Q2

j D0 cos
�

3��j

2

�
	.

1C
C3�j

2
/	.

1C
�3�j

2
/
Jw;�.y/

(28)

where the function kadj.�1; �2/ is constructed so that the denominator is 
 1 away
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from poles (that is, when �j is an odd multiple of 1=3). Specifically,

kadj.�1; �2/ D
2Y

j D0

..3 C 2�/2 � 9�2
j /�
=2:

The key to estimating the Kloosterman terms in the Kuznetsov formula is the
following bound for the integral kernel Jw;
 which is part of [Bu2], Proposition 1.

Lemma 2. Let � D 5=4.
a) If <�1 D �1=2 and <�2 D 0, then

Jw4;
.y; 1I �1; �2/ � jyj
�
.1 C j�0j/.1 C j�1j/.1 C j�2j/�29=16

min
�
.1 C j�0j/; .1 C j�1j/; .1 C j�2j/�55=16

:

b) If <�1 D �1=2 and <�2 D 1=2, then

Jw5;
.1; yI �1; �2/ � jyj
�
.1 C j�0j/.1 C j�1j/.1 C j�2j/�25=16

min
�
.1 C j�0j/; .1 C j�1j/; .1 C j�2j/�43=16

:

c) If <�1 D �2=3 and <�2 D 1=3, then

Jw6;
.y1; y2I �1; �2/ � jy1y2j
�
.1 C j�0j/.1 C j�1j/.1 C j�2j/�29=16

min
�
.1 C j�0j/; .1 C j�1j/; .1 C j�2j/�55=16

:

Proof. We use Proposition 1 of [Bu2] and choose

� .<�1; <�2; <�3/ D .�1; 1=2; 1=2/ for Jw4
,

� .<�1; <�2; <�3/ D .�1=2; 1; �1=2/ for Jw5
, and

� .<�1; <�2; <�3/ D .�1; 1; �1=2/ for Jw6
. �

6.2. An explicit Kuznetsov formula. We are now ready to state the Kuznetsov
formula. The following theorem is a restatement of Theorem 8 of [Bu2] which is
based on Li’s approach in Section 11 of [Gold] together with the spherical inversion
formula for SL3.R/.

Theorem 6. Let h W C2 ! C be a function that is holomorphic on R WD fj<�j j < 1;

0 6 j 6 2g and that is symmetric under the Weyl group

.�1; �2/ ! .��1; �0/ ! .�2; ��0/ ! .��2; ��1/ ! .��0; �1/ ! .�0; ��2/:

Assume that h.�1; �2/ D 0 if .�2
1 � 1=9/.�2

2 � 1=9/.�2
0 � 1=9/ D 0 and that

h.�1; �2/ � ..1 C j�1j/.1 C j�2j/.1 C j�1 C �2j//�5=3�"
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in R. Let n1; n2; m1; m2 2 Z n f0g. Then the following formula holds:

4

3

X
j

Aj .n1; n2/Aj .m1; m2/
h.�

.j /
1 ; �

.j /
2 /

res
sD1

L.s; �j � N�j /

C C1

Z
.0/

Z
.0/

A�1;�2
.n1; n2/A�1;�2

.m1; m2/

� h.�1; �2/

j�.1 C �0/�.1 C �1/�.1 C �2/j2
d�1 d�2

.2�i/2

C C2

X
j

Z
.0/

B	;uj
.n1; n2/B	;uj

.m1; m2/
h.� � 1

3
i tj ; 2

3
i tj /

jL.1 C 3�; uj /j2L.1; sym2uj /

d�

2�i

D ıjn1jDjm1j
jn2jDjm2j

1

2�6

Z
.0/

Z
.0/

h.�1; �2/

2Y
j D0

.�3��j /

2
tan

3��j

2

d�1d�2

.2�i/2

C
X

�1Dsign.m2n1/
�22f˙1g

X
D1jm2jDD2

2
jn1j

Sw4
.m1; m2; �1n1; �2n2; D1; D2/

D1D2

Z
.c4;2/

Z
.c4;1/

h.�1; �2/Jw4;


�
�2m1m2n2

D1D2

; 1I �1; �2

�
d�1 d�2

.2�i/2

C
X

�12f˙1g
�2Dsign.m1n2/

X
D2jm1jDD2

1
jn2j

Sw5
.m1; m2; �1n1; �2n2; D1; D2/

D1D2

Z
.c5;2/

Z
.c5;1/

h.�1; �2/Jw5;


�
1;

�1m1m2n1

D1D2

I �1; �2

�
d�1 d�2

.2�i/2

C
X

.�1;�2/2f˙1g2

X
D1;D2

Sw6
.�2n2; �1n1; m1; m2; D1; D2/

D1D2Z
.c6;2/

Z
.c6;1/

h.�1; �2/Jw6;


�
D2m1�2n2

D2
1

;
D1m2"1n1

D2
2

I �1; �2

�
d�1 d�2

.2�i/2

where

.c4;1; c4;2/ D .�1=2; 0/; .c5;1c5;2/ D .�1=2; 1=2/; .c6;1; c6;2/ D .�2=3; 1=3/;

and C1 and C2 are absolute constants.

For the conversion from [Bu2], (8) and Theorem 8, to the present version we used
(21) for the cuspidal term.

Remarks. 1) The spectral side of the formula does not depend on �, hence the
arithmetic side is independent of �, too. The individual terms on the arithmetic
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side, however, do depend on �. We need this somewhat artificial parameter for
convergence reasons.

2) The requirement that h.�1; �2/ D 0 if .�2
1 � 1=9/.�2

2 � 1=9/.�2
0 � 1=9/ D 0

comes from the poles of tan 3��j =2 in the spectral measure. It allows us to choose
contours with �1 < <�j < 1 on the Kloosterman side. This is an analogue of the
fact that the GL.2/ Kuznetsov formula has better performance if the test function
cancels the poles of the spectral measure t tanh.�t/dt .

3) There is some flexibility in choosing the lines of integration, but there are also
some constraints due to convergence, see Proposition 1 of [Bu2] for more details. In
our situation the lines given in the theorem are, in view of Lemma 2, most useful.

The following corollary shows how to apply this rather complicated formula in
practice.

Corollary 7. Keep the notation and assumptions of Theorem 6. We write P D
jm1m2n1n2j 6D 0 and

H�1;�2
.˛1; ˛2/ D

Z
.�2/

Z
.�1/

jh.�1; �2/j.1 C j�1j/˛1C".1 C j�2j/˛2C"jd�1j jd�2j

and

H �
�1;�2

.˛1; ˛2/

D
Z

.�2/

Z
.�1/

jh.�1; �2/j
�
.1 C j�0j/.1 C j�1j/.1 C j�2j/�˛1C"

min
�
.1 C j�0j/; .1 C j�1j/; .1 C j�2j/�˛2

jd�1j jd�2j

(for fixed small " > 0). Then one has

X
j

Aj .n1; n2/Aj .m1; m2/
h.�

.j /
1 ; �

.j /
2 /

res
sD1

L.s; �j � N�j /

D ıjn1jDjm1j
jn2jDjm2j

32

29�6

Z
.0/

Z
.0/

h.�1; �2/

2Y
j D0

.�3��j /

2
tan

3��j

2

d�1d�2

.2�i/2

C O"

�
P 1C"

�
H �

� 1
2 ;0

�
29
16

; 55
16

�C H �
� 1

2 ; 1
2

�
25
16

; 43
16

�C H �
� 2

3 ; 1
3

�
29
16

; 55
16

��
C P 7=64C"H0;0.0; 1/

�
:

Proof. We estimate the remaining terms in Theorem 6. For the Eisenstein series we
use the bounds (26) together with the lower bounds �.1 C i t/ �" jt j�" for t 6D 0,
L.1 C i t; uj / �" .1 C jt j C jtj j/�" ([HR], Theorem C) and L.1; sym2uj / �"

.1 C jtj j/�" ([HL]) and Weyl’s law (2). In this way we bound the maximal parabolic
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contribution by

P �C"
X

j

.1 C jtj j/"

Z
.0/

jh.� � 1
3
i tj ; 2

3
i tj /j.1 C j�j/"jd�j �" P �C"H0;0.0; 1/;

and this majorizes also the minimal parabolic contribution.
For the Kloosterman terms we combine Lemma 2 with (25) and observe that the

D1-, D2-sums on the Kloosterman side are absolutely convergent. �

6.3. Proof of Theorem 5. For the proof of Theorem 5 we choose

h.�1; �2/ D e�.1�3�2
1

�3�1�2�3�2
2

/=T 2
2Y

j D0

.1
9

� �2
j /2

.1 � �2
j /2

D e�.1�3�2
1

�3�1�2�3�2
2

/=T 2
�

1 C O
� 2X

j D0

1

1 C j�j j2
��

:

This satisfies the assumptions of Theorem 6. Note that by (19) and the truth of the
Selberg eigenvalue conjecture �j > 1 the function h is positive on the spectrum. We
compute

H0;0.0; 1/ �" T 3C";

H �
� 1

2 ;0

�
29

16
;
55

16

�
C H �

� 2
3 ; 1

3

�
29

16
;
55

16

�
�" T 2� 29

16 C1C" D T
37
8 C";

H �
� 1

2 ; 1
2

�
25

16
;
43

16

�
�" T 2� 25

16 C1C" D T
33
8 C":

(29)

By a weak form of a local Weyl law for SL3.Z/ (e.g. [Bl], Theorem 1) and the bound
(12) we have

X
j

Aj .n1; n2/Aj .m1; m2/
h.�

.j /
1 ; �

.j /
2 /

res
sD1

L.s; � � N�/

�
X

j

Aj .n1; n2/Aj .m1; m2/
e��j =T 2

res
sD1

L.s; � � N�/

� jn1n2m1m2j1=2
X

j

e��j =T 2 P2
j D0.1 C j�j j2/�2

res
sD1

L.s; � � N�/

�" jn1n2m1m2j1=2C"T 3C":

(30)
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Finally we computeZ
.0/

Z
.0/

h.�1; �2/

2Y
j D0

3��j

2
tan

.�3��j /

2

d�1d�2

.2�i/2

D 6

Z i1

0

Z i1

0

h.�1; �2/

2Y
j D0

.�3��j /

2
tan

3��j

2

d�1d�2

.2�i/2

D 6i3

Z i1

0

Z i1

0

e.3�2
1

C3�1�2C3�2
2

/=T 2
2Y

j D0

.�3��j /

2

d�1d�2

.2�i/2
C O".T

3C"/

D 6

�
3�

2

�3
1

.2�/2

p
�=3

81
T 5 C O".T

3C"/ D �3=2

16
p

3
T 5 C O.T 3C"/:

(31)

The double integral in the penultimate line can be computed by diagonalizing the
quadratic form via �1 7! �1 � �2=2 (or by Mathematica). Theorem 5 follows from
injecting (29)–(31) into Corollary 7.

Note added in proof. 1) After this paper was accepted for publication, similar
results were obtained independently by F. Zhou (“Weighted Sato–Tate vertical distri-
bution of the Satake parameter of Maass forms on PGL.N /”, to appear in Ramanujan
Journal, Doi 10.1007/s11139-013-9535-6).

2) The second author would like to take the opportunity to correct some mis-
prints in [Bu2]: the leading constant in Theorem 7 should be �1=.48�4/ instead
of �1=.64�4/, and the changes propagated. The function C �.�/ above Theorem 9
is missing a factor 4�3=2C3
	.3C3


2
/: The leading constant on HI in Theorem 9

becomes �1=.24�8/, and the leading constant in (14) should be 1=.12�3/.
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